JPH07124593A - Highly advanced water purifying treatment method - Google Patents
Highly advanced water purifying treatment methodInfo
- Publication number
- JPH07124593A JPH07124593A JP5172401A JP17240193A JPH07124593A JP H07124593 A JPH07124593 A JP H07124593A JP 5172401 A JP5172401 A JP 5172401A JP 17240193 A JP17240193 A JP 17240193A JP H07124593 A JPH07124593 A JP H07124593A
- Authority
- JP
- Japan
- Prior art keywords
- treatment
- activated carbon
- granular activated
- trihalomethane
- ion concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Water Treatment By Sorption (AREA)
- Biological Treatment Of Waste Water (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高度浄水処理方法に係
り、特にオゾン処理と粒状活性炭処理を組み入れた高度
浄水処理方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an advanced water treatment method, and more particularly to an advanced water treatment method incorporating ozone treatment and granular activated carbon treatment.
【0002】[0002]
【従来の技術】近年、水道水源の汚濁進行に伴い、微量
有機塩素化合物や異臭味の問題がクローズアップされて
いる。従来の浄水処理は、前塩素処理、凝集沈殿、砂濾
過及び後塩素処理工程で構成され、前塩素処理によるト
リハロメタン生成や異臭味(かび臭)を除去できないと
いう問題があった。2. Description of the Related Art In recent years, problems of trace organic chlorine compounds and off-flavors have been highlighted as the pollution of tap water sources progresses. Conventional water purification treatment is composed of pre-chlorination, coagulation-sedimentation, sand filtration and post-chlorination steps, and there is a problem that trihalomethane production and off-flavor (moldy odor) cannot be removed by pre-chlorination.
【0003】このような背景を踏まえ、近年、高度浄水
処理の検討が進められ、特に、生物活性炭処理が脚光を
浴びている。生物活性炭処理とは、好気状態に保たれた
粒状活性炭層に棲息する好気性微生物の働きによりアン
モニア性窒素の硝化や有機物分解を行う処理方法で、活
性炭に付着した微生物が活性炭に吸着された有機物を分
解除去することによる生物再生効果により、活性炭寿命
が延びるといわれている。この生物活性炭処理によるト
リハロメタンの低減化は、トリハロメタンの前駆物質
(フミン質等)を除去することによって行われる。Under these circumstances, studies on advanced water purification treatment have been advanced in recent years, and in particular, biological activated carbon treatment has been in the limelight. Biological activated carbon treatment is a treatment method in which nitrification of ammonia nitrogen and organic matter decomposition are performed by the action of aerobic microorganisms living in the granular activated carbon layer maintained in an aerobic state, and the microorganisms adhering to the activated carbon are adsorbed on the activated carbon. It is said that the life of activated carbon is extended by the biological regeneration effect by decomposing and removing organic substances. The reduction of trihalomethane by this biological activated carbon treatment is carried out by removing a precursor of trihalomethane (humic substance etc.).
【0004】ところで、一般にトリハロメタンとは、ク
ロロホルム(CHCl3 )、ブロモジクロロメタン(C
HBrCl2 )、ジブロモクロロメタン(CHBr2 C
l)及びブロモホルム(CHBr3 )の4種のトリハロ
メタン化合物の総称であり、これら4物質の生成量は、
水中に存在する臭素イオン量により変化し、臭素イオン
が多いほど臭素系トリハロメタンが多くなり、その結
果、総トリハロメタン量も増加する。我が国では、19
81年3月の厚生省通達により、水道水中の総トリハロ
メタンの制御目標値を0.1mg/l以下とするように行
政指導されてきたが、1992年12月の大幅な水質基
準見直しによりトリハロメタンについては総量の他に4
物質個別についても基準値が設けられ、規制が強化され
た。By the way, generally, trihalomethane means chloroform (CHCl 3 ), bromodichloromethane (C
HBrCl 2 ), dibromochloromethane (CHBr 2 C
l) and bromoform (CHBr 3 ) are four types of trihalomethane compounds, and the production amounts of these four substances are
It changes depending on the amount of bromine ions present in water, and the more bromine ions, the more bromine-based trihalomethane, and as a result, the total trihalomethane amount also increases. 19 in Japan
According to the Ministry of Health and Welfare notification in March 1981, administrative guidance was given to reduce the control target value of total trihalomethane in tap water to 0.1 mg / l or less. However, due to a major review of water quality standards in December 1992, 4 in addition to the total amount
Standards were set for individual substances and regulations were tightened.
【0005】実原水中の臭素イオン濃度は、塩素イオン
濃度に比例し、海水等の影響により塩素イオン濃度が上
昇すると、臭素イオン濃度も上昇する。我々は、海水遡
上の影響を受けて塩素イオン及び臭素イオン濃度が比較
的高い原水を用いて高度浄水処理実験を行ったところ、
生物活性炭処理においては、塩素系のトリハロメタン前
駆物質は良好に除去できるが、臭素系のものは塩素系の
ものより除去しにくいことを発見した。また、生物が関
与しない粒状活性炭への吸着性は、臭素系のトリハロメ
タンの方が塩素系のものより高いことが判明した。The bromine ion concentration in the actual raw water is proportional to the chlorine ion concentration, and when the chlorine ion concentration rises due to the influence of seawater or the like, the bromine ion concentration also rises. We conducted an advanced water purification treatment experiment using raw water with relatively high chlorine and bromine ion concentrations due to the influence of seawater upstream.
It was discovered that chlorine-based trihalomethane precursors can be removed satisfactorily in biological activated carbon treatment, while bromine-based precursors are more difficult to remove than chlorine-based ones. It was also found that bromine-based trihalomethanes had higher adsorptivity to granular activated carbon, which does not involve organisms, than chlorine-based ones.
【0006】このように、トリハロメタンを構成する物
質毎に、活性炭による除去性が異なっており、特に、海
水等の影響により塩素イオン濃度が高い原水を生物活性
炭で処理する際には、臭素系のトリハロメタン前駆物質
が除去できず、最終処理水中に臭素系トリハロメタンが
残存するという問題点があった。As described above, the removability by activated carbon is different for each substance constituting trihalomethane. Especially, when treating raw water having a high chlorine ion concentration due to the influence of seawater or the like with biological activated carbon, There was a problem that the trihalomethane precursor could not be removed and the brominated trihalomethane remained in the final treated water.
【0007】[0007]
【発明が解決しようとする課題】本発明の目的は、前記
従来技術の問題点を解消し、塩素系トリハロメタン及び
臭素系トリハロメタンの両者の濃度を効率よく著しく低
減しうる高度浄水処理方法を提供することにある。SUMMARY OF THE INVENTION The object of the present invention is to solve the above problems of the prior art and to provide a highly purified water treatment method capable of efficiently and significantly reducing the concentrations of both chlorine-based trihalomethanes and bromine-based trihalomethanes. Especially.
【0008】[0008]
【課題を解決するための手段】本発明は、生物活性炭処
理では臭素系トリハロメタンの前駆物質が除去しにく
く、また、粒状活性炭への吸着性は臭素系のトリハロメ
タンの方が塩素系より高いことを実験により確認し、凝
集沈殿処理と砂濾過処理と塩素消毒処理から構成される
浄水処理プロセスに、オゾン処理と粒状活性炭処理を付
加した高度浄水処理方法において、実原水中の臭素系ト
リハロメタン前駆物質濃度が高い場合に、粒状活性炭処
理を生物活性炭処理と粒状活性炭吸着処理の二工程で行
うことによって、臭素系のトリハロメタンが残存しない
最終処理水が得られるように構成したものである。According to the present invention, it is difficult to remove a precursor of bromine-based trihalomethane by treatment with biological activated carbon, and the adsorptivity to granular activated carbon of bromine-based trihalomethane is higher than that of chlorine-based. In the advanced water treatment method, which was confirmed by experiments and added ozone treatment and granular activated carbon treatment to the water treatment process consisting of coagulation sedimentation treatment, sand filtration treatment and chlorine disinfection treatment, the concentration of bromine-based trihalomethane precursors in actual raw water When the water content is high, the granular activated carbon treatment is performed in two steps, that is, the biological activated carbon treatment and the granular activated carbon adsorption treatment, so that the final treated water in which no brominated trihalomethane remains can be obtained.
【0009】すなわち、本発明による高度浄水処理方法
は、凝集沈殿処理と砂濾過処理と塩素消毒処理から構成
される浄水処理プロセスに、オゾン処理と粒状活性炭処
理を付加した高度浄水処理方法において、原水中の塩素
イオン濃度、臭素イオン濃度及び電導度のうちの少なく
とも一つを連続的にモニタリングし、その濃度が高い場
合に、粒状活性炭処理を生物活性炭処理と粒状活性炭吸
着処理との二工程で行うことを特徴とする。That is, the advanced water treatment method according to the present invention is a method for treating advanced water treatment in which ozone treatment and granular activated carbon treatment are added to a water purification treatment process consisting of coagulation sedimentation treatment, sand filtration treatment and chlorine disinfection treatment. At least one of chlorine ion concentration, bromine ion concentration and electric conductivity in water is continuously monitored, and when the concentration is high, granular activated carbon treatment is carried out in two steps of biological activated carbon treatment and granular activated carbon adsorption treatment. It is characterized by
【0010】本発明の方法において、生物活性炭処理だ
けでなく粒状活性炭吸着処理も行うのは、臭素系トリハ
ロメタン前駆物質が含まれる原水を処理する場合である
が、原水の臭素系トリハロメタン前駆物質濃度は、原水
の塩素イオン濃度、臭素イオン濃度及び電導度のうちの
少なくとも一つをモニタリングすることによって知るこ
とができる。すなわち、直接、臭素イオン濃度をモニタ
リングしてもよいが、一般に塩素イオン濃度が高い場合
には、臭素イオン濃度も高いので、塩素イオン濃度をモ
ニタリングしてもよいし、電導度を測定することによっ
て、臭素イオン濃度を推測することもできる。もちろ
ん、前記の複数のモニタリング項目を計測してもよい。In the method of the present invention, not only biological activated carbon treatment but also granular activated carbon adsorption treatment is carried out when raw water containing a brominated trihalomethane precursor is treated. It can be determined by monitoring at least one of the chlorine ion concentration, the bromine ion concentration and the electric conductivity of the raw water. That is, although the bromine ion concentration may be directly monitored, in general, when the chlorine ion concentration is high, the bromine ion concentration is also high, so the chlorine ion concentration may be monitored or the conductivity may be measured. It is also possible to estimate the bromine ion concentration. Of course, the plurality of monitoring items may be measured.
【0011】上記のモニタリングにより原水中に臭素系
トリハロメタン前駆物質が高濃度に含まれると計測され
た場合には、生物活性炭処理で未処理となった臭素系ト
リハロメタン前駆物質を塩素消毒処理により臭素系トリ
ハロメタンに変換した後、これを粒状活性炭に吸着させ
て除去する。そのため、本発明の方法においては、上記
のモニタリングにより、塩素消毒処理後の臭素系トリハ
ロメタンの生成量が0.03mg/l以上になると推定さ
れる場合に、生物活性炭処理と粒状活性炭処理とを併用
するのが好ましい。なお、本発明の方法において、生物
活性炭処理及び粒状活性炭吸着処理は、固定層式、流動
層式のいずれでもよい。When it is determined by the above-mentioned monitoring that the raw water contains a high concentration of the bromine-based trihalomethane precursor, the bromine-based trihalomethane precursor that has not been treated by the biological activated carbon treatment is treated with chlorine to disinfect the bromine-based trihalomethane precursor. After conversion to trihalomethane, it is adsorbed on granular activated carbon and removed. Therefore, in the method of the present invention, when the amount of brominated trihalomethane produced after chlorine disinfection is estimated to be 0.03 mg / l or more by the above monitoring, the biological activated carbon treatment and the granular activated carbon treatment are used in combination. Preferably. In the method of the present invention, the biological activated carbon treatment and the granular activated carbon adsorption treatment may be either fixed bed type or fluidized bed type.
【0012】[0012]
【実施例】次に、図面を参照して本発明を実施例に基づ
いてさらに具体的に説明するが、本発明はこれによって
制限されるものではない。図1は、本発明の高度浄水処
理方法の第一の実施例を示す概略系統図である。図1に
おいて、実原水は凝集沈殿処理槽1、オゾン処理槽2及
び生物活性炭処理槽3順次通水され、処理される。次い
で、塩素消毒液槽4から塩素消毒液を注入した後、砂濾
過処理槽5に通水される。砂濾過処理槽5の後段には三
方弁6が設けられており、処理水を最終処理水として系
外に排出するラインと粒状活性炭吸着処理槽7に導入す
るラインとに分かれている。原水を凝集沈殿処理槽1に
流入するラインには、塩素イオン濃度モニタ8が設置さ
れており、このモニタの測定濃度により三方弁6の開閉
動作が制御されるように制御機構(図示していない)を
備える。EXAMPLES The present invention will be described in more detail based on the following examples with reference to the accompanying drawings, but the invention is not limited thereto. FIG. 1 is a schematic system diagram showing a first embodiment of the highly purified water treatment method of the present invention. In FIG. 1, the actual raw water is passed through a coagulation sedimentation treatment tank 1, an ozone treatment tank 2, and a biological activated carbon treatment tank 3 in that order for treatment. Then, after injecting the chlorine disinfectant from the chlorine disinfectant tank 4, water is passed through the sand filtration tank 5. A three-way valve 6 is provided downstream of the sand filtration treatment tank 5, and is divided into a line for discharging treated water to the outside of the system as final treated water and a line for introducing it into the granular activated carbon adsorption treatment tank 7. A chlorine ion concentration monitor 8 is installed in the line through which raw water flows into the coagulation sedimentation treatment tank 1, and a control mechanism (not shown) is used to control the opening / closing operation of the three-way valve 6 by the measured concentration of this monitor. ) Is provided.
【0013】前記のように、原水中の塩素イオン濃度が
低い場合は、臭素イオン濃度も低いため、生物活性炭処
理に供されるトリハロメタン前駆物質もほとんど塩素系
であるから、生物活性炭処理でトリハロメタン前駆物質
が良好に除去され、最終処理水中のトリハロメタンは極
めて微量に抑えることができる。したがって、この場合
には、砂濾過処理槽5からの処理水を最終処理水として
流出させて差し支えない。一方、原水中の塩素イオン濃
度が高い場合には、臭素系のトリハロメタン前駆物質を
多量に含んだ水が生物活性炭処理に供され、臭素系のト
リハロメタン前駆物質があまり除去されずに塩素消毒処
理され、臭素系トリハロメタンを生成する。この臭素系
トリハロメタンは、砂濾過処理では除去できない。した
がって、この場合には、砂濾過処理槽5からの処理水を
さらに粒状活性炭吸着処理槽7へ流入させる。臭素系ト
リハロメタンは、粒状活性炭に効率よく吸着されるの
で、粒状活性炭吸着処理槽7で充分に除去される。As described above, when the chlorine ion concentration in the raw water is low, the bromine ion concentration is also low, so that the trihalomethane precursors used in the treatment with biological activated carbon are also mostly chlorine-based. The substance is well removed and the amount of trihalomethane in the final treated water can be kept to a very small amount. Therefore, in this case, the treated water from the sand filtration treatment tank 5 may flow out as the final treated water. On the other hand, when the chlorine ion concentration in the raw water is high, water containing a large amount of bromine-based trihalomethane precursors is subjected to biological activated carbon treatment, and the bromine-based trihalomethane precursors are not removed so much and subjected to chlorine disinfection treatment. Produces brominated trihalomethanes. This brominated trihalomethane cannot be removed by sand filtration. Therefore, in this case, the treated water from the sand filtration treatment tank 5 is further caused to flow into the granular activated carbon adsorption treatment tank 7. The bromine-based trihalomethane is efficiently adsorbed by the granular activated carbon, so that it is sufficiently removed in the granular activated carbon adsorption treatment tank 7.
【0014】本発明の第一の実施例において、粒状活性
炭吸着処理槽7に通水するか否かは、原水中の塩素イオ
ン濃度をモニタリングし、その濃度によって決定する
が、その設定値は原水の性状、例えば有機物量なども考
慮して決定する必要がある。例えば、同じ塩素イオン濃
度でも原水の種類により臭素イオン濃度も異なり、ま
た、有機物量が少ないと、生成するトリハロメタン量も
少なく、基準値以下となることもある。したがって、事
前に処理対象となる原水中の塩素イオン濃度と臭素イオ
ン濃度の相関式、有機物量とトリハロメタン前駆物質量
の関係等の調査をし、設定値を決定する。In the first embodiment of the present invention, whether or not water is passed through the granular activated carbon adsorption treatment tank 7 is determined by monitoring the chlorine ion concentration in the raw water and determining the concentration. It is necessary to decide in consideration of the properties of, for example, the amount of organic substances. For example, even if the chlorine ion concentration is the same, the bromine ion concentration varies depending on the type of raw water, and if the amount of organic matter is small, the amount of trihalomethane produced is also small and may fall below the reference value. Therefore, the set value is determined by investigating beforehand the correlation formula between the chlorine ion concentration and the bromine ion concentration in the raw water to be treated, the relationship between the amount of organic matter and the amount of trihalomethane precursor, and the like.
【0015】以上のように、原水中の塩素イオン濃度に
より、生物活性炭処理に供されるトリハロメタン前駆物
質の構成を予想し、除去できなかった臭素系トリハロメ
タン前駆物質については、塩素消毒処理により臭素系ト
リハロメタンに変換した後、粒状活性炭吸着処理槽7で
臭素系トリハロメタンを吸着除去することにより、総ト
リハロメタン量を低減化することができる。As described above, the composition of the trihalomethane precursor to be subjected to biological activated carbon treatment was predicted based on the chlorine ion concentration in the raw water, and the bromine-based trihalomethane precursor that could not be removed was treated by chlorine disinfection. After conversion into trihalomethane, the total amount of trihalomethane can be reduced by adsorbing and removing the brominated trihalomethane in the granular activated carbon adsorption treatment tank 7.
【0016】図2は、本発明の第二の実施例を示すもの
で、三方弁6を塩素消毒液注入点と砂濾過処理槽5との
間に設け、砂濾過処理槽5に導入され、最終処理水を得
るラインと、粒状活性炭吸着処理槽7に導入されるライ
ンに分かれている点で、図1に示した第一の実施例と相
違する。この実施例によれば、粒状活性炭吸着処理が必
要な際のプロセス全体での処理時間の短縮化を図ること
ができ、しかも第一の実施例と同等の処理効果が達成さ
れる。FIG. 2 shows a second embodiment of the present invention, in which a three-way valve 6 is provided between the chlorine disinfectant injection point and the sand filtration treatment tank 5 and introduced into the sand filtration treatment tank 5. It is different from the first embodiment shown in FIG. 1 in that it is divided into a line for obtaining the final treated water and a line for introducing into the granular activated carbon adsorption treatment tank 7. According to this embodiment, it is possible to shorten the processing time of the whole process when the granular activated carbon adsorption treatment is required, and moreover, the same processing effect as that of the first embodiment is achieved.
【0017】本発明の方法において、高度浄水処理の処
理工程の順序は、粒状活性炭吸着処理を最終工程とする
こと以外は、前記の実施例に限定されるものではなく、
図3あるいは図4に示した順序で処理を行ってもよい。
図3は、本発明の第三の実施例を示すもので、砂濾過処
理槽5を凝集沈殿処理槽1とオゾン処理槽2の間に配置
した点で図1に示した第一の実施例と異なる。また、図
4は、本発明の第四の実施例を示すもので、砂濾過処理
槽5をオゾン処理槽2と生物活性炭処理槽3との間に配
置した点で第一の実施例と異なる。In the method of the present invention, the order of the treatment steps of the advanced water purification treatment is not limited to the above-mentioned embodiment except that the granular activated carbon adsorption treatment is the final step.
The processing may be performed in the order shown in FIG. 3 or 4.
FIG. 3 shows a third embodiment of the present invention. The first embodiment shown in FIG. 1 in that the sand filtration treatment tank 5 is arranged between the coagulation sedimentation treatment tank 1 and the ozone treatment tank 2. Different from Further, FIG. 4 shows a fourth embodiment of the present invention, which is different from the first embodiment in that the sand filtration treatment tank 5 is arranged between the ozone treatment tank 2 and the biological activated carbon treatment tank 3. .
【0018】[0018]
【発明の効果】本発明の高度浄水処理方法によれば、塩
素系トリハロメタン前駆物質ばかりでなく、臭素系トリ
ハロメタン前駆物質を高濃度に含む原水が流入した場合
にも、それに容易に対処でき、効率よく高度処理するこ
とができ、総トリハロメタン量が著しく低減した最終処
理水を得ることができる。EFFECTS OF THE INVENTION According to the highly purified water treatment method of the present invention, not only chlorine-based trihalomethane precursors but also raw water containing a high concentration of bromine-based trihalomethane precursors can be easily dealt with and the efficiency can be improved. It is possible to obtain the final treated water which can be well advanced and highly reduced in the total amount of trihalomethanes.
【図1】本発明の第一の実施例を示す概略系統図であ
る。FIG. 1 is a schematic system diagram showing a first embodiment of the present invention.
【図2】本発明の第二の実施例を示す概略系統図であ
る。FIG. 2 is a schematic system diagram showing a second embodiment of the present invention.
【図3】本発明の第三の実施例を示す概略系統図であ
る。FIG. 3 is a schematic system diagram showing a third embodiment of the present invention.
【図4】本発明の第四の実施例を示す概略系統図であ
る。FIG. 4 is a schematic system diagram showing a fourth embodiment of the present invention.
【符号の説明】 1 凝集沈殿処理槽 2 オゾン処理槽 3 生物活性炭処理槽 4 塩素消毒液槽 5 砂濾過処理槽 6 三方弁 7 粒状活性炭吸着処理槽 8 塩素イオン濃度モニタ[Explanation of symbols] 1 Coagulation sedimentation treatment tank 2 Ozone treatment tank 3 Biological activated carbon treatment tank 4 Chlorine disinfection solution tank 5 Sand filtration treatment tank 6 Three-way valve 7 Granular activated carbon adsorption treatment tank 8 Chlorine ion concentration monitor
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/28 F 1/52 Z 9042−4D 1/78 3/06 9/00 502 D 7446−4D H 7446−4D P 7446−4D Z 7446−4D R 7446−4D 503 A 7446−4D 504 A 7446−4D B 7446−4D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C02F 1/28 F 1/52 Z 9042-4D 1/78 3/06 9/00 502 D 7446- 4D H 7446-4D P 7446-4D Z 7446-4D R 7446-4D 503 A 7446-4D 504 A 7446-4D B 7446-4D
Claims (2)
理から構成される浄水処理プロセスに、オゾン処理と粒
状活性炭処理を付加した高度浄水処理方法において、実
原水中の塩素イオン濃度、臭素イオン濃度及び電導度の
うちの少なくとも一つを連続的にモニタリングし、その
濃度が高い場合に、粒状活性炭処理を生物活性炭処理と
粒状活性炭吸着処理との二工程で行うことを特徴とする
高度浄水処理方法。1. A highly purified water treatment method in which ozone treatment and granular activated carbon treatment are added to a purified water treatment process consisting of coagulation sedimentation treatment, sand filtration treatment and chlorine disinfection treatment, and chlorine ion concentration and bromine ion in actual raw water are obtained. At least one of concentration and conductivity is continuously monitored, and when the concentration is high, granular activated carbon treatment is carried out in two steps of biological activated carbon treatment and granular activated carbon adsorption treatment. Method.
ち、前段を生物活性炭処理とする請求項1記載の高度浄
水処理方法。2. The advanced water purification method according to claim 1, wherein, of the granular activated carbon treatment divided into two steps, the preceding stage is biological activated carbon treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17240193A JP3201077B2 (en) | 1993-06-18 | 1993-06-18 | Advanced water treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17240193A JP3201077B2 (en) | 1993-06-18 | 1993-06-18 | Advanced water treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07124593A true JPH07124593A (en) | 1995-05-16 |
JP3201077B2 JP3201077B2 (en) | 2001-08-20 |
Family
ID=15941269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17240193A Expired - Lifetime JP3201077B2 (en) | 1993-06-18 | 1993-06-18 | Advanced water treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3201077B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011053034A2 (en) * | 2009-10-29 | 2011-05-05 | Kim Dong Yun | Water purification system and water purification method employing biological activated carbon and granular activated carbon |
CN103435179A (en) * | 2013-08-13 | 2013-12-11 | 柳州博泽科技有限公司 | Drinking water treatment system |
KR101360017B1 (en) * | 2013-03-12 | 2014-02-12 | 재단법인 한국계면공학연구소 | Method of water treatment and system using the same |
KR101469891B1 (en) * | 2014-01-13 | 2014-12-05 | 재단법인 한국계면공학연구소 | Water-blending treatment system and method using the same |
CN104192935A (en) * | 2014-08-26 | 2014-12-10 | 北京博力扬环保科技有限公司 | Advanced treatment method of garbage leachate by using activated waste coke powder |
CN104727791A (en) * | 2015-01-27 | 2015-06-24 | 大庆学府石油科技有限公司 | Integrated advanced water treatment purifier |
CN105174546A (en) * | 2015-09-23 | 2015-12-23 | 江西中捷工程建设有限公司 | Industrial wastewater treatment system |
CN105439318A (en) * | 2012-02-06 | 2016-03-30 | 上海市政工程设计研究总院(集团)有限公司 | Treatment technology of water treatment device for treating raw water with higher turbidity variation |
CN105776672A (en) * | 2016-05-12 | 2016-07-20 | 东莞市联洲知识产权运营管理有限公司 | High-efficiency and energy-saving wastewater treatment technology |
CN108217974A (en) * | 2018-01-24 | 2018-06-29 | 上海华严检测技术有限公司 | A kind of preparation method of biological activated carbon filter |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104355376A (en) * | 2014-10-20 | 2015-02-18 | 苏州富奇诺水治理设备有限公司 | Coagulant for industrial water pretreatment |
-
1993
- 1993-06-18 JP JP17240193A patent/JP3201077B2/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011053034A2 (en) * | 2009-10-29 | 2011-05-05 | Kim Dong Yun | Water purification system and water purification method employing biological activated carbon and granular activated carbon |
WO2011053034A3 (en) * | 2009-10-29 | 2011-11-03 | Kim Dong Yun | Water purification system and water purification method employing biological activated carbon and granular activated carbon |
CN102666405A (en) * | 2009-10-29 | 2012-09-12 | 金东润 | Water purification system and water purification method employing biological activated carbon and granular activated carbon |
CN105439318A (en) * | 2012-02-06 | 2016-03-30 | 上海市政工程设计研究总院(集团)有限公司 | Treatment technology of water treatment device for treating raw water with higher turbidity variation |
KR101360017B1 (en) * | 2013-03-12 | 2014-02-12 | 재단법인 한국계면공학연구소 | Method of water treatment and system using the same |
CN103435179A (en) * | 2013-08-13 | 2013-12-11 | 柳州博泽科技有限公司 | Drinking water treatment system |
KR101469891B1 (en) * | 2014-01-13 | 2014-12-05 | 재단법인 한국계면공학연구소 | Water-blending treatment system and method using the same |
CN104192935A (en) * | 2014-08-26 | 2014-12-10 | 北京博力扬环保科技有限公司 | Advanced treatment method of garbage leachate by using activated waste coke powder |
CN104727791A (en) * | 2015-01-27 | 2015-06-24 | 大庆学府石油科技有限公司 | Integrated advanced water treatment purifier |
CN105174546A (en) * | 2015-09-23 | 2015-12-23 | 江西中捷工程建设有限公司 | Industrial wastewater treatment system |
CN105776672A (en) * | 2016-05-12 | 2016-07-20 | 东莞市联洲知识产权运营管理有限公司 | High-efficiency and energy-saving wastewater treatment technology |
CN108217974A (en) * | 2018-01-24 | 2018-06-29 | 上海华严检测技术有限公司 | A kind of preparation method of biological activated carbon filter |
Also Published As
Publication number | Publication date |
---|---|
JP3201077B2 (en) | 2001-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101704609B (en) | Feedwater treatment method by pre-ozonation and aerated biological activated carbon | |
JP3201077B2 (en) | Advanced water treatment method | |
Throop | Alternative methods of phenol wastewater control | |
Chen et al. | Using catalytic ozonation and biofiltration to decrease the formation of disinfection by-products | |
US6602426B2 (en) | Water treatment using ozone and having a reduced likelihood of bromate formation from bromides found in the water | |
Bonnet et al. | Removal of biodegradable dissolved organic carbon in a water treatment plant | |
JPS6336890A (en) | Apparatus for producing high-purity water | |
JP7212478B2 (en) | MEMBRANE FILTRATION SYSTEM AND MEMBRANE FILTRATION METHOD | |
JP5126926B2 (en) | Ultra-high water treatment method and water treatment system used therefor | |
Myers | Evaluating alternative disinfectants for THM control in small systems | |
Schulhof | An evolutionary approach to activated carbon treatment | |
KR20230006266A (en) | Recirulating aquaculture system and method thereof treating raw water | |
JPH0561992B2 (en) | ||
KR200228702Y1 (en) | A Device for Producing Potable Water | |
JP2006272081A (en) | Ultrahigh-level method for treating water and water treatment system to be used therein | |
JPS6036835B2 (en) | How to purify human waste water | |
JP2552998B2 (en) | Purification treatment sludge separation water treatment method and device | |
Świetlik et al. | Reduction of ClO2 demand by ClO2 oxidation and subsequent GAC filtration | |
JP2005131559A (en) | Re-purification treatment method of tap water and re-purification treatment equipment therefor | |
JP3782738B2 (en) | Wastewater treatment method | |
JPH0141115B2 (en) | ||
JP2000061481A (en) | Control method for ozone injection | |
JPS5939384A (en) | Treatment of raw water for service water | |
JPH01215395A (en) | Water treating device | |
JP2003088882A (en) | Method for water treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080622 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090622 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090622 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100622 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100622 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110622 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120622 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130622 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term |