JPS6036835B2 - How to purify human waste water - Google Patents

How to purify human waste water

Info

Publication number
JPS6036835B2
JPS6036835B2 JP8517578A JP8517578A JPS6036835B2 JP S6036835 B2 JPS6036835 B2 JP S6036835B2 JP 8517578 A JP8517578 A JP 8517578A JP 8517578 A JP8517578 A JP 8517578A JP S6036835 B2 JPS6036835 B2 JP S6036835B2
Authority
JP
Japan
Prior art keywords
activated carbon
ozone
granular activated
human waste
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8517578A
Other languages
Japanese (ja)
Other versions
JPS5513116A (en
Inventor
俊雄 沢
哲朗 安達
昌治 久保田
燦吉 高橋
徳郎 池本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8517578A priority Critical patent/JPS6036835B2/en
Publication of JPS5513116A publication Critical patent/JPS5513116A/en
Publication of JPS6036835B2 publication Critical patent/JPS6036835B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】 本発明はし尿処理水の浄化方法に関し、詳しくはし尿処
理水の脱色、殺菌及び脱窒素をオゾン添加と電解法の併
用により効果的に行なうし尿処理水の浄化方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for purifying treated human waste water, and more particularly to a method for purifying treated human waste water in which decolorization, sterilization, and denitrification of treated human waste water are effectively carried out by a combination of ozone addition and electrolysis. .

し尿処理施設より排出される放流水は、法律により、2
0倍に希釈後BOD3倣pm以下、ss70ppm以下
と規制されているが、これ以外にも、視覚公害の原因で
ある色素成分、発泡成分及び放流水域における富栄養化
の原因と考えられる窒素、リン等を含んでいる。
By law, effluent discharged from human waste treatment facilities is subject to 2
After dilution to 0 times, BOD3 is regulated to pm or less and SS70ppm or less, but in addition to this, pigment components and foaming components that cause visual pollution, and nitrogen and phosphorus that are thought to be the cause of eutrophication in the discharged water area. etc.

そして更に、放流水中には大腸菌を含む細菌が多数存在
している。このようなし尿の処理方式は、生し尿を希釈
して好気性生物(活性汚泥)処理を行なう酸化処理方式
及び生し尿をまず嫌気性(消化)処理を行なった後に希
釈又は無希釈で好気性生物(活性汚泥)処理を行なう消
化−活性汚泥処理併用方式の2方式に大別される。
Furthermore, there are many bacteria including E. coli in the discharged water. These human waste treatment methods include an oxidation treatment method in which raw human waste is diluted and treated with aerobic organisms (activated sludge), and raw human urine is first subjected to anaerobic (digestion) treatment and then diluted or not diluted to aerobic treatment. Digestion and activated sludge treatment combined with biological (activated sludge) treatment.

これらの処理を行なった後に凝集沈澱によりss分及び
リン化合物を除去し、更には活性炭吸着あるいはオゾン
酸化処理により脱色、殺菌を行なう方法が種々検討され
ている。これら各種処理法の組合わせの中で、凝集処理
−オゾン酸化併用方式が操作性の点で有望とされている
。しかし、この処理方式の欠点は、亜硝酸性窒素が含ま
れている場合に、オゾンが硝酸への酸化により消費され
るため多量に必要であることである。一方、窒素成分の
除去法としては、アンモニアストリッピング法、生物学
的硝化、脱窒法、天然ゼオラィト等によるアンモニウム
イオンの選択的吸着、不連続点塩素処理法の5種が代表
的であり、し尿の窒素除去法としては前二者が有利とさ
れているが、それぞれに未だ問題点が残されている。又
、亜硝酸性窒素の除去方法としては、生物学的硝化脱窒
法のみが実用化されているに過ぎない。本発明は、この
ような現状に鑑みてなされたものであり、その目的は、
オゾンによる脱色を坊害する懸濁物及び亜硝酸イオンを
予め除去しオゾンによる脱色及び殺菌効果を高めうるし
尿処理水の浄化方法を提供することである。
After performing these treatments, various methods have been studied in which the ss content and phosphorus compounds are removed by coagulation and precipitation, and further decolorization and sterilization are performed by activated carbon adsorption or ozone oxidation treatment. Among the combinations of these various treatment methods, the combined coagulation treatment and ozone oxidation method is considered to be promising in terms of operability. However, a drawback of this treatment system is that when nitrite nitrogen is present, large amounts of ozone are required as it is consumed by oxidation to nitric acid. On the other hand, there are five representative methods for removing nitrogen components: ammonia stripping method, biological nitrification, denitrification method, selective adsorption of ammonium ions using natural zeolite, etc., and discontinuous point chlorination method. The first two methods are considered to be advantageous for nitrogen removal, but each method still has problems. Furthermore, as a method for removing nitrite nitrogen, only the biological nitrification-denitrification method has been put into practical use. The present invention has been made in view of the current situation, and its purpose is to:
It is an object of the present invention to provide a method for purifying treated human waste water which can enhance the decolorization and sterilization effects by ozone by removing in advance suspended matter and nitrite ions that impair decolorization by ozone.

本発明につき概説すれば、本発明のし尿処理水の浄化方
法は、{a}し尿処理水を水電解により発生する水素及
び酸素の気泡が浮上する浮上帯域に適して懸濁物を浮上
分離し、‘b}該分離液を一対以上の陽極及び陰極によ
り構成される支持電極の間に粒状活性炭を充填した電解
帯域に通すと共に直流電流を通電して亜硝酸イオン及び
有機物を吸蔵−吸着させて分離し、{c)談分離液にオ
ゾン含有ガスを通して高分子着色成分の分解による脱色
及び殺菌を行なうことを特徴とするものである。
To summarize the present invention, the method for purifying treated human waste water according to the present invention is {a} suitable for flotation and separation of suspended matter in human waste treated water in a flotation zone where hydrogen and oxygen bubbles generated by water electrolysis float. , 'b} The separated liquid is passed through an electrolysis zone filled with granular activated carbon between supporting electrodes consisting of one or more pairs of anodes and cathodes, and a direct current is applied to occlude and adsorb nitrite ions and organic substances. The method is characterized in that {c) ozone-containing gas is passed through the separated liquid to decolorize and sterilize the polymer coloring component by decomposing it.

本発明においては、オゾンによる高分子着色成分等の有
機物の酸化分解を効果的に行なうために、予めし尿処理
水(以下原水という)中の懸濁物及び亜硝酸イオン(N
02‐)等の窒素化合物を除去してからオゾン処理を行
なう。
In the present invention, in order to effectively oxidize and decompose organic substances such as polymer coloring components using ozone, suspended matter and nitrite ions (N
Ozone treatment is performed after removing nitrogen compounds such as 02-).

原水は処理槽の浮上帯城に入り、浮上帯城における水電
解によって発生する水素と酸素の気泡に伴なわれて原水
中の懸濁物が処理槽を上昇浮上して分離される。この分
離液は次いで粒状活性炭の充填された電解帯城に入り、
直流電源からの電圧印加により分極した活性炭粒子によ
り原水中に含まれる有機物の吸着が行なわれ、同時に亜
硝酸イオンが電気的吸引力により活性炭に吸蔵される。
このように処理された原水にオゾン含有ガスをバブリン
グすれば、鹿硝酸イオンは活性炭に吸蔵されているので
オゾンを消費せず、一方オゾンは活性炭充填層間にくま
なく分散して気液接触を良好にし、原水中に含まれる着
色成分を分解することができ、したがつて原水の脱色並
びに殺菌を効果的に達成することができる。本発明によ
れば、上記の作用により、原水中の懸濁物、有機物、亜
硝酸イオン及び着色成分を効率良く除去できるが、、原
水中に塩素イオンが約10岬pm以上溶存している場合
には、電解帯域内の粒状活性炭の粒子の陽極部で放電し
て発生する塩素により(粒状活性炭は塩素イオンの放電
に対する過電圧が小さい)、大腸菌のような細菌を滅菌
することができる。
The raw water enters the flotation zone of the treatment tank, and suspended matter in the raw water floats up the treatment tank and is separated, accompanied by hydrogen and oxygen bubbles generated by water electrolysis in the flotation zone. This separated liquid then enters an electrolytic belt filled with granular activated carbon,
The organic matter contained in the raw water is adsorbed by activated carbon particles polarized by voltage application from a DC power source, and at the same time, nitrite ions are occluded by the activated carbon by electrical attraction.
If ozone-containing gas is bubbled into the raw water treated in this way, the ozone will not be consumed because the nitrate ions are stored in the activated carbon, and on the other hand, the ozone will be thoroughly dispersed between the activated carbon packed layers to improve gas-liquid contact. The coloring components contained in the raw water can be decomposed, and therefore the decolorization and sterilization of the raw water can be effectively achieved. According to the present invention, suspended matter, organic matter, nitrite ions, and colored components in raw water can be efficiently removed by the above-mentioned action, but when chlorine ions are dissolved in raw water at a rate of about 10 pm or more In this case, bacteria such as E. coli can be sterilized by the chlorine generated by the discharge at the anode part of the granular activated carbon particles in the electrolytic zone (granular activated carbon has a small overvoltage for chlorine ion discharge).

又、前記のような機能は粒状活性炭の分極により発揮さ
れるものと考えられるが、この分極作用を利用するため
、本発明においては、粒怪約5側以上の粒状活性炭を使
用する。
Further, the above-mentioned functions are thought to be exerted by the polarization of the granular activated carbon, and in order to utilize this polarization effect, in the present invention, the granular activated carbon with a particle diameter of about 5 or more is used.

又、粒状活性炭の形状は特に限定されないが、比較的球
状に近いものが一般に効果がある。本発明において、活
性炭充填層内の粒状活性炭は、前記のように有機物、亜
硝酸イオンを吸着、吸蔵するので、これを再生する必要
が生じる。
Further, the shape of the granular activated carbon is not particularly limited, but a relatively spherical shape is generally effective. In the present invention, since the granular activated carbon in the activated carbon packed bed adsorbs and occludes organic substances and nitrite ions as described above, it is necessary to regenerate this.

その場合には、再生液として塩化ナトリウム、塩化カル
シウム及び硫酸ナトリウムのような電解質溶液を粒状活
性炭中に流通して吸着、吸蔵物質を拡散溶出させること
により、粒状活性炭を再生することができる。次に、本
発明の一具体例を図面により詳細に説明する。
In that case, the granular activated carbon can be regenerated by passing an electrolyte solution such as sodium chloride, calcium chloride, and sodium sulfate as a regeneration liquid through the granular activated carbon to diffuse and elute the adsorbed and occluded substances. Next, a specific example of the present invention will be explained in detail with reference to the drawings.

第1図は本発明に使用する装置の−具体例を示した断面
概略図であり、図中の1は処理槽、2は浮上帯城、3は
電解帯城、4は原水流入分配管、5は陽極、6は陰極、
7は回収機(かきとり機)、8は支持電極、9は粒状活
性炭、10は散気管、11は直流電源、12はオゾン発
生器、13は再生液貯槽、14は支切り板、15は貯蔵
帯城、16は整流板、17はペントを示す。装置は円筒
状の処理槽1で構成され、その内筒部は、水電解気泡に
よる懸濁物の浮上帯城2により、又外周部は活性炭の充
填された電解帯城3により構成されている。浮上帯域2
には、原水流入分配管4の上部に陽極6及び陰極6が交
互に対向配置され、その上部には、浮上したフロスを回
収するための回収機7が設けられている。一方、電解帯
域3には、支持電極8の間に粒状活性炭9が互に接触す
るように充填されている。粒状活性炭充填層の下部には
、オゾン含有ガスを散気管10からバブリングできるよ
うになっている。これらの装置に付属して、電解に必要
な直流電源11、オゾン発生器12及び活性炭再生用の
再生液貯槽13が設けられている。原水は流入分配管4
から浮上帯域2に入り、原水中の懸濁物は、陽極5及び
陰極6間に発生する水素及び酸素の微細な気泡に伴なわ
れて上昇しフロスとなって浮上し回収機7により分離さ
れる。
FIG. 1 is a schematic cross-sectional view showing a specific example of the apparatus used in the present invention, in which 1 is a treatment tank, 2 is a flotation zone, 3 is an electrolysis zone, 4 is a raw water inflow distribution pipe, 5 is an anode, 6 is a cathode,
7 is a recovery machine (scraper), 8 is a supporting electrode, 9 is granular activated carbon, 10 is an aeration pipe, 11 is a DC power supply, 12 is an ozone generator, 13 is a regeneration liquid storage tank, 14 is a dividing plate, and 15 is a storage 16 is a current plate, and 17 is a pent. The apparatus consists of a cylindrical treatment tank 1, the inner cylinder part of which is made up of a flotation belt 2 for suspensions caused by water electrolysis bubbles, and the outer periphery made up of an electrolytic belt 3 filled with activated carbon. . Levitation zone 2
, anodes 6 and cathodes 6 are arranged opposite to each other alternately at the upper part of the raw water inflow distribution pipe 4, and a recovery machine 7 for recovering floating floss is provided above the anodes 6 and cathodes 6. On the other hand, in the electrolytic zone 3, granular activated carbon 9 is filled between the supporting electrodes 8 so as to be in contact with each other. Ozone-containing gas can be bubbled into the lower part of the granular activated carbon packed bed from an aeration pipe 10. A DC power supply 11 necessary for electrolysis, an ozone generator 12, and a regeneration liquid storage tank 13 for regenerating activated carbon are attached to these devices. Raw water is inflow distribution pipe 4
The suspended matter in the raw water enters the flotation zone 2 and rises along with fine bubbles of hydrogen and oxygen generated between the anode 5 and the cathode 6, floats as froth, and is separated by the recovery machine 7. Ru.

浮上は整流板16により効果的に行なわれる。分離液は
支切り板14を通過して矢印のような経路で電解帯城3
に入る。電解帯城3内に充填された粒状活性炭9に通電
することにより分極した粒状活性炭9は、分離液中の有
機物の吸着を促進すると共に亜硝酸イオンを電気的吸引
力により吸蔵する。粒状活性炭充填層の下部にある散気
管10からオゾン含有ガスが噴出され、粒状活性炭の間
隙を通って該分離液と接触して着色成分の脱色及び細菌
の滅菌を行なう。このようにして処理された処理水は貯
留帯城15を通って排出される。粒状活性炭9の再生に
当っては、再生液貯槽13から再生液を粒状活性炭9に
流通し、吸着、吸蔵された有機物及び亜硝酸イオンを溶
出させる。なお、電解的に発生したガスは水素を含有し
ているので、危検防止の点から処理槽1は密閉型とし、
過剰オゾン等と共にペント17から放散させるようにす
る。以上述べた構成及び作用による本発明の利点は次の
ように要約することができる。
Floating is effectively performed by the rectifying plate 16. The separated liquid passes through the dividing plate 14 and reaches the electrolytic band castle 3 along the path shown by the arrow.
to go into. The granular activated carbon 9, which is polarized by applying electricity to the granular activated carbon 9 filled in the electrolytic band 3, promotes the adsorption of organic matter in the separated liquid and also absorbs nitrite ions by electric attraction. Ozone-containing gas is ejected from a diffuser pipe 10 located at the bottom of the granular activated carbon packed bed, passes through the gaps between the granular activated carbon, and comes into contact with the separated liquid to decolorize colored components and sterilize bacteria. The treated water thus treated is discharged through the storage belt 15. In regenerating the granular activated carbon 9, a regenerating liquid is passed through the granular activated carbon 9 from the regenerating liquid storage tank 13, and adsorbed and occluded organic matter and nitrite ions are eluted. In addition, since the electrolytically generated gas contains hydrogen, the treatment tank 1 is of a closed type to prevent dangerous inspections.
It is made to dissipate from the pent 17 together with excess ozone and the like. The advantages of the present invention due to the configuration and operation described above can be summarized as follows.

{1) 原水中の懸濁物は、電解時に発生する水素と酸
素の微細な気泡により効果的に浮上分離できる。
{1) Suspended substances in raw water can be effectively separated by flotation due to the fine bubbles of hydrogen and oxygen generated during electrolysis.

‘2} オゾンによる脱色を防害する亜硝酸イオンは、
直流電場で分極した活性炭に効果的に吸蔵して除去でき
、又オゾンを消費しない。
'2} Nitrite ions, which prevent decolorization caused by ozone, are
It can be effectively occluded and removed by activated carbon polarized in a DC electric field, and it does not consume ozone.

{3’ 活性炭充填層間にオゾン含有ガスを分散させる
ことにより、気液接触を良好にして脱色効果を高めるこ
とができる。
{3' By dispersing ozone-containing gas between the activated carbon packed beds, it is possible to improve the gas-liquid contact and enhance the decolorizing effect.

‘4ー 従来のオゾン脱色法に比べて、オゾン注入率を
低下させることができると共に同一装置内で処理できる
'4- Compared to the conventional ozone decolorization method, the ozone injection rate can be lowered and the process can be performed within the same equipment.

{5} 活性炭に吸蔵された亜硝酸イオンの熔出は、食
塩等の電解質溶液に浸潰させるだけでよい。
{5} Nitrite ions occluded in activated carbon can be dissolved by simply soaking it in an electrolyte solution such as common salt.

次に、本発明及びその効果を実施例により説明するが、
本発明はこれによりなんら限定されるものではない。実
施例 本実施例は第2図に示す装置により実験を行なったもの
である。
Next, the present invention and its effects will be explained using examples.
The present invention is not limited in any way by this. Example In this example, an experiment was conducted using the apparatus shown in FIG.

第2図はこの装置の断面概略図であり、1は処理槽、8
は支持電極、9は粒状活性炭、1川ま散気管、11は直
流電源、12はオゾン発生器を示す。処理槽1は、縦7
0肌、横15肌、中5cmの角型のものであり、下部側
面に縦15弧、横20弧、厚さ0.5肌のフェライト製
支持電極8が設けられており、底部へはオゾン発生器1
2から散気管10を通してオゾンガスを噴出できるよう
になっている。
FIG. 2 is a schematic cross-sectional view of this device, where 1 is a treatment tank, 8
Reference numeral 9 indicates a supporting electrode, 9 indicates a granular activated carbon, 1 indicates a diffuser tube, 11 indicates a DC power supply, and 12 indicates an ozone generator. The treatment tank 1 is vertically 7
It has a rectangular shape with 0 skin, 15 skin horizontally, and 5 cm inside, and a ferrite support electrode 8 with 15 vertical arcs, 20 arcs horizontally, and 0.5 skin thickness is provided on the lower side, and ozone is supplied to the bottom. Generator 1
Ozone gas can be ejected from the air diffuser 2 through the air diffuser 10.

支持電極8間には粒状活性炭9を充填することができ、
該電極には外部の直流電源11より−定の電流が通電さ
れる。供試水としてし尿処理場の処理水を用いた。
Granular activated carbon 9 can be filled between the supporting electrodes 8,
A constant current is applied to the electrode from an external DC power source 11. Treated water from a human waste treatment plant was used as the test water.

供試水は黄褐色を呈し、懸濁物濃度は45ppm色度は
170度、全窒素濃度は33岬pm、亜硝酸イオン濃度
は41ppmであった。なお、これらの分析は、後記実
験結果も含めて、懸濁物濃度は重量法、色度は塩化コバ
ルト呈色による比色法、全窒素濃度は水素ガスによるア
ンモニア電量滴定で検出する機器分析法、亜硝酸イオン
濃度はJISに基づくOR試薬発色法によった。更に、
殺菌効果については、大腸菌群数をJISに定められて
いるデスオキシコレィト塔地による測定法を採用した。
本実施例においては、比較のため、対照としてオゾンに
よる単独処理の実験を行なったので、まずそれについて
述べる。上記の装置を用い、回分操作で供試水とオゾン
ガスとの気液接触の効果を調べた。
The sample water had a yellowish brown color, the suspended matter concentration was 45 ppm, the chromaticity was 170 degrees, the total nitrogen concentration was 33 pm, and the nitrite ion concentration was 41 ppm. In addition, these analyzes, including the experimental results described later, were carried out using a gravimetric method to determine suspended solids concentration, a colorimetric method using cobalt chloride coloration to determine chromaticity, and an instrumental analysis method to detect total nitrogen concentration by ammonia coulometric titration using hydrogen gas. The nitrite ion concentration was determined by the OR reagent coloring method based on JIS. Furthermore,
Regarding the bactericidal effect, the number of coliform bacteria was measured using a desoxycholate method specified by JIS.
In this example, for comparison, an experiment using ozone alone was conducted as a control, and this will be described first. Using the above apparatus, the effect of gas-liquid contact between sample water and ozone gas was investigated in batch operations.

液量は5夕とし(液深52伽)、下部からオゾン含有ガ
ス(03濃度0.群容量%)を注入率170ppmまで
吹込んだ。その結果を第3図に示す。第3図はオゾン注
入率に対する色度及び亜硝酸イオン濃度の変化を示した
グラフである。このグラフからわかるように、着色成分
及び亜硝酸イオンがそれぞれオゾンと反応しているが、
亜硝酸イオンは次式に示すように硝酸イオンまで酸化す
るのに消費されている。N。夏十。3一N。
The liquid volume was set to 5 (liquid depth 52), and ozone-containing gas (03 concentration 0. group volume %) was blown from the bottom to an injection rate of 170 ppm. The results are shown in FIG. FIG. 3 is a graph showing changes in chromaticity and nitrite ion concentration with respect to ozone injection rate. As you can see from this graph, coloring components and nitrite ions each react with ozone,
Nitrite ions are consumed to be oxidized to nitrate ions as shown in the following equation. N. Summer ten. 31N.

ミ十。2 したがって、本来の着色成分の酸化分解に必要なオゾン
は200ppm以上となる。
Mi ten. 2. Therefore, the amount of ozone required for oxidative decomposition of the original coloring component is 200 ppm or more.

一方、殺菌効果については、懸濁物が含まれているので
十分な効果が発揮できなかった。別に、上記の装置に粒
径約5個の粒状活性炭9の500夕を充填し(液量4夕
)、IAの一定電流を支持電極8間に通電し、下部から
オゾン含有ガス(03濃度0.5容量%)を注入率約5
0ppmまで吹込んだ。
On the other hand, as for the bactericidal effect, sufficient effect could not be exhibited because suspended matter was included. Separately, the above device was filled with 500 liters of granular activated carbon 9 with a particle size of about 5 (liquid volume 4 liters), a constant current of IA was passed between the supporting electrodes 8, and an ozone-containing gas (03 concentration 0) was applied from the bottom. .5 volume%) at an injection rate of approximately 5
It was blown in to 0 ppm.

その結果を第4図に示す。第4図はオゾン注入率及び通
電量に対する色度及び亜硝酸イオン濃度の変化を示した
グラフである。このグラフからわかるように、亜硝酸イ
オンは6000クーロン/そでほぼ完全に除去されてお
り、色度も5蛇pmのオゾンで脱色されている。このこ
とは、亜硝酸イオンを含む窒素含有イオンが粒状活性炭
9に効果的に吸蔵されると共に、懸濁物も電解気泡によ
り浮上して分離されるので、オゾンが、着色成分を粒状
活性炭9の充填層間で効果的に分解されたことを示す。
一方、大腸菌も懸濁物の分離により検出できないまでに
滅菌されていた。なお、粒状活性炭9の再生は、1〜5
%食塩水等の電解質溶液に浸債するのみで達成できるこ
とが確認された。以上の実験結果から、亜硝酸イオン及
び懸濁物を除去するとオゾンが着色成分を効果的に分解
できることが明らかである。
The results are shown in FIG. FIG. 4 is a graph showing changes in chromaticity and nitrite ion concentration with respect to the ozone injection rate and the amount of current applied. As can be seen from this graph, nitrite ions were almost completely removed at 6000 coulombs/sleeve, and the color was also decolorized by ozone at 5 pm. This means that nitrogen-containing ions including nitrite ions are effectively occluded in the granular activated carbon 9, and suspended matter is also floated and separated by electrolytic bubbles, so that ozone absorbs coloring components from the granular activated carbon 9. This indicates that it was effectively decomposed between the packed layers.
On the other hand, Escherichia coli was also sterilized to the point that it could not be detected by separating the suspended matter. Note that the granular activated carbon 9 is regenerated in steps 1 to 5.
It was confirmed that this can be achieved simply by immersing the bond in an electrolyte solution such as % saline solution. From the above experimental results, it is clear that ozone can effectively decompose colored components when nitrite ions and suspended matter are removed.

なお、活性炭によるオゾンの分解は、球状活性炭でかつ
液中においては殆んど起らないことが確認された。更に
又、し尿処理水中の着色成分の分子量は数万以上と高い
ため、活性炭には殆んど吸着されなかった。又、これら
の処理効果は、流通処理においても同様の結果を得てい
る。以上説明したように、本発明によれば、オゾンによ
る脱色、殺菌作用を妨害する懸濁物及び亜硝酸イオンを
予め除去することにより、し尿処理水中の着色成分を効
果的に脱色し又その殺菌効果を高めることができる。
It was confirmed that ozone decomposition by activated carbon hardly occurs in spherical activated carbon and in liquid. Furthermore, since the molecular weight of the colored components in the human waste treated water was as high as tens of thousands or more, they were hardly adsorbed on the activated carbon. Moreover, similar results have been obtained in distribution processing as well. As explained above, according to the present invention, by removing in advance suspended matter and nitrite ions that interfere with the decolorization and bactericidal action of ozone, it is possible to effectively decolorize colored components in human waste treated water and to sterilize the same. The effect can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用する装置の一具体例を示した断面
概略図、第2図は本発明の実施例における実験装置の断
面概略図、第3図は比較実験におけるオゾン注入率に対
する色度及び亜硝酸イオン濃度の変化を示したグラフ、
第4図は本発明の実施例におけるオゾン注入率及び通電
量に対する色度及び亜硝酸イオン濃度の変化を示したグ
ラフである。 1・・・・・・処理槽、2・・…・浮上帯域、3・・・
・・・電解帯域、4・・・・・・原水流入分配管、5・
・・・・・陽極、6・・・・・・陰極、7・・・・・・
回収機、8・・・・・・支持電極、9・・・・・・粒状
活性炭、10・・・・・・散気管、11・…・・直流電
源、12・・・・・・オゾン発生器、13…・・・再生
液貯槽、14・・・・・・支切り板、15・・・・・・
貯留帯城、16・・・・・・整流板、17・・・・・・
ベント。 矛3図 オー図 矛2図 矛ム図
Fig. 1 is a schematic cross-sectional view showing a specific example of the device used in the present invention, Fig. 2 is a schematic cross-sectional view of an experimental device in an example of the present invention, and Fig. 3 is a color versus ozone injection rate in a comparative experiment. Graph showing changes in temperature and nitrite ion concentration,
FIG. 4 is a graph showing changes in chromaticity and nitrite ion concentration with respect to the ozone injection rate and the amount of current applied in an example of the present invention. 1...Treatment tank, 2...Floating zone, 3...
... Electrolysis zone, 4 ... Raw water inflow distribution piping, 5.
...Anode, 6...Cathode, 7...
Recovery machine, 8... Support electrode, 9... Granular activated carbon, 10... Diffusion tube, 11... DC power supply, 12... Ozone generation Container, 13... Regeneration liquid storage tank, 14... Splitting plate, 15...
Reservoir belt castle, 16... Rectifier plate, 17...
Bento. 3rd figure, 0 figure, 2nd figure, 2nd figure

Claims (1)

【特許請求の範囲】 1 (a)し尿処理水を水電解により発生する水素及び
酸素の気泡が浮上する浮上帯域に通して懸濁物を浮上分
離し、(b)該分離液を一対以上の陽極及び陰極により
構成される支持電極の間に粒状活性炭を充填した電解帯
域に通すと共に直流電流を通電して亜硝酸イオン及び有
機物を吸蔵−吸着させて分離し、(c)該分離液にオゾ
ン含有ガスを通して高分子着色成分の分解による脱色及
び殺菌を行なうことを特徴とするし尿処理水の浄化方法
。 2 粒状活性炭充填層に電解質溶液を流通して粒状活性
炭を再生する特許請求の範囲第1項記載のし尿処理水の
浄化方法。 3 粒状活性炭の粒子径が5mm以上である特許請求の
範囲第1項又は第2項記載のし尿処理水の浄化方法。
[Scope of Claims] 1 (a) The suspended matter is separated by flotation by passing the human waste treated water through a flotation zone where hydrogen and oxygen bubbles generated by water electrolysis float, and (b) The separated liquid is separated by flotation of one or more pairs of separated liquids. The separated liquid is passed through an electrolytic zone filled with granular activated carbon between the anode and the cathode, and a direct current is applied to occlude and adsorb nitrite ions and organic substances, and (c) ozone is added to the separated liquid. A method for purifying human waste water, characterized by decolorizing and sterilizing it by decomposing a polymeric coloring component through a gas contained therein. 2. The method for purifying human waste water according to claim 1, wherein the granular activated carbon is regenerated by passing an electrolyte solution through the granular activated carbon packed bed. 3. The method for purifying human waste treated water according to claim 1 or 2, wherein the particle diameter of the granular activated carbon is 5 mm or more.
JP8517578A 1978-07-14 1978-07-14 How to purify human waste water Expired JPS6036835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8517578A JPS6036835B2 (en) 1978-07-14 1978-07-14 How to purify human waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8517578A JPS6036835B2 (en) 1978-07-14 1978-07-14 How to purify human waste water

Publications (2)

Publication Number Publication Date
JPS5513116A JPS5513116A (en) 1980-01-30
JPS6036835B2 true JPS6036835B2 (en) 1985-08-22

Family

ID=13851314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8517578A Expired JPS6036835B2 (en) 1978-07-14 1978-07-14 How to purify human waste water

Country Status (1)

Country Link
JP (1) JPS6036835B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337149U (en) * 1986-08-26 1988-03-10

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6310266B1 (en) * 1998-04-15 2001-10-30 Takeo Kagitani Method and apparatus for the removal of harmful substances from various objects or materials
KR19990083819A (en) * 1999-08-13 1999-12-06 김기준 Inorganic chemical treatment of waste water
JP4532967B2 (en) * 2004-04-08 2010-08-25 英雄 早川 How to remove nitrate nitrogen
CN102826683B (en) * 2012-09-12 2013-09-25 青岛赛尔环境保护有限公司 Sewage recycling processor
CN113429073A (en) * 2021-07-06 2021-09-24 广州市环境保护工程设计院有限公司 In-situ treatment system and in-situ treatment method for aquaculture wastewater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337149U (en) * 1986-08-26 1988-03-10

Also Published As

Publication number Publication date
JPS5513116A (en) 1980-01-30

Similar Documents

Publication Publication Date Title
Lalezary‐Craig et al. Optimizing the removal of geosmin and 2‐methylisoborneol by powdered activated carbon
US6462250B1 (en) Method for decomposing halogenated aliphatic hydrocarbon compounds having adsorption process and apparatus for decomposition having adsorption means
CN108358363A (en) A kind of deep treatment method of organic sewage with high salt
JP2003126861A (en) Method and apparatus for water treatment
JP4865651B2 (en) Wastewater treatment method and apparatus
CN108439540B (en) A kind of reverse osmosis concentrated saline water treatment device of cold rolling wastewater and method
JP6649988B2 (en) Method for controlling the generation of halogen-containing by-products in drinking water treatment
EP2496526B1 (en) Adsorption of contaminants from liquid and electrochemichal regeneration of adsorbent
WO2014165998A1 (en) Treatment of a waste stream through production and utilization of oxyhydrogen gas
JP2005218983A (en) Wastewater treatment method and apparatus using electrolytic oxidation
JPS6036835B2 (en) How to purify human waste water
CN204644026U (en) A kind of device adopting PhotoelectrochemicalTechnique Technique to remove ammonia nitrogen in water
JPH07124593A (en) Highly advanced water purifying treatment method
RU2322394C1 (en) Device for processing drinking water
JP2012213764A (en) Decoloring cleaning method and decoloring cleaning apparatus of organic colored wastewater
US6902674B2 (en) Treating method for coating material waste water
JPS59127691A (en) Advanced treatment of secondary treated water of night soil
JP2000279977A (en) Fluid treatment and fluid treatment apparatus
RU2207982C2 (en) Water treatment method
JPS6244995B2 (en)
JPS6128396B2 (en)
JP2005103391A (en) Wastewater treatment method and apparatus
JP4049711B2 (en) Wastewater treatment method including ethylene carbonate
JP4553326B1 (en) Method for decomposing and removing 1,4-dioxane contained in an aquatic medium at a low concentration
JPH1110160A (en) Method for treating water by electrolytic oxidation