JPS6128396B2 - - Google Patents

Info

Publication number
JPS6128396B2
JPS6128396B2 JP58138359A JP13835983A JPS6128396B2 JP S6128396 B2 JPS6128396 B2 JP S6128396B2 JP 58138359 A JP58138359 A JP 58138359A JP 13835983 A JP13835983 A JP 13835983A JP S6128396 B2 JPS6128396 B2 JP S6128396B2
Authority
JP
Japan
Prior art keywords
tank
wastewater
liquid circulation
treated
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58138359A
Other languages
Japanese (ja)
Other versions
JPS6028884A (en
Inventor
Nobuyuki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58138359A priority Critical patent/JPS6028884A/en
Publication of JPS6028884A publication Critical patent/JPS6028884A/en
Publication of JPS6128396B2 publication Critical patent/JPS6128396B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は産業排水や都市下水中に含まれる各種
の有機物をオゾン酸化法、電解法および紫外線照
射法を併用することにより迅速かつ効果的に炭酸
ガスと水にまで酸化分解し、処理後のスラツジの
発生を極力抑える処理方法に関するものである。 オゾン酸化法は酸化処理法の一つであるが、そ
の最も大きな利点は常温常圧における酸化力が他
の酸化剤に比較して著しく高いことであり、この
強力な酸化力を利用して殺菌、脱臭、フエノール
やシアン化合物の分解、鉄やマンガンの酸化脱色
等に利用されているが、有機物に対するオゾンの
酸化作用は選択的であるため、これら有機物を炭
酸ガスや水にまで完全に分解することは困難であ
り、低分子のアルコール、ケトン、飽和脂肪酸ま
での分解で止まるため、これらが処理水中に残留
することになる。このため、これまでにもオゾン
酸化法による酸化力を増すための試みとして、電
解法や紫外線照射法との併用が行われている。す
なわち、電解法による水溶液の電解反応において
は陽極から酸素、陰極から水素が発生し、これら
によつて有機物の酸化あるいは還元が起こる。さ
らに不溶性電極を用いて食塩水の電解を行うと、
陽極では塩素、陰極では水素が発生し、電解液の
十分な混合が行われると、塩素は不均化反応によ
り次亜塩素酸となり、アルカリ性ではさらに塩素
酸となるので、これらの酸化力を利用することも
できる。また、Kolbe反応に見られるように飽和
カルボン酸の電解酸化により脱炭酸ガスが起こる
ことが知られている。このため、オゾン化反応に
よつて生成する物質の一部は、電解反応により脱
炭酸の過程を受ける。また、産業排水や都市下水
などの排水中に含まれる有機物の酸化分解として
ラジカルを利用する反応も考えられている。ラジ
カルは奇数の電子を持つた活性化学種で反応性に
富んでおり、その生成には熱、光、放射線等が利
用されている。オゾンは紫外〜可視の光を吸収し
て反応性に富む酸素原子と分子に解離することが
知られており、照射光源として低圧または高圧水
銀灯を用いて紫外線照射を行うと、次式に示すよ O3+hV→O2+O**+H2O→2HO・ うに反応性に富む酸素原子O*が生成され、これ
が水と容易に反応して酸化性のラジカルである
HO・になり、このラジカルが有機物の酸化反応
の開始剤となり得る。 本発明は上述のようなオゾン酸化法と電解法の
併用ならびにオゾン酸化法と紫外線照射法の併用
の利点をさらに効果的に生かして有機物の酸化分
解を行うために、オゾン酸化法、電解法、紫外線
照射法の3つの処理法を効率的に併用し、同一反
応槽内でこれら3つの処理を同時に行うことを特
徴とするものである。 以下本発明による有機物の処理方法を添付の図
面に基づいて説明する。第1図は本発明による反
応槽の平面図、第2図は反応槽の上部断面図、第
3図は反応槽の下部断面図である。第1図におい
ては1は同筒状の反応槽であり、上蓋には電極支
持体7が設置されており、この電極支持体には必
要に応じた枚数の不溶性の陽極板10aおよび陰
極板10bをセツトすることができ、これらの不
溶性電極には電源8により任意の電圧を印加する
ことができる。さらに、電極押え9を第2図の矢
印に示すような方向で電極支持体上をスライドさ
せることにより、任意の電極間距離を選択するこ
ともできる。また、底蓋には紫外線ランプ用の電
源12に接続された紫外線ランプ11および散気
装置13設置されている。この紫外線ランプ11
および散気装置13の設置方法は、第3図に示さ
れるように中心部に紫外線ランプ11があり、こ
の同心円状に4個の散気装置13が設置されたも
のである。オゾン化ガスはオゾン発生機15およ
び流量調節装置14により濃度および流量を調整
された後、微細な細孔を有する散気装置13によ
り処理水中に散気され、処理水と接触しながら上
昇し、排気口16からの反応槽系外へ排出され、
ガス吸収塔17を通つて大気中に排出される。処
理に際して、反応槽上部の原水入口2から処理原
水の一定量を反応槽中に満たし、処理液の一部は
循環ポンプ6を備えた循環系路により循環しなが
ら、適宜試料採取口4より処理水を採取し性状を
把握しつつ処理を行い、処理後の溶液を下部の処
理水出口3から取り出すものである。 次にこの処理装置を用いて処理した実施例を示
すことにする。供試排水としてエチレングリコー
ル100ppm水溶液を用いた。オゾンを生成するた
めに使用した原料ガスは酸素であり、生成された
オゾン化ガスの流量は5/min、濃度は19mg/
である。電解法は陽極および陰極ともにフエライ
ト板(100×100×6mm)を用い、電流密度2.1A/
dm2、電極間距離3cmであり、電導度を付加する
ためにNaClを1000ppm加えた。紫外線ランプは
短波長型のものを使用した。処理は3時間行い、
TOC(全有機炭素)の除去率をもつて処理の指
標とした。この処理方法の効果を比較する意味
で、オゾン酸化法と電解法との併用法、オゾン酸
化法と紫外線照射法との併用法、ならびにオゾン
酸化法、電解法および紫外線照射法を併せて行つ
た。その処理結果を第1表に示す。
The present invention rapidly and effectively oxidizes and decomposes various organic substances contained in industrial wastewater and urban sewage into carbon dioxide gas and water by combining ozone oxidation, electrolysis, and ultraviolet irradiation, and produces sludge after treatment. The present invention relates to a treatment method that minimizes the occurrence of The ozone oxidation method is one of the oxidation treatment methods, but its biggest advantage is that its oxidizing power at room temperature and pressure is significantly higher than other oxidizing agents, and it uses this strong oxidizing power to sterilize. Ozone is used for deodorization, decomposition of phenols and cyanide compounds, oxidative decolorization of iron and manganese, etc. However, since ozone's oxidizing effect on organic substances is selective, it completely decomposes these organic substances into carbon dioxide gas and water. This is difficult, and the decomposition stops at low-molecular alcohols, ketones, and saturated fatty acids, which end up remaining in the treated water. For this reason, attempts have been made to increase the oxidizing power of ozone oxidation by combining it with electrolysis and ultraviolet irradiation. That is, in an electrolytic reaction of an aqueous solution by an electrolytic method, oxygen is generated from the anode and hydrogen is generated from the cathode, and organic substances are oxidized or reduced by these. Furthermore, when electrolyzing saline water using an insoluble electrode,
Chlorine is generated at the anode and hydrogen is generated at the cathode. When the electrolyte is sufficiently mixed, the chlorine becomes hypochlorous acid through a disproportionation reaction, and in alkalinity it further becomes chloric acid, so the oxidizing power of these is utilized. You can also. Furthermore, as seen in the Kolbe reaction, it is known that decarbonation occurs through electrolytic oxidation of saturated carboxylic acids. Therefore, some of the substances produced by the ozonization reaction undergo a decarboxylation process by an electrolytic reaction. Reactions that utilize radicals for oxidative decomposition of organic matter contained in wastewater such as industrial wastewater and urban sewage are also being considered. Radicals are active chemical species with an odd number of electrons and are highly reactive, and heat, light, radiation, etc. are used to generate them. It is known that ozone absorbs ultraviolet to visible light and dissociates into highly reactive oxygen atoms and molecules.When irradiated with ultraviolet light using a low-pressure or high-pressure mercury lamp as the irradiation light source, ozone is O 3 + hV → O 2 + O * O * + H 2 O → 2HO・ Oxygen atoms O * , which are highly reactive, are generated, and this easily reacts with water to form oxidizing radicals.
becomes HO・, and this radical can serve as an initiator for the oxidation reaction of organic substances. The present invention utilizes the advantages of the combination of ozone oxidation method and electrolytic method as well as the combination of ozone oxidation method and ultraviolet irradiation method as described above to perform oxidative decomposition of organic matter. This method is characterized by efficiently using three treatment methods, including ultraviolet irradiation, and performing these three treatments simultaneously in the same reaction tank. The method for treating organic matter according to the present invention will be explained below based on the attached drawings. FIG. 1 is a plan view of a reaction tank according to the present invention, FIG. 2 is a sectional view of the top of the reaction tank, and FIG. 3 is a sectional view of the bottom of the reaction tank. In FIG. 1, reference numeral 1 denotes a cylindrical reaction tank, and an electrode support 7 is installed on the upper lid, and this electrode support has as many insoluble anode plates 10a and cathode plates 10b as required. can be set, and any voltage can be applied to these insoluble electrodes by the power source 8. Furthermore, by sliding the electrode holder 9 on the electrode support in the direction shown by the arrow in FIG. 2, an arbitrary inter-electrode distance can be selected. Furthermore, an ultraviolet lamp 11 connected to a power source 12 for the ultraviolet lamp and an air diffuser 13 are installed on the bottom cover. This ultraviolet lamp 11
As shown in FIG. 3, the air diffuser 13 is installed in such a manner that the ultraviolet lamp 11 is located in the center, and four air diffusers 13 are installed concentrically with the ultraviolet lamp 11. After the concentration and flow rate of the ozonized gas are adjusted by the ozone generator 15 and the flow rate adjustment device 14, it is diffused into the treated water by the aeration device 13 having fine pores, and rises while coming into contact with the treated water, is discharged to the outside of the reaction tank system from the exhaust port 16,
It passes through the gas absorption tower 17 and is discharged into the atmosphere. During treatment, a certain amount of raw water to be treated is filled into the reaction tank from the raw water inlet 2 at the top of the reaction tank, and a part of the treated liquid is circulated through a circulation system path equipped with a circulation pump 6 while being processed from the sample collection port 4 as appropriate. Water is sampled and treated while its properties are ascertained, and the treated solution is taken out from the treated water outlet 3 at the bottom. Next, an example of processing using this processing apparatus will be shown. A 100 ppm aqueous solution of ethylene glycol was used as the test wastewater. The raw material gas used to generate ozone was oxygen, and the flow rate of the generated ozonized gas was 5/min, and the concentration was 19 mg/min.
It is. The electrolytic method uses ferrite plates (100 x 100 x 6 mm) for both the anode and cathode, and the current density is 2.1 A/
dm 2 , the distance between the electrodes was 3 cm, and 1000 ppm of NaCl was added to add electrical conductivity. A short wavelength UV lamp was used. The treatment was carried out for 3 hours,
The removal rate of TOC (total organic carbon) was used as an indicator of treatment. In order to compare the effects of these treatment methods, we conducted a combined method of ozone oxidation and electrolysis, a combination of ozone oxidation and ultraviolet irradiation, and a combination of ozone oxidation, electrolysis, and ultraviolet irradiation. . The processing results are shown in Table 1.

【表】 この表に示されるように、3つの単独処理方法
ではTOCの減少が全く見られなかつたのに対し
て、オゾン酸化法と電解法との併用法およびオゾ
ン酸化法と紫外線照射法との併用法では有機物の
脱炭酸ガス化によりTOCの減少が見られている
が、さらにオゾン酸化法、電解法および紫外線照
射法を同時に併用することにより、より一層の
TOC除去効果が得られた。 以上、本発明によるオゾン酸化法、電解法およ
び紫外線照射法の同時併用処理により、産業排水
あるいは都市下水などの排水中に含まれる有機物
を効率よく酸化分解することができ、しかも脱炭
酸ガスによる完全分解のため処理後の汚泥の発生
が全く見られず、非常に有効な処理方法である。
[Table] As shown in this table, no reduction in TOC was observed with the three individual treatment methods, while the combination of ozone oxidation and electrolytic methods and the ozone oxidation and ultraviolet irradiation methods Although a reduction in TOC has been observed due to the decarbonization of organic matter when using the combined method of
TOC removal effect was obtained. As described above, by the simultaneous combined treatment of ozone oxidation method, electrolytic method, and ultraviolet irradiation method according to the present invention, it is possible to efficiently oxidize and decompose organic substances contained in wastewater such as industrial wastewater or urban sewage, and moreover, completely remove the organic matter by decarbonization. Due to decomposition, no sludge is generated after treatment, making it a very effective treatment method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による反応槽の平面図、第2図
は反応槽の上部断面図、第3図は反応槽の下部断
面図である。 1……反応槽、2……原水入口、3……処理水
出口、4……試料採取口、5……循環口、6……
循環ポンプ、7……電極支持体、8……電源、9
……電極押え、10……不溶性電極(10a……
陽極板、10b……陰極板)、11……紫外線ラ
ンプ、12……紫外線ランプ用電源、13……散
気装置、14……流量調節装置、15……オゾン
発生機、16……排気口、17……ガス吸収塔。
FIG. 1 is a plan view of a reaction tank according to the present invention, FIG. 2 is a top sectional view of the reaction tank, and FIG. 3 is a bottom sectional view of the reaction tank. 1... Reaction tank, 2... Raw water inlet, 3... Treated water outlet, 4... Sample collection port, 5... Circulation port, 6...
Circulation pump, 7... Electrode support, 8... Power supply, 9
... Electrode holder, 10 ... Insoluble electrode (10a ...
anode plate, 10b... cathode plate), 11... ultraviolet lamp, 12... power source for ultraviolet lamp, 13... air diffuser, 14... flow control device, 15... ozone generator, 16... exhaust port , 17... Gas absorption tower.

Claims (1)

【特許請求の範囲】[Claims] 1 産業排水や都市下水などの排水中に含まれる
各種有機物を酸化し、分解除去するに際して、円
筒体を、不溶性電極を懸垂した電極支持体と液循
環口と排気口を備えた上蓋と、中央部に上方に向
けて紫外線ランプを配設し、その周囲に微細な細
孔を持つ複数のオゾン化ガス散気装置を上方に向
けて配設し、さらに液循環口を有する底蓋とを用
いて密閉した構造の反応槽を用い、被処理排水を
該反応槽の上部から槽内に導入し、下部から槽外
へ抜出すと共に、該上蓋の電極支持体に懸垂した
不溶性電極により電解を行い、該下蓋に設けたオ
ゾン化ガス散気装置からオゾン化ガスを槽内に導
入し、該下蓋に設けた紫外線ランプから槽内に紫
外線を照射し、かつ該下蓋に設けた液循環口から
槽内の被処理排水を抜出し、該上蓋に設けた液循
環口を介して槽内に循環しながら、被処理排水を
処理することを特徴とする排水の処理方法。
1. When oxidizing and decomposing various organic substances contained in wastewater such as industrial wastewater and urban sewage, the cylindrical body is divided into an electrode support with an insoluble electrode suspended therein, an upper lid equipped with a liquid circulation port and an exhaust port, and a center An ultraviolet lamp is arranged facing upward in the section, a plurality of ozonized gas diffusers with fine pores are arranged upward around the lamp, and a bottom cover with a liquid circulation port is used. Using a reaction tank with a closed structure, the wastewater to be treated is introduced into the tank from the top of the tank and extracted from the bottom of the tank, and electrolysis is performed using an insoluble electrode suspended from an electrode support on the top lid. , ozonated gas is introduced into the tank from an ozonized gas diffuser installed in the lower lid, ultraviolet rays are irradiated into the tank from an ultraviolet lamp installed in the lower lid, and liquid circulation is installed in the lower lid. A method for treating wastewater, characterized in that the wastewater to be treated is extracted from the tank through an opening and is circulated into the tank through a liquid circulation port provided in the upper lid.
JP58138359A 1983-07-28 1983-07-28 Process and apparatus for treating waste water including electrolysis Granted JPS6028884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58138359A JPS6028884A (en) 1983-07-28 1983-07-28 Process and apparatus for treating waste water including electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58138359A JPS6028884A (en) 1983-07-28 1983-07-28 Process and apparatus for treating waste water including electrolysis

Publications (2)

Publication Number Publication Date
JPS6028884A JPS6028884A (en) 1985-02-14
JPS6128396B2 true JPS6128396B2 (en) 1986-06-30

Family

ID=15220084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58138359A Granted JPS6028884A (en) 1983-07-28 1983-07-28 Process and apparatus for treating waste water including electrolysis

Country Status (1)

Country Link
JP (1) JPS6028884A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720780U (en) * 1992-11-27 1995-04-11 慎一郎 村山 Cell phone cover

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4662327B2 (en) * 2003-09-29 2011-03-30 三菱重工環境・化学エンジニアリング株式会社 Wastewater treatment method and apparatus
JP2013039270A (en) * 2011-08-18 2013-02-28 Japan Atomic Energy Agency Method for dechlorinating chlorinated aliphatic hydrocarbon compound and device for dechlorination
ES2373601B1 (en) * 2011-10-14 2013-02-08 I.D. Electroquímica, S.L. WATER CLEANING PROCEDURE WITHOUT SALT CONTRIBUTION AND WATER CLEANING REACTOR.
JP6319719B2 (en) * 2014-01-29 2018-05-09 三菱重工環境・化学エンジニアリング株式会社 Waste water treatment method and waste water treatment equipment
JP6921503B2 (en) * 2016-11-04 2021-08-18 株式会社東芝 Water treatment equipment, water treatment system and water treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720780U (en) * 1992-11-27 1995-04-11 慎一郎 村山 Cell phone cover

Also Published As

Publication number Publication date
JPS6028884A (en) 1985-02-14

Similar Documents

Publication Publication Date Title
JP2568617B2 (en) Method for decomposing organic substances and bacteria in water supply
CN100453472C (en) Method and apparatus for highly efficient removal of water organisms by utilizing photoelectric Fenton reaction
KR101210558B1 (en) Plasma water treatmant processing device
JPH05228480A (en) Device for processing hardly biodegradable substance
JP2004143519A (en) Water treatment method and water treatment device
CN105152429A (en) Method for efficiently removing organic pollutants in industrial wastewater
JPS6128395B2 (en)
JPS6128396B2 (en)
JP4865651B2 (en) Wastewater treatment method and apparatus
JP2004130185A (en) Wastewater treatment method and apparatus therefor
JP4662327B2 (en) Wastewater treatment method and apparatus
EP0242941B1 (en) Process and apparatus for the deodorization of air
JPH06296992A (en) Method for decomposing waste liquid containing organic acid
JP2000279977A (en) Fluid treatment and fluid treatment apparatus
KR101036834B1 (en) Electrolytic Cell for purifying water
JP3560631B2 (en) Water treatment equipment
JPS62176595A (en) Method for removing organic substance in waste water
JP2009034625A (en) Wastewater treatment apparatus and method
JP2005013858A (en) Method and apparatus for treating wastewater using high voltage pulses
JPS6036835B2 (en) How to purify human waste water
JP5496629B2 (en) Organic substance decomposition apparatus and organic substance decomposition method in pure water
JPS60241991A (en) Water treating apparatus
JPH08155445A (en) Water treatment apparatus
JP2004057887A (en) Method and apparatus for treating water by electrolysis and electron beam irradiation
JP3493843B2 (en) Accelerated oxidation treatment equipment in water treatment