JP2005218983A - Wastewater treatment method and apparatus using electrolytic oxidation - Google Patents

Wastewater treatment method and apparatus using electrolytic oxidation Download PDF

Info

Publication number
JP2005218983A
JP2005218983A JP2004030597A JP2004030597A JP2005218983A JP 2005218983 A JP2005218983 A JP 2005218983A JP 2004030597 A JP2004030597 A JP 2004030597A JP 2004030597 A JP2004030597 A JP 2004030597A JP 2005218983 A JP2005218983 A JP 2005218983A
Authority
JP
Japan
Prior art keywords
treated water
electrolytic cell
chlorine
wastewater treatment
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004030597A
Other languages
Japanese (ja)
Inventor
Masayuki Tabata
雅之 田畑
Masamichi Asano
昌道 浅野
Masahiko Nagai
正彦 永井
Mitsuru Sakimura
充 崎村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004030597A priority Critical patent/JP2005218983A/en
Publication of JP2005218983A publication Critical patent/JP2005218983A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wastewater treatment method and apparatus using electrolytic oxidation, wherein even wastewater containing organic matter and nitrogenous matter in high concentrations can be treated in a high removal ratio and a high electric power efficiency. <P>SOLUTION: The wastewater treatment apparatus one comprising an electrolytic cell 10 partitioned with an ion-exchange membrane 13 into an anode zone 14 where a pollutant comprising organic matter and nitrogenous matter contained in raw wastewater is oxidatively decomposed with an electrolytically formed chlorine-ion-containing oxidizing substance and a cathode zone 15 where the treated water sent from the anode zone 14 and containing a residual oxidizing substance is reduced, wherein a membrane module 35 capable of separating chloride ions is provided downstream of the cathode zone 15, and a line 27 is provided to return the chlorine-ion-containing treated water separated from the water treated with the membrane module 35 to the anode zone 14. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、廃水中に含有するBOD(生物化学的酸素消費量)、COD(化学的酸素消費量)及びT−N(全窒素分)などの汚濁物質を電気分解により分解除去する廃水処理方法及び装置に関する。   The present invention relates to a wastewater treatment method for decomposing and removing pollutants such as BOD (biochemical oxygen consumption), COD (chemical oxygen consumption) and TN (total nitrogen) contained in wastewater by electrolysis. And an apparatus.

下水やし尿、浄化槽汚泥等の生活廃水又は工場廃水中には、有機物(BOD、COD)や窒素分(T−N)などの汚濁物質が含まれており、これらの汚濁物質は環境及び生態系に影響を及ぼすことから厳しい放流基準が設けられている。
この放流基準を満たすために各種廃水処理技術が開発、実用化されているが、薬剤の投入を殆ど必要とせず、処理時間が短いことから電解酸化による処理技術が広く普及している。
Domestic wastewater such as sewage, human waste, septic tank sludge, etc. or factory wastewater contains pollutants such as organic matter (BOD, COD) and nitrogen (TN), and these pollutants are environmental and ecosystem. Strict discharge standards are established because they affect
Various wastewater treatment technologies have been developed and put to practical use in order to satisfy this discharge standard, but the treatment technology by electrolytic oxidation is widely spread because it requires almost no chemicals and the treatment time is short.

廃水の電解処理は、廃水を貯水した電解槽内に電極を対向配置し、該電極間に電圧を印加することにより電極表面での有機物の直接酸化、及び生成した酸化性物質との間接酸化による汚濁物質の分解除去を原理とする。
電解処理法では、主に電解により生成した強酸化力を有する次亜塩素酸又は次亜塩素酸イオンにより有機物は分解除去され、窒素分はアンモニア態窒素から硝酸態窒素、亜硝酸窒素さらには窒素ガスまで分解され、廃水が浄化される(例えば特許文献1:特開平7−100466号公報)。
Electrolytic treatment of wastewater is based on direct oxidation of organic matter on the electrode surface and indirect oxidation with the generated oxidizing substance by placing electrodes facing each other in an electrolytic cell storing wastewater and applying a voltage between the electrodes. The principle is to decompose and remove pollutants.
In the electrolytic treatment method, organic substances are decomposed and removed mainly by hypochlorous acid or hypochlorite ions having strong oxidizing power generated by electrolysis, and nitrogen content is nitrate nitrogen, nitrate nitrogen, nitrogen nitrite and nitrogen. The gas is decomposed and the waste water is purified (for example, Patent Document 1: Japanese Patent Laid-Open No. 7-110466).

また、特開平9−155359号公報(特許文献2)では、図7に示すように隔膜を備えた電解槽によりCOD含有水を電解酸化する方法が開示されている。
前記電解槽52はMF膜(精密ろ過膜)からなる隔膜58にて陰極53側に形成された陰極室と陽極55側に形成された陽極室とを有し、該陰極室に導入したCOD含有原水から電解により水酸化物イオンを生成した後、陽極室にてオゾンを供給しながら電解酸化している。これにより、前記原水が高pHとなるため陽極室での酸化分解が促進される。
さらに、特開2001−79544公報(特許文献3)では、処理水をろ過及びイオン交換処理した後に、電解により生成した過酸化水素又は次亜塩素酸ソーダと混合した処理水に紫外線を照射して酸化分解している。
Japanese Patent Application Laid-Open No. 9-155359 (Patent Document 2) discloses a method of electrolytically oxidizing COD-containing water using an electrolytic cell equipped with a diaphragm as shown in FIG.
The electrolytic cell 52 has a cathode chamber formed on the cathode 53 side and an anode chamber formed on the anode 55 side with a diaphragm 58 made of an MF membrane (microfiltration membrane), and contains COD introduced into the cathode chamber. After generating hydroxide ions from raw water by electrolysis, electrolytic oxidation is performed while supplying ozone in the anode chamber. Thereby, since the raw water has a high pH, oxidative decomposition in the anode chamber is promoted.
Furthermore, in JP-A-2001-79544 (Patent Document 3), after the treated water is filtered and ion exchange treated, the treated water mixed with hydrogen peroxide or sodium hypochlorite generated by electrolysis is irradiated with ultraviolet rays. Oxidative decomposition.

特開平7−100466号公報Japanese Patent Application Laid-Open No. 7-100466 特開平9−155359号公報Japanese Patent Laid-Open No. 9-155359 特開2001−79544公報JP 2001-79544 A

しかしながら、排水中に含有する有機物及び窒素分の濃度が高い場合や、これら汚濁物質の除去率を向上させたい場合、酸化性物質の生成量を高く保持しなければならず、また生成量を高くすることにより処理後の廃水中に酸化性物質、即ち次亜塩素酸イオン等の塩素系イオンが残留してしまうという問題がある。
前記特開2001−79544公報では、紫外線照射により生成した食塩を電解槽に返送して循環させているが、かかる方法では流出する塩分を食塩回収装置のみで処理水から分離しているため、この装置にかかる負荷が大きくなり耐久性が悪く長時間の連続運転には不向きである。また、紫外線照射による酸化分解を主体としているが、紫外線ランプは消費電力が大きく、また廃水性状によっては透過性に欠けるため分解効率が悪い。
However, when the concentration of organic substances and nitrogen contained in the wastewater is high, or when it is desired to improve the removal rate of these pollutants, the amount of oxidizing substances produced must be kept high, and the amount produced is high. As a result, there is a problem that oxidizing substances, that is, chlorine ions such as hypochlorite ions remain in the treated wastewater.
In the Japanese Patent Laid-Open No. 2001-79544, the salt produced by the ultraviolet irradiation is returned to the electrolytic cell and circulated. However, in this method, the salinity flowing out is separated from the treated water only by the salt recovery device. The load applied to the apparatus becomes large and the durability is poor, so it is not suitable for long-term continuous operation. In addition, the main component is oxidative decomposition by ultraviolet irradiation. However, the ultraviolet lamp consumes a large amount of power, and depending on the state of the waste water, it lacks permeability, so the decomposition efficiency is poor.

さらに、酸化性物質の生成量を増加させるには、電解槽に供給する電力を増大させる必要があり、電力消費量が大きくなりランニングコストが嵩んでしまう。
従って、本発明はかかる従来技術の問題に鑑み、高濃度の有機物及び窒素分を含有する廃水においても高除去率を達成でき、かつ電力効率を向上することができる電解酸化を利用した廃水処理方法及び装置を提供することを目的とする。
Furthermore, in order to increase the production amount of the oxidizing substance, it is necessary to increase the electric power supplied to the electrolytic cell, which increases the power consumption and increases the running cost.
Therefore, in view of the problems of the prior art, the present invention is a wastewater treatment method using electrolytic oxidation that can achieve a high removal rate even in wastewater containing a high concentration of organic matter and nitrogen, and can improve power efficiency. And an apparatus.

そこで、本発明はかかる課題を解決するために、
イオン交換膜にて電解槽内を陽極域と陰極域とに区画し、該陽極域で電解生成した塩素系イオンを含む酸化性物質により処理対象水中に含有する有機物、窒素分からなる汚濁物質を酸化分解し、前記陰極域で残存する酸化性物質を還元する廃水処理方法であって、
前記陰極域から排出する処理水を塩素系イオンの分離が可能な膜モジュールにて膜分離し、分離した塩素系イオン含有処理水を前記陽極域に返送することを特徴とする。
Therefore, in order to solve this problem, the present invention provides:
The electrolytic cell is partitioned into an anode area and a cathode area by an ion exchange membrane, and organic substances contained in the water to be treated and pollutants consisting of nitrogen are oxidized by an oxidizing substance containing chlorine ions generated electrolytically in the anode area. A wastewater treatment method for decomposing and reducing an oxidizing substance remaining in the cathode region,
The treated water discharged from the cathode region is subjected to membrane separation by a membrane module capable of separating chlorine ions, and the separated chlorine ion-containing treated water is returned to the anode region.

かかる発明によれば、前記陽極域と陰極域とをイオン交換膜で分割しているため、両極域での反応が効率良く行われる。また、前記陰極域にて、酸化分解で消費されない過剰の酸化性物質を還元しているため、後段に設けられた膜モジュールの負荷を低減することができる。
また、次亜塩素酸イオン及び次亜塩素酸等の酸化性物質の電解生成に際して、陽極域の塩化物イオン濃度が高い程生成効率が高いが、本発明では前記膜モジュールで分離した塩化物イオン、次亜塩素酸イオン等の塩素系イオンを含有する処理水を陽極域に返送、循環しているため、該陽極域で酸化性物質を多量に生成することが可能となる。
According to this invention, since the anode region and the cathode region are divided by the ion exchange membrane, the reaction in the bipolar region is efficiently performed. Moreover, since the excess oxidizing substance which is not consumed by oxidative decomposition is reduced in the cathode region, the load on the membrane module provided in the subsequent stage can be reduced.
In addition, in the electrolytic production of oxidizing substances such as hypochlorite ions and hypochlorous acid, the higher the chloride ion concentration in the anode region, the higher the production efficiency. In the present invention, chloride ions separated by the membrane module are used. Since treated water containing chlorine-based ions such as hypochlorite ions is returned to the anode region and circulated, a large amount of oxidizing substances can be generated in the anode region.

従って、有機物、窒素分濃度が高い廃水においても、また処理水性状を高めたい場合においても、本発明を適用することができる。
さらに、前記膜モジュールにより系外へ排出する処理水から塩素系イオンを分離しているため、環境に与える影響を低減することができる。
尚、前記膜モジュールは逆浸透膜(RO膜)、限外ろ過(UF膜)等を利用可能であるが、好適にはRO膜を用いると良い。さらに、前記陽極域の塩素系イオン濃度が好適な値となるように、RO膜の条件を調整することが好ましい。
Therefore, the present invention can be applied to wastewater having a high organic matter and nitrogen concentration, and also in the case where it is desired to improve the treatment aqueous state.
Furthermore, since the chlorine ion is separated from the treated water discharged out of the system by the membrane module, the influence on the environment can be reduced.
In addition, although the said membrane module can utilize a reverse osmosis membrane (RO membrane), ultrafiltration (UF membrane), etc., it is good to use a RO membrane suitably. Furthermore, it is preferable to adjust the conditions of the RO membrane so that the chlorine-based ion concentration in the anode region has a suitable value.

また、前記陽極域から抜き出した処理水を第2の電解槽に導き、該第2の電解槽にて主として前記汚濁物質を酸化分解した後に、処理水を前記電解槽の陰極域に導入し、主として塩素系イオンの還元を行うことを特徴とする。
さらに、前記電解槽に印加する電圧値を前記処理対象水中に含有する汚濁物質の電解酸化に適した値に、かつ前記第2の電解槽に印加する電圧値を前記酸化性物質の還元反応に適した値に夫々独立して制御すると良い。
In addition, the treated water extracted from the anode region is guided to a second electrolytic cell, and after the pollutant is mainly oxidatively decomposed in the second electrolytic cell, the treated water is introduced into the cathode region of the electrolytic cell, It is characterized mainly by reduction of chlorine-based ions.
Furthermore, the voltage value applied to the electrolytic cell is set to a value suitable for electrolytic oxidation of the pollutant contained in the water to be treated, and the voltage value applied to the second electrolytic cell is used for the reduction reaction of the oxidizing material. It is good to control each to an appropriate value independently.

一般に前記汚濁物質の電解酸化に適した電圧と、塩素系イオンの還元に適した電圧は異なるため、単一の電解槽で同時に処理を行うと何れかの反応が不十分となる可能性がある。
従って、かかる発明のように汚濁物質の酸化分解反応を重点的に行う電解槽と、塩素系イオンの還元反応を重点的に行う電解槽とを異ならせ、これらの反応に適した電圧値で夫々を独立して制御することにより、反応を十分に生起することができるとともに、消費電力を抑えることができる。
In general, the voltage suitable for electrolytic oxidation of the pollutant is different from the voltage suitable for reduction of chlorine-based ions. Therefore, if the treatment is performed simultaneously in a single electrolytic cell, either reaction may be insufficient. .
Therefore, the electrolytic cell that mainly performs the oxidative decomposition reaction of the pollutant as in the invention is different from the electrolytic cell that mainly performs the reduction reaction of the chlorine-based ions, and each has a voltage value suitable for these reactions. By independently controlling the above, the reaction can be sufficiently caused and the power consumption can be suppressed.

また、イオン交換膜にて電解槽内を陽極域と陰極域とに区画し、該陽極域で電解生成した塩素系イオンを含む酸化性物質により処理対象水中に含有する有機物、窒素分からなる汚濁物質を酸化分解し、前記陰極域で残存する酸化性物質を還元する廃水処理方法であって、
前記汚濁物質を選択的に吸着分離する吸着搭に前記処理対象水を導き、該汚濁物質を吸着分離した後に前記陽極域に導入する第1のステップと、
前記陽極域から抜き出した酸化性物質含有処理水を前記吸着搭に導き、該吸着搭に担持される汚濁物質を酸化分解した後に前記陰極域に導入する第2のステップと、からなる処理系統を繰り返し行うことを特徴とする。
In addition, the electrolytic cell is partitioned into an anode region and a cathode region by an ion exchange membrane, and an organic substance contained in the water to be treated and a pollutant composed of nitrogen content by an oxidizing substance containing chlorine ions generated electrolytically in the anode area. A wastewater treatment method for reducing oxidative substances remaining in the cathode region,
A first step of introducing the water to be treated into an adsorption tower for selectively adsorbing and separating the pollutant, and introducing the pollutant into the anode region after adsorbing and separating the pollutant;
A treatment system comprising: a second step of introducing an oxidizing substance-containing treated water extracted from the anode region to the adsorption tower, and introducing the contaminated substance carried on the adsorption tower into the cathode area after oxidative decomposition. It is characterized by being repeated.

かかる発明は、前記電解槽に供給する前の処理対象水を前記吸着搭に導入して予め汚濁物質を吸着分離しておき、該電解槽にて残存する汚濁物質を酸化分解した後に、酸化性物質を含有する処理水を前記吸着搭に導き、ここに担持される汚濁物質を前記酸化性物質により酸化分解するものである。
前記吸着搭には、例えばゼオライトやシリケイト等をポーラス構造に形成した無機系吸着剤、該無機系吸着剤にTi、Cu等の金属触媒を担持させた吸着剤、又は活性炭や活性炭素繊維等の有機系吸着剤の表面に触媒を担持させた吸着剤等が好適に用いられる。
This invention introduces the water to be treated before being supplied to the electrolytic cell into the adsorption tower to previously adsorb and separate the pollutant, and oxidatively decomposes the remaining pollutant in the electrolytic cell, The treated water containing the substance is guided to the adsorption tower, and the polluted substance carried thereon is oxidized and decomposed by the oxidizing substance.
In the adsorption tower, for example, an inorganic adsorbent having a porous structure such as zeolite or silicate, an adsorbent in which a metal catalyst such as Ti or Cu is supported on the inorganic adsorbent, or activated carbon or activated carbon fiber, etc. An adsorbent having a catalyst supported on the surface of an organic adsorbent is preferably used.

これによれば、汚濁物質の酸化分解処理及び酸化性物質の還元処理を夫々二段構成とすることができ、夫々の反応が十分に行われるとともに装置にかかる負荷を低減することができる。また、前記吸着搭が酸化性物質含有処理水の通流により再生されるため、吸着剤の交換や洗浄等のメンテナンスのインターバルを長く設定可能である。   According to this, the oxidative decomposition treatment of the pollutant and the reduction treatment of the oxidizable substance can each be configured in two stages, and each reaction can be sufficiently performed and the load on the apparatus can be reduced. In addition, since the adsorption tower is regenerated by passing the oxidizing substance-containing treated water, it is possible to set a longer maintenance interval such as replacement of the adsorbent and cleaning.

さらに、複数設けた吸着搭に時間差を以って処理対象水を導入し、前記第1のステップと第2のステップを異なる吸着搭にて同時に行うことにより廃水を連続処理することを特徴とする。
このように、複数の吸着搭にて交互に処理を行うことにより連続処理が可能となり、処理効率の向上が期待できる。
また、前記陰極域から排出される処理水を塩素系イオンの分離が可能な膜モジュールにて膜分離し、分離した塩素系イオン含有処理水を前記陽極域に返送することが好ましい。これにより、系外への塩素分の流出を防止できる。
Further, the treatment target water is introduced into a plurality of adsorption towers with a time difference, and waste water is continuously treated by simultaneously performing the first step and the second step in different adsorption towers. .
In this way, continuous processing is possible by alternately performing processing in a plurality of adsorption towers, and improvement in processing efficiency can be expected.
Further, it is preferable that the treated water discharged from the cathode region is subjected to membrane separation by a membrane module capable of separating chlorine ions, and the separated chlorine ion-containing treated water is returned to the anode region. Thereby, the outflow of the chlorine content outside the system can be prevented.

さらにまた、前記発明を好適に実施する装置の発明として、
第1の電解槽内がイオン交換膜にて区画され、電解生成した塩素系イオンを含む酸化性物質により処理対象水中に含有する有機物、窒素分からなる汚濁物質を酸化分解する陽極域と、該陽極域からの処理水が導入され残存する酸化性物質を還元する陰極域とを形成する廃水処理装置であって、
前記陰極域の後流側に塩素系イオンを分離可能な膜モジュールを設けるとともに、該膜モジュールにより処理水と分離した塩素系イオン含有処理水を前記陽極域に返送するラインを設けたことを特徴とする。
Furthermore, as an invention of an apparatus for suitably carrying out the invention,
An anode region in which the inside of the first electrolytic cell is partitioned by an ion exchange membrane, an organic substance contained in the water to be treated by an oxidizing substance containing chlorine-based ions generated electrolytically, and a pollutant consisting of nitrogen are oxidatively decomposed; A wastewater treatment apparatus for forming a cathode region for reducing the remaining oxidizing substances by introducing treated water from the region,
A membrane module capable of separating chlorine-based ions is provided on the downstream side of the cathode region, and a line is provided for returning the chlorine-based ion-containing treated water separated from the treated water by the membrane module to the anode region. And

また、前記陽極域から前記陰極域に処理水を送給するライン上に第2の電解槽を設け、
前記第1の電解槽と第2の電解槽とに異なる電圧値を有する電圧を印加し、該第2の電解槽にて主として汚濁物質を酸化分解し、前記第1の電解槽にて主として酸化性物質を還元する電圧値に夫々設定すること特徴とする。
また、前記第1の電解槽に印加する電圧値を、前記第2の電解槽から排出する処理水中の塩素系イオン濃度に基づき塩素系イオンの還元に適した値に制御する手段と、前記第2の電解槽に印加する電圧値を、該第2の電解槽から排出する処理水中の有機物濃度に基づき前記汚濁物質の酸化分解に適した値に制御する手段と、を設けたことを特徴とする。
In addition, a second electrolytic cell is provided on a line for supplying treated water from the anode region to the cathode region,
A voltage having a different voltage value is applied to the first electrolytic cell and the second electrolytic cell, the pollutant is mainly oxidized and decomposed in the second electrolytic cell, and the oxidized material is mainly oxidized in the first electrolytic cell. It is characterized in that each is set to a voltage value for reducing the active substance.
Means for controlling the voltage value applied to the first electrolytic cell to a value suitable for reduction of chlorine-based ions based on the chlorine-based ion concentration in the treated water discharged from the second electrolytic cell; And a means for controlling the voltage value applied to the second electrolytic cell to a value suitable for oxidative decomposition of the pollutant based on the concentration of organic matter in the treated water discharged from the second electrolytic cell. To do.

さらに、電解槽内がイオン交換膜にて区画され、電解生成した塩素系イオンを含む酸化性物質により処理対象水中に含有する有機物、窒素分からなる汚濁物質を酸化分解する陽極域と、該陽極域からの処理水が導入され残存する酸化性物質を還元する陰極域とを形成する廃水処理装置であって、
前記汚濁物質を選択的に吸着分離する吸着搭を複数設けた吸着搭群と、
一の前記吸着搭を経て前記陽極域に導入された処理水を他の吸着搭に導く返送ラインと、該他の吸着搭に導入された処理水を前記陰極域に導入する送給ラインと、を設け、
複数の吸着搭に時間差を以って処理対象水を導入し、吸着搭に担持された汚濁物質を前記返送ラインからの塩素系イオン含有処理水により酸化分解することを特徴とする。
Further, the electrolytic cell is partitioned with an ion exchange membrane, and an anode region that oxidizes and decomposes organic matter contained in the water to be treated with an oxidizing substance containing chlorine-based ions generated electrolytically, and a pollutant composed of nitrogen, and the anode region A waste water treatment apparatus for forming a cathode region for reducing the remaining oxidizing substances by introducing treated water from
An adsorption tower group provided with a plurality of adsorption towers for selectively adsorbing and separating the contaminants;
A return line for introducing the treated water introduced into the anode region through the one adsorption tower to the other adsorption tower; a supply line for introducing the treated water introduced into the other adsorption tower to the cathode area; Provided,
The treatment target water is introduced into the plurality of adsorption towers with a time difference, and the pollutant material carried on the adsorption tower is oxidatively decomposed with the chlorine ion-containing treated water from the return line.

さらにまた、前記陰極域の後流側に塩素系イオンを分離可能な膜モジュールを設けるとともに、該膜モジュールにより処理水と分離した塩素系イオン含有処理水を前記陽極域に返送するラインを設けたことを特徴とする。   Furthermore, a membrane module capable of separating chlorine ions is provided on the downstream side of the cathode region, and a line is provided for returning the chlorine ion-containing treated water separated from the treated water by the membrane module to the anode region. It is characterized by that.

以上記載のごとく本発明によれば、陽極域と陰極域とをイオン交換膜で分割しているため、両電極域での反応が効率良く行われる。また、陰極域にて酸化分解で消費されない余剰の酸化性物質を還元しているため、後段に設けられた膜モジュールの負荷を低減することができる。
また、塩素系イオンを陽極域に返送することにより、陽極域で酸化性物質を多量に生成することが可能となるとともに、塩素系イオンの系外への排出を最小限に抑えることができるため環境に与える影響が小さい。
As described above, according to the present invention, since the anode region and the cathode region are divided by the ion exchange membrane, the reaction in both electrode regions is efficiently performed. Moreover, since the excess oxidizing substance which is not consumed by oxidative decomposition in the cathode region is reduced, the load on the membrane module provided in the subsequent stage can be reduced.
In addition, by returning chlorine-based ions to the anode region, it becomes possible to produce a large amount of oxidizing substances in the anode region and to minimize the discharge of chlorine-based ions out of the system. The impact on the environment is small.

また、陰極域では次亜塩素酸イオン若しくは次亜塩素酸の存在によりこれらの還元反応が主体となり、従来陰極側で主体となっていた水素の生成反応よりも電解電位を低くすることができエネルギー効率が向上する。
さらに、第2の電解槽若しくは吸着搭を設けることにより、酸化分解反応若しくは還元反応を二段構成とすることができ、各装置にかかる負荷が低減され装置寿命が長くなる。
従って、かかる発明によれば、高濃度の有機物及び窒素分を含有する廃水においても酸化性物質を系外へ漏出することなく高除去率を達成でき、かつ電力効率を高くすることができる。
Moreover, in the cathode region, these reduction reactions are mainly performed due to the presence of hypochlorite ions or hypochlorous acid, and the electrolytic potential can be made lower than the hydrogen generation reaction that has been mainly performed on the cathode side. Efficiency is improved.
Furthermore, by providing the second electrolytic cell or the adsorption tower, the oxidative decomposition reaction or the reduction reaction can be configured in two stages, the load applied to each apparatus is reduced, and the apparatus life is extended.
Therefore, according to this invention, even in wastewater containing a high concentration of organic matter and nitrogen, a high removal rate can be achieved without leaking an oxidizing substance out of the system, and power efficiency can be increased.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1乃至図3、及び図6は本発明の第1乃至実施例4にかかる廃水処理装置の系統図、図4及び図5は実施例3に係る廃水処理装置の処理水の流れを示す説明図である。
本実施形態は、下水やし尿、浄化槽汚泥等の生活廃水、又は有機系の工場廃水の処理に適しており、廃水中の有機物(COD、BOD等)や窒素分(T−N)を除去して浄化することを目的とする。
1 to 3 and FIG. 6 are system diagrams of a wastewater treatment apparatus according to first to fourth embodiments of the present invention, and FIGS. 4 and 5 are diagrams illustrating a flow of treated water of the wastewater treatment apparatus according to the third embodiment. FIG.
This embodiment is suitable for the treatment of domestic wastewater such as sewage and human waste, septic tank sludge, or organic factory wastewater, and removes organic matter (COD, BOD, etc.) and nitrogen (TN) in wastewater. The purpose is to purify.

図1に示すように、本発明の実施例1に係る廃水処理装置100Aは、イオン交換膜13で区画した電解槽10と、該電解槽10内に対向配置した陽極部材11及び陰極部材12と、該両電極に接続される電源34と、電解槽10の後流側に位置する膜モジュール35と、を主要構成とする。
前記電解槽10は、前記イオン交換膜13により陽極域14と陰極域15とに区画されており、処理対象水は陽極域14に導入され、陽極域14を通過した処理水は供給ライン26により陰極域15に送給される。
As shown in FIG. 1, a wastewater treatment apparatus 100A according to Example 1 of the present invention includes an electrolytic cell 10 partitioned by an ion exchange membrane 13, and an anode member 11 and a cathode member 12 that are disposed to face each other in the electrolytic cell 10. The power source 34 connected to both electrodes and the membrane module 35 located on the downstream side of the electrolytic cell 10 are the main components.
The electrolytic cell 10 is divided into an anode region 14 and a cathode region 15 by the ion exchange membrane 13, and water to be treated is introduced into the anode region 14, and treated water that has passed through the anode region 14 is supplied by a supply line 26. It is fed to the cathode area 15.

さらに、前記陰極域15を通過した処理水を前記膜モジュール35に導入し、ここで分離した塩素系イオン含有処理水は返送ライン27により前記処理対象水とともに陽極域14に導入する。
前記膜モジュール14は、逆浸透膜(RO膜)や限外ろ過膜(MF)等の分離膜のうち少なくとも塩化物イオンを分離する機能を有するものとし、好適にはRO膜を用いると良い。
Further, the treated water that has passed through the cathode region 15 is introduced into the membrane module 35, and the chlorine-based ion-containing treated water separated here is introduced into the anode region 14 together with the treatment target water through a return line 27.
The membrane module 14 has a function of separating at least chloride ions among separation membranes such as a reverse osmosis membrane (RO membrane) and an ultrafiltration membrane (MF), and an RO membrane is preferably used.

かかる実施例1では、まず処理対象水を導入した陽極域14にて、主に下記反応式(1)により次亜塩素酸イオンが生成する。
Cl-+2OH- → ClO-+H2+H2O+2e- …(1)
前記陽極域14では、次亜塩素酸イオンの他にも強酸化力を有する次亜塩素酸(HClO)、過酸化水素(H)、ヒドロキシラジカル(OH・)等の酸化性物質が生成する。
In Example 1, hypochlorite ions are generated mainly by the following reaction formula (1) in the anode region 14 into which the water to be treated is introduced.
Cl + 2OH → ClO + H 2 + H 2 O + 2e (1)
In the anode region 14, in addition to hypochlorite ions, oxidizing substances such as hypochlorous acid (HClO), hydrogen peroxide (H 2 O 2 ), and hydroxy radicals (OH.) Having strong oxidizing power are contained. Generate.

そして、陽極域14では、前記酸化性物質が有機物及び窒素分と反応して下記反応式(2)等により有機物を炭酸ガス等に転換するとともに、下記反応式(3)等により窒素を無害な窒素ガスとし、処理水中の有機物含有量及び窒素分含有量を低下させる。
2C65NH2+31ClO- → N2+7H2O+12CO2+31Cl-
…(2)
2NH3+3ClO- → N2+3H2O+3Cl- …(3)
In the anode region 14, the oxidizing substance reacts with the organic substance and nitrogen to convert the organic substance into carbon dioxide gas etc. according to the following reaction formula (2) and the like, and nitrogen is harmless according to the following reaction formula (3) and the like. Nitrogen gas is used to reduce the organic matter content and nitrogen content in the treated water.
2C 6 H 5 NH 2 + 31ClO → N 2 + 7H 2 O + 12CO 2 + 31Cl
... (2)
2NH 3 + 3ClO → N 2 + 3H 2 O + 3Cl (3)

さらに、前記陽極域14で生成され酸化分解にて消費されない酸化性物質は処理水に含有されたまま供給ライン26により陰極域15に導かれ、該陰極域15にて例えば下記反応式(4)により塩化物イオンに還元される。
ClO-+H2O+2e- → Cl-+2OH- …(4)
そして、陰極域15より排出する塩化物イオン含有処理水は前記膜モジュール35に導入され、塩素系イオン含有処理水を分離して系外へ放流する。
一方、前記塩素系イオン含有処理水は返送ライン27により前記陽極域14に返送する。
Further, the oxidizing substance generated in the anode region 14 and not consumed by the oxidative decomposition is introduced to the cathode region 15 through the supply line 26 while being contained in the treated water. In the cathode region 15, for example, the following reaction formula (4) Reduced to chloride ions.
ClO + H 2 O + 2e → Cl + 2OH (4)
Then, the chloride ion-containing treated water discharged from the cathode region 15 is introduced into the membrane module 35, and the chlorine ion-containing treated water is separated and discharged out of the system.
On the other hand, the chlorine ion-containing treated water is returned to the anode region 14 through a return line 27.

これにより、陽極域14の塩素系イオン濃度を高く維持することができ、次亜塩素酸イオン、次亜塩素酸等の酸化性物質の生成効率を向上することができるとともに、系外への塩素系イオンの流出を防止する。
また、陰極域15では通常水素が発生するが、次亜塩素酸イオン若しくは次亜塩素酸が存在すると、硝酸、亜硝酸イオンとともにこれらの還元反応が主体となる。次亜塩素酸イオンの還元反応の電位は、水素生成反応よりも低い電位で生じるため電解電圧が低く済み、エネルギー効率が向上する。
尚、前記陽極域14内が酸化性物質を効率良く生成する塩素系イオン濃度となるように、膜モジュール14の条件を設定することが好ましい。
As a result, the chlorine ion concentration in the anode region 14 can be maintained high, the production efficiency of oxidizing substances such as hypochlorite ions and hypochlorous acid can be improved, and chlorine to the outside of the system can be improved. Prevent outflow of system ions.
In addition, hydrogen is usually generated in the cathode region 15, but when hypochlorite ions or hypochlorous acid is present, these reduction reactions are mainly performed together with nitric acid and nitrite ions. Since the potential of the reduction reaction of hypochlorite ions occurs at a lower potential than that of the hydrogen production reaction, the electrolysis voltage can be lowered and the energy efficiency is improved.
In addition, it is preferable to set the conditions of the membrane module 14 so that the anode region 14 has a chlorine ion concentration that efficiently generates an oxidizing substance.

図2は本発明の実施例2に係る廃水処理装置100Bを示し、かかる装置は前記実施例1に示した電解槽10を多段に配設した構成としている。
前記電解槽10a、10bは同様の構成を有しており、イオン交換膜13a、13bで区画され、陽極部材11a、11bを備えた陽極域14a、14bと陰極部材12a、12bを備えた陰極域15a、15bから第1の電解装置A及び第2の電解装置Bが形成されている。
FIG. 2 shows a wastewater treatment apparatus 100B according to a second embodiment of the present invention, and this apparatus has a configuration in which the electrolytic cells 10 shown in the first embodiment are arranged in multiple stages.
The electrolytic cells 10a and 10b have the same configuration, and are partitioned by ion exchange membranes 13a and 13b, and cathode regions including anode regions 14a and 14b having anode members 11a and 11b and cathode members 12a and 12b. A first electrolysis apparatus A and a second electrolysis apparatus B are formed from 15a and 15b.

前記処理対象水は、まず第1の電解装置Aの陽極域14aに導入し、ここで酸化性物質の電解生成反応及び汚濁物質の酸化分解反応を行った後に、第2の電解装置Bの陽極域14bに導き同様の反応を行う。そして、該陽極域14bから抜き出した処理水を供給ライン28により第2の電解槽Bの陰極域15bに導入し、処理水中に残存する酸化性物質を還元する。
該陰極域15bから排出する処理水は、返送ライン29により前記第1の電解装置Aの陰極域15aに返送し、ここで再度酸化性物質の還元を行う。
このようにして一連の処理を行った処理水は、膜モジュール25を介して塩素系イオンを分離した後に放流する。一方、分離された塩素系イオン含有処理水は、第1の電解装置Aの陽極域14aに返送する。
The water to be treated is first introduced into the anode region 14a of the first electrolysis apparatus A, and after performing the electrolytic generation reaction of the oxidizing substance and the oxidative decomposition reaction of the pollutant substance, the anode of the second electrolysis apparatus B is obtained. It leads to the zone 14b and performs the same reaction. Then, the treated water extracted from the anode region 14b is introduced into the cathode region 15b of the second electrolytic cell B through the supply line 28, and the oxidizing substance remaining in the treated water is reduced.
The treated water discharged from the cathode region 15b is returned to the cathode region 15a of the first electrolysis apparatus A through the return line 29, where the oxidizing substance is reduced again.
The treated water that has been subjected to a series of treatments in this way is discharged after separating chlorine ions via the membrane module 25. On the other hand, the separated chlorine ion-containing treated water is returned to the anode region 14a of the first electrolysis apparatus A.

また、かかる廃水処理装置100Bは、前記供給ライン28上に、第2の電解装置Bの陽極域14bから排出する処理水のTOC(全有機体炭素量)濃度を測定するTOC検出手段31と、該測定したTOC濃度に基づき前記第2の電解装置Bに印加する電圧値を制御する制御装置30を設けている。
さらに、前記返送ライン29上に、第2の電解装置Bの陰極域15bから排出する塩化物イオン濃度を測定する塩化物イオン検出手段33と、該測定した塩化物イオン濃度に基づき前記第1の電解装置Aに印加する電圧値を制御する制御装置32を設けている。
In addition, the wastewater treatment apparatus 100B includes, on the supply line 28, a TOC detection means 31 that measures the TOC (total organic carbon content) concentration of treated water discharged from the anode region 14b of the second electrolysis apparatus B; A control device 30 is provided for controlling the voltage value applied to the second electrolysis device B based on the measured TOC concentration.
Furthermore, on the return line 29, chloride ion detecting means 33 for measuring the chloride ion concentration discharged from the cathode region 15b of the second electrolysis apparatus B, and the first ion concentration based on the measured chloride ion concentration. A control device 32 for controlling the voltage value applied to the electrolysis device A is provided.

かかる実施例2では、前記第2の電解装置Bで汚濁物質の酸化分解反応を重点的に行い、前記第1の電解装置Aで放流前の処理水に含有する酸化性物質の還元反応を重点的に行うように構成している。
従って、前記TOC検出手段31により汚濁物質分解状態を把握し、目的とする処理水質が得られるように制御装置30により第2の電解装置Bの電源電圧を制御し、一方前記塩化物イオン検出手段33により塩素系イオンの還元状態を把握し、処理水中の塩素系イオン濃度が所定値以下となるように前記第1の電解装置Aの電源電圧を制御する。これにより、反応を十分に生起することができるとともに、夫々の反応に必要な電圧のみを独立して印加しているため、消費電力を抑えることができる。
In the second embodiment, the oxidative decomposition reaction of the pollutant is performed mainly in the second electrolysis apparatus B, and the reduction reaction of the oxidizing substance contained in the treated water before the discharge is focused in the first electrolysis apparatus A. It is configured to perform automatically.
Therefore, the TOC detection means 31 grasps the state of pollutant decomposition, and the control device 30 controls the power supply voltage of the second electrolysis apparatus B so as to obtain the desired treated water quality, while the chloride ion detection means. The reduction state of the chlorine ion is grasped by 33, and the power supply voltage of the first electrolyzer A is controlled so that the chlorine ion concentration in the treated water becomes a predetermined value or less. Thereby, while being able to produce reaction enough, since only the voltage required for each reaction is applied independently, power consumption can be suppressed.

図3乃至図5には本発明の実施例3に係る廃水処理装置100Cを示す。
図3に示されるようにかかる廃水処理装置100Cは、前記第1及び実施例2と同様にイオン交換膜13により陽極域14及び陰極域15を形成した電解槽10と、該電解槽10内に対向配置した陽極部材11及び陰極部材12と、これら電極に接続した電源34と、前記電解槽10の上流側に並列して配設した2以上の吸着搭16A、16Bと、を主要構成としている。前記吸着搭16A、16Bには、例えばゼオライトやシリケイト等をポーラス構造に形成した無機系吸着剤、該無機系吸着剤にTi、Cu等の金属触媒を担持させた吸着剤、又は活性炭や活性炭素繊維等の有機系吸着剤の表面に触媒を担持させた吸着剤等が好適に用いられる。
3 to 5 show a wastewater treatment apparatus 100C according to Embodiment 3 of the present invention.
As shown in FIG. 3, the wastewater treatment apparatus 100 </ b> C includes an electrolytic cell 10 in which an anode region 14 and a cathode region 15 are formed by an ion exchange membrane 13 as in the first and second embodiments, and the electrolytic cell 10. The main components are the anode member 11 and the cathode member 12, which are disposed to face each other, a power source 34 connected to these electrodes, and two or more adsorption towers 16A and 16B arranged in parallel on the upstream side of the electrolytic cell 10. . For the adsorption towers 16A and 16B, for example, an inorganic adsorbent in which a zeolite or silicate is formed in a porous structure, an adsorbent in which a metal catalyst such as Ti or Cu is supported on the inorganic adsorbent, or activated carbon or activated carbon An adsorbent having a catalyst supported on the surface of an organic adsorbent such as fiber is preferably used.

また、処理対象水を分岐して吸着搭16A、16Bに供給するライン上に設けたバルブ18、19と、該吸着搭16Aを通過した処理水を前記電解槽10の陽極域14及び陰極域15に分岐して導入するライン26上に設けたバルブ20、21と、同様に吸着搭16Bからの処理水を前記電解槽10に分岐して導入するライン上に設けたバルブ22、23と、前記陽極域14から抜き出した処理水を前記吸着搭16A、16Bに分岐して返送するライン上に設けたバルブ24、25と、を備える。   Further, valves 18 and 19 provided on a line for branching the water to be treated and supplying it to the adsorption towers 16A and 16B, and the treated water that has passed through the adsorption tower 16A are fed into the anode region 14 and the cathode region 15 of the electrolytic cell 10. The valves 20 and 21 provided on the line 26 to be branched and introduced, and the valves 22 and 23 similarly provided on the line for branching and introducing the treated water from the adsorption tower 16B to the electrolytic cell 10; And valves 24 and 25 provided on a line for returning the treated water extracted from the anode region 14 to the adsorption towers 16A and 16B.

次に、図4及び図5に基づきかかる廃水処理装置100Cにおける処理対象水の処理フローを説明する。
図4に示される処理工程は、まずバルブ19を閉、バルブ18を開として処理対象水を吸着搭16Aに供給し、該吸着搭16Aを通過させることにより処理水中の汚濁物質の一部を吸着分離し、さらにバルブ21を閉、バルブ20を開として処理水を電解槽10の陽極域14に導入する。
該陽極域14にて電解生成した酸化性物質により汚濁物質を分解除去した後、バルブ24を閉、バルブ25を開として陽極域14から抜き出した処理水を吸着搭16Bに返送する。
Next, the treatment flow of the water to be treated in the wastewater treatment apparatus 100C will be described based on FIG. 4 and FIG.
In the treatment process shown in FIG. 4, first, the valve 19 is closed and the valve 18 is opened to supply water to be treated to the adsorption tower 16A, and a part of the pollutant in the treated water is adsorbed by passing through the adsorption tower 16A. Then, the valve 21 is closed and the valve 20 is opened to introduce the treated water into the anode region 14 of the electrolytic cell 10.
After the pollutant is decomposed and removed by the oxidizing substance generated electrolytically in the anode region 14, the valve 24 is closed, the valve 25 is opened, and the treated water extracted from the anode region 14 is returned to the adsorption tower 16B.

前記吸着搭16Bには、予め処理対象水を通過したことにより汚濁物質が担持されており、前記返送処理水を通流させて該処理水中に残存する酸化性物質の酸化力により汚濁物質を酸化分解するとともに、酸化性物質を還元する。そして、バルブ22を閉、バルブ23を開として該吸着搭16Bを通過した処理水を陰極域15に供給し、該陰極域15にて酸化性物質を還元した後に放流する。   The adsorbing tower 16B holds the pollutant by passing through the water to be treated in advance, and the pollutant is oxidized by the oxidizing power of the oxidizing substance remaining in the treated water by passing the return treated water through. Decomposes and reduces oxidizing substances. Then, the valve 22 is closed, the valve 23 is opened, and the treated water that has passed through the adsorption tower 16B is supplied to the cathode region 15, and after reducing the oxidizing substance in the cathode region 15, it is discharged.

かかる処理工程を行って所定時間経過後に、図5に示される処理工程に切り替える。まず、バルブ19を開、バルブ18を閉として処理対象水を吸着搭16Bに導入し、図4に示す処理工程時に吸着された汚濁物質を酸化分解するとともに、吸着材を還元、再生した後、バルブ23を閉、バルブ22を開として吸着搭16Bを通過した処理水を陽極域14に供給する。
そして、該陽極域14にて酸化性物質を電解生成しながら汚濁物質を分解除去し、バルブ24を開、バルブ25を閉として陽極域14から抜き出した処理水を吸着搭16Aに返送する。
After a predetermined time has passed after performing such processing steps, the processing steps are switched to the processing steps shown in FIG. First, the valve 19 is opened, the valve 18 is closed and the water to be treated is introduced into the adsorption tower 16B, and the pollutant adsorbed during the treatment step shown in FIG. 4 is oxidized and decomposed, and the adsorbent is reduced and regenerated. The valve 23 is closed, the valve 22 is opened, and the treated water that has passed through the adsorption tower 16 </ b> B is supplied to the anode region 14.
Then, the pollutant is decomposed and removed while electrolytically generating the oxidizing substance in the anode region 14, the valve 24 is opened, the valve 25 is closed, and the treated water extracted from the anode region 14 is returned to the adsorption tower 16A.

該吸着搭16Aでは、予め担持された汚濁物質を前記処理水に含有される酸化性物質で酸化分解するとともに、吸着材を還元、再生した後、バルブ21を開、バルブ20を閉として吸着搭16Aから排出する処理水を陰極域15に導入する。該陰極域15に導入した処理水は、含有酸化性物質を還元した後に放流する。
かかる処理工程を、時間差をもって交互に行うことにより連続処理する。
これにより、汚濁物質の酸化分解処理及び酸化性物質の還元処理を夫々二段構成とすることができ、夫々の反応が十分に行われるとともに装置にかかる負荷を低減することができる。また、前記吸着搭が酸化性物質含有処理水の通流により再生されるため、吸着剤の交換や洗浄等のメンテナンスのインターバルを長く設定可能である。
In the adsorption tower 16A, the pre-supported pollutant is oxidatively decomposed with an oxidizing substance contained in the treated water, and after reducing and regenerating the adsorbent, the valve 21 is opened and the valve 20 is closed. Treated water discharged from 16A is introduced into the cathode region 15. The treated water introduced into the cathode region 15 is discharged after reducing the contained oxidizing substance.
Such processing steps are continuously performed by alternately performing with a time difference.
Thereby, the oxidative decomposition treatment of the pollutant and the reduction treatment of the oxidizing substance can each be configured in two stages, and each reaction can be sufficiently performed and the load on the apparatus can be reduced. In addition, since the adsorption tower is regenerated by the flow of the oxidizing substance-containing treated water, it is possible to set a long maintenance interval such as replacement of the adsorbent and cleaning.

また、図6に示される本発明の実施例4のように、前記実施例3と同様の構成を有する廃水処理装置100Cに膜モジュール35を具備した構成としても良い。かかる廃水処理装置100Dにおいて、前記実施例3と同様の構成を有する部位については説明を省略する。
かかる廃水処理装置100Dは、前記陰極域15の後流側に膜モジュール35を設け、該膜モジュール35で塩素系イオンを分離した処理水を放流し、該塩素系イオンを含有する処理水を前記陽極域14に返送する構成としている。
これにより塩素系イオンの系外への流出を最小限に抑えることができ、さらにまた陽極域14の塩素系イオン濃度を高く保持することができるため、酸化性物質の生成効率が向上し、ひいては汚濁物質を高除去率で以って処理することができる。
Moreover, it is good also as a structure which comprised the membrane module 35 in the wastewater treatment apparatus 100C which has the structure similar to the said Example 3 like Example 4 of this invention shown by FIG. In the wastewater treatment apparatus 100D, the description of the parts having the same configuration as in the third embodiment is omitted.
The wastewater treatment apparatus 100D is provided with a membrane module 35 on the downstream side of the cathode region 15, discharges treated water from which chlorine ions have been separated by the membrane module 35, and treats the treated water containing the chlorine ions as described above. It is configured to return to the anode region 14.
As a result, the outflow of chlorine ions to the outside of the system can be minimized, and further, the chlorine ion concentration in the anode region 14 can be kept high, so that the generation efficiency of the oxidizing substance is improved. The pollutant can be treated with a high removal rate.

本実施形態は、有機物(COD、BOD等)や窒素分(T−N)を多く含む廃水の処理に適しているが、これに従来の固液分離装置、生物処理装置、高度水処理装置等を組み合わせることにより、様々な有害物質を有する廃水処理に適用することができる。   Although this embodiment is suitable for the treatment of wastewater containing a large amount of organic matter (COD, BOD, etc.) and nitrogen (TN), conventional solid-liquid separation devices, biological treatment devices, advanced water treatment devices, etc. Can be applied to the treatment of wastewater having various harmful substances.

本発明の実施例1にかかる廃水処理装置の系統図である。It is a systematic diagram of the waste water treatment apparatus concerning Example 1 of this invention. 本発明の実施例2にかかる廃水処理装置の系統図である。It is a systematic diagram of the waste water treatment apparatus concerning Example 2 of this invention. 本発明の実施例3にかかる廃水処理装置の系統図である。It is a systematic diagram of the wastewater treatment apparatus concerning Example 3 of this invention. 図3に係る廃水処理装置の処理工程を示す説明図である。It is explanatory drawing which shows the process of the waste water treatment apparatus which concerns on FIG. 図4の別の処理工程を示す説明図である。It is explanatory drawing which shows another process process of FIG. 本発明の実施例4にかかる廃水処理装置の系統図である。It is a systematic diagram of the wastewater treatment apparatus concerning Example 4 of this invention. 従来の電気分解槽を示す構成図である。It is a block diagram which shows the conventional electrolysis tank.

符号の説明Explanation of symbols

10、10a、10b 電解槽
11、11a、11b 陽極部材
12、12a、12b 陰極部材
13、13a、13b イオン交換膜
14、14a、14b 陽極域
15、15a、15b 陰極域
16A、16B 吸着搭
30、32 制御装置
31 TOC検出手段
33 塩化物イオン検出手段
34 電源
35 膜モジュール
10, 10a, 10b Electrolytic cell 11, 11a, 11b Anode member 12, 12a, 12b Cathode member 13, 13a, 13b Ion exchange membrane 14, 14a, 14b Anode region 15, 15a, 15b Cathode region 16A, 16B Adsorption tower 30, 32 Control device 31 TOC detection means 33 Chloride ion detection means 34 Power supply 35 Membrane module

Claims (11)

イオン交換膜にて電解槽内を陽極域と陰極域とに区画し、該陽極域で電解生成した塩素系イオンを含む酸化性物質により処理対象水中に含有する有機物、窒素分からなる汚濁物質を酸化分解し、前記陰極域で残存する酸化性物質を還元する廃水処理方法であって、
前記陰極域から排出する処理水を塩素系イオンの分離が可能な膜モジュールにて膜分離し、分離した塩素系イオン含有処理水を前記陽極域に返送することを特徴とする電解酸化を利用した廃水処理方法。
The electrolytic cell is partitioned into an anode area and a cathode area by an ion exchange membrane, and organic substances contained in the water to be treated and pollutants consisting of nitrogen are oxidized by an oxidizing substance containing chlorine ions generated electrolytically in the anode area. A wastewater treatment method for decomposing and reducing an oxidizing substance remaining in the cathode region,
Utilizing electrolytic oxidation, characterized in that treated water discharged from the cathode region is subjected to membrane separation by a membrane module capable of separating chlorine ions, and the separated chlorine ion-containing treated water is returned to the anode region Wastewater treatment method.
前記陽極域から抜き出した処理水を第2の電解槽に導き、該第2の電解槽にて主として前記汚濁物質を酸化分解した後に、処理水を前記電解槽の陰極域に導入し、主として塩素系イオンの還元を行うことを特徴とする請求項1記載の電解酸化を利用した廃水処理方法。   The treated water extracted from the anode region is guided to a second electrolytic cell, and after the pollutant is mainly oxidatively decomposed in the second electrolytic cell, the treated water is introduced into the cathode region of the electrolytic cell and mainly chlorine. The wastewater treatment method using electrolytic oxidation according to claim 1, wherein the reduction of system ions is performed. 前記電解槽に印加する電圧値を前記処理対象水中に含有する汚濁物質の電解酸化に適した値に、かつ前記第2の電解槽に印加する電圧値を前記酸化性物質の還元反応に適した値に夫々独立して制御することを特徴とする請求項2記載の電解酸化を利用した廃水処理方法。   The voltage value applied to the electrolytic cell is suitable for the electrolytic oxidation of the pollutant contained in the water to be treated, and the voltage value applied to the second electrolytic cell is suitable for the reduction reaction of the oxidizing substance. 3. The wastewater treatment method using electrolytic oxidation according to claim 2, wherein each value is controlled independently. イオン交換膜にて電解槽内を陽極域と陰極域とに区画し、該陽極域で電解生成した塩素系イオンを含む酸化性物質により処理対象水中に含有する有機物、窒素分からなる汚濁物質を酸化分解し、前記陰極域で残存する酸化性物質を還元する廃水処理方法であって、
前記汚濁物質を選択的に吸着分離する吸着搭に前記処理対象水を導き、該汚濁物質を吸着分離した後に前記陽極域に導入する第1のステップと、
前記陽極域から抜き出した酸化性物質含有処理水を前記吸着搭に導き、該吸着搭に担持される汚濁物質を酸化分解した後に前記陰極域に導入する第2のステップと、からなる処理系統を繰り返し行うことを特徴とする電解酸化を利用した廃水処理方法。
The electrolytic cell is partitioned into an anode area and a cathode area by an ion exchange membrane, and organic substances contained in the water to be treated and pollutants consisting of nitrogen are oxidized by an oxidizing substance containing chlorine ions generated electrolytically in the anode area. A wastewater treatment method for decomposing and reducing an oxidizing substance remaining in the cathode region,
A first step of introducing the water to be treated into an adsorption tower for selectively adsorbing and separating the pollutant, and introducing the pollutant into the anode region after adsorbing and separating the pollutant;
A treatment system comprising: a second step of introducing an oxidizing substance-containing treated water extracted from the anode region to the adsorption tower, and introducing the contaminated substance carried on the adsorption tower into the cathode area after oxidative decomposition. A wastewater treatment method using electrolytic oxidation, which is performed repeatedly.
複数設けた吸着搭に時間差を以って処理対象水を導入し、前記第1のステップと第2のステップを異なる吸着搭にて同時に行うことにより廃水を連続処理することを特徴とする請求項4記載の電解酸化を利用した廃水処理方法。   The treatment water is introduced into a plurality of adsorption towers with a time difference, and waste water is continuously treated by simultaneously performing the first step and the second step in different adsorption towers. 4. A wastewater treatment method using electrolytic oxidation according to 4. 前記陰極域から排出される処理水を塩素系イオンの分離が可能な膜モジュールにて膜分離し、分離した塩素系イオン含有処理水を前記陽極域に返送することを特徴とする請求項4記載の電解酸化を利用した廃水処理方法。   5. The treated water discharged from the cathode region is subjected to membrane separation by a membrane module capable of separating chlorine ions, and the separated chlorine ion-containing treated water is returned to the anode region. Wastewater treatment method using electrolytic oxidation of 第1の電解槽内がイオン交換膜にて区画され、電解生成した塩素系イオンを含む酸化性物質により処理対象水中に含有する有機物、窒素分からなる汚濁物質を酸化分解する陽極域と、該陽極域からの処理水が導入され残存する酸化性物質を還元する陰極域とを形成する廃水処理装置であって、
前記陰極域の後流側に塩素系イオンを分離可能な膜モジュールを設けるとともに、該膜モジュールにより処理水と分離した塩素系イオン含有処理水を前記陽極域に返送するラインを設けたことを特徴とする電解酸化を利用した廃水処理装置。
An anode region in which the inside of the first electrolytic cell is partitioned by an ion exchange membrane, an organic substance contained in the water to be treated by an oxidizing substance containing chlorine-based ions generated electrolytically, and a pollutant consisting of nitrogen are oxidatively decomposed; A wastewater treatment apparatus for forming a cathode region for reducing the remaining oxidizing substances by introducing treated water from the region,
A membrane module capable of separating chlorine-based ions is provided on the downstream side of the cathode region, and a line is provided for returning the chlorine-based ion-containing treated water separated from the treated water by the membrane module to the anode region. Wastewater treatment equipment using electrolytic oxidation.
前記陽極域から前記陰極域に処理水を送給するライン上に第2の電解槽を設け、
前記第1の電解槽と第2の電解槽とに異なる電圧値を有する電圧を印加し、該第2の電解槽にて主として汚濁物質を酸化分解し、前記第1の電解槽にて主として酸化性物質を還元する電圧値に夫々設定すること特徴とする請求項7記載の電解酸化を利用した廃水処理装置。
A second electrolytic cell is provided on a line for supplying treated water from the anode region to the cathode region,
A voltage having a different voltage value is applied to the first electrolytic cell and the second electrolytic cell, the pollutant is mainly oxidized and decomposed in the second electrolytic cell, and the oxidized material is mainly oxidized in the first electrolytic cell. The wastewater treatment apparatus using electrolytic oxidation according to claim 7, wherein each is set to a voltage value for reducing the active substance.
前記第1の電解槽に印加する電圧値を、前記第2の電解槽から排出する処理水中の塩素系イオン濃度に基づき塩素系イオンの還元に適した値に制御する手段と、前記第2の電解槽に印加する電圧値を、該第2の電解槽から排出する処理水中の有機物濃度に基づき前記汚濁物質の酸化分解に適した値に制御する手段と、を設けたことを特徴とする請求項8記載の電解酸化を利用した廃水処理装置。   Means for controlling the voltage value applied to the first electrolytic cell to a value suitable for reduction of chlorine ion based on the chlorine ion concentration in the treated water discharged from the second electrolytic cell; And a means for controlling the voltage value applied to the electrolytic cell to a value suitable for oxidative decomposition of the pollutant based on the concentration of organic matter in the treated water discharged from the second electrolytic cell. Item 9. A wastewater treatment apparatus using electrolytic oxidation according to Item 8. 電解槽内がイオン交換膜にて区画され、電解生成した塩素系イオンを含む酸化性物質により処理対象水中に含有する有機物、窒素分からなる汚濁物質を酸化分解する陽極域と、該陽極域からの処理水が導入され残存する酸化性物質を還元する陰極域とを形成する廃水処理装置であって、
前記汚濁物質を選択的に吸着分離する吸着搭を複数設けた吸着搭群と、
一の前記吸着搭を経て前記陽極域に導入された処理水を他の吸着搭に導く返送ラインと、該他の吸着搭に導入された処理水を前記陰極域に導入する送給ラインと、を設け、
複数の吸着搭に時間差を以って処理対象水を導入し、吸着搭に担持された汚濁物質を前記返送ラインからの塩素系イオン含有処理水により酸化分解することを特徴とする電解酸化を利用した廃水処理装置。
The inside of the electrolytic cell is partitioned by an ion exchange membrane, and an anode region that oxidizes and decomposes organic matter contained in the water to be treated by the oxidizing substance containing chlorine-based ions generated by electrolysis and a pollutant composed of nitrogen, and from the anode region A wastewater treatment apparatus for forming a cathode region for introducing treated water and reducing remaining oxidizing substances,
An adsorption tower group provided with a plurality of adsorption towers for selectively adsorbing and separating the contaminants;
A return line for introducing the treated water introduced into the anode region through the one adsorption tower to the other adsorption tower; a supply line for introducing the treated water introduced into the other adsorption tower to the cathode area; Provided,
Utilizes electrolytic oxidation, which introduces water to be treated into multiple adsorption towers with a time lag, and oxidizes and decomposes pollutants carried on the adsorption tower with chlorine ion-containing treated water from the return line. Wastewater treatment equipment.
前記陰極域の後流側に塩素系イオンを分離可能な膜モジュールを設けるとともに、該膜モジュールにより処理水と分離した塩素系イオン含有処理水を前記陽極域に返送するラインを設けたことを特徴とする請求項10記載の電解酸化を利用した廃水処理装置。   A membrane module capable of separating chlorine-based ions is provided on the downstream side of the cathode region, and a line is provided for returning the chlorine-based ion-containing treated water separated from the treated water by the membrane module to the anode region. A wastewater treatment apparatus using electrolytic oxidation according to claim 10.
JP2004030597A 2004-02-06 2004-02-06 Wastewater treatment method and apparatus using electrolytic oxidation Withdrawn JP2005218983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004030597A JP2005218983A (en) 2004-02-06 2004-02-06 Wastewater treatment method and apparatus using electrolytic oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004030597A JP2005218983A (en) 2004-02-06 2004-02-06 Wastewater treatment method and apparatus using electrolytic oxidation

Publications (1)

Publication Number Publication Date
JP2005218983A true JP2005218983A (en) 2005-08-18

Family

ID=34995044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004030597A Withdrawn JP2005218983A (en) 2004-02-06 2004-02-06 Wastewater treatment method and apparatus using electrolytic oxidation

Country Status (1)

Country Link
JP (1) JP2005218983A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208073A (en) * 2008-02-06 2009-09-17 Omega:Kk Water treatment method and mechanism
JP2009255068A (en) * 2008-03-26 2009-11-05 Omega:Kk Water treatment system
JP2010063985A (en) * 2008-09-10 2010-03-25 Omega:Kk Method and mechanism for reducing halogen acids
JP2010069457A (en) * 2008-09-22 2010-04-02 Omega:Kk Waste water treatment method
JP2010099581A (en) * 2008-10-23 2010-05-06 Omega:Kk Wastewater treatment method
JP2011120983A (en) * 2009-12-09 2011-06-23 Omega:Kk Liquid treatment method
JP2012071263A (en) * 2010-09-29 2012-04-12 Hitachi-Ge Nuclear Energy Ltd Treatment method of washing waste liquid
JP2012073118A (en) * 2010-09-29 2012-04-12 Hitachi-Ge Nuclear Energy Ltd Laundry waste liquid processing method
CN103232094A (en) * 2013-04-08 2013-08-07 福建工程学院 Two-stage baffled electrolytic decolorizing reactor
CN104370425A (en) * 2014-12-02 2015-02-25 南京大学 Method for processing heterocyclic compound waste water
CN105236523A (en) * 2015-11-15 2016-01-13 江苏丹诚环境工程有限公司 High-salinity wastewater treatment device
CN108640232A (en) * 2018-07-13 2018-10-12 凯莱英医药集团(天津)股份有限公司 Wastewater treatment equipment and wastewater treatment method
CN115159614A (en) * 2022-07-08 2022-10-11 安庆师范大学 Method for treating wastewater containing heavy metal ions and organic pollutants by coupling method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208073A (en) * 2008-02-06 2009-09-17 Omega:Kk Water treatment method and mechanism
JP2009255068A (en) * 2008-03-26 2009-11-05 Omega:Kk Water treatment system
JP2010063985A (en) * 2008-09-10 2010-03-25 Omega:Kk Method and mechanism for reducing halogen acids
JP2010069457A (en) * 2008-09-22 2010-04-02 Omega:Kk Waste water treatment method
JP2010099581A (en) * 2008-10-23 2010-05-06 Omega:Kk Wastewater treatment method
JP2011120983A (en) * 2009-12-09 2011-06-23 Omega:Kk Liquid treatment method
JP2012071263A (en) * 2010-09-29 2012-04-12 Hitachi-Ge Nuclear Energy Ltd Treatment method of washing waste liquid
JP2012073118A (en) * 2010-09-29 2012-04-12 Hitachi-Ge Nuclear Energy Ltd Laundry waste liquid processing method
CN103232094A (en) * 2013-04-08 2013-08-07 福建工程学院 Two-stage baffled electrolytic decolorizing reactor
CN104370425A (en) * 2014-12-02 2015-02-25 南京大学 Method for processing heterocyclic compound waste water
CN105236523A (en) * 2015-11-15 2016-01-13 江苏丹诚环境工程有限公司 High-salinity wastewater treatment device
CN108640232A (en) * 2018-07-13 2018-10-12 凯莱英医药集团(天津)股份有限公司 Wastewater treatment equipment and wastewater treatment method
CN115159614A (en) * 2022-07-08 2022-10-11 安庆师范大学 Method for treating wastewater containing heavy metal ions and organic pollutants by coupling method

Similar Documents

Publication Publication Date Title
KR102122384B1 (en) Treatment ystem of wastewater and method using the same
JP2568617B2 (en) Method for decomposing organic substances and bacteria in water supply
JP2005218983A (en) Wastewater treatment method and apparatus using electrolytic oxidation
KR20090127131A (en) Method and apparatus for removing organic matters
JP4865651B2 (en) Wastewater treatment method and apparatus
KR20170099616A (en) Electrodialysis coupled with electrochemical nitrogen removal Process for contaminated groundwater treatment, and Apparatus therefor
JP5259311B2 (en) Water treatment method and water treatment system used therefor
CN108911355A (en) A kind of landfill leachate MBR goes out method for treating water and system
JP4641435B2 (en) Endocrine disrupting chemical substance decomposition method and apparatus
JP4662327B2 (en) Wastewater treatment method and apparatus
KR101070828B1 (en) Method and apparatus for water treatment
JP4859201B2 (en) Water treatment method and system
KR20220010573A (en) Apparatus treatmenting wastewater
KR20110025808A (en) Method and apparatus for water treatment
RU2104960C1 (en) Method for purification of sewage
KR102613581B1 (en) An apparatus and method for treating waste water containing non-de gradable organic material
US20240092666A1 (en) Method and system for wastewater treatment by membrane filtration and electrochemical oxidation
RU2247078C1 (en) Method of treatment of water (versions)
KR101279701B1 (en) Waste Water Reclamation System
KR20140027649A (en) Method for electrochemical water treatment using carbon electrodes and system thereof
JP4188806B2 (en) Organic waste treatment system
JP2001079544A (en) Water treatment by ultraviolet-irradiation
CN116443994A (en) Method and device for electrochemical degradation of nonmetallic cations in polluted water by using working medium filled type ionic membrane three-dimensional electrode
KR100541989B1 (en) Electrochemical industrial wastewater treatment system by means of square wave alternating current
JPH07144196A (en) Service water purification method and device therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501