JP2010063985A - Method and mechanism for reducing halogen acids - Google Patents
Method and mechanism for reducing halogen acids Download PDFInfo
- Publication number
- JP2010063985A JP2010063985A JP2008231595A JP2008231595A JP2010063985A JP 2010063985 A JP2010063985 A JP 2010063985A JP 2008231595 A JP2008231595 A JP 2008231595A JP 2008231595 A JP2008231595 A JP 2008231595A JP 2010063985 A JP2010063985 A JP 2010063985A
- Authority
- JP
- Japan
- Prior art keywords
- water
- side electrolysis
- electrolysis region
- halogen acids
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/467—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
- C02F1/4672—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
- C02F1/4674—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46152—Electrodes characterised by the shape or form
- C02F2001/46171—Cylindrical or tubular shaped
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/46115—Electrolytic cell with membranes or diaphragms
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
この発明は、塩素酸や臭素酸などのハロゲン酸類の低減方法及び低減機構に関するものである。 The present invention relates to a reduction method and a reduction mechanism of halogen acids such as chloric acid and bromic acid.
水道法の施行規則では、給水栓における水が次亜塩素酸(HClO)など遊離残留塩素を0.1mg/L以上保持するように塩素消毒をすることと規定されている。また、地下水を汲み上げてこれを濾過して飲適水に浄化する施設も同様となるように処理をしている。
ところで、平成20年4月から施行された水道法の水質基準項目には塩素酸(HClO3)が追加され、その基準値は0.6mg/l以下となった。塩素酸の健康影響として発ガン性に関する知見は十分ではないものの、赤血球細胞への酸化ダメージ(ヘモグロビン、血球容量、赤血球の減少など)が考えられたからである(非特許文献1)。
しかし、次亜塩素酸を含有する水が長期間貯蔵されると不均化により塩素酸の濃度が上昇する傾向となり、特に夏場などの高温下での貯蔵は上昇が顕著であり前記基準値を越え易くなるという問題があった。
By the way, chloric acid (HClO 3 ) was added to the water quality standard item of the Water Supply Law that came into effect from April 2008, and the standard value became 0.6 mg / l or less. This is because oxidative damage (hemoglobin, blood cell volume, decrease in red blood cells, etc.) to red blood cells has been considered, although knowledge about carcinogenicity is not sufficient as a health effect of chloric acid (Non-patent Document 1).
However, when water containing hypochlorous acid is stored for a long period of time, the concentration of chloric acid tends to increase due to disproportionation. There was a problem that it was easier to cross.
そこでこの発明は、塩素酸や臭素酸などのハロゲン酸類を低減することができる方法及び機構を提供しようとするものである。 Therefore, the present invention intends to provide a method and mechanism capable of reducing halogen acids such as chloric acid and bromic acid.
前記課題を解決するためこの発明では次のような技術的手段を講じている。
(1)この発明のハロゲン酸類の低減方法は、ハロゲン酸類を含有する被処理水を陰極側電解領域に供給して有隔膜で電気分解すると共に、陰極側電解領域は陽極側電解領域よりも水圧が高く設定されたことを特徴とする。
また、この発明のハロゲン酸類の低減機構は、ハロゲン酸類を含有する被処理水を陰極側電解領域に供給して有隔膜で電気分解する電解機構を有すると共に、陰極側電解領域は陽極側電解領域よりも水圧が高く設定されたことを特徴とする。
In order to solve the above problems, the present invention takes the following technical means.
(1) In the method for reducing halogen acids of the present invention, water to be treated containing halogen acids is supplied to the cathode-side electrolysis region and electrolyzed with a diaphragm, and the cathode-side electrolysis region has a water pressure higher than that of the anode-side electrolysis region. Is set high.
In addition, the halogen acid reduction mechanism of the present invention has an electrolysis mechanism in which water to be treated containing halogen acids is supplied to the cathode-side electrolysis region and electrolyzed by the diaphragm, and the cathode-side electrolysis region is the anode-side electrolysis region. The water pressure is set higher than that.
前記「ハロゲン酸類」とはハロゲン酸(塩素酸、臭素酸)と次亜ハロゲン酸(次亜塩素酸、次亜臭素酸)とを含むものである。「被処理水」には前記のうちの少なくともいずれかが含まれている可能性があればよい。陽極側電解領域には(電気分解を行う為に必要な処理水として)例えば水道水などの比較的に清浄な水を供給することができ、また後述のように排水を供給することもできる。
このハロゲン酸類(HClO、HClO3、HBrO、HBrO3)の低減方法及び低減機構は、ハロゲン酸類を含有する被処理水を、特に陰極側電解領域の側に供給して有隔膜で電気分解するようにしたので、被処理水中に含有される塩素酸、臭素酸、次亜塩素酸、次亜臭素酸は還元されその濃度を低減させることができる。例えば、塩素酸が還元されて次亜塩素酸となって該濃度が低減せしめられる。これにより、例えば改正水道法の塩素酸の水質基準値の0.6mg/l以下を遵守できるように処理できることとなる(なお飲適水の塩素酸対策としては残留塩素の基となる次亜塩素酸ナトリウム液自体の保管温度及び保管期間がさらに重要)。陽極側電解領域では次亜ハロゲン酸などが陽極酸化により逆に生成するが、隔膜により前記陽極側から陰極側への干渉は抑制乃至防止せしめられている。隔膜として例えば逆浸透膜を用いることができる。
The “halogen acids” include halogen acids (chloric acid, bromic acid) and hypohalous acids (hypochlorous acid, hypobromous acid). It is only necessary that the “treated water” includes at least one of the above. Relatively clean water such as tap water can be supplied to the anode-side electrolysis region (as treated water necessary for electrolysis), and waste water can be supplied as described later.
This reduction method and mechanism of halogen acids (HClO, HClO 3 , HBrO, HBrO 3 ) is such that water to be treated containing halogen acids is supplied to the cathode-side electrolysis region side and electrolyzed with a diaphragm. Therefore, chloric acid, bromic acid, hypochlorous acid and hypochlorous acid contained in the water to be treated can be reduced and the concentration thereof can be reduced. For example, chloric acid is reduced to form hypochlorous acid, and the concentration is reduced. As a result, for example, it can be processed so that it can comply with the water quality standard value of 0.6 mg / l or less of the chloric acid of the revised Waterworks Law. The storage temperature and storage period of the sodium solution itself are even more important). In the anode-side electrolysis region, hypohalous acid or the like is generated reversely by anodic oxidation, but interference from the anode side to the cathode side is suppressed or prevented by the diaphragm. For example, a reverse osmosis membrane can be used as the diaphragm.
また、陰極側電解領域は陽極側電解領域よりも水圧が高く設定され差圧があるので、陽極側電解領域のハロゲン酸類が隔膜を通過して陰極側電解領域へ浸入して該領域が汚染されることを防止することができる。一方、陰極側電解領域中のハロゲン酸類や塩素イオン、臭素イオンなどのイオン種は、前記差圧によって隔膜を通過して陽極側電解領域へと押し出されて排除・低減され易いものとなっている。
さらに、陰極側電解領域では水酸イオン(OH−)が生成するが、前記水酸イオンは差圧によって隔膜に押し付けられる応力も受けることとなり、隔膜近傍での被処理水中のハロゲン酸類との相互作用が加圧によって促進されると共に、該反応後のイオン種は隔膜を通過して陽極側電解領域へと押し出されて排除・浄化され易い。
In addition, since the cathode side electrolysis region has a higher water pressure than the anode side electrolysis region and has a differential pressure, the halogen acids in the anode side electrolysis region pass through the diaphragm and enter the cathode side electrolysis region to contaminate the region. Can be prevented. On the other hand, ionic species such as halogen acids, chlorine ions, bromine ions, etc. in the cathode side electrolysis region pass through the diaphragm due to the differential pressure and are pushed out to the anode side electrolysis region and are easily removed and reduced. .
Furthermore, although hydroxide ions (OH − ) are generated in the cathode-side electrolysis region, the hydroxide ions are also subjected to stress that is pressed against the diaphragm by the differential pressure, and the mutual interaction with the halogen acids in the water to be treated in the vicinity of the diaphragm. The action is promoted by pressurization, and the ionic species after the reaction are easily removed and purified by passing through the diaphragm and being pushed out to the anode side electrolysis region.
ここで、上述のように前記陽極側電解領域に水道水ではなく排水を供給すると、これを陽極酸化することにより排水中の有機成分(通常の有機成分や、ベンゼン、トルエン、ダイオキシン類、PCBなどの難分解性有機化合物など)を分解してCODやTOCを低減・浄化することができる。すなわち、陰極側電解領域における被処理水中のハロゲン酸類の低減処理と、陽極側電解領域における排水の浄化処理(CODやTOCの低減、難分解性有機化合物の分解)とを1つの装置で併用することができることとなる。
また、陽極側電解領域で隔膜に多孔質(ポーラス)材を添設してこれを構造材として機能せしめると、隔膜が差圧によって陽極側に撓んで変形することを防止することができる。陰極側電解領域と陽極側電解領域とを何層か積層して集積すると、大容量の被処理水をよりコンパクトに処理することができる。
Here, when the drainage water is supplied to the anode side electrolysis region as described above, the organic components in the wastewater (ordinary organic components, benzene, toluene, dioxins, PCB, etc.) are anodized. COD and TOC can be reduced and purified by decomposing refractory organic compounds. That is, reduction treatment of halogen acids in the water to be treated in the cathode side electrolysis region and purification treatment of waste water in the anode side electrolysis region (reduction of COD and TOC, decomposition of difficult-to-decompose organic compounds) are combined in one device. Will be able to.
In addition, when a porous material is added to the diaphragm in the anode side electrolysis region so as to function as a structural material, the diaphragm can be prevented from being bent and deformed by the differential pressure toward the anode. When several layers of the cathode side electrolysis region and the anode side electrolysis region are stacked and integrated, a large volume of water to be treated can be treated more compactly.
(2)前記陽極側電解領域を循環するようにしてもよい。
このように構成すると、電気分解を行うに当たって水道水などの処理水を節約しまた排水の場合は有機成分を十分に分解することができると共に、この陽極側で次亜塩素酸を生成させて循環により濃縮していくことができる。この次亜塩素酸の濃縮水は酸化作用を有するものであり、循環経路から取り出して各種の排水中のCODやTOCを低減する浄化処理や、また工場その他での殺菌水として利用することもできる。陽極側電解領域では処理水の一部を取り出しながら循環してもよいし、また新たに処理水を供給しながら循環するようにしてもよい。
ここで陰極側電解領域の側を循環すると、最前分解されなかったハロゲン酸類に再度還元作用を及ぼすことができる。
(2) You may make it circulate through the said anode side electrolysis area | region.
With this configuration, in the electrolysis, treated water such as tap water can be saved, and in the case of drainage, organic components can be sufficiently decomposed, and hypochlorous acid is generated and circulated on the anode side. Can be concentrated. This concentrated water of hypochlorous acid has an oxidizing action, and can be taken out from the circulation path to purify it to reduce COD and TOC in various wastewaters, and can also be used as sterilizing water in factories and others. . In the anode side electrolysis region, it may be circulated while taking out a part of the treated water, or may be circulated while newly supplying the treated water.
Here, when the cathode side electrolysis region is circulated, the reducing action can be exerted again on the halogen acids that have not been decomposed before.
(3)前記陰極側電解領域と陽極側電解領域は隔膜を介して逆向する方向の流れを有するようにしてもよい。
隔膜を介して逆向する方向の流れを有する態様として、隔膜に沿う流れ方向について、対向する方向(例えば鉛直方向に配した隔膜の一方側は左から右へ流れ、他方側は右から左へ流れる)とすることや、交叉する方向(例えば鉛直方向に配した隔膜の一方側は左下から右上へ流れ、他方側は右下から左上へ流れる)とすることができる。
このように構成すると、両領域の流れの相対的なズレ速度が大きくなって隔膜を介した相互作用が増大する。また、これに起因して水圧が高い陰極側から陽極側へのイオン種の移行に関し、陰極側電解領域中の塩素イオンや臭素イオンが隔膜を介して陽極側電解領域に電気的に誘引されて移行して排除・低減せしめられる傾向が増大せしめられることなる。さらに、同方向に流した場合のように隔膜が一方向(流れ方向)に撓んで変形することを抑制することができる。
(3) The cathode-side electrolysis region and the anode-side electrolysis region may have a flow in opposite directions through the diaphragm.
As a mode having a flow in the opposite direction through the diaphragm, in the flow direction along the diaphragm, the opposite direction (for example, one side of the diaphragm arranged in the vertical direction flows from left to right and the other side flows from right to left. Or a crossing direction (for example, one side of the diaphragm arranged in the vertical direction flows from the lower left to the upper right, and the other side flows from the lower right to the upper left).
If comprised in this way, the relative gap | deviation speed of the flow of both area | regions will become large, and the interaction through a diaphragm will increase. Also, due to this, regarding the transfer of ion species from the cathode side to the anode side where the water pressure is high, chlorine ions and bromine ions in the cathode side electrolysis region are electrically attracted to the anode side electrolysis region via the diaphragm. The tendency to migrate and be eliminated / reduced will be increased. Furthermore, it can suppress that a diaphragm bends and deform | transforms in one direction (flow direction) like the case where it flows in the same direction.
(4)前記陰極側電解領域と陽極側電解領域には陰極電極と陽極電極としてそれぞれ複数本の柱状の電極から成る列が配設されたこととしてもよい。
このように構成すると、板状電極のような平板状の面ではなく、複数本の柱状の電極から成る列によって三次元的に表面積を拡大し得ることにより、電解効率を増大させることができる。
また、被処理水が板状電極のように電極面に沿った単なる層流としてただ舐めるように流れるのではなく、柱状の電極列の周りを乱流となり流れる方向を複雑に変化させるように挙動することによる被処理水の攪拌作用によって混合が促進されることとなる。また、これに加えて水圧の差圧により前記乱流を増幅させることによって、ハロゲン酸類の還元反応を加速せしめることができる。
ここで、前記電極は材質的に溶出がし難い導電性セラミックス製とすることができる。前記柱状の電極は、短尺の電極を長手方向に複数個を連接して形成することができる。このような短尺の連接構造とすると長尺体と比べてセラミックス製とした場合の焼成時の歩留まりが向上する。前記柱状の電極の形状として、円柱状や円筒状、局部放電防止のため角部を滑らかにした断面多角形状、断面楕円形状、球状電極を柱状に連設したものなどを例示することができる。
(4) The cathode-side electrolysis region and the anode-side electrolysis region may be provided with rows each composed of a plurality of columnar electrodes as a cathode electrode and an anode electrode.
If comprised in this way, electrolysis efficiency can be increased by being able to expand a surface area three-dimensionally by the row | line | column which consists of a columnar electrode instead of a flat surface like a plate-shaped electrode.
In addition, the treated water does not flow as a mere laminar flow along the electrode surface like a plate-like electrode, but rather acts as a turbulent flow around the columnar electrode array, causing the flow direction to change in a complex manner. The mixing is promoted by the stirring action of the water to be treated. In addition, the reduction reaction of the halogen acids can be accelerated by amplifying the turbulent flow by the differential pressure of the water pressure.
Here, the electrode can be made of a conductive ceramic which is difficult to elute. The columnar electrodes can be formed by connecting a plurality of short electrodes in the longitudinal direction. With such a short articulated structure, the yield at the time of firing in the case of being made of ceramics is improved as compared with the long body. Examples of the shape of the columnar electrode include a columnar shape, a cylindrical shape, a polygonal cross-sectional shape with smoothed corners to prevent local discharge, an elliptical cross-sectional shape, and those in which spherical electrodes are continuously arranged in a columnar shape.
(5)前記陽極側電解領域を通過してハロゲン酸類が生成した処理水を排水に及ぼし、及ぼした後に少なくともその一部を陰極側電解領域に被処理水として供給するようにしてもよい。
陽極側電解領域を処理水が通過すると陽極酸化によってハロゲン酸類(残留塩素)が生成する(ハロゲン酸類は意図的に高濃度に生成させるとよい)。この残留塩素が含有される処理水を工場その他の排水に及ぼすと、CODやTOCを低減して浄化することができると共に、前記浄化反応に伴って残留塩素が消費され低減せしめられる。
CODやTOCが低減されると共にハロゲン酸類(残留塩素)が消費され低減した処理水の少なくとも一部を、陰極側電解領域に被処理水として供給してハロゲン酸類の濃度をさらに低減させる。すると、CODやTOCが低減され且つハロゲン酸類の濃度もさらに低減された清浄な被処理水を得ることができる。この清浄な被処理水を工場用水などとして再利用する。CODやTOCが低減されると共にハロゲン酸類(残留塩素)が消費され低減した処理水は前記のように陰極側電解領域に被処理水として供給する他に、その一部を処理の系外に排出してもよいし、またその一部を陽極側電解領域に供給(循環)して処理水として残留塩素を再び生成させるようにしてもよい。
そして、工場用水などとしての利用後の被処理水は、排水として前記陽極側電解領域の方にフィード・バックして浄化する。このように、陽極側電解領域と陰極側電解領域とを利用して排水の処理サイクルを形成することができる。
(5) The treated water generated by the halogen acids through the anode-side electrolysis region may be exerted on the waste water, and at least a part of the treated water may be supplied to the cathode-side electrolysis region as treated water.
When treated water passes through the anode-side electrolysis region, halogen acids (residual chlorine) are generated by anodic oxidation (halogen acids may be intentionally generated at a high concentration). When this treated water containing residual chlorine is applied to wastewater from factories and other places, COD and TOC can be reduced and purified, and residual chlorine is consumed and reduced with the purification reaction.
COD and TOC are reduced, and at least a part of the treated water that has been consumed and reduced due to consumption of halogen acids (residual chlorine) is supplied to the cathode side electrolysis region as treated water to further reduce the concentration of halogen acids. Then, it is possible to obtain clean water to be treated in which COD and TOC are reduced and the concentration of halogen acids is further reduced. This clean treated water is reused as factory water. Treated water with reduced COD and TOC and consumption of halogen acids (residual chlorine) is supplied to the cathode side electrolysis area as described above, and part of it is discharged outside the treatment system. Alternatively, a part of it may be supplied (circulated) to the anode side electrolysis region to regenerate residual chlorine as treated water.
And the to-be-processed water after utilization as factory water etc. feeds back toward the said anode side electrolysis area | region as waste_water | drain, and is purified. In this way, a wastewater treatment cycle can be formed using the anode-side electrolysis region and the cathode-side electrolysis region.
(6)ところで従来、残留塩素は一般的には重亜硫酸ソーダなどの還元剤を用いて処理していたが、還元剤の量で残留塩素濃度を制御しようとしても殆ど調節できなかった。すなわち還元剤の量の調整が過敏で、すぐに多過ぎたり少な過ぎたりして行き過ぎる傾向があった。一方、このハロゲン酸類の低減方法及び低減機構によると、電気分解の際の印加電圧、電流値、電解領域での被処理水の滞留時間などを調整することによって、残留塩素の低減後の濃度の制御をより精密に行うことができ、これにより例えば処理後の排水を放流することなく再利用に供する場合その用途に応じた適切な残留塩素濃度(飲適水用途や工場内の殺菌水用途など)に調節することができる。 (6) Conventionally, residual chlorine has generally been treated with a reducing agent such as sodium bisulfite, but it could hardly be adjusted even if the residual chlorine concentration was controlled by the amount of the reducing agent. In other words, the amount of the reducing agent was excessively adjusted, and there was a tendency that the amount of the reducing agent was too much or too little to go too quickly. On the other hand, according to the halogen acid reduction method and reduction mechanism, the concentration of residual chlorine after the reduction of residual chlorine can be adjusted by adjusting the applied voltage, current value, residence time of water to be treated in the electrolysis region, etc. during electrolysis. The control can be performed more precisely. For example, when the treated wastewater is reused without being discharged, the residual chlorine concentration appropriate for the intended use (for drinking water or sterilizing water in the factory, etc.) ) Can be adjusted.
このハロゲン酸類の低減方法及び低減機構は、例えば井水などの地下水を汲み上げて濾過し飲適水とするように塩素消毒を行う場合に適用することができる。すなわち、塩素酸濃度を好適に低減し制御することができる。また、排水のCODやTOCを酸化剤添加や電気分解によって低減する処理をした後、残留する次亜ハロゲン酸類を低減乃至除去して飲適水や殺菌水や工業用水に再生する場合に適用することができる。さらに、スイミング・プールや浴場(風呂)、温泉などの残留塩素濃度管理に好適に適用することができる。 This method and mechanism for reducing halogen acids can be applied when chlorine disinfection is performed such that groundwater such as well water is pumped and filtered to obtain drinking water. That is, the chloric acid concentration can be suitably reduced and controlled. Also applied when wastewater COD and TOC are reduced by addition of oxidant or electrolysis, and the remaining hypohalous acids are reduced or removed to regenerate drinking water, sterilizing water, or industrial water. be able to. Furthermore, it can be suitably applied to residual chlorine concentration management in swimming pools, baths (baths), hot springs, and the like.
この発明は上述のような構成であり、次の効果を有する。
ハロゲン酸類を含有する被処理水を、特に陰極側電解領域の側に供給して有隔膜で電気分解するようにしたので、被処理水中に含有される塩素酸、臭素酸、次亜塩素酸、次亜臭素酸は還元され、その濃度を低減させることができる。
The present invention is configured as described above and has the following effects.
Since the water to be treated containing halogen acids was supplied to the cathode side electrolysis region in particular and electrolyzed with the diaphragm, chloric acid, bromic acid, hypochlorous acid contained in the water to be treated, Hypobromite can be reduced to reduce its concentration.
以下、この発明の実施の形態を説明する。
(実施形態1)
図1に示すように、この実施形態のハロゲン酸類の低減機構は、ハロゲン酸類を含有する被処理水1を陰極側電解領域2に供給して有隔膜3で電気分解する電解機構を有する。隔膜3として逆浸透膜を用いている。そして、陰極側電解領域2は陽極側電解領域4よりも水圧が高く設定されたこととしている。前記陽極側電解領域4は、循環するようにしている。
前記陰極側電解領域2と陽極側電解領域4には、陰極電極5と陽極電極6としてそれぞれ複数本の円柱状の電極から成る列を配設している。前記電極は溶出がし難い導電性セラミックス製としている。前記柱状の電極は、短尺の電極を長手方向に複数個を連接して形成しており(図示せず)、このような短尺の連接構造としたので長尺体と比べて焼成時の歩留まりが向上している。
Embodiments of the present invention will be described below.
(Embodiment 1)
As shown in FIG. 1, the halogen acid reducing mechanism of this embodiment has an electrolysis mechanism in which water to be treated 1 containing halogen acids is supplied to the cathode-side electrolysis region 2 and electrolyzed by the separation membrane 3. A reverse osmosis membrane is used as the diaphragm 3. The cathode side electrolysis region 2 is set to have a higher water pressure than the anode side electrolysis region 4. The anode side electrolysis region 4 is circulated.
In the cathode-side electrolysis region 2 and the anode-side electrolysis region 4, a row of a plurality of columnar electrodes is disposed as the cathode electrode 5 and the anode electrode 6, respectively. The electrodes are made of conductive ceramics that are difficult to elute. The columnar electrodes are formed by connecting a plurality of short electrodes in the longitudinal direction (not shown), and since such a short connection structure is used, the yield during firing is longer than that of the long body. It has improved.
前記被処理水1はハロゲン酸類を含有するものであり、飲適水として供給するための元の水や工場その他の排水などを例示することができる。前記ハロゲン酸類として、ハロゲン酸(塩素酸HClO3、臭素酸HBrO3)や次亜ハロゲン酸(次亜塩素酸HClO、次亜臭素酸HBrO)などがある。陽極側電解領域4には、電気分解を行う為に必要な処理水7として水道水などの比較的に清浄な水を供給することができ、或いは後述のように排水を供給することもできる。
陽極側電解領域4では隔膜3に多孔質材8を添設してこれを構造材として機能せしめており、隔膜3が水圧の差圧によって陽極側に撓んで変形することを防止している。
The to-be-treated water 1 contains halogen acids, and can be exemplified by original water for supplying as drinking water, factory waste water, and the like. Examples of the halogen acids include halogen acids (chloric acid HClO 3 , bromic acid HBrO 3 ) and hypohalous acids (hypochlorous acid HClO, hypobromite HBrO). The anode-side electrolysis region 4 can be supplied with relatively clean water such as tap water as the treated water 7 necessary for electrolysis, or can be supplied with waste water as described later.
In the anode side electrolysis region 4, a porous material 8 is added to the diaphragm 3 to function as a structural material, and the diaphragm 3 is prevented from being bent and deformed to the anode side due to a differential pressure of water pressure.
次に、このハロゲン酸類の低減機構の使用状態を説明する。すなわち、ハロゲン酸類を含有する被処理水1を陰極側電解領域2に供給して有隔膜3で電気分解すると共に、陰極側電解領域2は陽極側電解領域4よりも水圧を若干高く設定して使用する。
(1)このハロゲン酸類の低減機構は、ハロゲン酸類を含有する被処理水1を、特に陰極側電解領域2の側に供給して有隔膜3で電気分解するようにしたので、被処理水1中に含有される塩素酸、臭素酸、次亜塩素酸、次亜臭素酸は還元されその濃度を低減させることができる。例えば、塩素酸が還元されて次亜塩素酸となって該濃度が低減せしめられる。これにより、例えば改正水道法の塩素酸の水質基準値の0.6mg/l以下を遵守できるように処理できることとなる(なお飲適水の塩素酸対策としては残留塩素の基となる次亜塩素酸ナトリウム液自体の保管温度及び保管期間がさらに重要)。一方、陽極側電解領域4では次亜ハロゲン酸などが陽極酸化により逆に生成するが、隔膜3により前記陽極側から陰極側への干渉は抑制乃至防止せしめられている。
Next, the usage state of this halogen acid reduction mechanism will be described. That is, to-be-treated water 1 containing halogen acids is supplied to the cathode-side electrolysis region 2 and electrolyzed by the diaphragm 3, and the cathode-side electrolysis region 2 is set to have a slightly higher water pressure than the anode-side electrolysis region 4. use.
(1) The mechanism for reducing halogen acids is that the water to be treated 1 containing halogen acids is supplied to the cathode side electrolysis region 2 in particular and electrolyzed with the diaphragm 3. Chloric acid, bromic acid, hypochlorous acid, and hypobromous acid contained therein can be reduced to reduce their concentration. For example, chloric acid is reduced to form hypochlorous acid, and the concentration is reduced. As a result, for example, it can be processed so that it can comply with the water quality standard value of 0.6 mg / l or less of the chloric acid of the revised Waterworks Law. The storage temperature and storage period of the sodium solution itself are even more important). On the other hand, hypohalous acid or the like is generated reversely by anodic oxidation in the anode side electrolysis region 4, but interference from the anode side to the cathode side is suppressed or prevented by the diaphragm 3.
また、陰極側電解領域2は陽極側電解領域4よりも水圧が高く設定され差圧があるので、陽極側電解領域4のハロゲン酸類が隔膜3を通過して陰極側電解領域2へ浸入して該領域が汚染されることを防止することができる。一方、陰極側電解領域2中のハロゲン酸類や塩素イオン、臭素イオンなどのイオン種は、前記差圧によって隔膜3を通過して陽極側電解領域4へと押し出されて排除・低減され易いものとなっている。
さらに、陰極側電解領域2では水酸イオン(OH−)が生成するが、前記水酸イオンは差圧によって隔膜3に押し付けられる応力も受けることとなり、隔膜3近傍での被処理水1中のハロゲン酸類との相互作用が加圧によって促進されると共に、該反応後のイオン種は隔膜3を通過して陽極側電解領域4へと押し出されて排除・浄化され易い。
Further, since the cathode side electrolysis region 2 has a higher water pressure and a differential pressure than the anode side electrolysis region 4, the halogen acids in the anode side electrolysis region 4 pass through the diaphragm 3 and enter the cathode side electrolysis region 2. It is possible to prevent the region from being contaminated. On the other hand, ionic species such as halogen acids, chlorine ions, bromine ions, etc. in the cathode side electrolysis region 2 pass through the diaphragm 3 due to the differential pressure and are pushed out to the anode side electrolysis region 4 to be easily removed and reduced. It has become.
Furthermore, although hydroxide ions (OH − ) are generated in the cathode-side electrolysis region 2, the hydroxide ions are also subjected to stress that is pressed against the diaphragm 3 due to the differential pressure, and thus in the treated water 1 in the vicinity of the diaphragm 3. The interaction with the halogen acid is promoted by pressurization, and the ionic species after the reaction are easily pushed out to the anode side electrolysis region 4 through the diaphragm 3 and easily removed and purified.
(2)前記陰極側電解領域2と陽極側電解領域4には陰極電極5と陽極電極6としてそれぞれ複数本の柱状の電極から成る列が配設したので、板状電極のような平板状の面ではなく、複数本の柱状の電極から成る列によって三次元的に表面積を拡大し得ることにより、電解効率を増大させることができる。
また、被処理水1が板状電極のように電極面に沿った単なる層流としてただ舐めるように流れるのではなく、柱状の電極列の周りを乱流となり流れる方向を複雑に変化させるように挙動することによる被処理水1の攪拌作用によって混合が促進されることとなる。また、これに加えて水圧の差圧により前記乱流を増幅させることによって、ハロゲン酸類の還元反応を加速せしめることができる。
(3)前記陽極側電解領域4を循環するようにしており、電気分解を行うに当たって水道水などの処理水7を節約しまた排水の場合は有機成分を十分に分解することができると共に、この陽極側で次亜塩素酸を生成させて循環により濃縮していくことができる。この次亜塩素酸の濃縮水は酸化作用を有するものであり、循環経路から取り出して各種の排水中のCODやTOCを低減する浄化処理や、また工場その他での殺菌水として利用することもできる。すなわち、陽極側電解領域4では処理水7の一部を取り出しながら循環してもよいし、また新たに処理水7を供給しながら循環するようにしてもよい。
なお、陰極側電解領域2の側を循環すると(図示せず)、最前分解されなかったハロゲン酸類に再度還元作用を及ぼすことができる。
(2) Since the cathode side electrolysis region 2 and the anode side electrolysis region 4 are provided with a plurality of columnar electrodes as the cathode electrode 5 and the anode electrode 6, respectively, a flat plate like a plate electrode is provided. Since the surface area can be expanded three-dimensionally not by a surface but by a row of a plurality of columnar electrodes, electrolysis efficiency can be increased.
Further, the treated water 1 does not flow as a mere laminar flow along the electrode surface like a plate-like electrode, but rather turbulently flows around the columnar electrode row so as to change the flow direction in a complicated manner. Mixing is promoted by the stirring action of the water 1 to be treated due to the behavior. In addition, the reduction reaction of the halogen acids can be accelerated by amplifying the turbulent flow by the differential pressure of the water pressure.
(3) The anode-side electrolysis region 4 is circulated to save treated water 7 such as tap water for electrolysis, and in the case of drainage, organic components can be sufficiently decomposed. Hypochlorous acid can be produced on the anode side and concentrated by circulation. This concentrated water of hypochlorous acid has an oxidizing action, and can be taken out from the circulation path to purify it to reduce COD and TOC in various wastewaters, and can also be used as sterilizing water in factories and others. . That is, the anode side electrolysis region 4 may be circulated while taking out a part of the treated water 7 or may be circulated while newly supplying the treated water 7.
In addition, when the cathode side electrolysis region 2 is circulated (not shown), the reducing action can be exerted again on the halogen acids that have not been decomposed before.
(4)前記陽極側電解領域4に排水を供給すると、これを陽極酸化することにより排水中の有機成分(通常の有機成分や、ベンゼン、トルエン、ダイオキシン類、PCBなどの難分解性有機化合物など)を分解してCODやTOCを低減・浄化することができる。すなわち、陰極側電解領域2における被処理水1中のハロゲン酸類の低減処理と、陽極側電解領域4における排水の浄化処理(CODやTOCの低減、難分解性有機化合物の分解)とを1つの装置で併用することができることとなる。
(5)ところで従来、残留塩素は一般的には重亜硫酸ソーダなどの還元剤を用いて処理していたが、還元剤の量で残留塩素濃度を制御しようとしても殆ど調節できなかった。すなわち還元剤の量の調整が過敏で、すぐに多過ぎたり少な過ぎたりして行き過ぎる傾向があった。一方、このハロゲン酸類の低減方法及び低減機構によると、電気分解の際の印加電圧、電流値、電解領域での被処理水1の滞留時間などを調整することによって、残留塩素の低減後の濃度の制御をより精密に行うことができ、これにより例えば処理後の排水を放流することなく再利用に供する場合その用途に応じた適切な残留塩素濃度に調節することができる。
(4) When wastewater is supplied to the anode-side electrolysis region 4, the organic components in the wastewater are anodized (ordinary organic components, refractory organic compounds such as benzene, toluene, dioxins, PCB, etc.) ) To reduce and purify COD and TOC. That is, the reduction treatment of the halogen acids in the water 1 to be treated in the cathode side electrolysis region 2 and the purification treatment of the waste water (reduction of COD and TOC, decomposition of the hardly decomposable organic compound) in the anode side electrolysis region 4 are one. It can be used in combination with the device.
(5) In the past, residual chlorine was generally treated with a reducing agent such as sodium bisulfite, but it was hardly possible to control the residual chlorine concentration with the amount of reducing agent. In other words, the amount of the reducing agent was excessively adjusted, and there was a tendency that the amount of the reducing agent was too much or too little to go too quickly. On the other hand, according to the method and mechanism for reducing halogen acids, the concentration after reduction of residual chlorine is adjusted by adjusting the applied voltage, current value, residence time of water to be treated 1 in the electrolysis region, etc. during electrolysis. In this case, for example, when the treated wastewater is reused without being discharged, the residual chlorine concentration can be adjusted to an appropriate concentration according to the application.
(6)このハロゲン酸類の低減方法及び低減機構は、例えば井水などの地下水を汲み上げて濾過し飲適水とするように塩素消毒を行う場合に適用することができる。すなわち、塩素酸濃度を好適に低減し制御することができる。また、排水のCODやTOCを酸化剤添加や電気分解によって低減する処理をした後、残留する次亜ハロゲン酸類を低減乃至除去して飲適水や殺菌水や工業用水に再生する場合に適用することができる。さらに、スイミング・プールや浴場(風呂)、温泉などの残留塩素濃度管理に好適に適用することができる。 (6) This halogen acid reduction method and reduction mechanism can be applied when chlorine disinfection is performed such that groundwater such as well water is pumped and filtered to obtain drinking water. That is, the chloric acid concentration can be suitably reduced and controlled. Also applied when wastewater COD and TOC are reduced by addition of oxidant or electrolysis, and the remaining hypohalous acids are reduced or removed to regenerate drinking water, sterilizing water, or industrial water. be able to. Furthermore, it can be suitably applied to residual chlorine concentration management in swimming pools, baths (baths), hot springs, and the like.
(実施形態2)
図2に示すように、この実施形態では、前記陰極側電解領域2と陽極側電解領域4は隔膜3を介して逆向する方向の流れを有するようにしている。隔膜3を介して逆向する方向の流れを有する態様として、図3に示すように、隔膜3に沿う流れ方向について、対向する方向(例えば鉛直方向に配した隔膜3の一方側は左から右へ流れ、他方側は右から左へ流れる)とすることや、図4に示すように、交叉する方向(例えば鉛直方向に配した隔膜3の一方側は左下から右上へ流れ、他方側は右下から左上へ流れる)とすることができる。
このように構成したので、両領域の流れの相対的なズレ速度が大きくなって隔膜3を介した相互作用が増大する。また、これに起因して水圧が高い陰極側から陽極側へのイオン種の移行に関し、陰極側電解領域2中の塩素イオンや臭素イオンが隔膜3を介して陽極側電解領域4に電気的に誘引されて移行して排除・低減せしめられる傾向が増大せしめられることなる。さらに、同方向に流した場合のように隔膜3が一方向(流れ方向)に撓んで変形することを抑制することができる。
(Embodiment 2)
As shown in FIG. 2, in this embodiment, the cathode-side electrolysis region 2 and the anode-side electrolysis region 4 have a flow in opposite directions through the diaphragm 3. As an aspect having a flow in the opposite direction through the diaphragm 3, as shown in FIG. 3, in the flow direction along the diaphragm 3, the opposite direction (for example, one side of the diaphragm 3 arranged in the vertical direction is from left to right. Flow, the other side flows from right to left), and as shown in FIG. 4, the crossing direction (for example, one side of the diaphragm 3 arranged in the vertical direction flows from the lower left to the upper right, and the other side is the lower right To the upper left).
Since it comprised in this way, the relative gap | deviation speed of the flow of both area | regions becomes large, and the interaction through the diaphragm 3 increases. Further, due to this, regarding the transfer of ionic species from the cathode side to the anode side having a high water pressure, chlorine ions and bromine ions in the cathode side electrolysis region 2 are electrically supplied to the anode side electrolysis region 4 through the diaphragm 3. The tendency to be attracted and transferred to be eliminated / reduced is increased. Further, the diaphragm 3 can be prevented from being bent and deformed in one direction (flow direction) as in the case of flowing in the same direction.
(実施形態3)
図5に示すように、この実施形態では陽極側電解領域4を通過してハロゲン酸類(残留塩素)が生成した処理水7を排水9に合流・混合して及ぼし、及ぼした後にその一部を陰極側電解領域2に被処理水1として供給するようにしている(図5中a)。
すなわち、陽極側電解領域4を処理水7が通過すると陽極酸化によってハロゲン酸類が生成するが、この残留塩素が含有される処理水7を工場10その他の排水9に及ぼすと、CODやTOCを低減して浄化することができると共に、前記浄化反応に伴って残留塩素が消費され低減せしめられる。CODやTOCが低減されこれに伴いハロゲン酸類が消費され低減した処理水7の一部を、陰極側電解領域2に被処理水1として供給してハロゲン酸類の濃度をさらに低減させる。すると、CODやTOCが低減され且つハロゲン酸類の濃度もさらに低減された清浄な被処理水1を得ることができる。この清浄な被処理水1を工場10の処理用水などとして再利用する。
(Embodiment 3)
As shown in FIG. 5, in this embodiment, treated water 7 that has passed through the anode-side electrolysis region 4 and produced halogen acids (residual chlorine) is joined to and mixed with the drainage 9, and after that part of the treated water 7 is applied. It is made to supply to the cathode side electrolysis area | region 2 as to-be-processed water 1 (a in FIG. 5).
That is, when the treated water 7 passes through the anode side electrolysis region 4, halogen acids are generated by anodic oxidation. However, if treated water 7 containing this residual chlorine is applied to the factory 10 and other waste water 9, COD and TOC are reduced. In addition to being purified, residual chlorine is consumed and reduced with the purification reaction. COD and TOC are reduced, and a part of the treated water 7 which is consumed and reduced as a result of consumption of halogen acids is supplied to the cathode-side electrolysis region 2 as treated water 1 to further reduce the concentration of halogen acids. Then, it is possible to obtain clean treated water 1 in which COD and TOC are reduced and the concentration of halogen acids is further reduced. This clean water 1 to be treated is reused as water for treatment in the factory 10.
そして、合流・混合によりCODやTOCが低減されると共にハロゲン酸類(残留塩素)が消費され低減した処理水7の他の一部は、前記陽極側電解領域4の方にフィード・バック(循環)して再び浄化すると共に残留塩素を生成させている(図5中b)。また、合流・混合によりCODやTOCが低減されると共にハロゲン酸類(残留塩素)が消費され低減した処理水7の他の一部は、処理の系外に排出している(図5中c)。このように、陽極側電解領域4と陰極側電解領域2とを利用して工場10の排水9の処理と再利用のサイクルを形成している。 Further, COD and TOC are reduced by merging and mixing, and another part of the treated water 7 reduced by consumption of halogen acids (residual chlorine) is fed back (circulated) toward the anode-side electrolysis region 4. Then, it is purified again and residual chlorine is generated (b in FIG. 5). In addition, COD and TOC are reduced by merging / mixing, and other part of the treated water 7 that has been reduced due to consumption of halogen acids (residual chlorine) is discharged out of the treatment system (c in FIG. 5). . As described above, the anode-side electrolysis region 4 and the cathode-side electrolysis region 2 are used to form a cycle of treatment and reuse of the waste water 9 of the factory 10.
ハロゲン酸類の濃度を低減させることができることによって、次のような用途に適用することができる。
(1)井水などの地下水を汲み上げて濾過し飲適水とするように塩素消毒を行う場合に適用することができる。すなわち、夏場のように高温となる季節には次亜塩素酸が不均化して塩素酸が生成し易くなり水道法の基準値の遵守の合否が心配されるが、このハロゲン酸類の低減方法を適用すると塩素酸濃度を好適に低減し制御することができる(なお飲適水の塩素酸対策としては残留塩素の基となる次亜塩素酸ナトリウム液自体の保管温度及び保管期間がさらに重要)。
(2)排水のCODやTOCを酸化剤添加や電気分解によって低減する処理をした後、残留する次亜ハロゲン酸類を低減乃至除去して飲適水や殺菌水や工業用水に再生する場合に適用することができる。
(3)スイミング・プールや浴場(風呂)、温泉などの残留塩素濃度管理に好適に適用することができる。
Since the concentration of halogen acids can be reduced, it can be applied to the following uses.
(1) It can be applied when chlorination is performed so that groundwater such as well water is pumped and filtered to make it suitable for drinking. In other words, hypochlorite is disproportionated and chloric acid is likely to be produced in high temperatures such as in summer, and there is concern about compliance with the standards of the Waterworks Law. When applied, the chloric acid concentration can be suitably reduced and controlled (note that the storage temperature and storage period of the sodium hypochlorite solution itself, which is the basis for residual chlorine, are more important as countermeasures for chloric acid in drinking water).
(2) Applicable when wastewater COD and TOC are reduced by adding oxidants or electrolysis, and then reducing or removing residual hypohalous acids to regenerate them into drinking water, sterilized water, or industrial water. can do.
(3) It can be suitably applied to residual chlorine concentration management in swimming pools, baths (baths), hot springs, etc.
1 被処理水
2 陰極側電解領域
3 隔膜
4 陽極側電解領域
5 陰極電極
6 陽極電極
7 処理水
9 排水
DESCRIPTION OF SYMBOLS 1 Water to be treated 2 Cathode side electrolysis region 3 Membrane 4 Anode side electrolysis region 5 Cathode electrode 6 Anode electrode 7 Treated water 9 Drainage
Claims (6)
The treated water 7 generated by halogen acids through the anode-side electrolysis region 4 is applied to the waste water 9, and at least a part of the treated water 7 is supplied to the cathode-side electrolysis region 2 as the treated water 1. A mechanism for reducing halogen acids according to any one of 2 to 5.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008231595A JP2010063985A (en) | 2008-09-10 | 2008-09-10 | Method and mechanism for reducing halogen acids |
KR1020090084441A KR20100030591A (en) | 2008-09-10 | 2009-09-08 | Method and mechanism of reducing halogenous acids |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008231595A JP2010063985A (en) | 2008-09-10 | 2008-09-10 | Method and mechanism for reducing halogen acids |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010063985A true JP2010063985A (en) | 2010-03-25 |
Family
ID=42180506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008231595A Pending JP2010063985A (en) | 2008-09-10 | 2008-09-10 | Method and mechanism for reducing halogen acids |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2010063985A (en) |
KR (1) | KR20100030591A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD1038749S1 (en) | 2022-04-14 | 2024-08-13 | Bella Art de Nicole LLC | Bead retention tray |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5460278A (en) * | 1977-10-21 | 1979-05-15 | Kureha Chem Ind Co Ltd | Diaphragm type electrolytic bath |
JPH07204646A (en) * | 1994-01-18 | 1995-08-08 | Akai Electric Co Ltd | Electrolytic ionic water generating device |
WO2001083378A1 (en) * | 2000-04-27 | 2001-11-08 | Nippon Oil Corporation | Method and apparatus for clarification treatment of water |
JP2005218983A (en) * | 2004-02-06 | 2005-08-18 | Mitsubishi Heavy Ind Ltd | Wastewater treatment method and apparatus using electrolytic oxidation |
JP2007307476A (en) * | 2006-05-18 | 2007-11-29 | Omega:Kk | Decreasing mechanism of hypohalous acid and decreasing method |
-
2008
- 2008-09-10 JP JP2008231595A patent/JP2010063985A/en active Pending
-
2009
- 2009-09-08 KR KR1020090084441A patent/KR20100030591A/en not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5460278A (en) * | 1977-10-21 | 1979-05-15 | Kureha Chem Ind Co Ltd | Diaphragm type electrolytic bath |
JPH07204646A (en) * | 1994-01-18 | 1995-08-08 | Akai Electric Co Ltd | Electrolytic ionic water generating device |
WO2001083378A1 (en) * | 2000-04-27 | 2001-11-08 | Nippon Oil Corporation | Method and apparatus for clarification treatment of water |
JP2005218983A (en) * | 2004-02-06 | 2005-08-18 | Mitsubishi Heavy Ind Ltd | Wastewater treatment method and apparatus using electrolytic oxidation |
JP2007307476A (en) * | 2006-05-18 | 2007-11-29 | Omega:Kk | Decreasing mechanism of hypohalous acid and decreasing method |
Also Published As
Publication number | Publication date |
---|---|
KR20100030591A (en) | 2010-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shin et al. | Electrochemical oxidation–membrane distillation hybrid process: utilizing electric resistance heating for distillation and membrane defouling through thermal activation of anodically formed persulfate | |
Parsa et al. | Degradation of azo dye CI Acid Red 18 in aqueous solution by ozone-electrolysis process | |
CN104085962B (en) | Electrochemical in-situ produces the method and apparatus of hydroxyl radical free radical | |
Priambodo et al. | Treatment of real wastewater using semi batch (Photo)-Electro-Fenton method | |
Shih et al. | Mineralization of organic acids by the photo-electrochemical process in the presence of chloride ions | |
JP2005218983A (en) | Wastewater treatment method and apparatus using electrolytic oxidation | |
EP2496526B1 (en) | Adsorption of contaminants from liquid and electrochemichal regeneration of adsorbent | |
KR20190133596A (en) | Photo-electro-dialysis water treatment apparatus and water treatment method for simultaneous desalination and pollutants oxidation | |
US20070000790A1 (en) | Method and device for electrochemical disinfection of water | |
JP2010063985A (en) | Method and mechanism for reducing halogen acids | |
JP5237850B2 (en) | Water treatment method and mechanism | |
KR101070828B1 (en) | Method and apparatus for water treatment | |
JP5153565B2 (en) | Wastewater treatment method | |
TWI481567B (en) | Drainage treatment method | |
JP2010069457A (en) | Waste water treatment method | |
KR101784299B1 (en) | Electrolysis device and wastewater treatment method using the device | |
US20130140245A1 (en) | Direct contact cell | |
JP2014014754A (en) | Wastewater treatment method and apparatus | |
JP6319719B2 (en) | Waste water treatment method and waste water treatment equipment | |
TWI620718B (en) | Wastewater decoloring device of electrocatalyst and electrodialysis | |
JP2007307476A (en) | Decreasing mechanism of hypohalous acid and decreasing method | |
KR200287646Y1 (en) | a discomposition Vessel for a waste water disposal Plant | |
JP2008200667A (en) | Method and apparatus for deodorizing, decolorizing and sterilizing water | |
JP2002053990A (en) | Method of manufacturing hydrogen peroxide water | |
JP2004066137A (en) | Water treatment equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110811 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110826 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111020 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120406 |