JPH07204646A - Electrolytic ionic water generating device - Google Patents

Electrolytic ionic water generating device

Info

Publication number
JPH07204646A
JPH07204646A JP1781394A JP1781394A JPH07204646A JP H07204646 A JPH07204646 A JP H07204646A JP 1781394 A JP1781394 A JP 1781394A JP 1781394 A JP1781394 A JP 1781394A JP H07204646 A JPH07204646 A JP H07204646A
Authority
JP
Japan
Prior art keywords
water
chamber
exchange membrane
ion exchange
cathode chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1781394A
Other languages
Japanese (ja)
Other versions
JP2920345B2 (en
Inventor
Shigeo Miyamoto
重夫 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akai Electric Co Ltd
Original Assignee
Akai Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akai Electric Co Ltd filed Critical Akai Electric Co Ltd
Priority to JP1781394A priority Critical patent/JP2920345B2/en
Publication of JPH07204646A publication Critical patent/JPH07204646A/en
Application granted granted Critical
Publication of JP2920345B2 publication Critical patent/JP2920345B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To inhibit the contamination of an alkali ionic water generated in a cathode chamber by hypochloric acid generated in an anode chamber by decreasing the minimum cross section area of a water path through which the alkaline ionic water is discharged, compared to the minimum cross section area of a water path through which the water is supplied to the cathode chamber so that the water pressure of the cathode chamber is higher than that of the anode chamber. CONSTITUTION:An electrolytic tank 1 is composed of cases 2, 3, an ion exchange membrane 4, a cathode 5 and an anode 6, and the cathode 5 and the anode 6 are fixed to the cases 2, 3 by the hook parts 15, 16 of protrusions 7, 10. The tap water supplied from faucets 8, 11 is electrolyzed in the cathode chamber 17 and the anode chamber 18, and the alkaline ionic water generated in the chamber 17 is discharged from a discharge port 9. The water pressure of the chamber 17 is made higher than that of the chamber 18 by decreasing the minimum cross section area of a water path through which the alkaline ionic water is discharged, compared to the minimum cross section area of a water path through which tap water is supplied to the chamber 17. The ion exchange membrane 4 is held by the protrusions 7, 10, and if the water pressure of the chamber 17 is increased, the deflection of the ion exchange membrane 4 to the electrode 6 side is inhibited.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電解イオン水生成装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic ion water generator.

【0002】[0002]

【従来の技術】一般に、電解イオン水生成装置として、
イオン交換膜によって仕切られた陰極室と陽極室とを有
し、これらの陰極室と陽極室とにはそれぞれ陰電極と陽
電極とが配設された電解槽を備え、供給された水道水が
二分されて前記陰極室と陽極室とにそれぞれ給水され、
これらの陰極室と陽極室に給水された水道水が電解され
て、前記陰極室からはアルカリイオン水が、また前記陽
極室からは酸性イオン水が吐出されるようにしたものが
知られている。このようにして生成されたアルカリイオ
ン水は飲用に供される。
2. Description of the Related Art Generally, as an electrolytic ionized water generator,
It has a cathode chamber and an anode chamber partitioned by an ion exchange membrane, and these cathode chamber and anode chamber are provided with electrolytic cells in which a negative electrode and a positive electrode are respectively arranged, and the supplied tap water is Water is divided into two parts to supply water to the cathode chamber and the anode chamber,
It is known that the tap water supplied to these cathode chamber and anode chamber is electrolyzed to discharge alkaline ionized water from the cathode chamber and acidic ionized water from the anode chamber. . The alkaline ionized water thus produced is used for drinking.

【0003】前記した電解イオン水生成装置では、その
前記電解により陽極室において、 2Cl-→Cl2+2e- Cl2+H20→HOCl+HCl の化学反応により、HOCl(次亜塩素酸)が発生す
る。この次亜塩素酸は殺菌作用、漂白作用があり、飲用
には適さないものである。
[0003] In the electrolytic ion water generator described above, in the anode chamber by the said electrolysis, 2Cl - → Cl 2 + 2e - by chemical reaction Cl 2 + H 2 0 → HOCl + HCl, HOCl ( hypochlorous acid) is generated. This hypochlorous acid has a bactericidal action and a bleaching action, and is not suitable for drinking.

【0004】前記次亜塩素酸が発生する陽極室は、アル
カリイオン水を生成する陰極室とはイオン交換膜により
仕切られているが、従来の電解イオン水生成装置では、
この仕切りが不十分なものもあり、次亜塩素酸がアルカ
リイオン水に混入する。また、この仕切りを完全にして
も、次亜塩素酸はイオン交換膜それ自体を通り抜けた
り、前記の供給された水道水を二分する分岐点を経てア
ルカリイオン水に混入する。ちなみに、前記電解槽に供
給される水道水は、活性炭フィルターによって塩素の大
部分は濾過されるが、完全に濾過するには、フィルター
の費用が高くなり、家庭用の電解イオン水生成装置にお
いて実施することは困難である。
The anode chamber for generating hypochlorous acid is separated from the cathode chamber for generating alkaline ionized water by an ion exchange membrane.
In some cases, this partition is insufficient, and hypochlorous acid mixes in alkaline ionized water. Even with this partition completely, hypochlorous acid passes through the ion exchange membrane itself or mixes with the alkaline ionized water via the branch point that divides the supplied tap water. By the way, the tap water supplied to the electrolyzer has most of the chlorine filtered by an activated carbon filter, but in order to completely filter it, the cost of the filter is high, and it is necessary to use it in a domestic electrolytic ion water generator. Is difficult to do.

【0005】[0005]

【発明が解決しようとする課題】上記したような従来の
電解イオン水生成装置では、陽極室に次亜塩素酸が発生
し、これがアルカリイオン水に混入するという課題があ
った。この発明は、陽極室で発生した次亜塩素酸がアル
カリイオン水に混入するのを極力少なくすることができ
る電解イオン水生成装置を提供することを目的とするも
のである。
The above-described conventional electrolytic ion water generator has a problem that hypochlorous acid is generated in the anode chamber and is mixed with the alkaline ion water. It is an object of the present invention to provide an electrolytic ionized water generator capable of minimizing mixing of hypochlorous acid generated in the anode chamber with alkaline ionized water.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めの、この発明の電解イオン水生成装置は、イオン交換
膜によって仕切られた陰極室と陽極室とを有し、これら
の陰極室と陽極室とにはそれぞれ陰電極と陽電極とが配
設された電解槽を備え、供給された水道水が二分されて
前記陰極室と陽極室とにそれぞれ給水され、これらの陰
極室と陽極室に給水された水道水が電解されて、前記陰
極室からはアルカリイオン水が、また前記陽極室からは
酸性イオン水が吐出されるようにした、水道水を電解す
る電解イオン水生成装置において、断面が略凹状に形成
され、その底部に陰電極が固定され、該底部から突出さ
れて前記陰電極の孔に挿通された突起を有する第1のケ
ースと、該第1のケースと同様に構成され、前記陰電極
に代わる陽電極が固定された第2のケースとを前記イオ
ン交換膜を介して突合せ、この突合わせた状態に固定
し、前記の突合せにより前記イオン交換膜の縁部が前記
第1のケースと第2のケースとの縁部近傍により、また
イオン交換膜の略中央部が前記したそれぞれの突起によ
ってサンドイッチ状に挟まれ、前記第1のケースとイオ
ン交換膜により前記陰極室が、また前記第2のケースと
イオン交換膜により前記陽極室が形成され、前記のよう
に水道水が二分された後に、前記陰極室に供給される水
路の最小断面積と、二分された後に、前記陽極室に供給
される水路の最小断面積と、前記陰極室からアルカリイ
オン水が吐出される水路の最小断面積と、陽極室から酸
性イオン水が吐出される水路の最小断面積とを、前記陰
極室における水圧が前記陽極室における水圧よりも高く
なるように定めたことを特徴とするものである。
The electrolytic ionized water generator of the present invention for solving the above-mentioned problems has a cathode chamber and an anode chamber partitioned by an ion exchange membrane, and these cathode chambers are The anode chamber is provided with an electrolytic cell in which a negative electrode and a positive electrode are respectively arranged, and the supplied tap water is divided into two parts to be supplied to the cathode chamber and the anode chamber, respectively, and the cathode chamber and the anode chamber. The tap water supplied to is electrolyzed, alkaline ionized water is discharged from the cathode chamber, and acidic ionized water is discharged from the anode chamber, in an electrolytic ionized water generator for electrolyzing tap water, A first case having a substantially concave cross section, a negative electrode fixed to the bottom thereof, and a projection protruding from the bottom and inserted into a hole of the negative electrode; and a configuration similar to the first case. The positive electrode instead of the negative electrode The determined second case is abutted via the ion exchange membrane and fixed in this abutted state, and the edge of the ion exchange membrane is abutted with the first case and the second case by the butting. Of the ion exchange membrane, and the substantially central portion of the ion exchange membrane is sandwiched between the above-mentioned projections, so that the first case and the ion exchange membrane form the cathode chamber, and the second case and the ion. The anode chamber is formed by the exchange membrane, and after the tap water is divided into two as described above, the minimum cross-sectional area of the water channel that is supplied to the cathode chamber, and after being divided into two, the water channel that is supplied to the anode chamber. The minimum cross-sectional area, the minimum cross-sectional area of the water channel from which the alkaline ion water is discharged from the cathode chamber, and the minimum cross-sectional area of the water channel from which the acidic ion water is discharged from the anode chamber, the water pressure in the cathode chamber is the anode chamber. Oke It is characterized in that the set to be higher than the water pressure.

【0007】[0007]

【作用】上記のように構成された電解イオン水生成装置
では、供給された水道水は二分されて陰極室と陽極室に
給水され、陰極室ではアルカリイオン水が、また陽極室
では酸性イオン水が生成される。そして、前記陰極室の
水圧が陽極室のそれよりも高くなるので、陽極室に発生
する次亜塩素酸が陰極室で生成されたアルカリイオン水
に混入することが、実質的になくなる。また、前記陰極
室の水圧が高くなっても、イオン交換膜は前記突起に挟
まれているので、該イオン交換膜が水圧により撓むこと
は、実質的に有り得ない。
In the electrolytic ionized water producing apparatus constructed as described above, the supplied tap water is divided into two parts, which are supplied to the cathode chamber and the anode chamber. Alkaline ionized water is stored in the cathode chamber and acidic ionized water is stored in the anode chamber. Is generated. Since the water pressure in the cathode chamber becomes higher than that in the anode chamber, hypochlorous acid generated in the anode chamber is substantially eliminated from mixing with the alkaline ionized water generated in the cathode chamber. Further, even if the water pressure in the cathode chamber becomes high, the ion exchange membrane is sandwiched between the protrusions, so that the ion exchange membrane is substantially unlikely to be bent by the water pressure.

【0008】[0008]

【実施例】以下に、この発明の実施例を図1及び図2に
ついて説明する。図1及び図2は、電解イオン水生成装
置のこの発明に関連した要部の概略を示すものであり、
図1(a)は縦断側面図、図1(b)は一部切り欠き正
面図、図2は横断底面図である。図1及び図2におい
て、符号1は電解槽であり、該電解槽は第1のケース
2、第2のケース3、周知のイオン交換膜4、陰電極5
及び陽電極6により構成されている。前記第1のケース
2はプラスチックにより成形された断面が略凹状のもの
であり、その底部には複数の突起7が一体に突設され、
後述する水道水が供給される給水口8及び後述するアル
カリイオン水を吐出する吐水口9が開口されている。第
2のケース3は、前記第1のケース2と略同様のもので
あり、前記突起7に見合う位置に複数の突起10が設け
られ、給水口11及び後述する酸性イオン水を吐出する
吐水口12を有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 and FIG. 2 show an outline of a main part of the electrolytic ionized water producing apparatus related to the present invention.
1A is a vertical side view, FIG. 1B is a partially cutaway front view, and FIG. 2 is a transverse bottom view. In FIGS. 1 and 2, reference numeral 1 denotes an electrolytic cell, which is a first case 2, a second case 3, a well-known ion exchange membrane 4, and a negative electrode 5.
And the positive electrode 6. The first case 2 is made of plastic and has a substantially concave cross section, and a plurality of protrusions 7 are integrally provided on the bottom of the case 2.
A water supply port 8 to which tap water to be described later is supplied and a water discharge port 9 to discharge alkaline ionized water to be described later are opened. The second case 3 is substantially the same as the first case 2, and has a plurality of protrusions 10 provided at positions corresponding to the protrusions 7, and has a water supply port 11 and a spout for discharging acidic ionized water described later. Have twelve.

【0009】前記陰電極5及び陽電極6は、チタン板よ
りなり、前記突起7,10が挿通され得る孔13,14
がプレス加工により穿設され、白金がコーティングされ
ている。前記突起7,10はフック部15,16をそれ
ぞれ有し、前記第1のケース2の底面に前記陰電極5
を、その孔13が前記突起7に挿通されるように配置す
ることにより、前記フック部15によって前記陰電極5
が前記底面に固定される。同様にして、第2のケース3
の底面にも陽電極6が固定される。このようにして陰電
極5が固定された第1のケース2と、陽電極6が固定さ
れた第2のケース3とを、前記イオン交換膜4を介して
突合せ、この突合わせた状態に、周知の超音波溶着によ
って固定する。
The negative electrode 5 and the positive electrode 6 are made of a titanium plate and have holes 13 and 14 into which the protrusions 7 and 10 can be inserted.
Is punched by pressing and is coated with platinum. The protrusions 7 and 10 have hook portions 15 and 16, respectively, and the negative electrode 5 is formed on the bottom surface of the first case 2.
By arranging the holes 13 so that the holes 13 are inserted into the projections 7, the hook portion 15 allows the negative electrode 5 to be inserted.
Are fixed to the bottom surface. Similarly, the second case 3
The positive electrode 6 is also fixed to the bottom surface of the. In this way, the first case 2 having the negative electrode 5 fixed thereto and the second case 3 having the positive electrode 6 fixed thereto are abutted via the ion exchange membrane 4, and in this abutted state, It is fixed by well-known ultrasonic welding.

【0010】この突合せた状態では、イオン交換膜4の
縁部が第1及び第2のケース2,3の縁部近傍により、
またイオン交換膜4の略中央部が前記突起7,10によ
ってサンドイッチ状に挟まれ、イオン交換膜4が第1及
び第2のケース2,3に固定される。このようにして、
イオン交換膜4と第1のケース2により陰極室17が、
またイオン交換膜4と第2のケース3により陽極室18
が形成される。前記第2のケース3の吐水口12は給水
口11とその内径が同一であるが、第1のケース2の吐
水口9の内径は給水口8のそれよりも小さく、また給水
口8は給水口11よりも大径になっている。
In this butted state, the edge of the ion exchange membrane 4 is near the edges of the first and second cases 2 and 3,
Further, the substantially central portion of the ion exchange membrane 4 is sandwiched between the protrusions 7 and 10, and the ion exchange membrane 4 is fixed to the first and second cases 2 and 3. In this way
The cathode chamber 17 is formed by the ion exchange membrane 4 and the first case 2,
Further, the ion exchange membrane 4 and the second case 3 allow the anode chamber 18
Is formed. The water outlet 12 of the second case 3 has the same inner diameter as the water inlet 11, but the inner diameter of the water outlet 9 of the first case 2 is smaller than that of the water inlet 8, and the water inlet 8 supplies water. It has a larger diameter than the mouth 11.

【0011】前記した給水口8,11には、周知の活性
炭フィルター等を介して供給された水道水が周知のよう
に二分されて給水される。この供給された水道水の水圧
が所定値になると、周知のように陰電極5及び陽電極6
に電解電流が流れ、陰極室17と陽極室18とではそれ
ぞれアルカリイオン水と酸性イオン水が生成される。そ
して、アルカリイオン水は吐出口9から、酸性イオン水
は吐出口12からそれぞれ吐出される。
As is well known, tap water supplied through a well-known activated carbon filter or the like is bisected and supplied to the water supply ports 8 and 11 described above. When the water pressure of the supplied tap water reaches a predetermined value, the negative electrode 5 and the positive electrode 6 are well known.
An electrolytic current flows in the cathode chamber 17 and the anode chamber 18 to generate alkaline ionized water and acidic ionized water, respectively. Then, the alkaline ionized water is ejected from the ejection port 9 and the acidic ionized water is ejected from the ejection port 12.

【0012】この状態では、前記のように、吐水口9の
内径は給水口8のそれよりも小さいので、陰極室17の
水圧が陽極室18のそれよりも高くなり、前記のように
陽極室18において発生する次亜塩素酸が、陰極室17
で生成されたアルカリイオン水に混入することは実質的
になくなる。
In this state, since the inner diameter of the water discharge port 9 is smaller than that of the water supply port 8 as described above, the water pressure in the cathode chamber 17 becomes higher than that in the anode chamber 18, and as described above, The hypochlorous acid generated in 18 is generated in the cathode chamber 17
It is substantially eliminated from being mixed with the alkaline ionized water produced in step 1.

【0013】上記実施例では、吐水口12の内径と給水
口11の内径を同一にし、かつ吐水口9の内径を給水口
8のそれよりも小さくして、陰極室17の水圧が陽極室
18のそれよりも高くなるようにした、ということを説
明した。しかし、吐水口9,12にはホース等を接続し
て用いるのが普通であり、また給水口8,11にも配管
等が接続されるので、単に吐水口9,12と給水口8,
11の内径だけで陽極室18に対する陰極室17の水圧
が定まるのではなく、 前記のように供給された水道水が二分された後に、前
記陰極室17に供給される水路の最小断面積A1と、 前記陰極室17からアルカリイオン水が吐出される水
路(吐水口9に接続されたホース等をも含む)の最小断
面積A2と、 前記のように水道水が二分された後に、前記陽極室1
8に供給される水路の最小断面積B1と、 前記陽極室18から酸性イオン水が吐出される水路
(吐水口12に接続されたホース等をも含む)の最小断
面積B2と、により陽極室18に対する陰極室17の水
圧が定まる。
In the above embodiment, the inner diameter of the water discharge port 12 and the inner diameter of the water supply port 11 are made the same, and the inner diameter of the water discharge port 9 is made smaller than that of the water supply port 8 so that the water pressure in the cathode chamber 17 becomes equal to that of the anode chamber 18. I explained that I made it higher than that. However, it is common to use a hose or the like connected to the water outlets 9 and 12, and since pipes and the like are also connected to the water outlets 8 and 11, the water outlets 9 and 12 and the water inlet 8 and 12 are simply connected.
The water pressure of the cathode chamber 17 with respect to the anode chamber 18 is not determined only by the inner diameter of 11, but the minimum cross-sectional area A1 of the water channel supplied to the cathode chamber 17 after the tap water supplied as described above is divided into two parts. The minimum cross-sectional area A2 of the water channel (including a hose connected to the water outlet 9) from which the alkaline ionized water is discharged from the cathode chamber 17, and the anode chamber after the tap water is divided into two as described above. 1
8 by the minimum cross-sectional area B1 of the water channel supplied to 8 and the minimum cross-sectional area B2 of the water channel (including the hose connected to the spout 12) from which the acidic ionized water is discharged from the anode chamber 18. The water pressure of the cathode chamber 17 with respect to 18 is determined.

【0014】これを分かりやすくするために、前述では
吐水口9,12と給水口8,11の内径で説明した。従
って、前記実施例は、A1>A2で、かつB1=B2
で、しかもA1>B1に相当する。前記陽極室18に対
する陰極室17の水圧を高くするには、A1=A2とし
て、かつB1<B2としてもよい。要するに、この発明
では、前記陽極室18に対する陰極室17の水圧が高く
なるように、前記A1,A2,B1,B2を定めるので
ある。
In order to make this easier to understand, the inner diameters of the water discharge ports 9 and 12 and the water supply ports 8 and 11 have been described above. Therefore, in the above embodiment, A1> A2 and B1 = B2
And, moreover, it corresponds to A1> B1. In order to increase the water pressure of the cathode chamber 17 with respect to the anode chamber 18, A1 = A2 and B1 <B2 may be satisfied. In short, in the present invention, A1, A2, B1 and B2 are determined so that the water pressure in the cathode chamber 17 with respect to the anode chamber 18 becomes high.

【0015】前記のように、陽極室18に対する陰極室
17の水圧が高くなると、この水圧により前記イオン交
換膜4が陽極室18側に撓む恐れがある。しかし、前記
実施例では突起7,10によりイオン交換膜4の略中央
部がサンドイッチ状に挟まれるので、前記撓みは極めて
小さくなる。ちなみに、この撓みが大きいと、イオン交
換膜4が陽電極6に極めて接近し、このため、該陽電極
の近傍に発生しやすい前記次亜塩素酸がイオン交換膜4
を通して陰極室17で生成されたアルカリイオン水に混
入されることも考えられる。尚、前記のように、A1>
A2とし、かつB1=B2とすること、またはA1=A
2として、かつB1<B2とすることにより、前記突起
7,10を設けない場合にはイオン交換膜4が陽極室1
8側に撓むことが本発明者により確認された。これは、
陽極室18に対する陰極室17の水圧が高くなったこと
を示すものである。また、前記イオン交換膜4の縁部は
第1及び第2のケース2,3の縁部近傍により、サンド
イッチ状に挟まれているので、前記陽電極18で発生し
た前記次亜塩素酸が前記イオン交換膜4の縁部を迂回し
て陰極室17で生成されたアルカリイオン水に混入され
ることもなくなる。
As described above, when the water pressure in the cathode chamber 17 with respect to the anode chamber 18 increases, the water pressure may cause the ion exchange membrane 4 to bend toward the anode chamber 18. However, in the above-mentioned embodiment, since the substantially central portion of the ion exchange membrane 4 is sandwiched by the protrusions 7 and 10, the deflection is extremely small. By the way, when this deflection is large, the ion exchange membrane 4 comes very close to the positive electrode 6, so that the hypochlorous acid, which is likely to occur in the vicinity of the positive electrode, is generated in the ion exchange membrane 4.
It is also conceivable that it is mixed with the alkaline ionized water generated in the cathode chamber 17 through the. As described above, A1>
A2 and B1 = B2, or A1 = A
By setting 2 and B1 <B2, the ion exchange membrane 4 is provided in the anode chamber 1 when the protrusions 7 and 10 are not provided.
It was confirmed by the present inventor that it bends to the 8 side. this is,
This shows that the water pressure in the cathode chamber 17 with respect to the anode chamber 18 has increased. Further, since the edge portion of the ion exchange membrane 4 is sandwiched between the edge portions of the first and second cases 2 and 3, the hypochlorous acid generated in the positive electrode 18 is There is no case of bypassing the edge of the ion exchange membrane 4 and mixing with the alkaline ionized water generated in the cathode chamber 17.

【0016】尚、上記実施例のように、第1及び第2の
ケース2,3に突起7,10を設けてイオン交換膜4と
陰電極5及び陽電極6との間隔を維持するのに代え、イ
オン交換膜に突起を設けて該イオン交換膜と陰電極及び
陽電極との間隔を維持するようにすることも考えられる
が、一般にイオン交換膜は薄いものであり、これに突起
を一体に成形すると、該成形時の熱によりイオン交換膜
にうねりを生じ、前記した間隔が維持されなくなる。
As in the above embodiment, the protrusions 7 and 10 are provided on the first and second cases 2 and 3 to maintain the distance between the ion exchange membrane 4 and the negative electrode 5 and the positive electrode 6. Alternatively, it is conceivable to provide a projection on the ion exchange membrane so as to maintain the distance between the ion exchange membrane and the negative electrode and positive electrode, but in general, the ion exchange membrane is thin, and the projection is integrated with this. In the case of molding, the heat generated during the molding causes waviness in the ion-exchange membrane, and the above-mentioned interval cannot be maintained.

【0017】[0017]

【発明の効果】以上説明したように、この発明の電解イ
オン水生成装置では、陽極室18に対する陰極室17の
水圧が高くなるようにしたので、前記陽極室18で発生
した次亜塩素酸が陰極室17で生成されたアルカリイオ
ン水に混入するのを極力少なくすることができる。
As described above, in the electrolytic ionized water generator of the present invention, the water pressure in the cathode chamber 17 with respect to the anode chamber 18 is made high, so that the hypochlorous acid generated in the anode chamber 18 is It is possible to minimize mixing with the alkaline ionized water generated in the cathode chamber 17.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示すものであり、(a)は
縦断側面図、(b)は一部切り欠き正面図である。
1A and 1B show an embodiment of the present invention, in which FIG. 1A is a vertical side view and FIG. 1B is a partially cutaway front view.

【図2】この発明の実施例を示す横断底面図である。FIG. 2 is a cross-sectional bottom view showing the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 電解槽 2 第1のケース 3 第2のケース 4 イオン交換膜 5 陰電極 6 陽電極 7,10 突起 8,11 給水口 9,12 吐水口 13,14 孔 15,16 フック部 17 陰極室 18 陽極室 DESCRIPTION OF SYMBOLS 1 Electrolyzer 2 1st case 3 2nd case 4 Ion exchange membrane 5 Cathode electrode 6 Positive electrode 7,10 Protrusion 8,11 Water supply port 9,12 Water discharge port 13,14 Hole 15,16 Hook part 17 Cathode chamber 18 Anode chamber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 イオン交換膜によって仕切られた陰極室
と陽極室とを有し、これらの陰極室と陽極室とにはそれ
ぞれ陰電極と陽電極とが配設された電解槽を備え、供給
された水道水が二分されて前記陰極室と陽極室とにそれ
ぞれ給水され、これらの陰極室と陽極室に給水された水
道水が電解されて、前記陰極室からはアルカリイオン水
が、また前記陽極室からは酸性イオン水が吐出されるよ
うにした、水道水を電解する電解イオン水生成装置にお
いて、 断面が略凹状に形成され、その底部に陰電極が固定さ
れ、該底部から突出されて前記陰電極の孔に挿通された
突起を有する第1のケースと、該第1のケースと同様に
構成され、前記陰電極に代わる陽電極が固定された第2
のケースとを前記イオン交換膜を介して突合せ、この突
合わせた状態に固定し、 前記の突合せにより前記イオン交換膜の縁部が前記第1
のケースと第2のケースとの縁部近傍により、またイオ
ン交換膜の略中央部が前記したそれぞれの突起によって
サンドイッチ状に挟まれ、前記第1のケースとイオン交
換膜により前記陰極室が、また前記第2のケースとイオ
ン交換膜により前記陽極室が形成され、 前記のように水道水が二分された後に、前記陰極室に供
給される水路の最小断面積と、二分された後に、前記陽
極室に供給される水路の最小断面積と、前記陰極室から
アルカリイオン水が吐出される水路の最小断面積と、陽
極室から酸性イオン水が吐出される水路の最小断面積と
を、前記陰極室における水圧が前記陽極室における水圧
よりも高くなるように定めたことを特徴とする電解イオ
ン水生成装置。
1. A cathode chamber and an anode chamber, which are partitioned by an ion exchange membrane, and each of the cathode chamber and the anode chamber is provided with an electrolytic cell in which a negative electrode and a positive electrode are provided, and the supply is provided. The tap water is divided into two and supplied to the cathode chamber and the anode chamber, respectively, and the tap water supplied to the cathode chamber and the anode chamber is electrolyzed, alkaline ionized water from the cathode chamber, and the In an electrolytic ionized water generator that electrolyzes tap water, in which acidic ionized water is discharged from the anode chamber, the cross section is formed into a substantially concave shape, the negative electrode is fixed to the bottom of the electrolytic ionized water generator, and the negative electrode is projected from the bottom. A first case having a protrusion inserted into the hole of the negative electrode, and a second case having the same configuration as the first case and having a positive electrode fixed instead of the negative electrode fixed thereto.
The case is abutted through the ion exchange membrane and fixed in this abutted state, and the edge portion of the ion exchange membrane is abutted by the abutment.
In the vicinity of the edge between the case and the second case, and the substantially central portion of the ion exchange membrane is sandwiched by the above-mentioned projections, and the cathode chamber is formed by the first case and the ion exchange membrane. In addition, the anode chamber is formed by the second case and the ion exchange membrane, and after the tap water is divided into two as described above, the minimum cross-sectional area of the water channel supplied to the cathode chamber, and after being divided into two, The minimum cross-sectional area of the water channel to be supplied to the anode chamber, the minimum cross-sectional area of the water channel from which the alkaline ion water is discharged from the cathode chamber, and the minimum cross-sectional area of the water channel from which the acidic ion water is discharged from the anode chamber, An electrolyzed ion water generator characterized in that the water pressure in the cathode chamber is set to be higher than the water pressure in the anode chamber.
JP1781394A 1994-01-18 1994-01-18 Electrolytic ionic water generator Expired - Lifetime JP2920345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1781394A JP2920345B2 (en) 1994-01-18 1994-01-18 Electrolytic ionic water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1781394A JP2920345B2 (en) 1994-01-18 1994-01-18 Electrolytic ionic water generator

Publications (2)

Publication Number Publication Date
JPH07204646A true JPH07204646A (en) 1995-08-08
JP2920345B2 JP2920345B2 (en) 1999-07-19

Family

ID=11954184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1781394A Expired - Lifetime JP2920345B2 (en) 1994-01-18 1994-01-18 Electrolytic ionic water generator

Country Status (1)

Country Link
JP (1) JP2920345B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063985A (en) * 2008-09-10 2010-03-25 Omega:Kk Method and mechanism for reducing halogen acids
JP2010069457A (en) * 2008-09-22 2010-04-02 Omega:Kk Waste water treatment method
JP5753638B1 (en) * 2015-03-02 2015-07-22 株式会社日本トリム Electrolyzed water generator
CN106082402A (en) * 2016-07-21 2016-11-09 宋玉琴 The preparation method of electrolysis water barrier film and the generation method of electrolysis water

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063985A (en) * 2008-09-10 2010-03-25 Omega:Kk Method and mechanism for reducing halogen acids
JP2010069457A (en) * 2008-09-22 2010-04-02 Omega:Kk Waste water treatment method
JP5753638B1 (en) * 2015-03-02 2015-07-22 株式会社日本トリム Electrolyzed water generator
WO2016140102A1 (en) * 2015-03-02 2016-09-09 株式会社日本トリム Electrolyzed water-generating device
CN106082402A (en) * 2016-07-21 2016-11-09 宋玉琴 The preparation method of electrolysis water barrier film and the generation method of electrolysis water
CN106082402B (en) * 2016-07-21 2019-08-16 宋玉琴 The preparation method of electrolysis water diaphragm and the generation method of electrolysis water

Also Published As

Publication number Publication date
JP2920345B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
KR101575164B1 (en) Apparatus for manufacturing ionic water
KR101695675B1 (en) Module for manufacturing ionic water
JPH06339683A (en) Electrolyzed water generation device
JPH08112593A (en) Electrolytic ionic water generator
JP4904367B2 (en) Membrane electrolysis reactor system with four chambers
JP3500173B2 (en) Electrolyzed water production equipment
KR20160123954A (en) Module for manufacturing ionic water
JPH07204646A (en) Electrolytic ionic water generating device
JP2000140850A (en) Aqueous hypochlorous acid solution generator
JP2021169084A (en) Electrolytic water generator and electrolytic water generating method
US9163320B2 (en) Electrolytic cell having a transition duct outlet
WO2008090367A1 (en) Electro-chlorinator
JP2007038063A (en) Electrolytic water supply apparatus
JPS59189988A (en) Controlling mechanism for volume of water in continuous water electrolysis unit
JPH1076270A (en) Method for simultaneous generation of strongly alkaline water and hypochlorous acid sterilizing water by electrolysis
US20220194822A1 (en) Apparatus for generating chlorine disinfectant
KR20190008688A (en) Electrolyzer and control method of electrolyzer
KR102243540B1 (en) Electrolysis sterilization module
JP2000093964A (en) Alkali water making method and electrolytic apparatus
CN109678226A (en) A kind of multi-functional continuous-flow type electrolysis installation
JP2816029B2 (en) Bipolar filter press type electrolytic cell
JP3846201B2 (en) Electrolytic cell
JP3905583B2 (en) Ionized water generator with pH adjusting substance addition tank
JP2001070940A (en) Electrolytic water generator
JP2007111647A (en) Electrolyzer