WO2022249519A1 - Electrolysis cell and electrolyzed water generator - Google Patents

Electrolysis cell and electrolyzed water generator Download PDF

Info

Publication number
WO2022249519A1
WO2022249519A1 PCT/JP2021/045508 JP2021045508W WO2022249519A1 WO 2022249519 A1 WO2022249519 A1 WO 2022249519A1 JP 2021045508 W JP2021045508 W JP 2021045508W WO 2022249519 A1 WO2022249519 A1 WO 2022249519A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
cathode
water
electrolyte
diaphragm
Prior art date
Application number
PCT/JP2021/045508
Other languages
French (fr)
Japanese (ja)
Inventor
勝 二階堂
Original Assignee
森永乳業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 森永乳業株式会社 filed Critical 森永乳業株式会社
Publication of WO2022249519A1 publication Critical patent/WO2022249519A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features

Definitions

  • the present invention relates to an electrolytic cell and an electrolytic water generator.
  • electrolyzed water which is obtained by electrolyzing water to give it various functions
  • an electrolyzed water generator that generates electrolyzed water (hypochlorous acid water) that has a function of sterilization and deodorization
  • an electrolyzed water generator that generates electrolyzed water (alkaline ion water) that has a function of drinking and washing and rust prevention.
  • An electrolyzed water generator electrolyzes an electrolyte in an electrolytic solution or water to obtain an electrolytic product, thereby generating electrolyzed water to which various functions are added.
  • Electrolytes include artificially added chlorides, oxides, alkali salts, carbonates, organic acids, etc., in addition to ion components contained in water.
  • An electrolyzed water generator that generates hypochlorous acid water for example, is provided with two diaphragms between a pair of electrodes, and an electrolyte chamber separated by two diaphragms between an anode chamber and a cathode chamber.
  • an electrolytic solution containing chloride ions is supplied only to the central electrolytic solution chamber, and water is circulated to the anode chamber and the cathode chamber, respectively.
  • Anode-produced water is produced from the anode chamber and cathode-produced water is produced from the cathode chamber in a form in which the anode and cathode products are separated from the electrolyte.
  • the generated anode-generated water (hypochlorous acid water) is basically acidic. However, hypochlorous acid water is more likely to generate chlorine gas as its acidity is stronger and its salt content (residual chlorine ion concentration) is higher. On the other hand, when the hypochlorous acid water is alkaline over pH 8, the hypochlorous acid changes to hypochlorous acid ions, and the sterilization ability is lowered.
  • the hydroxide ions OH - contained in the cathode-generated water neutralize the hydrogen ions H + contained in the anode-generated water.
  • a method of controlling the pH of the mixed water near neutral has been proposed.
  • a second cathode is provided in the electrolyte chamber as a method for accurately controlling the amount of hydroxide ions OH ⁇ contained in the cathode-generated water following fluctuations in hardness and pH of water flowing through the anode chamber and the cathode chamber. Therefore, a method has been proposed in which electrolysis is performed while switching the first cathode in the cathode chamber.
  • An object of the present invention is to obtain an electrolysis cell that can be used for a long period of time, and an electrolyzed water generator provided with the electrolysis cell.
  • an electrolyte chamber containing an electrolyte, an anode chamber partitioned from the electrolyte chamber by a first diaphragm, and an anode chamber partitioned from the electrolyte chamber by a second diaphragm an anode provided in the anode chamber facing the first diaphragm; a first cathode provided in the cathode chamber facing the second diaphragm; and a cathode provided in the electrolyte chamber.
  • a second cathode facing the anode with the first diaphragm interposed therebetween; and a first electrolyte chamber provided between the second cathode and the first diaphragm, the inside of the electrolyte chamber being located on the side of the anode chamber. and a third diaphragm separating a second electrolyte chamber on the cathode chamber side.
  • an electrolyte chamber containing an electrolyte, an anode chamber partitioned from the electrolyte chamber by a first diaphragm, and an anode chamber partitioned from the electrolyte chamber by a second diaphragm an anode provided in the anode chamber facing the first diaphragm; a first cathode provided in the cathode chamber facing the second diaphragm; a cathode provided in the electrolyte chamber; a second cathode facing the anode via a diaphragm; a first electrolyte chamber provided between the second cathode and the first diaphragm; a first electrolysis cell comprising a third diaphragm separating a chamber-side second electrolyte chamber; a first power supply unit that supplies power to the anode, the first cathode, and the second cathode; a switch for energizing the first cathode
  • FIG. 1 is a schematic representation of an electrolysis cell that can be used in the first embodiment.
  • FIG. 2 is a diagram schematically showing a running-water electrolyzed water generator according to the first embodiment.
  • FIG. 3 is a timing chart showing an example of switching between the first cathode and the second cathode used in the first embodiment.
  • FIG. 4 is a graph showing the results of a water quality change test according to the energization ratio in the first embodiment.
  • FIG. 5 is a graph showing the continuous operation test results of the electrolyzed water generator according to the first embodiment.
  • FIG. 6 is a schematic diagram showing an application example of the electrolyzed water generator according to the first embodiment.
  • FIG. 7 is a diagram schematically showing a running-water electrolyzed water generator according to the second embodiment.
  • FIG. 8 is a graph showing the results of a water quality change test according to the energization ratio in the second embodiment.
  • FIG. 9 is a diagram schematically showing a running-water electrolyzed water generator according to the third embodiment.
  • FIG. 10 is a graph showing the results of a water quality change test according to the energization ratio in the third embodiment.
  • FIG. 11 is a diagram schematically showing a running-water electrolyzed water generator according to the fourth embodiment.
  • FIG. 12 is a schematic diagram of an electrolytic cell used in the fifth embodiment.
  • FIG. 13 is a diagram schematically showing a storage-type electrolyzed water generator according to the fifth embodiment.
  • FIG. 14 is a graph showing the results of a water quality change test according to the energization ratio in the fifth embodiment.
  • FIG. 15 is a graph showing continuous operation test results in the fifth embodiment.
  • FIG. 16 is a diagram schematically showing an application example of the storage-type electrolyzed water generator according to the fifth embodiment.
  • FIG. 17 is a diagram schematically showing a storage-type electrolyzed water generator according to the sixth embodiment.
  • FIG. 1 shows a schematic diagram of an electrolysis cell that can be used in the first embodiment.
  • this electrolytic cell 2′ is a so-called three-chamber type electrolytic cell, in which a first diaphragm 3a made of an anion exchange membrane as a diaphragm on the anode side and a cathode as a diaphragm on the cathode side are provided. It has a second diaphragm 4a made of an ion exchange membrane.
  • an electrolyte chamber 5 functioning as an intermediate chamber defined between the diaphragms
  • An anode 3b is provided inside the anode chamber 3 so as to closely face the first diaphragm 3a
  • a first cathode 4b is provided inside the cathode chamber 4 so as to closely face the second diaphragm 4a.
  • proximity means adjoining, contacting, or being in close contact with the other.
  • the term "adjacent” refers to a state in which one is opposed to the other at a constant distance, and the distance between them is 0.3 mm or less, preferably 0.2 mm or less.
  • the anode 3b and the first cathode 4b are formed in rectangular shapes of substantially the same size, and face each other with the electrolyte chamber 5 and the first and second diaphragms 3a and 4a interposed therebetween.
  • the electrolytic solution chamber 5 has a third diaphragm 5a made of a neutral membrane having fine pores that do not have ion permeation selectivity and allow passage of cations and anions.
  • the electrolyte chamber 5 is partitioned by the third diaphragm 5a into a first electrolyte chamber 5c on the anode chamber 3 side and a second electrolyte chamber 5d on the cathode chamber 4 side.
  • the neutral membrane preferably has no ion selectivity, and for example, an electrolytic diaphragm for plating (manufactured by Yuasa Membrane Systems Co., Ltd.) can be used.
  • a second cathode 5b is provided in the second electrolytic solution chamber 5d so as to closely face the third diaphragm 5a.
  • the second cathode 5b like the anode 3b and the first cathode 4b, is formed in a rectangular shape having approximately the same size as the anode 3b and the first cathode 4b.
  • a titanium (Ti) metal plate having a large number of through holes can be used for the second cathode 5b.
  • a so-called insoluble electrode may be used in which a metal plate made of Ti and having a large number of through holes is coated with a catalyst such as Ir or Pt.
  • the third diaphragm 5a is provided between the second cathode 5b and the first diaphragm 3a, and the electrolyte chamber 5 is filled with the first electrolyte on the anode chamber 3 side. It is separated into a chamber 5c and a second electrolyte chamber 5d on the cathode chamber 4 side.
  • the flow of the electrolyte in the electrolyte chamber 5 is divided into two flows, that is, the flow of the first electrolyte in the first electrolyte chamber 5c and the flow of the second electrolyte in the second electrolyte chamber 5d. can be done.
  • the pH of the electrolyte in the second electrolyte chamber 5d shifts to the alkaline side.
  • the pH of the first electrolytic solution chamber 5c is closer to neutral than the pH of the second electrolytic solution chamber 5d. can be maintained at Therefore, the first diaphragm 3a that separates the first electrolytic solution chamber 5c and the anode chamber 3 is less likely to deteriorate, and an electrolytic cell that can be used for a long period of time can be obtained.
  • Electrodes such as the anode 3b, the first cathode 4b, and the second cathode 5b used in the embodiment for example, a metal plate substrate made of Ti in which a large number of through holes are formed and a metal plate substrate made of Ti An insoluble electrode with a catalyst layer formed on the surface can be used. Electrodes such as the first cathode 4b and the second cathode 5b do not have to be provided with a catalyst layer. As the electrode, a metal plate or a metal plate provided with a catalyst layer on its surface can be used. However, metal materials and catalyst materials that can be used in electrolyzed water generators that generate hypochlorous acid water are limited to those described in JIS B8701.
  • Ti of 1 to 13 species specified in JIS H 4650 can be used as the metal plate material.
  • the catalyst for example, a noble metal catalyst containing Pt and/or Ir, or an oxide catalyst containing iridium oxide as a main component and a stabilizing substance such as tantalum pentoxide, or the like can be used.
  • an oxide catalyst based on iridium oxide can be used.
  • the catalyst layer is formed by plating the noble metal catalyst in a plating solution for a predetermined period of time, and the oxide catalyst by repeatedly applying and drying a coating solution containing the catalyst on the surface of the metal plate material, followed by firing. can be done.
  • a commercially available insoluble electrode for generating chlorine can be used as the anode 3b.
  • Commercially available insoluble electrodes for generating chlorine include those provided by coating a Ti plate with a catalyst layer of Pt and/or Ir and those provided with a catalyst layer mainly composed of iridium oxide.
  • a Ti plate for example, a Ti plate having a large number of through holes can be used.
  • a Ti plate or a commercially available insoluble electrode for generating chlorine can be used.
  • Commercially available insoluble electrodes for generating chlorine include, for example, a Ti plate provided with a catalyst layer of Pt and/or Ir, or a catalyst layer mainly composed of iridium oxide.
  • a Ti plate having a large number of through holes can be used.
  • an anion exchange membrane in which a cation group is fixed to a porous polymer made of a hydrocarbon polymer or the like, positively charged, and only anions can pass through is used.
  • an anion exchange membrane for example, Neosepta AMX (manufactured by Astom) can be used.
  • a cation exchange membrane is used in which anion groups are fixed to a porous polymer made of, for example, a hydrocarbon-based polymer, a fluorine-based polymer, etc., and negatively charged so that only cations can pass through. can do.
  • a cation exchange membrane for example, Nafion (registered trademark) (manufactured by DuPont), which is a cation exchange membrane of a fluororesin copolymer, can be used.
  • a non-woven fabric or a porous diaphragm having a coating layer containing, for example, aluminum oxide on a porous base material such as a glass cloth and having no ion selective permeability can be used.
  • the porous diaphragm can be formed, for example, by impregnating a porous substrate such as non-woven fabric or glass cloth with aluminum oxide and drying.
  • the electrolysis cell of FIG. 1 can be incorporated into an electrolyzed water generator.
  • FIG. 2 shows a schematic diagram of a running-water electrolyzed water generator according to the first embodiment.
  • the electrolyzed water generator 1 includes an electrolysis cell 2 .
  • the electrolysis cell 2 uses an electrolysis cell having the same configuration as the electrolysis cell 2' shown in FIG.
  • a first electrolytic solution supply port 5f for supplying an electrolytic solution is provided below the first electrolytic solution chamber 5c.
  • a first electrolytic solution discharge port 5h for discharging the electrolytic solution that has flowed through the first electrolytic solution chamber 5c is provided in the upper portion of the first electrolytic solution chamber 5c.
  • a second electrolytic solution supply port 5g for supplying an electrolytic solution is provided in the lower portion of the second electrolytic solution chamber 5d.
  • a second electrolytic solution discharge port 5i for draining the electrolytic solution that has flowed through the second electrolytic solution chamber 5d is provided in the upper portion of the second electrolytic solution chamber 5d.
  • a first water supply port 3 f for supplying water is provided in the lower portion of the anode chamber 3 .
  • a first drain port 3 h for draining water that has flowed through the anode chamber 3 is provided in the upper portion of the anode chamber 3 .
  • a second water supply port 4 f for supplying water is provided in the lower portion of the cathode chamber 4 .
  • a second drain port 4 h for draining water that has flowed through the cathode chamber 4 is provided in the upper portion of the cathode chamber 4 .
  • a first electrolytic solution supply port 5f and a first electrolytic solution outlet 5h are provided in the first electrolytic solution chamber 5c, and a second electrolytic solution supply port 5g and a second electrolytic solution outlet 5i are provided in the second electrolytic solution chamber 5d. is provided.
  • the electrolyzed water generator 1 includes an electrolytic solution supply unit 8 that supplies an electrolytic solution containing chloride ions, such as salt water, to the electrolytic solution chamber 5 of the electrolytic cell 2 .
  • anode chamber 3 and the cathode chamber 4 are provided with a water supply unit 21 for supplying electrolyzed raw water, for example, water.
  • a power supply unit 7 having a power source 7a for applying a positive voltage to the anode 3b and a negative voltage to the first cathode 4b and/or the second cathode 5b is provided.
  • the power supply unit 7 includes a power source 7a that supplies a current necessary for electrolysis, a switch 7b that energizes the first cathode 4b and/or the second cathode 5b from the power source 7a, and a control unit 7c that controls the power source 7a and the switch 7b.
  • a switch 7b a selector switch for switching power supply to the first cathode 4b or the second cathode 5b is used.
  • a constant current power supply is desirable as the power supply 7a.
  • the positive electrode of the power supply 7a is connected to the anode 3b of the electrolytic cell 2 via wiring.
  • the negative electrode of the power supply 7a is connected to the first cathode 4b and the second cathode 5b via the switch 7b and two wires.
  • a negative voltage can be selectively applied to the first cathode 4b and the second cathode 5b.
  • the switch 7b for example, the current supplied to the first cathode 4b and the second cathode 5b is fixed, and the energization to the first cathode 4b or the second cathode 5b is switched over time, whereby the first cathode 4b and the second cathode 5b are switched.
  • the energization ratio of the two cathodes 5b can be adjusted.
  • a switch for energizing the first cathode 4b and/or the second cathode 5b for example, various values of current output can be obtained from the power supply 7a for the first cathode 4b and the second cathode 5b, respectively.
  • a switch device having a plurality of negative terminals connected to each other can be used.
  • ON/OFF switches are arranged between the first cathode 4b and the second cathode 5b and a plurality of negative terminals. By selectively turning ON/OFF these ON/OFF switches by the control unit 7c, it is possible to arbitrarily change the energization ratio as the current amount ratio of the first cathode 4b and the second cathode 5b.
  • the electrolyte supply unit 8 includes a salt water tank (electrolyte tank) 25 that stores an electrolyte 25a (for example, a 20% by mass sodium chloride aqueous solution (salt water)), and a supply that guides the salt water from the salt water tank 25 to the lower part of the electrolyte chamber 5.
  • a pipe 8a, a liquid feed pump 29 provided in the supply pipe 8a, and a drain pipe 8f for discharging salt water from above the electrolytic solution chamber 5 are provided.
  • the supply pipe 8a is connected to a first electrolytic solution supply port 5f provided in the lower part of the first electrolytic solution chamber 5c of the electrolytic solution chamber 5, and functions as a first electrolytic solution supply line for supplying the electrolytic solution. and a supply pipe 8c functioning as a second electrolyte supply line for supplying the electrolyte by connecting to the second electrolyte supply port 5g provided in the lower part of the second electrolyte chamber 5d of the electrolyte chamber 5; branched. Thereby, the electrolyte is separately supplied to the first electrolyte chamber 5c and the second electrolyte chamber 5d.
  • a drain pipe 8d is connected to the first electrolyte drain port 5h and functions as a first electrolyte drain line for draining the electrolyte that has flowed through the first electrolyte chamber 5c. is provided.
  • a drain pipe 8e is connected to the second electrolyte drain port 5i and functions as a second electrolyte drain line for draining the electrolyte that has flowed through the second electrolyte chamber 5d. is provided.
  • the first electrolytic solution (salt water) flows in the first electrolytic solution chamber 5c separated by providing the third diaphragm 5a in the electrolytic solution chamber 5, and the second electrolytic solution (salt water) flows in the second electrolytic solution chamber 5d. ) flow.
  • the drain pipe 8d and the drain pipe 8e are merged to form the drain pipe 8f, and the electrolytic solutions in the drain pipe 8d and the drain pipe 8e are mixed and discharged.
  • the drain pipe 8d and the drain pipe 8e may not be merged and discharged as they are.
  • the water supply unit 21 includes a water supply source 9 that supplies water, an opening/closing valve 28 provided near the outlet of the water supply source 9, and a first water supply pipe that guides water from the water supply source 9 to the lower portions of the anode chamber 3 and the cathode chamber 4. 21a and.
  • the electrolyzed water generator 1 also includes a first drain pipe 21b connected to the first drain port 3h and functioning as a first drain line for discharging the water that has flowed through the anode chamber 3 from the upper portion of the anode chamber 3; A second drain pipe 21c that is connected to the drain port 4h and functions as a second drain line for discharging the water that has flowed through the cathode chamber 4 from the upper portion of the cathode chamber 4 is provided.
  • the first water supply pipe 21a branches into a second water supply pipe 21e functioning as a first water supply line and a third water supply pipe 21f functioning as a second water supply line.
  • the second water supply pipe 21 e is connected to the first water supply port 3 f to supply water to the anode chamber 3 .
  • the third water supply pipe 21f is connected to the second water supply port 4f to supply water to the cathode chamber 4.
  • the first drain pipe 21b is connected to the middle part of the second drain pipe 21c and constitutes the first generated water mixing section 10 .
  • the anode-generated water discharged from the first drainage pipe 21b and the cathode-generated water discharged from the second drainage pipe 21c are mixed and discharged as mixed water (first mixed water).
  • the mixed water to be discharged is hypochlorous acid water whose pH is controlled to be slightly acidic/neutral.
  • each pipe may be provided with an on-off valve or a flow control valve.
  • the electrolyzed water generator configured as described above actually electrolyzes salt water to produce acidic water (anode-generated water) containing hypochlorous acid water, which is an acidic component, and sodium hydroxide, which is an alkaline substance.
  • acidic water anode-generated water
  • sodium hydroxide sodium hydroxide
  • alkaline water anode-generated water
  • the anode-generated water used here is hypochlorous acid water, which is acidic electrolyzed water, and is hereinafter sometimes referred to as acidic water.
  • the cathode-generated water is strongly alkaline electrolyzed water, and is hereinafter sometimes referred to as alkaline water. As shown in FIG.
  • the liquid feed pump 29 is operated to supply salt water from the salt water tank 25 to the first electrolyte chamber 5 c and the second electrolyte chamber 5 d of the electrolyte chamber 5 of the electrolytic cell 2 . Also, water is supplied from the water supply source 9 to the anode chamber 3 and the cathode chamber 4 .
  • power is supplied by switching the switch 7b to the first cathode 4b, positive and negative voltages are applied from the power supply 7a to the anode 3b and the first cathode 4b, respectively.
  • the sodium ions ionized in the salt water flowing into the first electrolyte chamber 5c and the second electrolyte chamber 5d are attracted to the first cathode 4b, pass through the second diaphragm 4a, and reach the first cathode 4b. do. Since the third diaphragm 5a is a neutral membrane that does not selectively permeate ions, it is permeable to sodium ions.
  • Chlorine ions ionized in the salt water in the first electrolyte chamber 5c and the second electrolyte chamber 5d are attracted to the anode 3b, pass through the first diaphragm 3a, and reach the anode 3b. Then, as shown in the following formula (2), the chlorine ions are oxidized at the anode 3b to generate chlorine gas. 2Cl ⁇ ⁇ Cl 2 +2e ⁇ (2) After that, the chlorine gas immediately reacts with water in the anode chamber 3 to produce hypochlorous acid and hydrochloric acid as shown in the following formula (3).
  • the acidic water (hypochlorous acid water) thus generated flows out from the anode chamber 3 to the first drain pipe 21b.
  • the alkaline water flowing out to the second drainage pipe 21c and the acidic water flowing out to the first drainage pipe 21b are mixed in the first generated water mixing section 10 to form mixed generated water. Then, the pH-adjusted hypochlorous acid water is discharged as the mixed product water.
  • a positive voltage and a negative voltage are applied from the power supply 7a to the anode 3b and the second cathode 5b, respectively.
  • the sodium ions ionized in the salt water flowing into the first electrolyte chamber 5c and the second electrolyte chamber 5d are attracted to the second cathode 5b.
  • the sodium ions ionized in the salt water in the first electrolyte chamber 5c can pass through the third diaphragm 5a and reach the second cathode 5b.
  • a sodium hydroxide aqueous solution containing hydrogen gas is produced in the second electrolyte chamber 5d by the electrolysis of salt water in the second cathode 5b.
  • the inside of the second electrolytic solution chamber 5d shifts to the strong alkaline side.
  • Alkaline water aqueous sodium hydroxide solution containing hydrogen gas
  • the alkaline water generated in the second electrolyte chamber 5d is separated from the cathode. Almost no liquid flows into the chamber 4 and the first electrolyte chamber 5c. As a result, the first electrolyte chamber 5c does not shift to the alkaline side. Therefore, the first diaphragm 3a in the first electrolytic solution chamber 5c is not exposed to strong alkali and is less likely to deteriorate. Moreover, the cathode-generated water discharged from the cathode chamber 4 at this time is the water supplied from the water supply source 9 itself.
  • Chlorine ions ionized in the salt water in the first electrolyte chamber 5c and the second electrolyte chamber 5d are attracted to the anode 3b. At this time, chlorine ions ionized in the salt water in the second electrolyte chamber 5d can pass through the first diaphragm 3a and reach the anode 3b. Chlorine ions are oxidized at the anode 3b to generate chlorine gas. After that, the chlorine gas immediately reacts with water in the anode chamber 3 to produce hypochlorous acid and hydrochloric acid. The acidic water (hypochlorous acid water) thus generated flows out from the anode chamber 3 through the first drain pipe 21b.
  • the acidic water is mixed with the waste water from the second drainage pipe 21c, but alkaline water is not mixed with the waste water from the second drainage pipe 21c. Therefore, the pH of the hypochlorous acid water obtained as mixed product water when power is supplied to the second cathode 5b is lower than the pH of the hypochlorous acid water obtained as mixed product water when power is supplied to the first cathode 4b. also lower.
  • the water used as raw water contains different impurities depending on the region and location, and especially the carbonic acid component has an interference effect toward weak alkalinity. Therefore, depending on the water used, the pH adjustment point may not match and may shift slightly.
  • the electrolyte chamber 5 is provided with the second cathode 5b, and the switch 7b is switched to the first cathode 4b or the second cathode 5b to supply power.
  • the first cathode 4b in the cathode chamber 4 and the second cathode 5b in the second electrolyte chamber 5d are selectively switched and energized to shift the cathode-generated water to the alkaline side or the neutral side. and the anode-generated water, the pH of the generated water can be adjusted.
  • the pH of the mixed product water can be adjusted at any time, and the pH of the hypochlorous acid water obtained as the mixed product water can be controlled to be slightly acidic or near neutral. Become. Further, when the energization from the power supply portion 7 is switched to the second cathode 5b, the pH of the electrolyte in the second electrolyte chamber 5d shifts to the alkaline side.
  • a third diaphragm 5a is provided between the second cathode 5b and the first diaphragm 3a, and the electrolyte chamber 5 is divided into a first electrolyte chamber 5c on the anode chamber 3 side and a second electrolyte chamber on the cathode chamber 4 side.
  • the alkaline substance is discharged by the flow of the second electrolyte and is hardly mixed into the flow of the first electrolyte. Therefore, since the pH of the first electrolyte chamber 5c can be maintained closer to neutral than the pH of the second electrolyte chamber 5d, the first diaphragm 3a of the first electrolyte chamber 5c is resistant to deterioration and has good durability. Become. Therefore, according to the embodiment, an electrolyzed water generator that can be used for a long period of time is obtained.
  • FIG. 3 shows a timing chart showing an example of switching of the current application path in the power feeding section 7.
  • This fixed the electrolysis current to 2 A, set the current application path to the first cathode 4b and the second cathode 5b with 1 cycle of 10 seconds, applied the first cathode 4b for 4 seconds, and applied the current to the second cathode 5b.
  • a pulse waveform 101 represents the relationship between the energization time to the first cathode 4b and the voltage at this time
  • a pulse waveform 102 represents the relationship between the energization time to the second cathode 5b and the voltage.
  • the electrolysis current, cycle, energization ratio at the first and second cathodes are configured to be user-manipulable.
  • the application time to the first cathode 4b is set to 10 seconds and the application time to the second cathode 5b is set to 0 seconds
  • normal three-chamber operation is performed.
  • the acid water and alkaline water generated at this time are mixed, mixed water having a pH of around 8.5 is obtained.
  • the application time to the first cathode 4b was set to 0 seconds and the application time to the second cathode 5b was set to 10 seconds
  • the electrolytic reaction did not occur in the cathode chamber 4, and the cathode chamber 4 was supplied to the electrolytic cell. Only raw water flows.
  • FIG. 4 is a graph showing the relationship between the energization ratio (duty ratio) of the second cathode 5b and the water quality (pH and effective chlorine concentration) of the mixed water in the electrolyzed water generator according to the first embodiment.
  • a characteristic line 104 is a graph representing the pH of the mixed product water with respect to the electrification ratio of the second cathode 5b.
  • a characteristic line 103 indicates the effective chlorine concentration of the mixed product water with respect to the energization ratio of the second cathode 5b.
  • the energization ratio of the second cathode 5b is the ratio of the energization time of the second cathode 5b to the time of one cycle. That is, the energization ratio of the second cathode 5b indicates the ratio of the amount of energization to the second cathode 5b to the total amount of current. In the energization ratio of the second cathode 5b, 0% indicates energization of only the first cathode 4b, and 100% indicates energization of only the second cathode 5b.
  • the energization ratio of 50% of the second cathode 5b means repeating the energization time of 5 seconds to the first cathode 4b and the energization time of 5 seconds to the second cathode 5b.
  • the water quality (pH and effective chlorine concentration) of the mixed product water was measured by sampling the mixed product water for a time sufficiently longer than the cycle time so that the difference in water quality due to switching the power supply was not sufficiently accumulated and affected. .
  • 3 mL/min of a 20% sodium chloride aqueous solution was supplied to each of the first electrolyte chamber 5c and the second electrolyte chamber 5d.
  • the mixed product water is alkaline. This is because all the alkaline substances generated at the first cathode 4b are mixed with the generated water.
  • the energization ratio of the second cathode 5b is increased from 0, as shown in the characteristic line 103, the effective chlorine concentration of the mixed product water is almost constant, but as shown in the characteristic line 104, the pH becomes acidic. become. This is because the alkaline substance produced at the second cathode 5b is released only into the second electrolyte chamber 5d and is not mixed with the mixed product water.
  • the pH fluctuates greatly from around 55% of the energization ratio of the second cathode, and the raw water is acidified.
  • the acidic water (hypochlorous acid chloric acid water) can be obtained.
  • the energization ratio of the second cathode 5b is increased and only the second cathode 5b is used without using the first cathode 4b (100% energization ratio)
  • the mixed product water is weakly acidic to strongly acidic. This is because no alkaline material is produced at the first cathode.
  • the raw water is mixed with the acid water as it is in the mixed product water, and the water quality of the acid water produced in the anode chamber 3 appears as it is.
  • tap water with a Ca hardness of 55 g/L was used as raw water.
  • the energization ratio of the second cathode 5b showing a slightly acidic region shifts to a smaller side
  • harder water is used, the energizing ratio of the second cathode 5b showing a slightly acidic region shifts to a larger side.
  • Continuous operation test The following continuous operation test was performed using the electrolyzed water generator 1 according to the first embodiment.
  • a 20% sodium chloride aqueous solution was supplied to each of the first electrolyte chamber 5c and the second electrolyte chamber 5d at 3 mL/min.
  • the electrolysis current is fixed at 2 A, one cycle is 10 seconds, and the electrification ratio of the second cathode is 60% (energization time to the first cathode 4b is 4 seconds, the second The energization time of the cathode 5b was set to 6 seconds).
  • the electrolyzed water generator 1 was operated for about 700 hours to continuously obtain mixed water.
  • the pH and effective chlorine concentration of the resulting mixed product water were initially measured every 24 hours, and then every week.
  • electrolyzed water generators having the same configuration as that of the first embodiment except that the third diaphragm 5a was not provided in the electrolyte chamber 5 of the electrolytic cell 2 were prepared.
  • the electrolyzed water generator was operated for about 700 hours under the same conditions to obtain mixed water.
  • the pH and effective chlorine concentration were similarly measured as changes in the water quality of the mixed product water obtained.
  • FIG. 5 shows a graph showing the continuous operation test results of the electrolyzed water generator according to the first embodiment.
  • the horizontal axis is the operating time.
  • Characteristic line 110 indicates the pH of the resulting mixed product water.
  • a characteristic line 105 indicates the effective chlorine concentration of the obtained mixed product water.
  • Characteristic lines 106 and 107 indicate the effective chlorine concentration of Comparative Examples 1 and 2
  • characteristic lines 108 and 109 indicate the pH of Comparative Examples 1 and 2.
  • Comparative Example 1 after 48 hours, a phenomenon was confirmed in which the pH increased as indicated by characteristic line 108 and the available chlorine concentration decreased as indicated by characteristic line 106 .
  • Comparative Example 2 After 168 hours, a phenomenon was confirmed in which the pH increased as indicated by characteristic line 109 and the effective chlorine concentration decreased as indicated by characteristic line 107 .
  • the electrolytic cells of Comparative Examples 1 and 2 were disassembled and investigated, it was confirmed that the first diaphragm in the anode chamber became cloudy and the membrane was broken in places. From this, it is considered that the electrolytic solution chamber was alkalinized by the alkaline substance generated at the second cathode, and the first diaphragm in contact with the electrolytic solution chamber was degraded and fractured.
  • the effective chlorine concentration and pH are constant even if it is operated for a long time, and the water quality of the mixed water does not change. unacceptable.
  • the electrolyte chamber 5 is divided into the first electrolyte chamber 5c on the side of the anode chamber 3 and the second electrolyte chamber 5d on the side of the cathode chamber 4 by the third diaphragm 5a made of a neutral membrane having no ion permeation selectivity. This is because the second cathode 5b is provided in the second electrolyte chamber 5d so as to closely face the third diaphragm 5a.
  • the alkaline substance produced at the second cathode 5b is produced and discharged only from the second electrolyte chamber 5d, which is not in contact with the first diaphragm 3a, and the action of the alkaline substance on the first diaphragm 3a is suppressed. It is believed that there is.
  • the electrolyte chamber 5 is divided into the first electrolyte chamber 5c on the anode chamber 3 side and the second electrolyte chamber 5d on the cathode chamber 4 side by the third diaphragm 5a made of a neutral membrane having no ion permeation selectivity.
  • a second cathode 5b is provided in the second electrolyte chamber 5d so as to be closely opposed to the third diaphragm 5a.
  • FIG. 6 shows a schematic diagram showing an application example of the electrolyzed water generator according to the first embodiment.
  • the mixed generated water 41 is accommodated in the rear stage of the first generated water mixing section 10 of the electrolysis cell 2, and the bottom portion 11a and the side wall 11b are accommodated.
  • a water reservoir 11 having a is further provided.
  • an online pH meter 12 functioning as a pH measuring section and a third drainage pipe 21d for discharging the mixed water from the water storage section 11 are installed.
  • the online pH meter 12 is connected to the controller 7c.
  • the water storage unit 11 can have a capacity to store the mixed product water for a time sufficiently longer than the cycle time so that the difference in water quality due to the power switching is sufficiently integrated and does not affect the water quality.
  • Other configurations of the electrolyzed water generator 1-1 are the same as those of the electrolyzed water generator 1 shown in FIG.
  • the mixed product water 41 from the first product water mixing unit 10 is introduced into the water storage unit 11, and the pH of the mixed product water 41 is measured at any time by the online pH meter 12, and the mixed product is produced. Water 41 is discharged from the third drain pipe 21d.
  • the pH measurement signal from the online pH meter 12 is calculated by the control unit 7c, and the second An algorithm is constructed to automatically change the energization ratio of the cathode 5b. This allows automatic pH control of the mixed product water. In addition, it has the same effects as those of the electrolyzed water generator 1 .
  • the online pH meter 12 that can automatically measure the pH of the mixed water 41 in the water reservoir 11 is used, but the operator manually measures the pH of the mixed water 41 in the water reservoir 11 at any time.
  • the value is input to the control unit 7c, and the control unit 7c calculates based on the value to create an algorithm for automatically changing the energization ratio of the second cathode 5b.
  • FIG. 7 is a diagram schematically showing a running-water electrolyzed water generator according to the second embodiment.
  • the electrolyzed water generator 1-2 uses a so-called three-chamber type electrolyzer (electrolytic cell) 2-2.
  • the interior thereof is provided with a first diaphragm (anode side diaphragm, anion exchange membrane) 3a and a second diaphragm (cathode side diaphragm, cation exchange membrane) 4a, thereby forming an electrolyte chamber defined between the diaphragms. 5 , and an anode chamber 3 and a cathode chamber 4 located on both sides of the electrolyte chamber 5 .
  • An anode 3b is provided in the anode chamber 3, and is closely opposed to the first diaphragm 3a.
  • a first cathode 4b is provided in the cathode chamber 4 and closely faces the second diaphragm 4a.
  • the anode 3b and the cathode 4b are formed in the shape of rectangular plates of approximately the same size, and face each other with the electrolyte chamber 5 and the first and second diaphragms 3a and 4a interposed therebetween.
  • the electrolytic solution chamber 5 is a third diaphragm 5a made of a neutral membrane having no selectivity of ion permeation and allowing the passage of cations and anions. is partitioned into a second electrolyte chamber 5d.
  • a second cathode 5b is provided in the second electrolytic solution chamber 5d so as to closely face the third diaphragm 5a.
  • the second cathode 5b like the anode 3b and the first cathode 4b, is formed in a rectangular shape having approximately the same size as the anode 3b and the first cathode 4b.
  • a porous member 5e is provided in at least a part of the first electrolytic solution chamber 5c on the anode chamber 3 side as a "water-permeable diffusion suppressing member" for controlling diffusion of alkaline substances.
  • the diffusion suppressing member is water permeable. That is, when the electrolytic solution is supplied from the first electrolytic solution supply port 5f through the supply pipe 8b, the electrolytic solution needs to pass through the diffusion suppressing member. Therefore, the diffusion suppressing member has water permeability. When the positive and negative electrodes are energized while the electrolyte is flowing inside, the sodium ions and chloride ions in the electrolyte move toward the electrodes due to the electrical force. However, no electric force is generated when the current is stopped.
  • the diffusion suppressing member has a function of making such diffusion difficult, that is, a function of suppressing natural movement of substances not caused by electrical force.
  • the action of the water-permeable diffusion suppressing member as described above is as follows. First, when the electrolyzed water generator 1-2 is in operation, the diffusion suppressing member is water permeable, so the electrolytic solution passes through the inside of the diffusion suppressing member, and electrolyzed water is generated by energizing both the positive and negative electrodes. . On the other hand, when the electrolyzed water generator 1-2 is stopped, an alkaline substance may flow into the first electrolyte chamber 5c from the second electrolyte chamber 5d side due to diffusion. In this case, if the diffusion suppressing member is installed, it is possible to suppress the inflow of the alkaline substance into the first electrolytic solution chamber 5c. This makes the first diaphragm 3a more difficult to deteriorate.
  • the porous member 5e examples include a sintered plastic porous material (manufactured by Fuji Chemical Co., Ltd.), a sintered ceramic porous material, and the like.
  • the power supply unit 7 has a power supply 7a, a control unit 7c that controls the power supply 7a, and a switch 7b (changeover switch) that switches power supply to the first cathode 4b and the second cathode 5b.
  • the positive electrode of the power supply 7a is connected to the anode 3b via wiring.
  • the negative electrode of the power supply 7a is connected to the first cathode 4b and the second cathode 5b via the switch 7b and two wires. That is, by switching the switch 7b, a negative voltage can be selectively applied to the first cathode 4b or the second cathode 5b.
  • the switch 7b is configured to be operable by a user.
  • the electrolyzed water generator 1-2 includes an electrolytic solution supply unit 8 that supplies an electrolytic solution (for example, salt water) to the first and second electrolytic solution chambers 5c and 5d of the electrolytic cell 2-2, the anode chamber 3 and It has a water supply unit 21 that supplies water to the cathode chamber 4 and a first generated water mixing unit 10, and is configured in the same manner as the electrolyzed water generator 1 according to the first embodiment described above.
  • the mixed water discharged from the electrolyzed water generator 1-2 is hypochlorous acid water whose pH is controlled to be slightly acidic/neutral.
  • a positive voltage is selectively applied to the anode 3b and a negative voltage is selectively applied to the first cathode 4b or the second cathode 5b.
  • the switch 7b changeover switch
  • the switch 7b changeover switch
  • the alkaline substance generated in the second electrolyte chamber 5d permeates the third diaphragm 5a to the first electrolyte chamber 5c and the first electrolyte chamber 5c. Diffusion to the first diaphragm 3a in contact with the first electrolyte chamber 5c can be suppressed.
  • the pH of the mixed product water can be adjusted at any time. It is possible to control the pH of the hypochlorous acid water obtained as a slightly acidic / neutral. Further, when the energization from the power supply portion 7 is switched to the second cathode 5b, the pH of the electrolyte in the second electrolyte chamber 5d shifts to the alkaline side.
  • the alkaline substance is discharged by the flow of the second electrolyte, and the flow of the first electrolyte hardly mixed with Therefore, the first diaphragm 3a of the first electrolytic solution chamber 5c is less likely to deteriorate and has good durability. Therefore, according to the second embodiment, it is possible to obtain an electrolyzed water generator that can be used for a long period of time.
  • a water quality change test and a continuous operation test were conducted as follows.
  • Water quality change test by energization ratio Using the electrolyzed water generator 1-2, pure water was flowed as raw water at 0.5 L/min, the electrolysis current was fixed at 2 A, and one cycle was 10 seconds. The energization of the first cathode and the second cathode in one cycle was switched to variously change the ratio of the energization time, and the water quality change (pH and effective chlorine concentration) of the mixed product water was measured.
  • FIG. 8 is a graph showing the relationship between the energization ratio (duty ratio) of the second cathode 5b and the water quality of the mixed water in the electrolyzed water generator 1-2 according to the second embodiment.
  • a characteristic line 112 indicates the change in pH with respect to the energization ratio of the second cathode 5b
  • a characteristic line 111 indicates the change in effective chlorine concentration with respect to the energization ratio of the second cathode 5b.
  • the energization ratio of the second cathode 5b is the ratio of the energization time of the second cathode 5b to the time of one cycle, as in the first embodiment.
  • the water quality (pH and effective chlorine concentration) of the mixed product water was measured by sampling the mixed product water for a time sufficiently longer than the cycle time so that the difference in water quality due to switching the power supply was not sufficiently integrated and affected. .
  • 3 mL/min of a 20% sodium chloride aqueous solution was supplied to each of the first electrolyte chamber 5c and the second electrolyte chamber 5d.
  • the acidic water (pH 5 to 6.5) is in a slightly acidic region (pH 5 to 6.5) with a high abundance ratio of the active ingredient HClO and is less affected by corrosion ( Hypochlorous acid water) can be obtained.
  • the effective chlorine concentration of the mixed product water is almost constant.
  • the pH of the mixed product water can be sufficiently controlled by the energization ratio of the second cathode 5b.
  • the porous member 5e is provided in the first electrolyte chamber 5c, diffusion of the alkaline substance into the first electrolyte chamber 5c is suppressed while the electrolysis cell is stopped.
  • the first diaphragm 3a deteriorates, the first diaphragm 3a is mechanically sandwiched between the porous member 5e and the anode 3b.
  • porous member 5e when the porous member 5e is provided in the first electrolytic solution chamber 5c, the porous member 5e also acts as a flow path resistance, and the flow rate of the electrolytic solution flowing into the first electrolytic solution chamber 5c is higher than the flow rate of the electrolytic solution. In some cases, the flow rate of the electrolyte flowing into the second electrolyte chamber 5d is greater. In that case, there is an advantage that the alkaline water generated in the second electrolyte chamber 5d can be efficiently discharged.
  • a flow control valve may be provided in the supply pipe 8b and/or the supply pipe 8c.
  • FIG. 9 is a diagram schematically showing a running-water electrolyzed water generator according to the third embodiment.
  • the electrolyzed water generator 1-3 according to the third embodiment connects at least two electrolysis cells 2, 2-1 in series, and for example, the first electrolysis cell 2 is used as raw water to be supplied to the second electrolysis cell 2-1.
  • the pH is adjusted stepwise using the first mixed product water.
  • the electrolyzed water generator 1-3 uses a so-called three-chamber type first electrolysis cell 2 and second electrolysis cell 2-1.
  • the inside of the first electrolytic cell 2 includes a first diaphragm (anode side diaphragm, anion exchange membrane) 3a and a second diaphragm (cathode side diaphragm, cation exchange membrane) 4a.
  • the electrolyte chamber 5 defined between the diaphragms is partitioned into three chambers, an anode chamber 3 and a cathode chamber 4 located on both sides of the electrolyte chamber 5 .
  • An anode 3b is provided in the anode chamber 3, and is closely opposed to the first diaphragm 3a.
  • a first cathode 4b is provided in the cathode chamber 4 and closely faces the second diaphragm 4a.
  • the anode 3b and the first cathode 4b are formed in the shape of rectangular plates of substantially the same size, and face each other with the electrolyte chamber 5 and the first and second diaphragms 3a and 4a interposed therebetween.
  • the electrolytic solution chamber 5 is a third diaphragm 5a made of a neutral membrane having no selectivity of ion permeation and allowing the passage of cations and anions. is partitioned into a second electrolyte chamber 5d.
  • a second cathode 5b is provided in the second electrolytic solution chamber 5d so as to closely face the third diaphragm 5a.
  • the second cathode 5b like the anode 3b and the first cathode 4b, is formed in a rectangular shape having approximately the same size as the anode 3b and the first cathode 4b.
  • the power supply unit 7 connected to the first electrolysis cell 2 includes a power supply 7a that supplies current necessary for electrolysis, a switch 7b that supplies current to the first cathode 4b and/or the second cathode 5b, the power supply 7a and the switch 7b. and a control unit 7c for controlling.
  • a switch 7b a changeover switch for switching power supply to the first cathode 4b and the second cathode 5b is used.
  • a constant current power supply is desirable as the power supply 7a.
  • the positive electrode of the power supply 7a is connected to the anode 3b of the first electrolytic cell 2 via wiring.
  • the negative electrode of the power supply 7a is connected to the first cathode 4b and the second cathode 5b via the switch 7b and two wires. By switching the switch 7b, a negative voltage can be selectively applied to the first cathode 4b and the second cathode 5b.
  • the switch 7b is configured to be operable by a user.
  • the second electrolysis cell 2-1 is connected to the first electrolysis cell 2 and the first product water mixing unit 10-1 used in the mixed product water supply line 10s, and is provided downstream of the first electrolysis cell 2. , has almost the same configuration as the first electrolytic cell 2 .
  • the interior of the second electrolytic cell 2-1 includes a first diaphragm (anode side diaphragm, anion exchange membrane) 3-1a and a second diaphragm (cathode side diaphragm, cation exchange membrane) 4-1a.
  • the electrolyte chamber 5-1 defined between the diaphragms is partitioned into three chambers, an anode chamber 3-1 and a cathode chamber 4-1 located on both sides of the electrolyte chamber 5-1.
  • An anode 3-1b is provided in the anode chamber 3-1 and faces the first diaphragm 3-1a.
  • a first cathode 4-1b is provided in the cathode chamber 4-1 and faces the second diaphragm 4-1a.
  • the anode 3-1b and the first cathode 4-1b are formed in the shape of rectangular plates of approximately the same size, sandwiching the electrolyte chamber 5-1 and the first and second diaphragms 3-1a and 4-1a. , facing each other.
  • the electrolyte chamber 5-1 is a third diaphragm 5-1a made of a neutral membrane that has no selectivity in ion permeation and allows passage of cations and anions, and a first electrolyte chamber 5-1c on the anode chamber 3 side. and a second electrolyte chamber 5-1d on the cathode chamber 4 side.
  • a second cathode 5-1b is provided in the second electrolyte chamber 5-1d so as to closely face the third diaphragm 5-1a.
  • the second cathode 5-1b is formed in a rectangular shape having approximately the same size as the anode 3-1b and the first cathode 4-1b.
  • Anode 3-1b has the same configuration as anode 3b.
  • the first cathode 4-1b has the same configuration as the first cathode 4b.
  • the second cathode 5-1b has the same configuration as the second cathode 5b.
  • the power supply unit 7-1 connected to the second electrolysis cell 2-1 includes a power supply 7-1a, a control unit 7-1c for controlling the power supply 7-1a, a first cathode 4-1b and a second cathode 5-1. It has a switch 7-1b (changeover switch) for switching power supply to 1b.
  • the positive electrode of the power supply 7-1a is connected to the anode 3-1b via wiring.
  • the negative electrode of the power supply 7-1a is connected to the first cathode 4-1b and the second cathode 5-1b via the switch 7-1b and two wires. That is, by switching the switch 7-1b, a negative voltage can be selectively applied to the first cathode 4-1b or the second cathode 5-1b.
  • the switch 7-1b is configured to be operable by the user.
  • the electrolyzed water generator 1-3 includes first and second electrolyte chambers 5c and 5d of the first electrolysis cell 2, and first and second electrolyte chambers 5-1c of the second electrolysis cell 2-1, 5-1d is provided with an electrolytic solution supply unit 8-1 for supplying an electrolytic solution (eg, salt water).
  • the water supply part 21 which supplies water to the anode chamber 3 and the cathode chamber 4 of the 1st electrolysis cell 2 is provided.
  • the first mixed product water obtained by mixing the anode-generated water and the cathode-generated water discharged from the anode chamber 3 and the cathode chamber 4 is added to the anode chamber 3-1 and the cathode chamber 4 of the second electrolytic cell 2-1.
  • -1 is provided with a first generated water mixing unit 10-1.
  • the first generated water mixing section 10-1 is used as a mixed generated water supply line 10s.
  • the electrolyte supply unit 8-1 has a salt water tank (electrolyte tank) 25 that stores an electrolyte 25a (eg, 20% sodium chloride aqueous solution). It also has a supply pipe 8a for guiding salt water from the salt water tank 25 to below the first and second electrolyte chambers 5c and 5d of the first electrolytic cell 2, and a liquid feed pump 29 provided in the supply pipe 8a. Furthermore, it has a drainage pipe 8f for discharging salt water from above the first and second electrolyte chambers 5c and 5d of the first electrolytic cell 2. As shown in FIG.
  • a supply pipe 8-1a branches from the supply pipe 8a in the vicinity of the outlet of the salt water tank 25, and guides the salt water below the first and second electrolyte chambers 5-1c and 5-1d.
  • a liquid transfer pump 29-1 is provided in the supply pipe 8-1a.
  • the supply pipe 8a is connected to a first electrolytic solution supply port 5f provided in the lower part of the first electrolytic solution chamber 5c of the electrolytic solution chamber 5, and functions as a first electrolytic solution supply line for supplying salt water.
  • 8b and a supply pipe 8c functioning as a second electrolyte supply line for supplying salt water by connecting to a second electrolyte supply port 5g provided in the lower portion of the second electrolyte chamber 5d of the electrolyte chamber 5. .
  • Electrolyzed water is thereby separately supplied to the first electrolyte chamber 5c and the second electrolyte chamber 5d.
  • a drain pipe 8d is connected to the first electrolyte drain port 5h and functions as a first electrolyte drain line for draining the electrolyte that has flowed through the first electrolyte chamber 5c.
  • a drain pipe 8e is connected to the second electrolyte drain port 5i and functions as a second electrolyte drain line for draining the electrolyte that has flowed through the second electrolyte chamber 5d. is provided.
  • the flow of salt water in the first electrolyte chamber 5c is separate from the flow of salt water in the second electrolyte chamber 5d.
  • the drain pipe 8d and the drain pipe 8e are merged to form the drain pipe 8f, and the electrolytic solutions in the drain pipe 8d and the drain pipe 8e are mixed and discharged.
  • the supply pipe 8-1a is connected to a first electrolyte supply port 5-1f provided in the lower portion of the first electrolyte chamber 5-1c of the electrolyte chamber 5-1 to supply salt water.
  • a supply pipe 8-1b functioning as a line is connected to a second electrolytic solution supply port 5-1g provided in the lower part of the second electrolytic solution chamber 5-1d of the electrolytic solution chamber 5-1 to supply salt water.
  • a supply pipe 8-1c functioning as an electrolyte solution supply line.
  • first electrolyte chamber 5-1c Above the first electrolyte chamber 5-1c, it is connected to the first electrolyte discharge port 5-1h and serves as a first electrolyte discharge line for draining the electrolyte that has flowed through the first electrolyte chamber 5-1c.
  • a functioning drain pipe 8-1d is connected.
  • a second electrolyte discharge line Above the second electrolyte chamber 5-1d, a second electrolyte discharge line is connected to the second electrolyte discharge port 5-1i and serves as a second electrolyte discharge line for draining the electrolyte that has flowed through the second electrolyte chamber 5-1d.
  • a functioning drain pipe 8-1e is connected.
  • the flow of salt water in the first electrolyte chamber 5-1c is separate from the flow of salt water in the second electrolyte chamber 5-1d.
  • the drain pipe 8-1d and the drain pipe 8-1e are merged to form the drain pipe 8-1f, and the electrolytic solutions in the drain pipe 8-1d and the drain pipe 8-1e are mixed and discharged.
  • the water supply unit 21 includes a water supply source 9 that supplies water, an opening/closing valve 28 provided near the outlet of the water supply source 9, and a first water supply pipe that guides water from the water supply source 9 to the lower portions of the anode chamber 3 and the cathode chamber 4. 21a.
  • the first electrolytic cell 2 also includes a first drain pipe 21b connected to a first drain port 3h and functioning as a first drain line for discharging water that has flowed through the anode chamber 3 from the upper portion of the anode chamber 3;
  • a second drain pipe 21c that is connected to the drain port 4h and functions as a second drain line for discharging the water that has flowed through the cathode chamber 4 from the upper portion of the cathode chamber 4 is provided.
  • the first water supply pipe 21a branches into a second water supply pipe 21e functioning as a first water supply line and a third water supply pipe 21f functioning as a second water supply line.
  • the second water supply pipe 21 e is connected to the first water supply port 3 f to supply water to the anode chamber 3 .
  • the third water supply pipe 21f is connected to the second water supply port 4f to supply water to the cathode chamber 4.
  • the first drain pipe 21b is connected to the middle portion of the second drain pipe 21c, and constitutes the first generated water mixing section 10-1 used as the mixed generated water supply line 10s.
  • the first mixed product water is hypochlorous acid water whose pH is controlled from a weak alkaline acid to a neutral range.
  • the first mixed product water obtained from the first electrolytic cell 2 is sent to the second electrolytic cell 2-1 by the first product water mixing section 10-1.
  • the downstream of the first generated water mixing section 10-1 is connected to the first water supply port 3-1f provided in the lower part of the anode chamber 3-1, and the third drainage pipe 10-1a for supplying the first mixed generated water.
  • a fourth drain pipe 10-1b connected to a second water supply port 4-1f provided in the lower part of the cathode chamber 4-1 to supply the first mixed product water.
  • the first generated water mixing unit 10-1, the third drain pipe 10-1a, and the fourth drain pipe 10-1b are connected to the anode chamber 3-1 and the cathode chamber 4-1. It can be used as the mixed product water supply line 10s for supplying the first mixed product water.
  • a fifth drain pipe 10-1c for draining the anode-generated water flowing through the anode chamber 3-1 is connected to the first drain port 3-1h provided in the upper part of the anode chamber 3-1.
  • a sixth drain pipe 10-1d for draining cathode-generated water flowing through the cathode chamber 4-1 is connected to a second outlet 4-1h provided in the upper portion of the cathode chamber 4-1.
  • the sixth drain pipe 10-1d is connected to the middle portion of the fifth drain pipe 10-1c, and mixes the anode-generated water and the cathode-generated water of the second electrolysis cell 2-1 to obtain second mixed generated water. It constitutes the second water mixing section 10-1e.
  • the second mixed product water is hypochlorous acid water whose pH is controlled to be slightly acidic or near neutral by the second electrolytic cell 2-1.
  • each pipe may be provided with an on-off valve or a flow control valve.
  • the electrolyzed water generator according to the third embodiment, mixed production of the first electrolysis cell 2 as raw water to be supplied to the anode chamber 3-1 and the cathode chamber 4-1 of the second electrolysis cell 2-1
  • water first mixed product water
  • the pH of the generated water is adjusted step by step in the first electrolytic cell 2 and the second electrolytic cell 2-1, and the final mixed product water (second mixed product water) can be obtained.
  • the electrolytic cell it is possible to use the electrolytic cell 2 or 2-2 used in the first embodiment or the second embodiment.
  • the electrolytic cell 2 used in the first embodiment is used.
  • the first electrolysis cell 2 and the second electrolysis cell 2-1 have the same configuration in material, shape, size, etc., but may have different configurations.
  • the electrolytic solution supply unit 8 shares the electrolytic solution supply unit for the first electrolytic cell 2 and the second electrolytic cell 2-1, but may be separate.
  • the pH of the mixed product water can be adjusted at any time. It is possible to control the pH of hypochlorous acid water obtained as water to be slightly acidic or near neutral. Further, when the current supply from the power supply portion 7 is switched to the second cathodes 5b and 5-1b, the pH of the electrolyte in the second electrolyte chambers 5d and 5-1d shifts to the alkaline side.
  • the third diaphragms 5a, 5-1a by separating the electrolyte chambers 5, 5-1 into the first electrolyte chambers 5c, 5-1c and the second electrolyte chambers 5d, 5-1d by the third diaphragms 5a, 5-1a, alkaline substances can be It is discharged by the flow of the second electrolytic solution and hardly mixed into the flow of the first electrolytic solution. Therefore, the first diaphragms 3a and 3-1a of the first electrolytic solution chambers 5c and 5-1c are less likely to deteriorate and have good durability. In addition to this, the alkalinity of the second electrolytic solution chambers 5d and 5-1d can be suppressed by performing stepwise pH adjustment in the first electrolytic cell 2 and the second electrolytic cell 2-1. Therefore, according to the third embodiment, it is possible to obtain an electrolyzed water generator that can be used for a longer period of time than the first and second embodiments.
  • the electrolysis current of the second electrolysis cell 2-1 was fixed at 1.0 A, and one cycle was 10 seconds.
  • the water quality (pH and effective chlorine concentration) of the mixed water produced in the second electrolysis cell 2-1 is measured. did.
  • FIG. 10 is a graph showing the relationship between the energization ratio (duty ratio) of the second cathode 5-1b of the second electrolysis cell 2-1 and the quality of the mixed product water in the electrolyzed water generator according to the third embodiment.
  • the characteristic line 113 is the effective chlorine concentration with respect to the energization ratio of the second cathode 5-1b of the second electrolytic cell 2-1
  • the characteristic line 114 is the energization ratio of the second cathode 5-1b of the second electrolytic cell 2-1. pH is shown respectively.
  • the energization ratio of the second cathode is the ratio of the energization time of the second cathode 5-1b to the time of one cycle.
  • the water quality (pH and effective chlorine concentration) of the mixed product water in the second electrolysis cell 2-1 is measured in a time sufficiently longer than the cycle time so that the difference in water quality due to the switching of the power supply is not sufficiently integrated and affected. I collected water. During the production of electrolyzed water, 3 mL/mL of 20% sodium chloride aqueous solution was added to each of the first electrolyte chamber 5c, the second electrolyte chamber 5d, the first electrolyte chamber 5-1c, and the second electrolyte chamber 5-1d. Separately fed.
  • the electrolysis current of the first electrolysis cell 2 was fixed at 1.0 A, the energization time of the first cathode 4b was set to 7 seconds and the energization time of the second cathode 5b was set to 3 seconds, and the pH was 6.9 and the effective chlorine concentration was 48 mg / L.
  • a mixed product water was obtained. When this mixed product water is used as the raw water to be supplied to the second electrolysis cell 2-1, as shown by the characteristic line 114, the pH fluctuates greatly from the second cathode 5-1b energization ratio of around 40%, and becomes acidic.
  • the acidic water (pH 5 to 6.5) is in a slightly acidic region (pH 5 to 6.5) with a high abundance ratio of the active ingredient HClO and is less affected by corrosion ( Hypochlorous acid water) can be obtained.
  • Hypochlorous acid water Hypochlorous acid water
  • At least two electrolytic cells 2 and 2-1 are connected in series using the electrolyzed water generator 1-3 according to the third embodiment. Then, the mixed product water of the first electrolytic cell 2 is used as the raw water to be supplied to the second electrolytic cell 2-1, and the pH is adjusted step by step. As a result, acidic water (next chlorous acid water) can be obtained. In addition, the amount of alkaline substances generated per electrolytic cell is suppressed, the abundance ratio of the active ingredient HClO is higher, and acidic water (hypochlorous acid water) in a slightly acidic range (pH 5 to 6.5) is produced. Obtainable. As a result, the influence of corrosion and the like is small, and it is possible to operate for a longer period of time.
  • FIG. 11 is a diagram schematically showing a running-water electrolyzed water generator according to the fourth embodiment.
  • the electrolyzed water generator according to the fourth embodiment two or more electrolyzed cells are connected in parallel to increase the amount of electrolyzed water generated.
  • the electrolyzed water generator 1-4 uses a so-called three-chamber type first electrolysis cell 2 and second electrolysis cell 2-1. Since the configurations of the first electrolytic cell 2 and the second electrolytic cell 2-1 are the same as those of the electrolytic cell shown in FIG. 9, description thereof is omitted here.
  • the electrolyzed water generator 1-4 includes first and second electrolyte chambers 5c and 5d of the first electrolysis cell 2, and first and second electrolyte chambers 5-1c of the second electrolysis cell 2-1, 5-1d is provided with an electrolytic solution supply unit 8-1 for supplying an electrolytic solution (eg, salt water). Further, a water supply unit 21 for supplying water to the anode chamber 3 and cathode chamber 4 of the first electrolysis cell 2 and the anode chamber 3-1 and cathode chamber 4-1 of the second electrolysis cell 2-1 is provided.
  • an electrolytic solution eg, salt water
  • a first water mixing unit 10 for mixing the anode-generated water and the cathode-generated water discharged from the anode chamber 3 and the cathode chamber 4, and the anode-generated water discharged from the anode chamber 3-1 and the cathode chamber 4-1. and a third generated water mixing unit 10-2 that mixes the cathode generated water, a fourth generated water mixing unit 10-2a that further mixes the first generated water mixing unit 10 and the third generated water mixing unit 10-2, Prepare.
  • the electrolytic solution supply unit 8-1 has the same configuration as the electrolytic solution supply unit shown in FIG.
  • the water supply unit 21 includes a water supply source 9 that supplies water, an opening/closing valve 28 provided near the outlet of the water supply source 9, and a first water supply pipe that guides water from the water supply source 9 to the lower portions of the anode chamber 3 and the cathode chamber 4. 21a and.
  • the electrolyzed water generator 1-4 also includes a first drain pipe 21b connected to the first drain port 3h and functioning as a first drain line for discharging the water that has flowed through the anode chamber 3 from the upper portion of the anode chamber 3;
  • a second drain pipe 21c is provided, which is connected to the second drain port 4h and functions as a second drain line for discharging the water that has flowed through the cathode chamber 4 from the upper portion of the cathode chamber 4.
  • the first water supply pipe 21a branches into a second water supply pipe 21e functioning as a first water supply line and a third water supply pipe 21f functioning as a second water supply line.
  • the second water supply pipe 21 e is connected to the first water supply port 3 f to supply water to the anode chamber 3 .
  • the third water supply pipe 21f is connected to the second water supply port 4f to supply water to the cathode chamber 4. As shown in FIG.
  • the water supply unit 21 further includes a fourth water supply pipe 21-1a that branches off from the first water supply pipe 21a downstream of the on-off valve 28 and guides water to the anode chamber 3-1 and the cathode chamber 4-1. It also has a fifth drain pipe 21-1b for discharging the water that has flowed through the anode chamber 3-1 from above the anode chamber 3-1. Further, a sixth drain pipe 21-1c for discharging water flowing through the cathode chamber 4 from the upper portion of the cathode chamber 4-1 is provided.
  • the first water supply pipe 21-1a branches into a second water supply pipe 21-1e functioning as a first water supply line and a third water supply pipe 21-1f functioning as a second water supply line.
  • the second water supply pipe 21-1e is connected to the first water supply port 3-1f to supply water to the anode chamber 3-1.
  • the third water supply pipe 21-1f is connected to the second water supply port 4-1f to supply water to the cathode chamber 4-1.
  • the first drainage pipe 21b is connected to the middle portion of the second drainage pipe 21c and constitutes the first generated water mixing section 10. As a result, the anode-generated water discharged from the first drainage pipe 21b and the cathode-generated water discharged from the second drainage pipe 21c are mixed to form the first mixed water. Also, the fifth drain pipe 21-1b is connected to the middle portion of the sixth drain pipe 21-1c to constitute the third generated water mixing section 10-2. As a result, the anode-generated water drained from the fifth drain pipe 21-1b and the cathode-generated water drained from the sixth drain pipe 21-1c are mixed to form the third mixed water.
  • the second drainage pipe 21c and the sixth drainage piping 21-1c join to form the fourth generated water mixing section 10-2a.
  • the fourth generated water mixing section 10-2a the first mixed generated water of the first generated water mixing section 10 and the third mixed generated water of the third generated water mixing section 10-2 are mixed to form the fourth mixed generated water.
  • the mixed product water is hypochlorous acid water whose pH is controlled near neutral.
  • the electrolyzed water generator 1-4 according to the fourth embodiment, at least two electrolysis cells are connected in parallel. As a result, it is possible to increase the amount of electrolyzed water generated. Further, it is possible to shift the switching timing of the first cathode and the second cathode of the two electrolytic cells, so that more precise mixing in the fourth water mixing section 10-2a is possible. Therefore, it is possible to operate without providing a water storage section in the rear stage of the fourth generated water mixing section 10-2a.
  • the electrolyzed water generator 1-4 according to the fourth embodiment is used, similarly to the first embodiment, even if the quality of the raw water fluctuates, the pH of the mixed product water can be adjusted at any time. Therefore, it is possible to control the pH of the hypochlorous acid water obtained as the mixed product water to be slightly acidic or near neutral. Further, when the current supply from the power supply portion 7 is switched to the second cathodes 5b and 5-1b, the pH of the electrolyte in the second electrolyte chambers 5d and 5-1d shifts to the alkaline side.
  • the electrolytic cell it is possible to use the electrolytic cell 2 or 1-2 used in the first embodiment or the second embodiment.
  • the first electrolytic cell and the second electrolytic cell can also have different configurations.
  • the electrolytic solution supply unit 8 shares the electrolytic solution supply unit for the first electrolytic cell 2 and the second electrolytic cell 2-1, but may be separate.
  • FIG. 12 shows a diagram schematically representing an electrolytic cell used in the fifth embodiment.
  • this electrolytic cell 2-3' is a so-called three-chamber type electrolytic cell.
  • a first diaphragm 3-2a made of an anion-exchange membrane as a diaphragm on the anode side
  • a second diaphragm 4-2a made of a cation-exchange membrane as a diaphragm on the cathode side are provided.
  • the electrolyte chamber 5-2 defined between the diaphragms is partitioned into three chambers, an anode chamber 3-2 and a cathode chamber 4-2 located on both sides of the electrolyte chamber.
  • An anode 3-2b is provided inside the anode chamber 3-2 so as to closely face the first diaphragm 3-2a. -2b is provided.
  • the anode 3-2b and the first cathode 4-2b are formed in rectangular shapes of approximately the same size, sandwiching the electrolytic solution chamber 5-2 and the first and second diaphragms 3-2a and 4-2a. facing each other.
  • the anode 3-2b has the same configuration as the anode 3b in FIG.
  • the first cathode 4-2b has the same configuration as the first cathode 4b in FIG.
  • a part of the cell 31a that defines the anode chamber 3-2 is open.
  • a part of the cell 31b that defines the cathode chamber 4-2 is opened.
  • a resin excellent in acid resistance and alkali resistance such as vinyl chloride, polypropylene, or polyethylene, can be used.
  • the electrolyte chamber 5-2 is a third diaphragm 5-2a made of a neutral membrane that has no selectivity for ion permeation and allows cations and anions to pass through, and is located on the side of the first electrolyte chamber 5 on the anode chamber 3-2 side.
  • a second cathode 5-2b is provided in the second electrolyte chamber 5-2d so as to closely face the third diaphragm 5-2a.
  • the second cathode 5-2b like the first cathode 4-2b, is formed in a rectangular shape having approximately the same size as the first cathode 4-2b.
  • the second cathode 5-2b has the same configuration as the second cathode 5b in FIG.
  • the third diaphragm 5-2a is provided between the second cathode 5-2b and the first diaphragm 3-2a, and the electrolyte chamber 5-2 are separated into a first electrolyte chamber 5-2c on the anode chamber 3-2 side and a second electrolyte chamber 5-2d on the cathode chamber 4-2 side.
  • the pH of the electrolyte in the second electrolyte chamber 5-2d shifts to the alkaline side, but alkaline substances are discharged by the flow of the second electrolyte, and the first Almost no entrainment in the electrolyte flow. Therefore, the pH of the first electrolyte chamber 5-2c can be maintained closer to neutral than the pH of the second electrolyte chamber 5-2d. Therefore, the first diaphragm 3-2a of the first electrolyte chamber 5-2c is less likely to deteriorate. Thereby, an electrolytic cell that can be used for a long period of time is obtained.
  • FIG. 13 schematically shows a storage-type electrolyzed water generator 1-5 according to a fifth embodiment using the example of the electrolysis cell of FIG.
  • the electrolysis cell 2-3 used in this embodiment has the same configuration as the electrolysis cell 2-3' shown in FIG. is provided with a first electrolytic solution supply port 5-2f.
  • a first electrolytic solution discharge port 5-2h for discharging the electrolytic solution that has flowed through the first electrolytic solution chamber 5-2c is provided in the upper portion of the first electrolytic solution chamber 5-2c.
  • a second electrolytic solution supply port 5-2g for supplying an electrolytic solution is provided in the lower portion of the second electrolytic solution chamber 5-2d.
  • a second electrolytic solution discharge port 5-2i for draining the electrolytic solution that has flowed through the second electrolytic solution chamber 5-2d is provided in the upper portion of the second electrolytic solution chamber 5-2d.
  • the electrolyzed water generator 1-5 includes an electrolyte supply unit 8 that supplies electrolyte (eg, salt water) to the electrolyte chamber 5-2 of the electrolytic cell 2-3. Further, a water tank 32 is provided for storing together water as raw water to be supplied to the anode chamber 3-2 and the cathode chamber 4-2, the anode generated water, and the cathode generated water. Further, a power supply unit 7 having a power source 7a for applying a positive voltage to the anode 3-2b and a negative voltage to the first cathode 4-2b and/or the second cathode 5-2b is provided.
  • electrolyte eg, salt water
  • the power supply unit 7 includes a power source 7a that supplies a current necessary for electrolysis, a switch 7b that energizes the first cathode 4-2b and/or the second cathode 5-2b, and a control unit 7c that controls the power source 7a and the switch 7b. and
  • a switch 7b a selector switch for switching power supply to the first cathode 4-2b and the second cathode 5-2b is used.
  • a constant current power supply is desirable as the power supply 7a.
  • the positive electrode of the power supply 7a is connected to the anode 3-2b of the electrolytic cell 2-3 via wiring.
  • the negative electrode of the power supply 7a is connected to the first cathode 4-2b and the second cathode 5-2b via a switch 7b and two wires. A negative voltage can be selectively applied to the two cathodes 5-2b.
  • the electrolyte supply unit 8 includes a salt water tank (electrolyte tank) 25 storing an electrolyte 25a (for example, a 20% sodium chloride aqueous solution (salt water)), and leads the salt water from the salt water tank 25 to the lower part of the electrolyte chamber 5-2. It has a supply pipe 8a, a liquid feed pump 29 provided in the supply pipe 8a, and a drain pipe 8f for discharging salt water from above the electrolytic solution chamber 5-2.
  • the supply pipe 8a is connected to a first electrolyte supply port 5-2f provided in the lower part of the first electrolyte chamber 5-2c of the electrolyte chamber 5-2, and supplies salt water.
  • a second electrolyte supply port 5-2g provided in the lower part of the second electrolyte chamber 5-2d of the chamber 5-2 and branches to a supply pipe 8c for supplying salt water.
  • the electrolyte is separately supplied to the first electrolyte chamber 5-2c and the second electrolyte chamber 5-2d.
  • the supply pipe 8b and the supply pipe 8c from the salt water tank 25 are passed through the through holes 32b and 32c provided in the bottom of the water tank 32, the lower part of the first electrolytic solution chamber 5-2c and the second electrolytic solution chamber. It connects to the bottom of 5-2d.
  • first electrolyte chamber 5-2c Above the first electrolyte chamber 5-2c, it is connected to the first electrolyte discharge port 5-2h and serves as a first electrolyte discharge line for draining the electrolyte that has flowed through the first electrolyte chamber 5-2c.
  • a functioning drain pipe 8d is connected.
  • a second electrolyte discharge port 5-2i is connected to the upper portion of the second electrolyte chamber 5-2d, and a second electrolyte discharge port 5-2i drains the electrolyte that has flowed through the second electrolyte chamber 5-2d.
  • a drain pipe 8e that functions as a line is connected. Therefore, the flow of salt water in the first electrolyte chamber 5-2c is separate from the flow of salt water in the second electrolyte chamber 5-2d.
  • the drain pipe 8d and the drain pipe 8e are merged to form the drain pipe 8f, and the electrolytic solutions in the drain pipe 8d and the drain pipe 8e are mixed and discharged.
  • the water storage area 10-3 includes a water supply source, a first water supply line that supplies water to the anode chamber, a second water supply line that supplies water to the cathode chamber, and a mixture of the water produced by the anode and the water produced by the cathode. It also has a function of functioning as a first generated water mixing section that prepares generated water (first mixed generated water).
  • the mixed product water obtained in the water tank 32 is hypochlorous acid water whose pH is controlled to be slightly acidic/neutral.
  • a stirrer (not shown) can be installed in the water tank 32 as needed.
  • each pipe may be provided with an on-off valve or a flow control valve.
  • the electrolyzed water generator 1-5 configured as described above actually electrolyzes salt water to generate acidic water (hypochlorous acid and hydrochloric acid) and alkaline water (sodium hydroxide) to obtain mixed generated water. Operation will be explained. As shown in FIG. 13, the liquid feed pump 29 is operated to supply salt water from the salt water tank 25 to the first electrolyte chamber 5-2c and the second electrolyte chamber 5-2d of the electrolytic cell 2-3. The anode chamber 3-2 and the cathode chamber 4-2 are filled with water in the water storage area 10-3.
  • water is electrolyzed at the first cathode 4-2b to produce hydrogen gas and sodium hydroxide in the cathode chamber 4-2.
  • the generated sodium hydroxide aqueous solution and hydrogen gas are mixed into the raw water in the water storage tank 32 from the cathode chamber 4-2.
  • Chlorine ions ionized in the salt water of the first electrolyte chamber 5-2c and the second electrolyte chamber 5-2d are attracted to the anode 3-2b, pass through the first diaphragm 3-2a, and flow into the anode chamber. Flow into 3-2. Then, the chlorine is oxidized at the anode 3-2b to generate chlorine gas. Immediately thereafter, chlorine gas reacts with water to produce hypochlorous acid and hydrochloric acid. Hypochlorous acid and hydrochloric acid generated in the anode chamber 3 mix with raw water in the water tank 32 . In this manner, hypochlorous acid water having a pH adjusted is obtained as mixed product water in the water tank 32 .
  • a positive voltage and a negative voltage are applied from the power supply 7a to the anode 3-2b and the second cathode 5-2b, respectively.
  • the sodium ions ionized in the salt water in the first electrolyte chamber 5-2c and the second electrolyte chamber 5-2d are attracted to the second cathode 5-2b.
  • Sodium ions in the first electrolyte chamber 5-2c can pass through the third diaphragm 5-2a and reach the second cathode 5-2b in the second electrolyte chamber 5-2d.
  • Electrolysis of salt water at the second cathode 5-2b produces hydrogen gas and an aqueous sodium hydroxide solution in the second electrolyte chamber 5-2d.
  • the inside of the second electrolytic solution chamber 5-2d shifts to the alkaline side.
  • the generated alkaline water (sodium hydroxide aqueous solution) and hydrogen gas flow out from the second electrolyte chamber 5-2d to the drain pipe 8e due to the flow of salt water in the second electrolyte chamber 5-2d, and then to the drain pipe 8d. It mixes with the electrolytic solution and is discharged to the outside through the drain pipe 8f.
  • the alkaline water generated in the second electrolyte chamber 5-2d is discharged from the second electrolyte chamber 5-2d without flowing into the cathode chamber 4-2 and the first electrolyte chamber 5-2c. . Therefore, the cathode chamber 4-2 and the first electrolyte chamber 5-2c do not shift to the alkaline side. Therefore, the first diaphragm 3-2a in the first electrolyte chamber 5-2c is not exposed to the strong alkali and is less likely to deteriorate. Further, in the cathode chamber 4-2, the water in the water tank 32 is hardly mixed with hydrogen gas and sodium hydroxide aqueous solution as alkaline water.
  • Chlorine ions ionized in the salt water in the first electrolyte chamber 5-2c and the second electrolyte chamber 5-2d are attracted to the anode 3-2b, pass through the first diaphragm 3-2a, It flows into chamber 3-2. At this time, the chlorine ions in the first electrolyte chamber 5-2c can permeate the third diaphragm 5-2a. Chlorine ions are oxidized at the anode 3-2b to generate chlorine gas. After that, the chlorine gas reacts with water in the anode chamber 3-2 to produce hypochlorous acid and hydrochloric acid. The generated hypochlorous acid and hydrochloric acid are mixed into the water in the water tank 32 from the anode chamber 3-2.
  • the alkaline water produced in the second electrolyte chamber 5-2d is discharged outside, and almost no alkaline water is mixed in the cathode chamber 4-2. Therefore, regarding the pH of the hypochlorous acid water obtained as the mixed product water in the water tank 32, the pH when power is supplied to the second cathode 5-2b is the pH when power is supplied to the first cathode 4-2b. lower than
  • the water used as raw water contains different impurities depending on the region and location, and especially the carbonic acid component has an interference effect toward weak alkalinity. Therefore, depending on the water used, the pH adjustment point may not match and may shift slightly.
  • the second cathode 5-2b is provided in the electrolyte chamber 5-2, and the switch 7b is set to the first cathode 4-2b or the second cathode 5.
  • Power can be supplied by switching to -2b.
  • the first cathode 4-2b in the cathode chamber 4-2 and the second cathode 5-2b in the second electrolyte chamber 5-2d are selectively switched to energize the sodium hydroxide in the cathode chamber 4-2.
  • the pH of the hypochlorous acid water obtained as mixed water in the water reservoir 32 can be adjusted.
  • the pH of the mixed product water can be adjusted at any time, and the pH of the hypochlorous acid water obtained as the mixed product water can be controlled to be slightly acidic or near neutral.
  • a third diaphragm 5-2a is provided between the second cathode 5-2b and the first diaphragm 3-2a, and the electrolyte chamber 5-2 is replaced with the first electrolyte chamber 5- on the side of the anode chamber 3-2. 2c and a second electrolyte chamber 5-2d on the side of the cathode chamber 4-2.
  • the pH of the electrolyte in the second electrolyte chamber 5-2d shifts to the alkaline side, but alkaline substances are discharged by the flow of the second electrolyte.
  • the pH of the first electrolyte chamber 5-2c can be maintained closer to neutral than the pH of the second electrolyte chamber 5-2d. Therefore, the first diaphragm 3-2a of the first electrolyte chamber 5-2c is less likely to deteriorate and has good durability.
  • an electrolyzed water generator that can be used for a long period of time is obtained.
  • the anode chamber 3-2 and the cathode chamber 4-2 are respectively a region with a high concentration of acidic water and a region with a high concentration of alkaline water.
  • a stirrer (not shown) in the water tank 32, it is possible to bring the pH of the water close to slightly acidic/neutral to make the water quality uniform.
  • a water quality change test and a continuous operation test were conducted as follows.
  • FIG. 14 is a graph showing the relationship between the energization ratio (duty ratio) of the second cathode 5-2b and the water quality of the mixed water in the electrolyzed water generator according to the fifth embodiment 1-5.
  • a characteristic line 115 indicates the change in pH with respect to the energization ratio of the second cathode 5-2b
  • a characteristic line 116 indicates the change in effective chlorine concentration with respect to the energization ratio of the second cathode 5-2b.
  • the energization ratio of the second cathode is the ratio of the energization time of the second cathode 5-2b to the time of one cycle.
  • the water quality (pH and effective chlorine concentration) of the mixed water was measured after the mixed water was sold sufficiently so that the difference in water quality due to the power switching was not sufficiently accumulated and affected.
  • the effective chlorine concentration of the mixed product water is almost constant as shown by the characteristic line 116, but the pH becomes acidic as shown by the characteristic line 115. become. This is because the alkaline substance produced at the second cathode 5-2b is released only into the second electrolyte chamber 5-2d and is not mixed with the mixed product water.
  • the pH fluctuates greatly from around 20% of the electrification ratio of the second cathode 5-2b, and the raw water is acidified.
  • the acidic water (pH 5 to 6.5) is in a slightly acidic region (pH 5 to 6.5) with a high abundance ratio of the active ingredient HClO and is less affected by corrosion ( Hypochlorous acid water) can be obtained. Furthermore, when the energization ratio of the second cathode 5-2b is increased and only the second cathode 5-2b is used without using the first cathode 4-2b (100% energization ratio), the mixed product water is strongly acidic. I understand.
  • pure water is used as raw water. From this, when hard water is used, the energization ratio of the second cathode 5-2b, which indicates a slightly acidic region, shifts to a higher side.
  • Continuous operation test Using the electrolyzed water generator 1-5, a continuous operation test was performed as follows. As raw water, 20 L of pure water was stored in the water tank 32 . During the production of electrolyzed water, a 20% sodium chloride aqueous solution was supplied to the first electrolyte chamber 5-2c and the second electrolyte chamber 5-2d at 3 mL/min.
  • the electrolysis current is fixed at 2 A, one cycle is 10 seconds, and the electrification ratio of the second cathode 5-2b is 60% (the electrification time to the first cathode 4-2b is Electrolysis was carried out for 60 minutes with the setting of 4 seconds, and the energization time of the second cathode 5-2b of 6 seconds). While replacing the water in the water tank every 60 minutes, the electrolyzed water generator is operated for about 700 hours, and the pH and effective chlorine concentration of the first mixed product water obtained are measured every 24 hours at the beginning and every week thereafter. measured to
  • Comparative Example 3 an electrolyzed water generator having the same configuration as that of the fifth embodiment except that the third diaphragm 5-2a was not provided in the electrolyte chamber 5-2 of the electrolysis cell 2-3 was prepared.
  • the electrolyzed water generator was operated for about 700 hours under the same conditions.
  • the pH and available chlorine concentration were measured in the same manner as in the fifth embodiment as changes in the quality of the resulting mixed product water.
  • FIG. 15 shows a graph showing the continuous operation test results of the electrolyzed water generator 1-5 according to the fifth embodiment. In the figure, the horizontal axis is the operating time.
  • a characteristic line 117 indicates the change in pH of the mixed product water obtained by the electrolyzed water generator 1-5.
  • a characteristic line 118 indicates changes in the effective chlorine concentration of the mixed water produced by the electrolyzed water generator 1-5.
  • a characteristic line 120 indicates the effective chlorine concentration of Comparative Example 3, and a characteristic line 119 indicates the pH of Comparative Example 3, respectively.
  • Comparative Example 3 after 48 hours, the pH increased as indicated by characteristic line 119 and the effective chlorine concentration decreased as indicated by characteristic line 120.
  • the electrolytic cell of Comparative Example 3 was disassembled and investigated, it was confirmed that the first diaphragm in the anode chamber became cloudy and the membrane was torn in places. From this, it is considered that the electrolyte chamber was alkalinized by the alkaline substance generated at the second cathode, and the first diaphragm in contact with the electrolyte chamber was degraded and fractured.
  • the electrolyzed water generator 1-5 even if it operates for a long time, as shown in characteristic lines 118 and 117, the effective chlorine concentration and pH are constant, and the quality of the mixed water is change is not allowed.
  • the electrolyte chamber 5-2 is separated from the first electrolyte chamber 5-2c on the side of the anode chamber 3-2 and the cathode chamber 4- by the third diaphragm 5-2a made of a neutral membrane having no ion permeation selectivity.
  • the second electrolyte chamber 5-2d is divided into the second electrolyte chamber 5-2d, and the second cathode 5-2b is provided in the second electrolyte chamber 5-2d so as to closely face the third diaphragm 5-2a. That is, the alkaline substance produced at the second cathode 5-2b is produced only in the second electrolyte chamber 5-2d, immediately discharged from the second electrolyte chamber 5-2d, and transferred to the first diaphragm 3-2a. This is probably because the action on alkaline substances was suppressed.
  • the electrolyte chamber 5-2 is separated from the first electrolyte chamber 5-2c on the side of the anode chamber 3-2 and the cathode chamber 4 by the third diaphragm 5-2a made of a neutral membrane having no ion permeation selectivity.
  • a second electrolyte chamber 5-2d on the -2 side is partitioned, and a second cathode 5-2b is provided in the second electrolyte chamber 5-2d so as to be closely opposed to the third diaphragm 5-2a.
  • FIG. 16 shows a diagram schematically showing an application example of the storage-type electrolyzed water generator according to the fifth embodiment.
  • the electrolyzed water generator 1-6 shown in FIG. 16 has a supply pipe 8a and a supply pipe 8b from a salt water tank (electrolyte tank) 25 connected to the lower portion of the first electrolytic solution chamber 5-2c and the second electrolytic solution chamber 5.
  • the electrolyzed water generator 1-5 of FIG. different. Other than that, it has the same configuration as the electrolyzed water generator shown in FIG. 13, and has the same effects.
  • any water storage container 32-1 that can secure the water storage area 10-3 can be used, and the electrolytic cell 2-3 can be used as the water storage tank. 32 does not have to be installed. In other words, it can be used simply by putting the electrolysis cell 2-3 into an arbitrary water storage container 32-1, so that the cost is low.
  • Such a configuration is more suitable when the electrolytic cell 2-3 is made more compact.
  • the supply pipe 8a and the drain pipe 8f are made of a flexible material so that the electrolytic cell 2-3 can be easily handled.
  • FIG. 17 is a diagram schematically showing a storage-type electrolyzed water generator according to the sixth embodiment.
  • the electrolyzed water generator 1-7 uses a so-called three-chamber type electrolysis tank (electrolysis cell) 2-4.
  • the inside of the electrolytic cell 2-4 is equipped with a first diaphragm (anode side diaphragm, anion exchange membrane) 3-2a and a second diaphragm (cathode side diaphragm, cation exchange membrane) 4-2a.
  • the electrolyte chamber 5-2 defined between the diaphragms is partitioned into three chambers, an anode chamber 3-2 and a cathode chamber 4-2 located on both sides of the electrolyte chamber 5-2.
  • An anode 3-2b is provided in the anode chamber 3-2 and faces the first diaphragm 3-2a.
  • a cathode 4-2b is provided in the cathode chamber 4-2 and faces the second diaphragm 4-2a.
  • the anode 3-2b and the cathode 4-2b are formed in the shape of rectangular plates of approximately the same size, and are separated from each other with the electrolytic solution chamber 5-2 and the first and second diaphragms 3-2a and 4-2a interposed therebetween. facing each other.
  • the electrolyte chamber 5-2 is a third diaphragm 5-2a made of a neutral membrane having no selectivity of ion permeation and allowing the passage of cations and anions.
  • a second cathode 5-2b is provided in the second electrolyte chamber 5-2d so as to closely face the third diaphragm 5-2a.
  • the second cathode 5-2b like the anode 3-2b and the first cathode 4-2b, is formed in a rectangular shape having approximately the same size as the anode 3-2b and the first cathode 4-2b.
  • the second cathode 5-2b is a so-called insoluble electrode obtained by applying a catalyst such as Ir or Pt to a metal plate having a large number of through holes formed in Ti, or a metal plate made of Ti having a large number of through holes formed therein.
  • a catalyst such as Ir or Pt
  • a metal plate having a large number of through holes formed in Ti or a metal plate made of Ti having a large number of through holes formed therein.
  • this electrolytic cell 2-4 a part of the cell 31a that defines the anode chamber 3-2 is open. Similarly, a part of the cell 31b that defines the cathode chamber 4-2 is opened.
  • at least part of the first electrolyte chamber 5-2c on the anode chamber 3-2 side is provided with a porous member 5-2e, which is a water-permeable diffusion suppressing member for controlling the diffusion of alkaline substances.
  • a sintered plastic porous body (manufactured by Fuji Chemical Co.
  • the power supply unit 7 has a power supply 7a, a control unit 7c for controlling the power supply 7a, and a switch 7b for switching power supply to the first cathode 4-2b and the second cathode 5-2b.
  • the positive electrode of the power supply 7a is connected to the anode 3-2b via wiring.
  • the negative electrode of the power supply 7a is connected to the first cathode 4-2b and the second cathode 5-2b via the switch 7b and two wires. That is, by switching the switch 7b, a negative voltage can be selectively applied to the first cathode 4-2b or the second cathode 5-2b.
  • the switch 7b is configured to be operable by a user.
  • the electrolyzed water generator 1-7 includes an electrolyte supply unit 8 that supplies an electrolyte, such as salt water, to the first and second electrolyte chambers 5-2c and 5-2d of the electrolytic cell 2-4, It is configured in the same manner as the electrolyzed water generator 1-5 according to the fifth embodiment described above.
  • an electrolyte supply unit 8 that supplies an electrolyte, such as salt water, to the first and second electrolyte chambers 5-2c and 5-2d of the electrolytic cell 2-4, It is configured in the same manner as the electrolyzed water generator 1-5 according to the fifth embodiment described above.
  • the mixed water discharged from the electrolyzed water generator 1-7 is hypochlorous acid water whose pH is controlled to near neutral. That is, in a normal generating operation, a positive voltage is applied to the anode 3-2b and a negative voltage is selectively applied to the first cathode 4-2b or the second cathode 5-2b.
  • a positive voltage is applied to the anode 3-2b and a negative voltage is selectively applied to the first cathode 4-2b or the second cathode 5-2b.
  • the switch 7b and applying a voltage to the second cathode 5-2b it is possible to further adjust the pH according to the connection duty.
  • the porous member 5-2e the alkaline substance generated in the second electrolytic solution chamber 5-2d is released into the first electrolytic solution chamber 5-2c when the electrolyzed water generator 1-7 is stopped. And diffusion to the first diaphragm 3-2a in contact with the first electrolyte chamber 5-2c can be suppressed.
  • the pH of the mixed product water can be adjusted at any time even if the quality of the raw water fluctuates. It is possible to control the pH of the hypochlorous acid water obtained as a slightly acidic / neutral. Further, when the power supply from the power supply portion 7 is switched to the second cathode 5-2b, the pH of the electrolyte in the second electrolyte chamber 5-2d shifts to the alkaline side.
  • the alkaline substance is discharged by the flow of the second electrolyte. and is hardly mixed into the flow of the first electrolytic solution. Therefore, the first diaphragm 3-2a of the first electrolytic solution chamber 5-2c is less likely to deteriorate and has good durability. Therefore, according to the sixth embodiment, it is possible to obtain an electrolyzed water generator that can be used for a long period of time.
  • the present invention can be used as a commercial electrolyzed water generator and a compact electrolyzed water generator for home use.
  • Second cathode 5c, 5-1c, 5-2c... first electrolyte Chamber 5d, 5-1d, 5-2d Second electrolytic solution chamber 5e, 5-2e
  • Diffusion suppressing member 7 Feeder 7-1 Feeder (second feeder) , 7b... switch, 7-1b... switch (second switch), 7c, 7-1c... control section, 8a, 8-1a... supply pipe, 8b, 8-1b... supply pipe (first electrolytic solution supply line) , 8c, 8-1c... Supply pipe (second electrolytic solution supply line), 10... First generated water mixing portion, 10-1... First generated water mixing portion, 10-1e... Second generated water mixing portion, 10 -2... Third generated water mixing unit 10-2a... Fourth generated water mixing unit 10-3... Water storage area 10s... Mixed generated water supply line 12... Online pH meter (pH measurement unit)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

An electrolyzed water generator according to one embodiment is provided with: a first electrolysis cell which is provided with an electrolyte solution chamber, a positive electrode chamber that is divided from the electrolyte solution chamber by means of a first diaphragm, a negative electrode chamber that is divided from the electrolyte solution chamber by means of a second diaphragm, a positive electrode that is arranged in the positive electrode chamber so as to face the first diaphragm, a first negative electrode that is arranged in the negative electrode chamber so as to face the second diaphragm, a second negative electrode that is arranged in the electrolyte solution chamber so as to face the positive electrode with the first diaphragm being interposed therebetween, and a third diaphragm that is arranged between the second negative electrode and the first diaphragm so as to divide the inside of the electrolyte solution chamber into a first electrolyte solution chamber which is on the positive electrode chamber side and a second electrolyte solution chamber which is on the negative electrode chamber side; a first feeding unit which feeds power to the positive electrode, the first negative electrode and the second negative electrode; a switch which applies a current from the feeding unit to the first negative electrode and/or the second negative electrode; and a first product water mixing unit which forms a first mixed product water by mixing product water at the positive electrode and product water at the negative electrode with each other, said product waters being obtained by electrolyzing an electrolyte solution in the first electrolysis cell.

Description

電解セル、及び電解水生成装置Electrolytic cell and electrolyzed water generator
 本発明は、電解セル、及び電解水生成装置に関する。 The present invention relates to an electrolytic cell and an electrolytic water generator.
 近年、水を電解して様々な機能を付与した電解水が知られている。例えば、殺菌除臭の機能を有する電解水(次亜塩素酸水)を生成する電解水生成装置が、また飲料や洗浄防錆の機能を有する電解水(アルカリイオン水)を生成する電解水生成装置が提案されている。電解水生成装置は、電解液中あるいは水中の電解質を電解して電解生成物を得て、これにより、様々な機能を付与した電解水を生成している。電解質としては、水に含まれるイオン成分以外にも、人為的に添加した塩化物、酸化物、アルカリ塩、炭酸塩、有機酸などがある。 In recent years, electrolyzed water, which is obtained by electrolyzing water to give it various functions, is known. For example, an electrolyzed water generator that generates electrolyzed water (hypochlorous acid water) that has a function of sterilization and deodorization, and an electrolyzed water generator that generates electrolyzed water (alkaline ion water) that has a function of drinking and washing and rust prevention. A device has been proposed. An electrolyzed water generator electrolyzes an electrolyte in an electrolytic solution or water to obtain an electrolytic product, thereby generating electrolyzed water to which various functions are added. Electrolytes include artificially added chlorides, oxides, alkali salts, carbonates, organic acids, etc., in addition to ion components contained in water.
 次亜塩素酸水を生成する電解水生成装置には、例えば、1対の電極の間に2つの隔膜を設け、陽極室と陰極室の間に2つの隔膜で区切られた電解液室を備えた3室型電解セルを用いたものがある。次亜塩素酸水を生成する3室型電解セルでは、塩素イオンを含む電解液を中央の電解液室だけに供給し、陽極室及び陰極室にはそれぞれ水を流通する。陽極生成物及び陰極生成物を電解液から分離した形態で、陽極室から陽極生成水、及び陰極室から陰極生成水を生成する。
 生成された陽極生成水(次亜塩素酸水)は基本的に酸性である。しかしながら、次亜塩素酸水は、酸性が強いほど、塩分(残留塩素イオン濃度)が濃いほど塩素ガスを発生しやすい。一方、次亜塩素酸水は、pH8を超えるアルカリ性では次亜塩素酸が次亜塩素酸イオンへと変わってしまい、殺菌能力が低下する。
An electrolyzed water generator that generates hypochlorous acid water, for example, is provided with two diaphragms between a pair of electrodes, and an electrolyte chamber separated by two diaphragms between an anode chamber and a cathode chamber. There is also a type using a three-chamber type electrolytic cell. In a three-chamber type electrolytic cell that produces hypochlorous acid water, an electrolytic solution containing chloride ions is supplied only to the central electrolytic solution chamber, and water is circulated to the anode chamber and the cathode chamber, respectively. Anode-produced water is produced from the anode chamber and cathode-produced water is produced from the cathode chamber in a form in which the anode and cathode products are separated from the electrolyte.
The generated anode-generated water (hypochlorous acid water) is basically acidic. However, hypochlorous acid water is more likely to generate chlorine gas as its acidity is stronger and its salt content (residual chlorine ion concentration) is higher. On the other hand, when the hypochlorous acid water is alkaline over pH 8, the hypochlorous acid changes to hypochlorous acid ions, and the sterilization ability is lowered.
特開2018-30041号公報JP 2018-30041 A 特開2018-30043号公報JP 2018-30043 A 特開2018-30044号公報JP 2018-30044 A 特開2018-30045号公報JP 2018-30045 A 特開2019-162607号公報JP 2019-162607 A
 3室型電解水生成装置で生成された陰極生成水と陽極生成水を混合することで、陰極生成水に含まれる水酸化物イオンOHで陽極生成水に含まれる水素イオンHを中和し、混合水のpHを中性付近に制御する方法が提案されている。陽極室及び陰極室に流通する水の硬度やpHの変動に追随して陰極生成水に含まれる水酸化物イオンOHの量を正確に制御する方法として、電解液室に第2陰極を設けて、陰極室の第1陰極と切り替えながら、電解を行う方法が提案されている。しかし、このような構成の場合、電解液室が強アルカリとなり、陽極に接して設けられた隔膜が使用とともに劣化し破膜してしまうなど、電解セルが長期間の実用に耐えられないという課題がある。
 本発明の課題は、長期間の使用が可能な電解セル、及び当該電解セルを備えた電解水生成装置を得ることにある。
By mixing the cathode-generated water and the anode-generated water generated by the three-chamber electrolyzed water generator, the hydroxide ions OH - contained in the cathode-generated water neutralize the hydrogen ions H + contained in the anode-generated water. However, a method of controlling the pH of the mixed water near neutral has been proposed. A second cathode is provided in the electrolyte chamber as a method for accurately controlling the amount of hydroxide ions OH contained in the cathode-generated water following fluctuations in hardness and pH of water flowing through the anode chamber and the cathode chamber. Therefore, a method has been proposed in which electrolysis is performed while switching the first cathode in the cathode chamber. However, in the case of such a structure, the electrolyte chamber becomes strongly alkaline, and the diaphragm provided in contact with the anode deteriorates and breaks with use, and the electrolytic cell cannot withstand long-term practical use. There is
An object of the present invention is to obtain an electrolysis cell that can be used for a long period of time, and an electrolyzed water generator provided with the electrolysis cell.
 本発明の実施形態によれば、電解液を収容する電解液室と、第1隔膜により前記電解液室に対して仕切られた陽極室と、第2隔膜により前記電解液室に対して仕切られた陰極室と、前記第1隔膜に対向して前記陽極室に設けられた陽極と、前記第2隔膜に対向して前記陰極室に設けられた第1陰極と、前記電解液室に設けられ、前記第1隔膜を介して前記陽極に対向する第2陰極と、前記第2陰極と前記第1隔膜との間に設けられ、前記電解液室内を、前記陽極室側の第1電解液室、及び前記陰極室側の第2電解液室に分離する第3隔膜と、を備える電解セルが提供される。 According to the embodiment of the present invention, an electrolyte chamber containing an electrolyte, an anode chamber partitioned from the electrolyte chamber by a first diaphragm, and an anode chamber partitioned from the electrolyte chamber by a second diaphragm an anode provided in the anode chamber facing the first diaphragm; a first cathode provided in the cathode chamber facing the second diaphragm; and a cathode provided in the electrolyte chamber. a second cathode facing the anode with the first diaphragm interposed therebetween; and a first electrolyte chamber provided between the second cathode and the first diaphragm, the inside of the electrolyte chamber being located on the side of the anode chamber. and a third diaphragm separating a second electrolyte chamber on the cathode chamber side.
 また、本発明の実施形態によれば、電解液を収容する電解液室、第1隔膜により前記電解液室に対して仕切られた陽極室、第2隔膜により前記電解液室に対して仕切られた陰極室、前記第1隔膜に対向して前記陽極室に設けられた陽極、前記第2隔膜に対向して前記陰極室に設けられた第1陰極、前記電解液室に設けられ、前記第1隔膜を介して前記陽極に対向する第2陰極、前記第2陰極と前記第1隔膜との間に設けられ、前記電解液室内を、前記陽極室側の第1電解液室、及び前記陰極室側の第2電解液室に分離する第3隔膜、を備える第1電解セルと、
 前記陽極、前記第1陰極、及び前記第2陰極に給電する第1給電部と、
 前記第1給電部から前記第1陰極及び/または第2陰極へ通電するスイッチと、
 前記第1電解セルにおいて前記電解液を電解することで得られる陽極生成水と陰極生成水を混合して第1混合生成水を作成する第1生成水混合部と、を備える電解水生成装置が提供される。
Further, according to the embodiment of the present invention, an electrolyte chamber containing an electrolyte, an anode chamber partitioned from the electrolyte chamber by a first diaphragm, and an anode chamber partitioned from the electrolyte chamber by a second diaphragm an anode provided in the anode chamber facing the first diaphragm; a first cathode provided in the cathode chamber facing the second diaphragm; a cathode provided in the electrolyte chamber; a second cathode facing the anode via a diaphragm; a first electrolyte chamber provided between the second cathode and the first diaphragm; a first electrolysis cell comprising a third diaphragm separating a chamber-side second electrolyte chamber;
a first power supply unit that supplies power to the anode, the first cathode, and the second cathode;
a switch for energizing the first cathode and/or the second cathode from the first power supply;
an electrolyzed water generator comprising: a first generated water mixing unit that mixes the anode generated water and the cathode generated water obtained by electrolyzing the electrolytic solution in the first electrolytic cell to prepare a first mixed generated water; provided.
 本発明によれば、長期間の使用が可能な電解セル及び電解水生成装置を得ることができる。 According to the present invention, it is possible to obtain an electrolytic cell and an electrolytic water generator that can be used for a long period of time.
図1は、第1実施形態に使用可能な電解セルを概略的に表す図である。FIG. 1 is a schematic representation of an electrolysis cell that can be used in the first embodiment. 図2は、第1実施形態に係る流水式の電解水生成装置を概略的に表す図である。FIG. 2 is a diagram schematically showing a running-water electrolyzed water generator according to the first embodiment. 図3は、第1実施形態に用いられる第1陰極と第2陰極の切り替えの一例を表すタイミングチャートである。FIG. 3 is a timing chart showing an example of switching between the first cathode and the second cathode used in the first embodiment. 図4は、第1実施形態における通電比率による水質変更試験の結果を表すグラフ図である。FIG. 4 is a graph showing the results of a water quality change test according to the energization ratio in the first embodiment. 図5は、第1実施形態に係る電解水生成装置の連続稼働試験結果を表すグラフ図である。FIG. 5 is a graph showing the continuous operation test results of the electrolyzed water generator according to the first embodiment. 図6は、第1実施形態に係る電解水生成装置の応用例を表す概略図である。FIG. 6 is a schematic diagram showing an application example of the electrolyzed water generator according to the first embodiment. 図7は、第2実施形態に係る流水式の電解水生成装置を概略的に示す図である。FIG. 7 is a diagram schematically showing a running-water electrolyzed water generator according to the second embodiment. 図8は、第2実施形態における通電比率による水質変更試験の結果を表すグラフ図である。FIG. 8 is a graph showing the results of a water quality change test according to the energization ratio in the second embodiment. 図9は、第3実施形態に係る流水式の電解水生成装置を概略的に示す図である。FIG. 9 is a diagram schematically showing a running-water electrolyzed water generator according to the third embodiment. 図10は、第3実施形態における通電比率による水質変更試験の結果を表すグラフ図である。FIG. 10 is a graph showing the results of a water quality change test according to the energization ratio in the third embodiment. 図11は、第4実施形態に係る流水式の電解水生成装置を概略的に示す図である。FIG. 11 is a diagram schematically showing a running-water electrolyzed water generator according to the fourth embodiment. 図12は、第5実施形態に用いられる電解セルを概略的に表す図である。FIG. 12 is a schematic diagram of an electrolytic cell used in the fifth embodiment. 図13は、第5実施形態に係る貯水式の電解水生成装置を概略的に表す図である。FIG. 13 is a diagram schematically showing a storage-type electrolyzed water generator according to the fifth embodiment. 図14は、第5実施形態における通電比率による水質変更試験の結果を表すグラフ図である。FIG. 14 is a graph showing the results of a water quality change test according to the energization ratio in the fifth embodiment. 図15は、第5実施形態における連続稼働試験結果を表すグラフ図である。FIG. 15 is a graph showing continuous operation test results in the fifth embodiment. 図16は、第5実施形態に係る貯水式の電解水生成装置の応用例を概略的に表す図である。FIG. 16 is a diagram schematically showing an application example of the storage-type electrolyzed water generator according to the fifth embodiment. 図17は、第6実施形態に係る貯水式の電解水生成装置を概略的に示す図である。FIG. 17 is a diagram schematically showing a storage-type electrolyzed water generator according to the sixth embodiment.
 以下、実施の形態について、図面を参照して説明する。
 なお、各実施形態を通して共通の構成には同一の符号を付すものとし、重複する説明は省略することがある。
 (第1実施形態)
 図1に、第1実施形態に使用可能な電解セルを概略的に表す図を示す。
 図示するように、この電解セル2’は、いわゆる3室型の電解セルであり、その内部には、陽極側の隔膜として陰イオン交換膜からなる第1隔膜3a、及び陰極側の隔膜として陽イオン交換膜からなる第2隔膜4aを備えている。そして、隔膜間に規定された中間室として機能する電解液室5と、電解液室の両側に位置する陽極室3及び陰極室4との3室に仕切られている。陽極室3内部には第1隔膜3aと近接対向して陽極3bが設けられ、陰極室4内部には第2隔膜4aと近接対向して第1陰極4bが設けられている。なお、ここで、近接とは、一方が他方に、隣接、接触、または密着していることをいう。また、ここで、隣接とは、一方が他方に一定の距離を保って対向している状態で、互いの距離は0.3mm以下、好ましくは0.2mm以下で対向している状態をいう。陽極3bと第1陰極4bは、ほぼ等しい大きさの矩形形状に形成され、電解液室5及び第1隔膜3a、第2隔膜4aを間に挟んで、互いに対向している。
Embodiments will be described below with reference to the drawings.
In addition, the same code|symbol shall be attached|subjected to the common structure through each embodiment, and the overlapping description may be abbreviate|omitted.
(First embodiment)
FIG. 1 shows a schematic diagram of an electrolysis cell that can be used in the first embodiment.
As shown in the figure, this electrolytic cell 2′ is a so-called three-chamber type electrolytic cell, in which a first diaphragm 3a made of an anion exchange membrane as a diaphragm on the anode side and a cathode as a diaphragm on the cathode side are provided. It has a second diaphragm 4a made of an ion exchange membrane. It is divided into three chambers, an electrolyte chamber 5 functioning as an intermediate chamber defined between the diaphragms, and an anode chamber 3 and a cathode chamber 4 located on both sides of the electrolyte chamber. An anode 3b is provided inside the anode chamber 3 so as to closely face the first diaphragm 3a, and a first cathode 4b is provided inside the cathode chamber 4 so as to closely face the second diaphragm 4a. In addition, here, proximity means adjoining, contacting, or being in close contact with the other. Here, the term "adjacent" refers to a state in which one is opposed to the other at a constant distance, and the distance between them is 0.3 mm or less, preferably 0.2 mm or less. The anode 3b and the first cathode 4b are formed in rectangular shapes of substantially the same size, and face each other with the electrolyte chamber 5 and the first and second diaphragms 3a and 4a interposed therebetween.
 電解液室5は、イオン透過の選択性がなく陽イオン及び陰イオンの通過が可能な微細孔を有する中性膜からなる第3隔膜5aを有している。電解液室5は、この第3隔膜5aで陽極室3側の第1電解液室5cと陰極室4側の第2電解液室5dに仕切られている。中性膜としては、イオン選択性を持たないものであることが好ましく、例えば、めっき用電解隔膜(ユアサメンブレンシステム社製)を用いることができる。第2電解液室5dには、第3隔膜5aと近接対向して第2陰極5bが設けられている。第2陰極5bは、陽極3bと第1陰極4bと同様に、陽極3bと第1陰極4bとほぼ等しい大きさの矩形形状に形成されている。また、第2陰極5bは、例えば多数の透孔が形成されたチタン(Ti)の金属板を用いることができる。多数の透孔が形成されたTiからなる金属板に例えばIr、Ptなどの触媒を塗布したいわゆる不溶性電極を用いても構わない。
 第1実施形態に係る電解セル2’によれば、第2陰極5bと第1隔膜3aとの間に第3隔膜5aを設け、電解液室5内を、陽極室3側の第1電解液室5c及び陰極室4側の第2電解液室5dに分離する。これにより、電解液室5内の電解液の流れを、第1電解液室5cの第1電解液の流れと、第2電解液室5dの第2電解液の流れの2つの流れに分けることができる。
 第2陰極5bに通電したとき、第2電解液室5dの電解液のpHはアルカリ側にシフトする。しかし、アルカリ性物質は第2電解液の流れにより排出され、第1電解液の流れにはほとんど混入しないので、第1電解液室5cのpHは第2電解液室5dのpHよりも中性付近に維持できる。このため、第1電解液室5cと陽極室3を仕切る第1隔膜3aは劣化しにくくなり、長期間の使用が可能な電解セルが得られる。
The electrolytic solution chamber 5 has a third diaphragm 5a made of a neutral membrane having fine pores that do not have ion permeation selectivity and allow passage of cations and anions. The electrolyte chamber 5 is partitioned by the third diaphragm 5a into a first electrolyte chamber 5c on the anode chamber 3 side and a second electrolyte chamber 5d on the cathode chamber 4 side. The neutral membrane preferably has no ion selectivity, and for example, an electrolytic diaphragm for plating (manufactured by Yuasa Membrane Systems Co., Ltd.) can be used. A second cathode 5b is provided in the second electrolytic solution chamber 5d so as to closely face the third diaphragm 5a. The second cathode 5b, like the anode 3b and the first cathode 4b, is formed in a rectangular shape having approximately the same size as the anode 3b and the first cathode 4b. For the second cathode 5b, for example, a titanium (Ti) metal plate having a large number of through holes can be used. A so-called insoluble electrode may be used in which a metal plate made of Ti and having a large number of through holes is coated with a catalyst such as Ir or Pt.
According to the electrolytic cell 2' according to the first embodiment, the third diaphragm 5a is provided between the second cathode 5b and the first diaphragm 3a, and the electrolyte chamber 5 is filled with the first electrolyte on the anode chamber 3 side. It is separated into a chamber 5c and a second electrolyte chamber 5d on the cathode chamber 4 side. As a result, the flow of the electrolyte in the electrolyte chamber 5 is divided into two flows, that is, the flow of the first electrolyte in the first electrolyte chamber 5c and the flow of the second electrolyte in the second electrolyte chamber 5d. can be done.
When the second cathode 5b is energized, the pH of the electrolyte in the second electrolyte chamber 5d shifts to the alkaline side. However, since the alkaline substance is discharged by the flow of the second electrolytic solution and hardly mixed into the flow of the first electrolytic solution, the pH of the first electrolytic solution chamber 5c is closer to neutral than the pH of the second electrolytic solution chamber 5d. can be maintained at Therefore, the first diaphragm 3a that separates the first electrolytic solution chamber 5c and the anode chamber 3 is less likely to deteriorate, and an electrolytic cell that can be used for a long period of time can be obtained.
 実施形態に使用される陽極3b、第1陰極4b、及び第2陰極5b等の電極として、例えば、多数の透孔が形成されたTiからなる金属板基材と、Tiからなる金属板基材に形成された触媒層とを有する不溶性電極を使用することができる。第1陰極4b、及び第2陰極5b等の電極は触媒層を設けなくても構わない。
 電極としては、金属板、あるいは、金属板表面に触媒層を設けたものなどを使用することができる。しかし、次亜塩素酸水の生成する電解水生成装置に使用できる金属材料及び触媒材料は、JIS B 8701に記載されているものに限定される。すなわち、金属板材料としては、JIS H 4650に規定された1~13種のTiを使用することができる。
 触媒としては、例えば、Pt及び/またはIrを含む貴金属触媒、あるいは酸化イリジウムを主成分とし五酸化タンタルなどの安定化物質をさらに含む酸化物触媒などを使用することができる。好ましくは、酸化イリジウムを主成分とする酸化物触媒を使用することができる。触媒層は、貴金属触媒はメッキ液中で所定時間メッキすることにより、酸化物触媒は金属板材料表面に触媒を含む塗付液の塗布及び乾燥を繰り返し、その後焼成を行うことにより、形成することができる。
As electrodes such as the anode 3b, the first cathode 4b, and the second cathode 5b used in the embodiment, for example, a metal plate substrate made of Ti in which a large number of through holes are formed and a metal plate substrate made of Ti An insoluble electrode with a catalyst layer formed on the surface can be used. Electrodes such as the first cathode 4b and the second cathode 5b do not have to be provided with a catalyst layer.
As the electrode, a metal plate or a metal plate provided with a catalyst layer on its surface can be used. However, metal materials and catalyst materials that can be used in electrolyzed water generators that generate hypochlorous acid water are limited to those described in JIS B8701. That is, Ti of 1 to 13 species specified in JIS H 4650 can be used as the metal plate material.
As the catalyst, for example, a noble metal catalyst containing Pt and/or Ir, or an oxide catalyst containing iridium oxide as a main component and a stabilizing substance such as tantalum pentoxide, or the like can be used. Preferably, an oxide catalyst based on iridium oxide can be used. The catalyst layer is formed by plating the noble metal catalyst in a plating solution for a predetermined period of time, and the oxide catalyst by repeatedly applying and drying a coating solution containing the catalyst on the surface of the metal plate material, followed by firing. can be done.
 陽極3bとしては、市販の塩素発生用不溶性電極を使用することができる。市販の塩素発生用不溶性電極としては、Ti板にPt及び/またはIrの触媒層を塗布して設けたものや酸化イリジウムを主体とする触媒層を設けたものがあげられる。Ti板として例えば多数の透孔が形成されたTi板を使用することができる。
 第1陰極4b、及び第2陰極5bとしては、Ti板、あるいは市販の塩素発生用不溶性電極を使用することができる。市販の塩素発生用不溶性電極として、例えばTi板に、Pt及び/またはIrの触媒層、あるいは酸化イリジウムを主体とする触媒層を設けたものなどがあげられる。Ti板として例えば多数の透孔が形成されたTi板を使用することができる。
A commercially available insoluble electrode for generating chlorine can be used as the anode 3b. Commercially available insoluble electrodes for generating chlorine include those provided by coating a Ti plate with a catalyst layer of Pt and/or Ir and those provided with a catalyst layer mainly composed of iridium oxide. As the Ti plate, for example, a Ti plate having a large number of through holes can be used.
As the first cathode 4b and the second cathode 5b, a Ti plate or a commercially available insoluble electrode for generating chlorine can be used. Commercially available insoluble electrodes for generating chlorine include, for example, a Ti plate provided with a catalyst layer of Pt and/or Ir, or a catalyst layer mainly composed of iridium oxide. As the Ti plate, for example, a Ti plate having a large number of through holes can be used.
 実施形態に使用される第1隔膜3aとしては、例えば炭化水素系ポリマーなどからなる多孔質のポリマーに陽イオン基を固定し、正帯電させ、陰イオンだけが通過可能とした陰イオン交換膜を使用することができる。このような陰イオン交換膜として、例えばネオセプタAMX(アストム製)などを用いることができる。
 また、第2隔膜4aとしては、例えば炭化水素系ポリマー、フッ素系ポリマーなどからなる多孔質のポリマーに陰イオン基を固定し負に帯電させ陽イオンだけが通過可能とした陽イオン交換膜を使用することができる。このような陽イオン交換膜として、例えば、フッ素樹脂の共重合体の陽イオン交換膜であるナフィオン(登録商標)(デュポン社製)を用いることができる。
 また、第3隔膜5aとしては、不織布や、ガラス布等の多孔質基材に例えばアルミニウム酸化物を含む被覆層を設けたイオンの選択通過性を持たない多孔質隔膜を使用することができる。多孔質隔膜は、例えば、不織布や、ガラス布等の多孔質基材にアルミニウム酸化物を含浸、乾燥することにより形成することができる。
 図1の電解セルは電解水生成装置に組み入れることができる。
As the first diaphragm 3a used in the embodiment, for example, an anion exchange membrane in which a cation group is fixed to a porous polymer made of a hydrocarbon polymer or the like, positively charged, and only anions can pass through is used. can be used. As such an anion exchange membrane, for example, Neosepta AMX (manufactured by Astom) can be used.
As the second diaphragm 4a, a cation exchange membrane is used in which anion groups are fixed to a porous polymer made of, for example, a hydrocarbon-based polymer, a fluorine-based polymer, etc., and negatively charged so that only cations can pass through. can do. As such a cation exchange membrane, for example, Nafion (registered trademark) (manufactured by DuPont), which is a cation exchange membrane of a fluororesin copolymer, can be used.
As the third diaphragm 5a, a non-woven fabric or a porous diaphragm having a coating layer containing, for example, aluminum oxide on a porous base material such as a glass cloth and having no ion selective permeability can be used. The porous diaphragm can be formed, for example, by impregnating a porous substrate such as non-woven fabric or glass cloth with aluminum oxide and drying.
The electrolysis cell of FIG. 1 can be incorporated into an electrolyzed water generator.
 図2に、第1実施形態に係る流水式の電解水生成装置を概略的に表す図を示す。
 図示のように、電解水生成装置1は、電解セル2を備えている。一例では、電解セル2は、図1に示した電解セル2’と同様の構成を有する電解セルを用いている。電解水生成装置1において、第1電解液室5cの下部には、電解液を供給するための第1電解液供給口5fが設けられている。第1電解液室5cの上部には、第1電解液室5cを流れた電解液を排出するための第1電解液排出口5hが設けられている。第2電解液室5dの下部には、電解液を供給するための第2電解液供給口5gが設けられている。第2電解液室5dの上部には、第2電解液室5dを流れた電解液を排水するための第2電解液排出口5iが設けられている。また、陽極室3の下部には、水を供給するための第1給水口3fが設けられている。陽極室3の上部には、陽極室3を流れた水を排水するための第1排水口3hが設けられている。陰極室4の下部には、水を供給するための第2給水口4fが設けられている。陰極室4の上部には、陰極室4を流れた水を排水するための第2排水口4hが設けられている。
FIG. 2 shows a schematic diagram of a running-water electrolyzed water generator according to the first embodiment.
As illustrated, the electrolyzed water generator 1 includes an electrolysis cell 2 . In one example, the electrolysis cell 2 uses an electrolysis cell having the same configuration as the electrolysis cell 2' shown in FIG. In the electrolyzed water generator 1, a first electrolytic solution supply port 5f for supplying an electrolytic solution is provided below the first electrolytic solution chamber 5c. A first electrolytic solution discharge port 5h for discharging the electrolytic solution that has flowed through the first electrolytic solution chamber 5c is provided in the upper portion of the first electrolytic solution chamber 5c. A second electrolytic solution supply port 5g for supplying an electrolytic solution is provided in the lower portion of the second electrolytic solution chamber 5d. A second electrolytic solution discharge port 5i for draining the electrolytic solution that has flowed through the second electrolytic solution chamber 5d is provided in the upper portion of the second electrolytic solution chamber 5d. A first water supply port 3 f for supplying water is provided in the lower portion of the anode chamber 3 . A first drain port 3 h for draining water that has flowed through the anode chamber 3 is provided in the upper portion of the anode chamber 3 . A second water supply port 4 f for supplying water is provided in the lower portion of the cathode chamber 4 . A second drain port 4 h for draining water that has flowed through the cathode chamber 4 is provided in the upper portion of the cathode chamber 4 .
 第1電解液室5cには第1電解液供給口5fおよび第1電解液排出口5hが設けられ、第2電解液室5dにおいては第2電解液供給口5gおよび第2電解液排出口5iが設けられている。これにより、両室に対する電解液の供給及び排出を各々独立して行うことが可能である。従って、両室に対する電解液の供給量を別々に制御できるという利点がある。
 電解水生成装置1は、電解セル2の電解液室5に、電解液として、塩素イオンを含む電解質、例えば、塩水を供給する電解液供給部8を備えている。また、陽極室3及び陰極室4に電解原水、例えば、水を供給する給水部21を備えている。また、陽極3bに正電圧、第1陰極4b及び/または第2陰極5bに負電圧をそれぞれ印加する電源7aを有する給電部7を備えている。
A first electrolytic solution supply port 5f and a first electrolytic solution outlet 5h are provided in the first electrolytic solution chamber 5c, and a second electrolytic solution supply port 5g and a second electrolytic solution outlet 5i are provided in the second electrolytic solution chamber 5d. is provided. This makes it possible to independently supply and discharge the electrolyte to and from both chambers. Therefore, there is an advantage that the amount of electrolyte solution supplied to both chambers can be controlled separately.
The electrolyzed water generator 1 includes an electrolytic solution supply unit 8 that supplies an electrolytic solution containing chloride ions, such as salt water, to the electrolytic solution chamber 5 of the electrolytic cell 2 . Further, the anode chamber 3 and the cathode chamber 4 are provided with a water supply unit 21 for supplying electrolyzed raw water, for example, water. Further, a power supply unit 7 having a power source 7a for applying a positive voltage to the anode 3b and a negative voltage to the first cathode 4b and/or the second cathode 5b is provided.
 給電部7は、電解に必要な電流を供給する電源7aと、電源7aから第1陰極4b及び/または第2陰極5bに通電するスイッチ7bと、電源7aとスイッチ7bを制御する制御部7cとを有する。ここではスイッチ7bとして、第1陰極4bまたは第2陰極5bへ給電を切り替える切替スイッチが使用される。電源7aとしては定電流電源が望ましい。電源7aの正極は配線を介して電解セル2の陽極3bと接続されている。電源7aの負極は、スイッチ7b及び2本の配線を介して第1陰極4b及び第2陰極5bと接続されている。スイッチ7bを切り替えることにより、第1陰極4b及び第2陰極5bに選択的に負電圧を印加することができる。スイッチ7bを用いると、例えば第1陰極4bと第2陰極5bに供給する電流を固定し、第1陰極4bまたは第2陰極5bへの通電を時間的に切り替えることにより、第1陰極4bと第2陰極5bの通電比率を調整することができる。 The power supply unit 7 includes a power source 7a that supplies a current necessary for electrolysis, a switch 7b that energizes the first cathode 4b and/or the second cathode 5b from the power source 7a, and a control unit 7c that controls the power source 7a and the switch 7b. have Here, as the switch 7b, a selector switch for switching power supply to the first cathode 4b or the second cathode 5b is used. A constant current power supply is desirable as the power supply 7a. The positive electrode of the power supply 7a is connected to the anode 3b of the electrolytic cell 2 via wiring. The negative electrode of the power supply 7a is connected to the first cathode 4b and the second cathode 5b via the switch 7b and two wires. By switching the switch 7b, a negative voltage can be selectively applied to the first cathode 4b and the second cathode 5b. When the switch 7b is used, for example, the current supplied to the first cathode 4b and the second cathode 5b is fixed, and the energization to the first cathode 4b or the second cathode 5b is switched over time, whereby the first cathode 4b and the second cathode 5b are switched. The energization ratio of the two cathodes 5b can be adjusted.
 また、第1陰極4b及び/または第2陰極5bに通電するスイッチの他の例として、例えば、第1陰極4b及び第2陰極5bのそれぞれに対し、電源7aに種々の値の電流出力が得られる複数のマイナス端子を有したスイッチ装置を用いることができる。このスイッチ装置では、第1陰極4b及び第2陰極5bと、複数のマイナス端子との間に、各々ON/OFFスイッチを配置する。これらのON/OFFスイッチを制御部7cにより選択的にON/OFF制御することにより、第1陰極4b及び第2陰極5bの電流量比としての通電比率を任意に変更することができる。
 電解液供給部8は、電解液25a(例えば20質量%塩化ナトリウム水溶液(塩水))を貯溜した塩水タンク(電解液タンク)25と、塩水タンク25から電解液室5の下方に塩水を導く供給配管8aと、供給配管8a中に設けられた送液ポンプ29と、電解液室5の上方から塩水を排出する排水配管8fとを備えている。
Further, as another example of a switch for energizing the first cathode 4b and/or the second cathode 5b, for example, various values of current output can be obtained from the power supply 7a for the first cathode 4b and the second cathode 5b, respectively. A switch device having a plurality of negative terminals connected to each other can be used. In this switch device, ON/OFF switches are arranged between the first cathode 4b and the second cathode 5b and a plurality of negative terminals. By selectively turning ON/OFF these ON/OFF switches by the control unit 7c, it is possible to arbitrarily change the energization ratio as the current amount ratio of the first cathode 4b and the second cathode 5b.
The electrolyte supply unit 8 includes a salt water tank (electrolyte tank) 25 that stores an electrolyte 25a (for example, a 20% by mass sodium chloride aqueous solution (salt water)), and a supply that guides the salt water from the salt water tank 25 to the lower part of the electrolyte chamber 5. A pipe 8a, a liquid feed pump 29 provided in the supply pipe 8a, and a drain pipe 8f for discharging salt water from above the electrolytic solution chamber 5 are provided.
 供給配管8aは、電解液室5の第1電解液室5cの下部に設けられた第1電解液供給口5fに接続して電解液を供給する第1電解液供給ラインとして機能する供給配管8bと、電解液室5の第2電解液室5dの下部に設けられた第2電解液供給口5gに接続して電解液を供給する第2電解液供給ラインとして機能する供給配管8cと、に分岐している。これにより、第1電解液室5cと第2電解液室5dには電解液が別々に供給される。第1電解液室5cの上部には、第1電解液排出口5hと接続され、第1電解液室5c内を流れた電解液を排水する第1電解液排出ラインとして機能する排水配管8dが設けられている。第2電解液室5dの上部には、第2電解液排出口5iと接続され、第2電解液室5d内を流れた電解液を排水する第2電解液排出ラインとして機能する排水配管8eが設けられている。このため、電解液室5に第3隔膜5aを設けることにより分離された第1電解液室5cにおける第1電解液(塩水)の流れと、第2電解液室5dにおける第2電解液(塩水)の流れとは別になっている。排水配管8dと排水配管8eは合流されて排水配管8fとなり、排水配管8dと排水配管8eの電解液は混合して排出される。排水配管8dと排水配管8eは合流させず、そのまま排出しても構わないが、合流して排出させたほうが、排水配管8fを流れる電解液のアルカリ度を下げることができる。 The supply pipe 8a is connected to a first electrolytic solution supply port 5f provided in the lower part of the first electrolytic solution chamber 5c of the electrolytic solution chamber 5, and functions as a first electrolytic solution supply line for supplying the electrolytic solution. and a supply pipe 8c functioning as a second electrolyte supply line for supplying the electrolyte by connecting to the second electrolyte supply port 5g provided in the lower part of the second electrolyte chamber 5d of the electrolyte chamber 5; branched. Thereby, the electrolyte is separately supplied to the first electrolyte chamber 5c and the second electrolyte chamber 5d. Above the first electrolyte chamber 5c, a drain pipe 8d is connected to the first electrolyte drain port 5h and functions as a first electrolyte drain line for draining the electrolyte that has flowed through the first electrolyte chamber 5c. is provided. Above the second electrolyte chamber 5d, a drain pipe 8e is connected to the second electrolyte drain port 5i and functions as a second electrolyte drain line for draining the electrolyte that has flowed through the second electrolyte chamber 5d. is provided. Therefore, the first electrolytic solution (salt water) flows in the first electrolytic solution chamber 5c separated by providing the third diaphragm 5a in the electrolytic solution chamber 5, and the second electrolytic solution (salt water) flows in the second electrolytic solution chamber 5d. ) flow. The drain pipe 8d and the drain pipe 8e are merged to form the drain pipe 8f, and the electrolytic solutions in the drain pipe 8d and the drain pipe 8e are mixed and discharged. The drain pipe 8d and the drain pipe 8e may not be merged and discharged as they are.
 第1電解液室5c及び第2電解液室5dでは、第1電解液供給ライン及び第2電解液供給ラインによって両室に各々別々に独立して電解液を供給することができる。このため、両室に対する電解液の供給量を別々に制御できるという利点がある。
 給水部21は、水を供給する給水源9と、給水源9の出口付近に設けられた開閉バルブ28と、給水源9から陽極室3及び陰極室4の下部に水を導く第1給水配管21aと、を備えている。また、電解水生成装置1は、第1排水口3hと接続され、陽極室3を流れた水を陽極室3の上部から排出する第1排水ラインとして機能する第1排水配管21bと、第2排水口4hと接続され、陰極室4を流れた水を陰極室4の上部から排出する第2排水ラインとして機能する第2排水配管21cと、を備えている。第1給水配管21aは、第1給水ラインとして機能する第2給水配管21eと、第2給水ラインとして機能する第3給水配管21fと、に分岐している。第2給水配管21eは第1給水口3fと接続されて陽極室3に水を供給する。第3給水配管21fは第2給水口4fと接続されて陰極室4に水を供給する。第1排水配管21bは、第2排水配管21cの中途部に接続され、第1生成水混合部10を構成している。これにより、第1排水配管21bから排水される陽極生成水と、第2排水配管21cから排水される陰極生成水とが混合され、混合生成水(第1混合生成水)として排水される。排水される混合生成水は、微酸性・中性付近にpH制御された次亜塩素酸水である。
 その他、各配管に開閉バルブあるいは流量調整弁を設けてもよい。
In the first electrolytic solution chamber 5c and the second electrolytic solution chamber 5d, the electrolytic solution can be separately and independently supplied to both chambers by the first electrolytic solution supply line and the second electrolytic solution supply line. Therefore, there is an advantage that the amount of electrolyte solution supplied to both chambers can be controlled separately.
The water supply unit 21 includes a water supply source 9 that supplies water, an opening/closing valve 28 provided near the outlet of the water supply source 9, and a first water supply pipe that guides water from the water supply source 9 to the lower portions of the anode chamber 3 and the cathode chamber 4. 21a and. The electrolyzed water generator 1 also includes a first drain pipe 21b connected to the first drain port 3h and functioning as a first drain line for discharging the water that has flowed through the anode chamber 3 from the upper portion of the anode chamber 3; A second drain pipe 21c that is connected to the drain port 4h and functions as a second drain line for discharging the water that has flowed through the cathode chamber 4 from the upper portion of the cathode chamber 4 is provided. The first water supply pipe 21a branches into a second water supply pipe 21e functioning as a first water supply line and a third water supply pipe 21f functioning as a second water supply line. The second water supply pipe 21 e is connected to the first water supply port 3 f to supply water to the anode chamber 3 . The third water supply pipe 21f is connected to the second water supply port 4f to supply water to the cathode chamber 4. As shown in FIG. The first drain pipe 21b is connected to the middle part of the second drain pipe 21c and constitutes the first generated water mixing section 10 . As a result, the anode-generated water discharged from the first drainage pipe 21b and the cathode-generated water discharged from the second drainage pipe 21c are mixed and discharged as mixed water (first mixed water). The mixed water to be discharged is hypochlorous acid water whose pH is controlled to be slightly acidic/neutral.
In addition, each pipe may be provided with an on-off valve or a flow control valve.
 上記のように構成された電解水生成装置により、実際に塩水を電解して、酸性成分である次亜塩素酸水を含む酸性水(陽極生成水)と、アルカリ性物質である水酸化ナトリウムを含むアルカリ性水(陰極生成水)を生成し、混合生成水を得る動作について説明する。
 なお、ここに使用される陽極生成水は酸性電解水の次亜塩素酸水であり、以下、酸性水ということがある。また、陰極生成水は強アルカリ性電解水であり、以下、アルカリ性水ということがある。
 図2に示すように、送液ポンプ29を作動させ、塩水タンク25から電解セル2の電解液室5の第1電解液室5c及び第2電解液室5dに塩水を供給する。また、給水源9から陽極室3及び陰極室4に水を給水する。
 スイッチ7bを第1陰極4bに切り替えて給電するとき、正電圧及び負電圧は電源7aから陽極3b及び第1陰極4bにそれぞれ印加される。第1電解液室5c及び第2電解液室5dへ流入した塩水中に電離しているナトリウムイオンは、第1陰極4bに引き寄せられ、第2隔膜4aを通過して、第1陰極4bに到達する。第3隔膜5aはイオンの選択透過性がない中性膜であるため、ナトリウムイオンは透過可能である。
The electrolyzed water generator configured as described above actually electrolyzes salt water to produce acidic water (anode-generated water) containing hypochlorous acid water, which is an acidic component, and sodium hydroxide, which is an alkaline substance. The operation of producing alkaline water (cathode-produced water) and obtaining mixed produced water will be described.
The anode-generated water used here is hypochlorous acid water, which is acidic electrolyzed water, and is hereinafter sometimes referred to as acidic water. Further, the cathode-generated water is strongly alkaline electrolyzed water, and is hereinafter sometimes referred to as alkaline water.
As shown in FIG. 2 , the liquid feed pump 29 is operated to supply salt water from the salt water tank 25 to the first electrolyte chamber 5 c and the second electrolyte chamber 5 d of the electrolyte chamber 5 of the electrolytic cell 2 . Also, water is supplied from the water supply source 9 to the anode chamber 3 and the cathode chamber 4 .
When power is supplied by switching the switch 7b to the first cathode 4b, positive and negative voltages are applied from the power supply 7a to the anode 3b and the first cathode 4b, respectively. The sodium ions ionized in the salt water flowing into the first electrolyte chamber 5c and the second electrolyte chamber 5d are attracted to the first cathode 4b, pass through the second diaphragm 4a, and reach the first cathode 4b. do. Since the third diaphragm 5a is a neutral membrane that does not selectively permeate ions, it is permeable to sodium ions.
 その後、通過したナトリウムイオンの量に対応した水の電気分解が第1陰極4bで起こり、陰極室4内に水素ガスが発生する。ナトリウムイオンは水酸化ナトリウムとして陰極室4内に残る。陰極室4におけるトータルの反応式を下記式(1)に示す、
 2HO+2Na→2e+H+2NaOH…(1)
 これにより、陰極室4のpHはアルカリ側にシフトする。生成されたアルカリ性水(水素ガスを含む水酸化ナトリウム水溶液)、及び水素ガスは、陰極室4から第2排水配管21cに流出する。
Thereafter, electrolysis of water corresponding to the amount of passing sodium ions occurs at the first cathode 4b, and hydrogen gas is generated in the cathode chamber 4. As shown in FIG. Sodium ions remain in the cathode chamber 4 as sodium hydroxide. The total reaction formula in the cathode chamber 4 is shown in the following formula (1),
2H 2 O+2Na + →2e +H 2 +2NaOH (1)
As a result, the pH of the cathode chamber 4 shifts to the alkaline side. The generated alkaline water (aqueous sodium hydroxide solution containing hydrogen gas) and hydrogen gas flow out from the cathode chamber 4 to the second drain pipe 21c.
 第1電解液室5c及び第2電解液室5dの塩水中に電離している塩素イオンは、陽極3bに引き寄せられ、第1隔膜3aを通過して、陽極3bに到達する。そして、下記式(2)に示すように、陽極3bにて塩素イオンが酸化され塩素ガスが生成する。
 2Cl→Cl+2e…(2)
 その後、下記式(3)に示すように塩素ガスは陽極室3内で直ちに水と反応して次亜塩素酸と塩酸を生じる。
 Cl+HO→HClO+HCl…(3) 
 このようにして生成された酸性水(次亜塩素酸水)は、陽極室3から第1排水配管21bに流出する。第2排水配管21cに流出したアルカリ性水と、第1排水配管21bに流出した酸性水は、第1生成水混合部10で混合され、混合生成水となる。そして、この混合生成水として、pHを調整した次亜塩素酸水が排水される。
Chlorine ions ionized in the salt water in the first electrolyte chamber 5c and the second electrolyte chamber 5d are attracted to the anode 3b, pass through the first diaphragm 3a, and reach the anode 3b. Then, as shown in the following formula (2), the chlorine ions are oxidized at the anode 3b to generate chlorine gas.
2Cl →Cl 2 +2e (2)
After that, the chlorine gas immediately reacts with water in the anode chamber 3 to produce hypochlorous acid and hydrochloric acid as shown in the following formula (3).
Cl 2 +H 2 O→HClO+HCl (3)
The acidic water (hypochlorous acid water) thus generated flows out from the anode chamber 3 to the first drain pipe 21b. The alkaline water flowing out to the second drainage pipe 21c and the acidic water flowing out to the first drainage pipe 21b are mixed in the first generated water mixing section 10 to form mixed generated water. Then, the pH-adjusted hypochlorous acid water is discharged as the mixed product water.
 また、スイッチ7bを第2陰極5bに切り替えて給電するとき、正電圧及び負電圧は電源7aから陽極3b及び第2陰極5bにそれぞれ印加される。第1電解液室5c及び第2電解液室5dへ流入した塩水中に電離しているナトリウムイオンは、第2陰極5bに引き寄せられる。このとき、第1電解液室5cの塩水中に電離しているナトリウムイオンは第3隔膜5aを透過して第2陰極5bに到達することができる。第2陰極5bにおける塩水の電気分解により、第2電解液室5dにおいて水素ガスを含む水酸化ナトリウム水溶液が生成される。これにより、第2電解液室5d内は、強アルカリ側にシフトする。アルカリ性水(水素ガスを含む水酸化ナトリウム水溶液)は、供給配管8cから供給された第2電解液室5dにおける第2電解液(塩水)の流れによって第2電解液室5dから排水配管8eに流出した後、排水配管8dの電解液と混合し、排水配管8fにより外に排出される。第3隔膜5aにより、第1電解液室5cにおける塩水の流れと、第2電解液室5dにおける塩水の流れとは別になっているため、第2電解液室5dで生成したアルカリ性水は、陰極室4及び第1電解液室5cにほとんど流入しない。その結果、第1電解液室5cは、アルカリ側にシフトしない。このため、第1電解液室5c内の第1隔膜3aは強アルカリに晒されることがなく、劣化しにくくなる。また、このとき陰極室4から排出される陰極生成水は、給水源9から供給された水そのものとなる。 Also, when power is supplied by switching the switch 7b to the second cathode 5b, a positive voltage and a negative voltage are applied from the power supply 7a to the anode 3b and the second cathode 5b, respectively. The sodium ions ionized in the salt water flowing into the first electrolyte chamber 5c and the second electrolyte chamber 5d are attracted to the second cathode 5b. At this time, the sodium ions ionized in the salt water in the first electrolyte chamber 5c can pass through the third diaphragm 5a and reach the second cathode 5b. A sodium hydroxide aqueous solution containing hydrogen gas is produced in the second electrolyte chamber 5d by the electrolysis of salt water in the second cathode 5b. As a result, the inside of the second electrolytic solution chamber 5d shifts to the strong alkaline side. Alkaline water (aqueous sodium hydroxide solution containing hydrogen gas) flows out from the second electrolytic solution chamber 5d to the drain pipe 8e due to the flow of the second electrolytic solution (salt water) in the second electrolytic solution chamber 5d supplied from the supply pipe 8c. After that, it is mixed with the electrolytic solution in the drain pipe 8d and discharged to the outside through the drain pipe 8f. Since the flow of salt water in the first electrolyte chamber 5c and the flow of salt water in the second electrolyte chamber 5d are separated by the third diaphragm 5a, the alkaline water generated in the second electrolyte chamber 5d is separated from the cathode. Almost no liquid flows into the chamber 4 and the first electrolyte chamber 5c. As a result, the first electrolyte chamber 5c does not shift to the alkaline side. Therefore, the first diaphragm 3a in the first electrolytic solution chamber 5c is not exposed to strong alkali and is less likely to deteriorate. Moreover, the cathode-generated water discharged from the cathode chamber 4 at this time is the water supplied from the water supply source 9 itself.
 第1電解液室5c及び第2電解液室5d内の塩水中に電離している塩素イオンは、陽極3bに引き寄せられる。このとき、第2電解液室5d内の塩水中に電離している塩素イオンは、第1隔膜3aを通過して、陽極3bに到達することができる。そして、陽極3bにて塩素イオンが酸化され塩素ガスが発生する。その後、塩素ガスは陽極室3内で水と直ちに反応して次亜塩素酸と塩酸を生じる。このようにして生成された酸性水(次亜塩素酸水)は、陽極室3から第1排水配管21bを通って流出する。第1生成水混合部10では、酸性水は第2排水配管21cからの排水と混合されるが、第2排水配管21cからの排水にアルカリ性水は混入していない。このため、第2陰極5bに給電するときに混合生成水として得られる次亜塩素酸水のpHは、第1陰極4bに給電するときに混合生成水として得られる次亜塩素酸水のpHよりも低くなる。
 原水として用いられる水は地域、場所により含まれる不純物が異なり、特に炭酸成分には弱アルカリ性に向かう干渉効果がある。そのため、用いる水によってはpH調整点が合わず、僅かにずれてしまうことが考えられる。一般的には、炭酸イオンはアルカリ成分のカウンターイオンとして水に溶解しているため、硬水ほどアルカリ側にずれ易く、軟水(究極は純水)ほど酸側にずれ易い。
Chlorine ions ionized in the salt water in the first electrolyte chamber 5c and the second electrolyte chamber 5d are attracted to the anode 3b. At this time, chlorine ions ionized in the salt water in the second electrolyte chamber 5d can pass through the first diaphragm 3a and reach the anode 3b. Chlorine ions are oxidized at the anode 3b to generate chlorine gas. After that, the chlorine gas immediately reacts with water in the anode chamber 3 to produce hypochlorous acid and hydrochloric acid. The acidic water (hypochlorous acid water) thus generated flows out from the anode chamber 3 through the first drain pipe 21b. In the first generated water mixing unit 10, the acidic water is mixed with the waste water from the second drainage pipe 21c, but alkaline water is not mixed with the waste water from the second drainage pipe 21c. Therefore, the pH of the hypochlorous acid water obtained as mixed product water when power is supplied to the second cathode 5b is lower than the pH of the hypochlorous acid water obtained as mixed product water when power is supplied to the first cathode 4b. also lower.
The water used as raw water contains different impurities depending on the region and location, and especially the carbonic acid component has an interference effect toward weak alkalinity. Therefore, depending on the water used, the pH adjustment point may not match and may shift slightly. In general, since carbonate ions are dissolved in water as counter ions of alkali components, the harder the water, the more likely it is to shift to the alkaline side, and the softer the water (ultimately, pure water) the more likely it is to shift to the acid side.
 これに対し、実施形態に係る電解水生成装置1を用いると、電解液室5に第2陰極5bを設けて、スイッチ7bを第1陰極4bまたは第2陰極5bに切り替えて給電する。これにより、陰極室4内の第1陰極4bと第2電解液室5dの第2陰極5bを選択的に切り換えて通電し、陰極生成水をアルカリ側あるいは中性側にシフトさせ、陰極生成水と陽極生成水との混合生成水のpHを調整することができる。これにより、原水の水質に変動があっても混合生成水のpHは随時調整可能となり、混合生成水として得られる次亜塩素酸水のpHを微酸性・中性付近に制御することが可能となる。
 また、給電部7からの通電を第2陰極5bに切り替えたとき、第2電解液室5dの電解液pHはアルカリ側にシフトする。しかし、第2陰極5bと第1隔膜3aとの間に第3隔膜5aを設け、電解液室5を、陽極室3側の第1電解液室5c及び陰極室4側の第2電解液室5dに分離することにより、アルカリ性物質は第2電解液の流れにより排出され、第1電解液の流れにはほとんど混入しない。
 従って、第1電解液室5cのpHは第2電解液室5dのpHよりも中性に近くに維持できるため、第1電解液室5cの第1隔膜3aは劣化しにくく耐久性が良好となる。このため、実施形態によれば、長期間の使用が可能な電解水生成装置が得られる。
In contrast, when the electrolyzed water generator 1 according to the embodiment is used, the electrolyte chamber 5 is provided with the second cathode 5b, and the switch 7b is switched to the first cathode 4b or the second cathode 5b to supply power. As a result, the first cathode 4b in the cathode chamber 4 and the second cathode 5b in the second electrolyte chamber 5d are selectively switched and energized to shift the cathode-generated water to the alkaline side or the neutral side. and the anode-generated water, the pH of the generated water can be adjusted. As a result, even if the quality of the raw water fluctuates, the pH of the mixed product water can be adjusted at any time, and the pH of the hypochlorous acid water obtained as the mixed product water can be controlled to be slightly acidic or near neutral. Become.
Further, when the energization from the power supply portion 7 is switched to the second cathode 5b, the pH of the electrolyte in the second electrolyte chamber 5d shifts to the alkaline side. However, a third diaphragm 5a is provided between the second cathode 5b and the first diaphragm 3a, and the electrolyte chamber 5 is divided into a first electrolyte chamber 5c on the anode chamber 3 side and a second electrolyte chamber on the cathode chamber 4 side. By separating into 5d, the alkaline substance is discharged by the flow of the second electrolyte and is hardly mixed into the flow of the first electrolyte.
Therefore, since the pH of the first electrolyte chamber 5c can be maintained closer to neutral than the pH of the second electrolyte chamber 5d, the first diaphragm 3a of the first electrolyte chamber 5c is resistant to deterioration and has good durability. Become. Therefore, according to the embodiment, an electrolyzed water generator that can be used for a long period of time is obtained.
 図3に、給電部7における電流印加経路の切替の一例を表すタイミングチャートを示す。
 これは、電解電流を2Aに固定し、第1陰極4b及び第2陰極5bへの電流印加経路を、1サイクルを10秒として、第1陰極4bに4秒の印加と、第2陰極5bに6秒の印加とを切り替えた制御例である。パルス波形101は、このときの第1陰極4bへの通電時間と電圧との関係を表し、パルス波形102は第2陰極5bへの通電時間と電圧との関係を表す。電解電流を同じ2Aに固定しているのに、第1陰極4bに印加した時の電圧と、第2陰極5bに印加した時の電圧が異なる理由は、各陰極と陽極3bとの距離が異なるためである。
FIG. 3 shows a timing chart showing an example of switching of the current application path in the power feeding section 7. As shown in FIG.
This fixed the electrolysis current to 2 A, set the current application path to the first cathode 4b and the second cathode 5b with 1 cycle of 10 seconds, applied the first cathode 4b for 4 seconds, and applied the current to the second cathode 5b. This is an example of control in which the application is switched between 6 seconds. A pulse waveform 101 represents the relationship between the energization time to the first cathode 4b and the voltage at this time, and a pulse waveform 102 represents the relationship between the energization time to the second cathode 5b and the voltage. The reason why the voltage applied to the first cathode 4b and the voltage applied to the second cathode 5b are different even though the electrolysis current is fixed to the same 2 A is that the distance between each cathode and the anode 3b is different. It's for.
 電解電流、サイクル、第1陰極及び第2陰極における通電比率は、ユーザーにより操作可能に構成されている。この例の場合、第1陰極4bへの印加時間を10秒、第2陰極5bへの印加時間を0秒と設定すると、通常の3室型の動作となる。この時生成される酸性水とアルカリ性水を混合するとpH8.5付近の混合水となる。逆に第1陰極4bへの印加時間を0秒、第2陰極5bへの印加時間を10秒と設定すると、陰極室4では電解反応が起きず、陰極室4には電解セルに供給された原水が流れるだけである。この原水をこの時生成される酸性水と混合すると強酸性から弱酸性の混合水となる。
 第1実施形態に係る電解水生成装置1を用い、以下のように、通電比率による水質変更試験、及び連続稼働試験を行った。
The electrolysis current, cycle, energization ratio at the first and second cathodes are configured to be user-manipulable. In this example, if the application time to the first cathode 4b is set to 10 seconds and the application time to the second cathode 5b is set to 0 seconds, normal three-chamber operation is performed. When the acid water and alkaline water generated at this time are mixed, mixed water having a pH of around 8.5 is obtained. Conversely, when the application time to the first cathode 4b was set to 0 seconds and the application time to the second cathode 5b was set to 10 seconds, the electrolytic reaction did not occur in the cathode chamber 4, and the cathode chamber 4 was supplied to the electrolytic cell. Only raw water flows. When this raw water is mixed with the acidic water generated at this time, a strongly acidic to weakly acidic mixed water is obtained.
Using the electrolyzed water generator 1 according to the first embodiment, a water quality change test and a continuous operation test were conducted as follows.
  通電比率による水質変更試験
 電解水生成装置1を用い、日本では標準的な硬度のCa硬度55mg/Lの水道水を原水として0.5L/分で流水した。電解電流を2Aに固定し、1サイクルを10秒とした。1サイクルにおける第1陰極4b及び第2陰極5bへの通電時間の比率を種々変更し、混合生成水の水質変化(pH及び有効塩素濃度)を測定した。
 図4は、第1実施形態に係る電解水生成装置における第2陰極5bの通電比率(デューティ比)と混合生成水の水質(pH及び有効塩素濃度)との関係を表すグラフ図である。
 図中、特性線104は、第2陰極5bの通電比率に対する混合生成水のpHを表すグラフである。特性線103は、第2陰極5bの通電比率に対する混合生成水の有効塩素濃度を示している。
Water quality change test by energization ratio Using the electrolyzed water generator 1, tap water with a Ca hardness of 55 mg/L, which is a standard hardness in Japan, was flowed at 0.5 L/min as raw water. The electrolysis current was fixed at 2 A and one cycle was 10 seconds. The change in water quality (pH and effective chlorine concentration) of the mixed product water was measured by variously changing the ratio of the energization time to the first cathode 4b and the second cathode 5b in one cycle.
FIG. 4 is a graph showing the relationship between the energization ratio (duty ratio) of the second cathode 5b and the water quality (pH and effective chlorine concentration) of the mixed water in the electrolyzed water generator according to the first embodiment.
In the figure, a characteristic line 104 is a graph representing the pH of the mixed product water with respect to the electrification ratio of the second cathode 5b. A characteristic line 103 indicates the effective chlorine concentration of the mixed product water with respect to the energization ratio of the second cathode 5b.
 第2陰極5bの通電比率は、1サイクルの時間に対する第2陰極5bの通電時間の比率である。すなわち、第2陰極5bの通電比率は、全電流量に対する第2陰極5bへの通電量の比率を示すことになる。第2陰極5bの通電比率において、0%は第1陰極4bのみの通電を示し、100%は第2陰極5bのみの通電を示す。第2陰極5bの通電比率50%は、第1陰極4bへの通電時間5秒、第2陰極5bヘの通電時間5秒を繰り返したことになる。混合生成水の水質(pH及び有効塩素濃度)の測定は、通電切替による水質差異が十分に積算されて影響しないように、サイクル時間より十分に長い時間で混合生成水を採水して行なった。また電解水の生成中、第1電解液室5c、第2電解液室5dには、それぞれ20%塩化ナトリウム水溶液を3mL/分送液した。
 特性線104に示すように、第2陰極5bを用いないとき(通電比率0%)は、混合生成水はアルカリ性にあることがわかる。これは第1陰極4bで生成されたアルカリ物質がすべて生成水に混合されるためである。
The energization ratio of the second cathode 5b is the ratio of the energization time of the second cathode 5b to the time of one cycle. That is, the energization ratio of the second cathode 5b indicates the ratio of the amount of energization to the second cathode 5b to the total amount of current. In the energization ratio of the second cathode 5b, 0% indicates energization of only the first cathode 4b, and 100% indicates energization of only the second cathode 5b. The energization ratio of 50% of the second cathode 5b means repeating the energization time of 5 seconds to the first cathode 4b and the energization time of 5 seconds to the second cathode 5b. The water quality (pH and effective chlorine concentration) of the mixed product water was measured by sampling the mixed product water for a time sufficiently longer than the cycle time so that the difference in water quality due to switching the power supply was not sufficiently accumulated and affected. . During the production of electrolyzed water, 3 mL/min of a 20% sodium chloride aqueous solution was supplied to each of the first electrolyte chamber 5c and the second electrolyte chamber 5d.
As shown by characteristic line 104, when the second cathode 5b is not used (energization ratio of 0%), the mixed product water is alkaline. This is because all the alkaline substances generated at the first cathode 4b are mixed with the generated water.
 これに対し、第2陰極5bの通電比率を0から上げていくと、特性線103に示すように、混合生成水の有効塩素濃度はほぼ一定ながら、特性線104に示すように、pHは酸性化していく。これは、第2陰極5bで生成されたアルカリ性物質が第2電解液室5d中にだけ放出され、混合生成水には混合されないためである。第1実施形態に使用される原水の場合は、第2陰極の通電比率が55%付近から大きくpHが変動し、酸性化する。第2陰極5bの通電比率を55%から60%に設定すると、活性成分であるHClOの存在比率の高い微酸性域(pH5~6.5)であり腐食等の影響が少ない酸性水(次亜塩素酸水)を得ることができる。さらに、第2陰極5bの通電比率を上げ、第1陰極4bを用いず第2陰極5bだけを用いると(通電比率100%)では、混合生成水は弱酸性から強酸性にあることがわかる。これは第1陰極ではアルカリ物質は生成されないためである。これにより、混合生成水では原水がそのまま酸性水と混合され、陽極室3で生成した酸性水の水質がそのまま表れる。
 本実施形態では、Ca硬度55g/Lの水道水を原水に用いた。これより軟水を用いると微酸性域を示す第2陰極5bの通電比率は小さい方に、これより硬水を用いると微酸性域を示す第2陰極5bの通電比率は大きい方にシフトする。
On the other hand, when the energization ratio of the second cathode 5b is increased from 0, as shown in the characteristic line 103, the effective chlorine concentration of the mixed product water is almost constant, but as shown in the characteristic line 104, the pH becomes acidic. become. This is because the alkaline substance produced at the second cathode 5b is released only into the second electrolyte chamber 5d and is not mixed with the mixed product water. In the case of the raw water used in the first embodiment, the pH fluctuates greatly from around 55% of the energization ratio of the second cathode, and the raw water is acidified. When the energization ratio of the second cathode 5b is set from 55% to 60%, the acidic water (hypochlorous acid chloric acid water) can be obtained. Further, when the energization ratio of the second cathode 5b is increased and only the second cathode 5b is used without using the first cathode 4b (100% energization ratio), the mixed product water is weakly acidic to strongly acidic. This is because no alkaline material is produced at the first cathode. As a result, the raw water is mixed with the acid water as it is in the mixed product water, and the water quality of the acid water produced in the anode chamber 3 appears as it is.
In this embodiment, tap water with a Ca hardness of 55 g/L was used as raw water. When softer water is used, the energization ratio of the second cathode 5b showing a slightly acidic region shifts to a smaller side, and when harder water is used, the energizing ratio of the second cathode 5b showing a slightly acidic region shifts to a larger side.
  連続稼働試験 
 第1実施形態に係る電解水生成装置1を用いて、以下の連続稼働試験を行った。
 日本では標準的なCa硬度55mg/Lを有する水道水を原水として、0.5L/分で、流水した。電解水の生成中、第1電解液室5c、第2電解液室5dには、各々、20%塩化ナトリウム水溶液を3mL/分で送液した。電解電流を2Aに固定し、1サイクルを10秒とし、混合生成水のpHが6となるように、第2陰極の通電比率を60%(第1陰極4bへの通電時間4秒、第2陰極5bの通電時間6秒)と設定した。電解水生成装置1を約700時間運転し、混合生成水を連続して得た。得られた混合生成水のpH及び有効塩素濃度を初期は24時間ごとに測定し、その後は1週間ごとに測定した。
 また、比較例1及び比較例2として、電解セル2の電解液室5に第3隔膜5aを設けないこと以外は第1実施形態と同様の構成を有する電解水生成装置を用意し、上記と同様の条件で電解水生成装置を約700時間運転し、混合生成水を得た。得られた混合生成水の水質の変化として、pH及び有効塩素濃度を同様に測定した。
Continuous operation test
The following continuous operation test was performed using the electrolyzed water generator 1 according to the first embodiment.
Tap water having a Ca hardness of 55 mg/L, which is standard in Japan, was used as raw water and was run at a rate of 0.5 L/min. During the production of electrolyzed water, a 20% sodium chloride aqueous solution was supplied to each of the first electrolyte chamber 5c and the second electrolyte chamber 5d at 3 mL/min. The electrolysis current is fixed at 2 A, one cycle is 10 seconds, and the electrification ratio of the second cathode is 60% (energization time to the first cathode 4b is 4 seconds, the second The energization time of the cathode 5b was set to 6 seconds). The electrolyzed water generator 1 was operated for about 700 hours to continuously obtain mixed water. The pH and effective chlorine concentration of the resulting mixed product water were initially measured every 24 hours, and then every week.
Further, as Comparative Examples 1 and 2, electrolyzed water generators having the same configuration as that of the first embodiment except that the third diaphragm 5a was not provided in the electrolyte chamber 5 of the electrolytic cell 2 were prepared. The electrolyzed water generator was operated for about 700 hours under the same conditions to obtain mixed water. The pH and effective chlorine concentration were similarly measured as changes in the water quality of the mixed product water obtained.
 図5は、第1実施形態に係る電解水生成装置の連続稼働試験結果を表すグラフ図を示す。
 図において、横軸は、動作時間である。特性線110は、得られた混合生成水のpHを示す。また、特性線105は、得られた混合生成水の有効塩素濃度を示す。特性線106、107は、比較例1及び比較例2の有効塩素濃度、特性線108、109は比較例1及び比較例2のpHを示す。
 比較例1では、48時間を超えたところから、特性線108に示すようにpHが上昇し、特性線106に示すように有効塩素濃度が減少する現象が確認された。また、比較例2では、168時間を超えたところから、特性線109に示すようにpHが上昇し、特性線107に示すように有効塩素濃度が減少する現象が確認された。比較例1及び比較例2の電解セルを分解して調査したところ、陽極室の第1隔膜が白濁し、ところどころ膜が破けていることが確認された。このことから、第2陰極で生成されたアルカリ性物質により電解液室がアルカリ化して、電解液室と接する第1隔膜が変質して、破断に至ったと考えられる。一方、第1実施形態に係る電解水生成装置1では、特性線110、及び105に示すように、長時間稼働しても有効塩素濃度及びpHは一定であり、混合生成水の水質の変化は認められない。これは、電解液室5を、イオン透過の選択性のない中性膜からなる第3隔膜5aで陽極室3側の第1電解液室5cと陰極室4側の第2電解液室5dに仕切り、第2電解液室5d内に第3隔膜5aと近接対向して第2陰極5bを設けたことによる。すなわち、第2陰極5bで生成されたアルカリ性物質は、第1隔膜3aと接しない第2電解液室5dのみで生成、排出され、第1隔膜3aへのアルカリ性物質への作用が抑制されたためであると考えられる。
FIG. 5 shows a graph showing the continuous operation test results of the electrolyzed water generator according to the first embodiment.
In the figure, the horizontal axis is the operating time. Characteristic line 110 indicates the pH of the resulting mixed product water. A characteristic line 105 indicates the effective chlorine concentration of the obtained mixed product water. Characteristic lines 106 and 107 indicate the effective chlorine concentration of Comparative Examples 1 and 2, and characteristic lines 108 and 109 indicate the pH of Comparative Examples 1 and 2.
In Comparative Example 1, after 48 hours, a phenomenon was confirmed in which the pH increased as indicated by characteristic line 108 and the available chlorine concentration decreased as indicated by characteristic line 106 . In Comparative Example 2, after 168 hours, a phenomenon was confirmed in which the pH increased as indicated by characteristic line 109 and the effective chlorine concentration decreased as indicated by characteristic line 107 . When the electrolytic cells of Comparative Examples 1 and 2 were disassembled and investigated, it was confirmed that the first diaphragm in the anode chamber became cloudy and the membrane was broken in places. From this, it is considered that the electrolytic solution chamber was alkalinized by the alkaline substance generated at the second cathode, and the first diaphragm in contact with the electrolytic solution chamber was degraded and fractured. On the other hand, in the electrolyzed water generator 1 according to the first embodiment, as shown by the characteristic lines 110 and 105, the effective chlorine concentration and pH are constant even if it is operated for a long time, and the water quality of the mixed water does not change. unacceptable. The electrolyte chamber 5 is divided into the first electrolyte chamber 5c on the side of the anode chamber 3 and the second electrolyte chamber 5d on the side of the cathode chamber 4 by the third diaphragm 5a made of a neutral membrane having no ion permeation selectivity. This is because the second cathode 5b is provided in the second electrolyte chamber 5d so as to closely face the third diaphragm 5a. That is, the alkaline substance produced at the second cathode 5b is produced and discharged only from the second electrolyte chamber 5d, which is not in contact with the first diaphragm 3a, and the action of the alkaline substance on the first diaphragm 3a is suppressed. It is believed that there is.
 このように、電解液室5を、イオン透過の選択性のない中性膜からなる第3隔膜5aで陽極室3側の第1電解液室5cと陰極室4側の第2電解液室5dに仕切り、第2電解液室5d内に第3隔膜5aと近接対向して第2陰極5bを設けた。これにより、Ca硬度が異なる原水を使用しても、第2陰極5bの通電比率を変えることで微酸性の混合生成水を生成することが可能で、しかも長時間動作しても、安定して微酸性の混合生成水を生成することが可能である。また、季節変動などで、原水の水質が変動し、混合生成水のpH微酸性域から外れた場合、第2陰極5bの通電比率を変更することで容易に微酸性域に調整が可能である。 In this manner, the electrolyte chamber 5 is divided into the first electrolyte chamber 5c on the anode chamber 3 side and the second electrolyte chamber 5d on the cathode chamber 4 side by the third diaphragm 5a made of a neutral membrane having no ion permeation selectivity. , and a second cathode 5b is provided in the second electrolyte chamber 5d so as to be closely opposed to the third diaphragm 5a. As a result, even if raw water with different Ca hardness is used, it is possible to generate slightly acidic mixed product water by changing the energization ratio of the second cathode 5b. It is possible to generate slightly acidic mixed product water. In addition, when the quality of the raw water fluctuates due to seasonal fluctuations, etc., and the pH of the mixed product water deviates from the slightly acidic range, it can be easily adjusted to the slightly acidic range by changing the energization ratio of the second cathode 5b. .
  電解水生成装置の応用例 
 第2陰極5bの通電比率の変更は、混合生成水のpH測定値に応じて自動的に行うことができる。
 図6に、第1実施形態に係る電解水生成装置の応用例を表す概略図を示す。
 図示するように、第1実施形態の応用例に係る電解水生成装置1-1は、電解セル2の第1生成水混合部10の後段に、混合生成水41を収容し底部11a及び側壁11bを有する貯水部11がさらに設けられる。また、貯水部11中に、pH測定部として機能するオンラインpHメーター12と、貯水部11から混合生成水を排出する第3排水配管21dと、が設置されている。オンラインpHメーター12は制御部7cに接続されている。貯水部11は、通電切替による水質の差異が十分に積算されて影響しないように、サイクル時間より十分に長い時間で混合生成水を貯水できる容量を有することができる。電解水生成装置1-1の他の構成は、図2に示した電解水生成装置1と同様である。
Application example of electrolyzed water generator
The energization ratio of the second cathode 5b can be automatically changed according to the pH measurement value of the mixed product water.
FIG. 6 shows a schematic diagram showing an application example of the electrolyzed water generator according to the first embodiment.
As shown, in the electrolyzed water generating apparatus 1-1 according to the application example of the first embodiment, the mixed generated water 41 is accommodated in the rear stage of the first generated water mixing section 10 of the electrolysis cell 2, and the bottom portion 11a and the side wall 11b are accommodated. A water reservoir 11 having a is further provided. Further, in the water storage section 11, an online pH meter 12 functioning as a pH measuring section and a third drainage pipe 21d for discharging the mixed water from the water storage section 11 are installed. The online pH meter 12 is connected to the controller 7c. The water storage unit 11 can have a capacity to store the mixed product water for a time sufficiently longer than the cycle time so that the difference in water quality due to the power switching is sufficiently integrated and does not affect the water quality. Other configurations of the electrolyzed water generator 1-1 are the same as those of the electrolyzed water generator 1 shown in FIG.
 電解水生成装置1-1では、第1生成水混合部10からの混合生成水41を貯水部11に導入して、オンラインpHメーター12にて混合生成水41のpHを随時測定し、混合生成水41を第3排水配管21dから排出する。季節変動などで原水の水質が変動して、混合生成水41のpH測定値が微酸性域からずれた場合に、オンラインpHメーター12からのpH測定信号を制御部7cで演算して、第2陰極5bの通電比率を自動的に変更するアルゴリズムを組む。これで、混合生成水の自動的なpH制御が可能となる。また、それ以外にも、電解水生成装置1と同様の作用効果を有する。この応用例においては、貯水部11の混合生成水41のpH測定を自動で行えるオンラインpHメーター12を用いたが、作業者が貯水部11の混合生成水41のpH測定を随時手動で測定し、その値を制御部7cにインプットし、その値をもとに制御部7cで演算して、第2陰極5bの通電比率を自動的に変更するアルゴリズムを組むことも可能である。 In the electrolyzed water generator 1-1, the mixed product water 41 from the first product water mixing unit 10 is introduced into the water storage unit 11, and the pH of the mixed product water 41 is measured at any time by the online pH meter 12, and the mixed product is produced. Water 41 is discharged from the third drain pipe 21d. When the pH measurement value of the mixed product water 41 deviates from the slightly acidic region due to fluctuations in the quality of the raw water due to seasonal fluctuations, etc., the pH measurement signal from the online pH meter 12 is calculated by the control unit 7c, and the second An algorithm is constructed to automatically change the energization ratio of the cathode 5b. This allows automatic pH control of the mixed product water. In addition, it has the same effects as those of the electrolyzed water generator 1 . In this application example, the online pH meter 12 that can automatically measure the pH of the mixed water 41 in the water reservoir 11 is used, but the operator manually measures the pH of the mixed water 41 in the water reservoir 11 at any time. , the value is input to the control unit 7c, and the control unit 7c calculates based on the value to create an algorithm for automatically changing the energization ratio of the second cathode 5b.
  (第2実施形態) 
 図7は、第2実施形態に係る流水式の電解水生成装置を概略的に示す図である。
 図示するように、電解水生成装置1-2は、所謂3室型の電解槽(電解セル)2-2を用いている。その内部は、第1隔膜(陽極側隔膜、陰イオン交換膜)3a及び第2隔膜(陰極側隔膜、陽イオン交換膜)4aを備えており、これにより、隔膜間に規定された電解液室5と、電解液室5の両側に位置する陽極室3及び陰極室4との3室に仕切られている。陽極室3内に陽極3bが設けられ、第1隔膜3aに近接対向している。陰極室4内に第1陰極4bが設けられ、第2隔膜4aに近接対向している。陽極3b及び陰極4bは、ほぼ等しい大きさの矩形板状に形成され、電解液室5及び第1、第2隔膜3a、4aを間に挟んで、互いに対向している。
 電解液室5は、イオン透過の選択性がなく陽イオン及び陰イオンの通過が可能な中性膜からなる第3隔膜5aで、陽極室3側の第1電解液室5cと陰極室4側の第2電解液室5dに仕切られている。第2電解液室5dには、第3隔膜5aと近接対向して第2陰極5bが設けられている。第2陰極5bは、陽極3bと第1陰極4bと同様に、陽極3bと第1陰極4bとほぼ等しい大きさの矩形形状に形成されている。
(Second embodiment)
FIG. 7 is a diagram schematically showing a running-water electrolyzed water generator according to the second embodiment.
As illustrated, the electrolyzed water generator 1-2 uses a so-called three-chamber type electrolyzer (electrolytic cell) 2-2. The interior thereof is provided with a first diaphragm (anode side diaphragm, anion exchange membrane) 3a and a second diaphragm (cathode side diaphragm, cation exchange membrane) 4a, thereby forming an electrolyte chamber defined between the diaphragms. 5 , and an anode chamber 3 and a cathode chamber 4 located on both sides of the electrolyte chamber 5 . An anode 3b is provided in the anode chamber 3, and is closely opposed to the first diaphragm 3a. A first cathode 4b is provided in the cathode chamber 4 and closely faces the second diaphragm 4a. The anode 3b and the cathode 4b are formed in the shape of rectangular plates of approximately the same size, and face each other with the electrolyte chamber 5 and the first and second diaphragms 3a and 4a interposed therebetween.
The electrolytic solution chamber 5 is a third diaphragm 5a made of a neutral membrane having no selectivity of ion permeation and allowing the passage of cations and anions. is partitioned into a second electrolyte chamber 5d. A second cathode 5b is provided in the second electrolytic solution chamber 5d so as to closely face the third diaphragm 5a. The second cathode 5b, like the anode 3b and the first cathode 4b, is formed in a rectangular shape having approximately the same size as the anode 3b and the first cathode 4b.
 さらに、陽極室3側の第1電解液室5cの少なくとも一部に、アルカリ性物質の拡散を制御する「透水性の拡散抑制部材」として、多孔質部材5eが設けられている。
 拡散抑制部材は透水性である。すなわち、供給配管8bを介して第1電解液供給口5fより電解液が供給された場合、その電解液は拡散抑制部材の内部を通過する必要がある。このため、拡散抑制部材は透水性を有するのである。
 内部に電解液が通液している状態で陰陽両極に通電すると、電解液中のナトリウムイオンや塩素イオンは電気的な力によって電極方向に移動する。しかし、通電を停止している状態では電気的な力は生じない。この場合でも、電解セル2-2の内部において、例えば濃度勾配等に起因して物質が自然に移動することがある。このように電気的な力によらない自然な物質の移動を「拡散」と称する。拡散抑制部材は、このような拡散を起こりにくくする機能、すなわち電気的な力によらない自然な物質の移動を抑制する機能を有する。
Furthermore, a porous member 5e is provided in at least a part of the first electrolytic solution chamber 5c on the anode chamber 3 side as a "water-permeable diffusion suppressing member" for controlling diffusion of alkaline substances.
The diffusion suppressing member is water permeable. That is, when the electrolytic solution is supplied from the first electrolytic solution supply port 5f through the supply pipe 8b, the electrolytic solution needs to pass through the diffusion suppressing member. Therefore, the diffusion suppressing member has water permeability.
When the positive and negative electrodes are energized while the electrolyte is flowing inside, the sodium ions and chloride ions in the electrolyte move toward the electrodes due to the electrical force. However, no electric force is generated when the current is stopped. Even in this case, substances may spontaneously migrate inside the electrolytic cell 2-2 due to, for example, concentration gradients. Such a natural movement of substances without electric force is called "diffusion". The diffusion suppressing member has a function of making such diffusion difficult, that is, a function of suppressing natural movement of substances not caused by electrical force.
 以上のような透水性の拡散抑制部材の作用は、次のとおりである。まず、電解水生成装置1-2が稼働しているときは、拡散抑制部材が透水性であるため電解液が拡散抑制部材の内部を通過し、陰陽両極への通電によって電解水が生成される。一方、電解水生成装置1-2が停止しているときは、拡散によって第2電解液室5d側から第1電解液室5cにアルカリ性物質が流入することがある。この場合、拡散抑制部材が設置されていれば、第1電解液室5cへのアルカリ性物質の流入を抑制することができる。これにより第1隔膜3aはさらに劣化しにくくなるのである。 The action of the water-permeable diffusion suppressing member as described above is as follows. First, when the electrolyzed water generator 1-2 is in operation, the diffusion suppressing member is water permeable, so the electrolytic solution passes through the inside of the diffusion suppressing member, and electrolyzed water is generated by energizing both the positive and negative electrodes. . On the other hand, when the electrolyzed water generator 1-2 is stopped, an alkaline substance may flow into the first electrolyte chamber 5c from the second electrolyte chamber 5d side due to diffusion. In this case, if the diffusion suppressing member is installed, it is possible to suppress the inflow of the alkaline substance into the first electrolytic solution chamber 5c. This makes the first diaphragm 3a more difficult to deteriorate.
 第2実施形態に使用可能な多孔質部材5eとしては、例えば、プラスチック焼結多孔質体(富士ケミカル社製)、セラミック焼結多孔質等があげられる。
 給電部7は、電源7a、この電源7aを制御する制御部7c、及び、第1陰極4b及び第2陰極5bへの給電を切り替えるスイッチ7b(切替スイッチ)を有している。電源7aの正極は、配線を介して陽極3bに接続されている。電源7aの負極は、スイッチ7b及び2本の配線を介して、第1陰極4b及び第2陰極5bに接続されている。すなわち、スイッチ7bを切り替えることにより、第1陰極4bまたは第2陰極5bに選択的に負電圧を印加することができる。スイッチ7bは、ユーザーにより操作可能に構成されている。
Examples of the porous member 5e that can be used in the second embodiment include a sintered plastic porous material (manufactured by Fuji Chemical Co., Ltd.), a sintered ceramic porous material, and the like.
The power supply unit 7 has a power supply 7a, a control unit 7c that controls the power supply 7a, and a switch 7b (changeover switch) that switches power supply to the first cathode 4b and the second cathode 5b. The positive electrode of the power supply 7a is connected to the anode 3b via wiring. The negative electrode of the power supply 7a is connected to the first cathode 4b and the second cathode 5b via the switch 7b and two wires. That is, by switching the switch 7b, a negative voltage can be selectively applied to the first cathode 4b or the second cathode 5b. The switch 7b is configured to be operable by a user.
 その他、電解水生成装置1-2は、電解セル2-2の第1及び第2電解液室5c、5dに電解液(例えば、塩水)を供給する電解液供給部8と、陽極室3及び陰極室4に水を供給する給水部21と、第1生成水混合部10と、を備え、前述した第1実施形態に係る電解水生成装置1と同様に構成されている。
 第2実施形態において、電解水生成装置1-2から排水される混合生成水は、微酸性・中性付近にpH制御した次亜塩素酸水である。すなわち、通常の生成動作において、陽極3bに正電圧、第1陰極4bまたは第2陰極5bに選択的に負電圧が印加される。本実施形態によれば、スイッチ7b(切替スイッチ)を切り替えて、第2陰極5bに電圧を印加することにより、接続デューティによる更になるpH調整を行うことが可能となる。さらに、多孔質部材5eを設けることにより、第2電解液室5d内で生成したアルカリ性物質が、電解水生成装置を停止した際に、第3隔膜5aを透過して第1電解液室5c及び第1電解液室5cと接している第1隔膜3aへ拡散することを抑制できる。
In addition, the electrolyzed water generator 1-2 includes an electrolytic solution supply unit 8 that supplies an electrolytic solution (for example, salt water) to the first and second electrolytic solution chambers 5c and 5d of the electrolytic cell 2-2, the anode chamber 3 and It has a water supply unit 21 that supplies water to the cathode chamber 4 and a first generated water mixing unit 10, and is configured in the same manner as the electrolyzed water generator 1 according to the first embodiment described above.
In the second embodiment, the mixed water discharged from the electrolyzed water generator 1-2 is hypochlorous acid water whose pH is controlled to be slightly acidic/neutral. That is, in a normal generating operation, a positive voltage is selectively applied to the anode 3b and a negative voltage is selectively applied to the first cathode 4b or the second cathode 5b. According to this embodiment, by switching the switch 7b (changeover switch) and applying a voltage to the second cathode 5b, it is possible to further adjust the pH according to the connection duty. Furthermore, by providing the porous member 5e, when the electrolyzed water generator is stopped, the alkaline substance generated in the second electrolyte chamber 5d permeates the third diaphragm 5a to the first electrolyte chamber 5c and the first electrolyte chamber 5c. Diffusion to the first diaphragm 3a in contact with the first electrolyte chamber 5c can be suppressed.
 また、第2実施形態に係る電解水生成装置1-2を用いると、第1実施形態と同様に、原水の水質に変動があっても混合生成水のpHが随時調整可能となり、混合生成水として得られる次亜塩素酸水のpHを微酸性・中性付近に制御することが可能となる。
 また、給電部7からの通電を第2陰極5bに切り替えたとき、第2電解液室5dの電解液pHはアルカリ側にシフトする。しかし、第3隔膜5aにより電解液室5を第1電解液室5cと第2電解液室5dに分離することにより、アルカリ性物質は第2電解液の流れにより排出され、第1電解液の流れにはほとんど混入しない。
 従って、第1電解液室5cの第1隔膜3aが劣化しにくく耐久性が良好となる。このため、第2実施形態によれば、長期間の使用が可能な電解水生成装置が得られる。
Further, when the electrolyzed water generator 1-2 according to the second embodiment is used, as in the first embodiment, even if the quality of raw water fluctuates, the pH of the mixed product water can be adjusted at any time. It is possible to control the pH of the hypochlorous acid water obtained as a slightly acidic / neutral.
Further, when the energization from the power supply portion 7 is switched to the second cathode 5b, the pH of the electrolyte in the second electrolyte chamber 5d shifts to the alkaline side. However, by separating the electrolyte chamber 5 into the first electrolyte chamber 5c and the second electrolyte chamber 5d by the third diaphragm 5a, the alkaline substance is discharged by the flow of the second electrolyte, and the flow of the first electrolyte hardly mixed with
Therefore, the first diaphragm 3a of the first electrolytic solution chamber 5c is less likely to deteriorate and has good durability. Therefore, according to the second embodiment, it is possible to obtain an electrolyzed water generator that can be used for a long period of time.
 第2実施形態に係る電解水生成装置1-2を用い、以下のように、通電比率による水質変更試験、及び連続稼働試験を行った。
  通電比率による水質変更試験 
 電解水生成装置1-2を用い、0.5L/分で純水を原水として流水し、電解電流を2Aに固定し、1サイクルを10秒とした。1サイクルにおける第1陰極及び第2陰極の通電を切り替えて通電時間の比率を種々変更し、混合生成水の水質変化(pH及び有効塩素濃度)を測定した。
Using the electrolyzed water generator 1-2 according to the second embodiment, a water quality change test and a continuous operation test were conducted as follows.
Water quality change test by energization ratio
Using the electrolyzed water generator 1-2, pure water was flowed as raw water at 0.5 L/min, the electrolysis current was fixed at 2 A, and one cycle was 10 seconds. The energization of the first cathode and the second cathode in one cycle was switched to variously change the ratio of the energization time, and the water quality change (pH and effective chlorine concentration) of the mixed product water was measured.
 図8は、第2実施形態に係る電解水生成装置1-2における第2陰極5bの通電比率(デューティ比)と混合生成水の水質との関係を表すグラフ図である。
 特性線112は、第2陰極5bの通電比率に対するpHの変化を示し、特性線111は、第2陰極5bの通電比率に対する有効塩素濃度の変化を示している。
 第2陰極5bの通電比率は、第1実施形態と同様に、1サイクルの時間に対する第2陰極5bの通電時間の比率である。混合生成水の水質(pH及び有効塩素濃度)の測定は、通電切替による水質差異が十分に積算されて影響しないように、サイクル時間より十分に長い時間で混合生成水を採水して行った。また電解水の生成中、第1電解液室5c及び第2電解液室5dには、各々、20%塩化ナトリウム水溶液を3mL/分送液した。
FIG. 8 is a graph showing the relationship between the energization ratio (duty ratio) of the second cathode 5b and the water quality of the mixed water in the electrolyzed water generator 1-2 according to the second embodiment.
A characteristic line 112 indicates the change in pH with respect to the energization ratio of the second cathode 5b, and a characteristic line 111 indicates the change in effective chlorine concentration with respect to the energization ratio of the second cathode 5b.
The energization ratio of the second cathode 5b is the ratio of the energization time of the second cathode 5b to the time of one cycle, as in the first embodiment. The water quality (pH and effective chlorine concentration) of the mixed product water was measured by sampling the mixed product water for a time sufficiently longer than the cycle time so that the difference in water quality due to switching the power supply was not sufficiently integrated and affected. . During the production of electrolyzed water, 3 mL/min of a 20% sodium chloride aqueous solution was supplied to each of the first electrolyte chamber 5c and the second electrolyte chamber 5d.
 純水を原水にした場合は、特性線112に示すように、第2陰極5bの通電比率が25%付近から大きくpHが変動し、酸性化する。また、第2陰極5bの通電比率を25%から30%に設定すると、活性成分であるHClOの存在比率の高い微酸性域(pH5~6.5)であり腐食等の影響が少ない酸性水(次亜塩素酸水)を得ることができる。一方、特性線111に示すように、混合生成水の有効塩素濃度はほぼ一定である。このように、第2実施形態に電解水生成装置1-2では、第1電解液室5c内に、アルカリ性物質が第1隔膜3aへ拡散するのを抑制する多孔質部材5eを設けた場合でも、第2陰極5bの通電比率で混合生成水のpHを十分に制御できることが分かった。第1電解液室5c内に、多孔質部材5eを設けた場合、電解セル停止中のアルカリ性物質の第1電解液室5cヘの拡散を抑制する。またそれだけでなく、第1隔膜3aが劣化した場合でも、多孔質部材5eと陽極3bで第1隔膜3aを機械的にサンドイッチする構造となっているため、第1隔膜3aの破断の進展を防止することができる。
 また、第1電解液室5c内に多孔質部材5eを設けると、その多孔質部材5eが流路抵抗としても作用し、第1電解液室5cに流入する電解液の流量に比して第2電解液室5dに流入する電解液の流量のほうが大きくなることがある。その場合、第2電解液室5dで生成するアルカリ性水を効率よく排出できるという利点が生じる。なお、供給配管8b及び/または供給配管8cには流量調節弁を設けてもかまわない。
When pure water is used as the raw water, as indicated by the characteristic line 112, the pH fluctuates greatly when the energization ratio of the second cathode 5b is around 25%, resulting in acidification. In addition, when the energization ratio of the second cathode 5b is set to 25% to 30%, the acidic water (pH 5 to 6.5) is in a slightly acidic region (pH 5 to 6.5) with a high abundance ratio of the active ingredient HClO and is less affected by corrosion ( Hypochlorous acid water) can be obtained. On the other hand, as indicated by the characteristic line 111, the effective chlorine concentration of the mixed product water is almost constant. Thus, in the electrolyzed water generator 1-2 of the second embodiment, even when the porous member 5e that suppresses the diffusion of the alkaline substance to the first diaphragm 3a is provided in the first electrolyte chamber 5c, , the pH of the mixed product water can be sufficiently controlled by the energization ratio of the second cathode 5b. When the porous member 5e is provided in the first electrolyte chamber 5c, diffusion of the alkaline substance into the first electrolyte chamber 5c is suppressed while the electrolysis cell is stopped. In addition, even if the first diaphragm 3a deteriorates, the first diaphragm 3a is mechanically sandwiched between the porous member 5e and the anode 3b. can do.
Further, when the porous member 5e is provided in the first electrolytic solution chamber 5c, the porous member 5e also acts as a flow path resistance, and the flow rate of the electrolytic solution flowing into the first electrolytic solution chamber 5c is higher than the flow rate of the electrolytic solution. In some cases, the flow rate of the electrolyte flowing into the second electrolyte chamber 5d is greater. In that case, there is an advantage that the alkaline water generated in the second electrolyte chamber 5d can be efficiently discharged. A flow control valve may be provided in the supply pipe 8b and/or the supply pipe 8c.
  (第3実施形態) 
 図9は、第3実施形態に係る流水式の電解水生成装置を概略的に示す図である。
 第3実施形態に係る電解水生成装置1-3は、少なくとも2台の電解セル2、2-1を直列に接続し、例えば第2電解セル2-1に供給する原水として第1電解セル2の第1混合生成水を用い、段階的にpH調整を行うようにしたものである。
 図示するように、電解水生成装置1-3は、所謂3室型の第1電解セル2及び第2電解セル2-1を用いている。
 第1電解セル2の内部は、第1隔膜(陽極側隔膜、陰イオン交換膜)3a及び第2隔膜(陰極側隔膜、陽イオン交換膜)4aを備えている。これにより、隔膜間に規定された電解液室5と、電解液室5の両側に位置する陽極室3及び陰極室4との3室に仕切られている。陽極室3内に陽極3bが設けられ、第1隔膜3aに近接対向している。陰極室4内に第1陰極4bが設けられ、第2隔膜4aに近接対向している。陽極3b及び第1陰極4bは、ほぼ等しい大きさの矩形板状に形成され、電解液室5及び第1、第2隔膜3a、4aを間に挟んで、互いに対向している。
(Third Embodiment)
FIG. 9 is a diagram schematically showing a running-water electrolyzed water generator according to the third embodiment.
The electrolyzed water generator 1-3 according to the third embodiment connects at least two electrolysis cells 2, 2-1 in series, and for example, the first electrolysis cell 2 is used as raw water to be supplied to the second electrolysis cell 2-1. The pH is adjusted stepwise using the first mixed product water.
As illustrated, the electrolyzed water generator 1-3 uses a so-called three-chamber type first electrolysis cell 2 and second electrolysis cell 2-1.
The inside of the first electrolytic cell 2 includes a first diaphragm (anode side diaphragm, anion exchange membrane) 3a and a second diaphragm (cathode side diaphragm, cation exchange membrane) 4a. As a result, the electrolyte chamber 5 defined between the diaphragms is partitioned into three chambers, an anode chamber 3 and a cathode chamber 4 located on both sides of the electrolyte chamber 5 . An anode 3b is provided in the anode chamber 3, and is closely opposed to the first diaphragm 3a. A first cathode 4b is provided in the cathode chamber 4 and closely faces the second diaphragm 4a. The anode 3b and the first cathode 4b are formed in the shape of rectangular plates of substantially the same size, and face each other with the electrolyte chamber 5 and the first and second diaphragms 3a and 4a interposed therebetween.
 電解液室5は、イオン透過の選択性がなく陽イオン及び陰イオンの通過が可能な中性膜からなる第3隔膜5aで、陽極室3側の第1電解液室5cと陰極室4側の第2電解液室5dに仕切られている。第2電解液室5dには、第3隔膜5aと近接対向して第2陰極5bが設けられている。第2陰極5bは、陽極3bと第1陰極4bと同様に、陽極3bと第1陰極4bとほぼ等しい大きさの矩形形状に形成されている。
 第1電解セル2に接続された給電部7は、電解に必要な電流を供給する電源7aと、第1陰極4b及び/または第2陰極5bに通電するスイッチ7bと、電源7aとスイッチ7bを制御する制御部7cとを有する。ここではスイッチ7bとして、第1陰極4b及び第2陰極5bへの給電を切り替える切替スイッチが使用される。電源7aとしては定電流電源が望ましい。電源7aの正極は配線を介して第1電解セル2の陽極3bと接続されている。電源7aの負極は、スイッチ7b及び2本の配線を介して第1陰極4b及び第2陰極5bと接続されている。スイッチ7bを切り替えることにより、第1陰極4b及び第2陰極5bに選択的に負電圧を印加することができる。スイッチ7bは、ユーザーにより操作可能に構成されている。
The electrolytic solution chamber 5 is a third diaphragm 5a made of a neutral membrane having no selectivity of ion permeation and allowing the passage of cations and anions. is partitioned into a second electrolyte chamber 5d. A second cathode 5b is provided in the second electrolytic solution chamber 5d so as to closely face the third diaphragm 5a. The second cathode 5b, like the anode 3b and the first cathode 4b, is formed in a rectangular shape having approximately the same size as the anode 3b and the first cathode 4b.
The power supply unit 7 connected to the first electrolysis cell 2 includes a power supply 7a that supplies current necessary for electrolysis, a switch 7b that supplies current to the first cathode 4b and/or the second cathode 5b, the power supply 7a and the switch 7b. and a control unit 7c for controlling. Here, as the switch 7b, a changeover switch for switching power supply to the first cathode 4b and the second cathode 5b is used. A constant current power supply is desirable as the power supply 7a. The positive electrode of the power supply 7a is connected to the anode 3b of the first electrolytic cell 2 via wiring. The negative electrode of the power supply 7a is connected to the first cathode 4b and the second cathode 5b via the switch 7b and two wires. By switching the switch 7b, a negative voltage can be selectively applied to the first cathode 4b and the second cathode 5b. The switch 7b is configured to be operable by a user.
 第1陰極4b及び/または第2陰極5bに通電するスイッチとしてスイッチ7bのような切替スイッチを用いる場合、第1陰極4bと第2陰極5bに印加する電圧を固定し、第1陰極4bと第2陰極5bへの通電を時間的に切り替えることにより、通電比率を調整することができる。
 第2電解セル2-1は、第1電解セル2と、混合生成水供給ライン10sに使用される第1生成水混合部10-1と接続されて、第1電解セル2の後段に設けられ、第1電解セル2とほぼ同様の構成を有する。
 第2電解セル2-1の内部は、第1隔膜(陽極側隔膜、陰イオン交換膜)3-1a及び第2隔膜(陰極側隔膜、陽イオン交換膜)4-1aを備えている。これにより、隔膜間に規定された電解液室5-1と、電解液室5-1の両側に位置する陽極室3-1及び陰極室4-1との3室に仕切られている。陽極室3-1内に陽極3-1bが設けられ、第1隔膜3-1aに対向している。陰極室4-1内に第1陰極4-1bが設けられ、第2隔膜4-1aに対向している。陽極3-1b及び第1陰極4-1bは、ほぼ等しい大きさの矩形板状に形成され、電解液室5-1及び第1、第2隔膜3-1a、4-1aを間に挟んで、互いに対向している。
When a selector switch such as the switch 7b is used as a switch for energizing the first cathode 4b and/or the second cathode 5b, the voltage applied to the first cathode 4b and the second cathode 5b is fixed, and the voltage applied to the first cathode 4b and the second cathode 5b is fixed. By temporally switching the energization of the two cathodes 5b, the energization ratio can be adjusted.
The second electrolysis cell 2-1 is connected to the first electrolysis cell 2 and the first product water mixing unit 10-1 used in the mixed product water supply line 10s, and is provided downstream of the first electrolysis cell 2. , has almost the same configuration as the first electrolytic cell 2 .
The interior of the second electrolytic cell 2-1 includes a first diaphragm (anode side diaphragm, anion exchange membrane) 3-1a and a second diaphragm (cathode side diaphragm, cation exchange membrane) 4-1a. As a result, the electrolyte chamber 5-1 defined between the diaphragms is partitioned into three chambers, an anode chamber 3-1 and a cathode chamber 4-1 located on both sides of the electrolyte chamber 5-1. An anode 3-1b is provided in the anode chamber 3-1 and faces the first diaphragm 3-1a. A first cathode 4-1b is provided in the cathode chamber 4-1 and faces the second diaphragm 4-1a. The anode 3-1b and the first cathode 4-1b are formed in the shape of rectangular plates of approximately the same size, sandwiching the electrolyte chamber 5-1 and the first and second diaphragms 3-1a and 4-1a. , facing each other.
 電解液室5-1は、イオン透過の選択性がなく陽イオン及び陰イオンの通過が可能な中性膜からなる第3隔膜5-1aで陽極室3側の第1電解液室5-1cと陰極室4側の第2電解液室5-1dに仕切られている。第2電解液室5-1dには、第3隔膜5-1aと近接対向して第2陰極5-1bが設けられている。第2陰極5-1bは、陽極3-1bと第1陰極4-1bと同様にして、陽極3-1bと第1陰極4-1bとほぼ等しい大きさの矩形形状に形成されている。
 陽極3-1bは、陽極3bと同様の構成を有する。第1陰極4-1bは、第1陰極4bと同様の構成を有する。第2陰極5-1bは、第2陰極5bと同様の構成を有する。
The electrolyte chamber 5-1 is a third diaphragm 5-1a made of a neutral membrane that has no selectivity in ion permeation and allows passage of cations and anions, and a first electrolyte chamber 5-1c on the anode chamber 3 side. and a second electrolyte chamber 5-1d on the cathode chamber 4 side. A second cathode 5-1b is provided in the second electrolyte chamber 5-1d so as to closely face the third diaphragm 5-1a. Similarly to the anode 3-1b and the first cathode 4-1b, the second cathode 5-1b is formed in a rectangular shape having approximately the same size as the anode 3-1b and the first cathode 4-1b.
Anode 3-1b has the same configuration as anode 3b. The first cathode 4-1b has the same configuration as the first cathode 4b. The second cathode 5-1b has the same configuration as the second cathode 5b.
 第2電解セル2-1に接続された給電部7-1は、電源7-1a、この電源7-1aを制御する制御部7-1c、並びに第1陰極4-1b及び第2陰極5-1bへの給電を切り替えるスイッチ7-1b(切替スイッチ)を有している。電源7-1aの正極は、配線を介して陽極3-1bに接続されている。電源7-1aの負極は、スイッチ7-1b及び2本の配線を介して、第1陰極4-1b及び第2陰極5-1bに接続されている。すなわち、スイッチ7-1bを切り替えることにより、第1陰極4-1bまたは第2陰極5-1bに選択的に負電圧を印加することができる。スイッチ7-1bは、ユーザーにより操作可能に構成されている。 The power supply unit 7-1 connected to the second electrolysis cell 2-1 includes a power supply 7-1a, a control unit 7-1c for controlling the power supply 7-1a, a first cathode 4-1b and a second cathode 5-1. It has a switch 7-1b (changeover switch) for switching power supply to 1b. The positive electrode of the power supply 7-1a is connected to the anode 3-1b via wiring. The negative electrode of the power supply 7-1a is connected to the first cathode 4-1b and the second cathode 5-1b via the switch 7-1b and two wires. That is, by switching the switch 7-1b, a negative voltage can be selectively applied to the first cathode 4-1b or the second cathode 5-1b. The switch 7-1b is configured to be operable by the user.
 さらに、電解水生成装置1-3は、第1電解セル2の第1及び第2電解液室5c、5d、並びに第2電解セル2-1の第1及び第2電解液室5-1c、5-1dに、電解液(例えば塩水)を供給する電解液供給部8-1を備える。また、第1電解セル2の陽極室3及び陰極室4に水を供給する給水部21とを備える。さらに、陽極室3及び陰極室4から排出された陽極生成水及び陰極生成水を混合して得られた第1混合生成水を第2電解セル2-1の陽極室3-1及び陰極室4-1に供給する第1生成水混合部10-1を備える。第1生成水混合部10-1は、混合生成水供給ライン10sとして使用される。 Furthermore, the electrolyzed water generator 1-3 includes first and second electrolyte chambers 5c and 5d of the first electrolysis cell 2, and first and second electrolyte chambers 5-1c of the second electrolysis cell 2-1, 5-1d is provided with an electrolytic solution supply unit 8-1 for supplying an electrolytic solution (eg, salt water). Moreover, the water supply part 21 which supplies water to the anode chamber 3 and the cathode chamber 4 of the 1st electrolysis cell 2 is provided. Furthermore, the first mixed product water obtained by mixing the anode-generated water and the cathode-generated water discharged from the anode chamber 3 and the cathode chamber 4 is added to the anode chamber 3-1 and the cathode chamber 4 of the second electrolytic cell 2-1. -1 is provided with a first generated water mixing unit 10-1. The first generated water mixing section 10-1 is used as a mixed generated water supply line 10s.
 電解液供給部8-1は、電解液25a(例えば20%塩化ナトリウム水溶液)を貯溜した塩水タンク(電解液タンク)25を有する。また、塩水タンク25から第1電解セル2の第1及び第2電解液室5c、5dの下方に塩水を導く供給配管8aと、供給配管8a中に設けられた送液ポンプ29とを有する。さらに、第1電解セル2の第1及び第2電解液室5c、5dの上方から塩水を排出する排水配管8fを有する。塩水タンク25の出口付近では供給配管8aから供給配管8-1aが分岐し、第1及び第2電解液室5-1c、5-1dの下方に塩水を導いている。供給配管8-1a中には送液ポンプ29-1が設けられている。
 また、供給配管8aは、電解液室5の第1電解液室5cの下部に設けられた第1電解液供給口5fに接続して塩水を供給する第1電解液供給ラインとして機能する供給配管8bと、電解液室5の第2電解液室5dの下部に設けられた第2電解液供給口5gに接続して塩水を供給する第2電解液供給ラインとして機能する供給配管8cに分岐する。これにより、第1電解液室5c及び第2電解液室5dに別々に電解水を供給している。第1電解液室5cの上部には、第1電解液排出口5hと接続され、第1電解液室5c内を流れた電解液を排水する第1電解液排出ラインとして機能する排水配管8dが接続される。第2電解液室5dの上部には、第2電解液排出口5iと接続され、第2電解液室5d内を流れた電解液を排水する第2電解液排出ラインとして機能する排水配管8eが設けられている。このため、第1電解液室5cにおける塩水の流れは、第2電解液室5dにおける塩水の流れとは別になっている。排水配管8dと排水配管8eは合流されて排水配管8fとなり、排水配管8dと排水配管8eの電解液は混合して排出される。
The electrolyte supply unit 8-1 has a salt water tank (electrolyte tank) 25 that stores an electrolyte 25a (eg, 20% sodium chloride aqueous solution). It also has a supply pipe 8a for guiding salt water from the salt water tank 25 to below the first and second electrolyte chambers 5c and 5d of the first electrolytic cell 2, and a liquid feed pump 29 provided in the supply pipe 8a. Furthermore, it has a drainage pipe 8f for discharging salt water from above the first and second electrolyte chambers 5c and 5d of the first electrolytic cell 2. As shown in FIG. A supply pipe 8-1a branches from the supply pipe 8a in the vicinity of the outlet of the salt water tank 25, and guides the salt water below the first and second electrolyte chambers 5-1c and 5-1d. A liquid transfer pump 29-1 is provided in the supply pipe 8-1a.
The supply pipe 8a is connected to a first electrolytic solution supply port 5f provided in the lower part of the first electrolytic solution chamber 5c of the electrolytic solution chamber 5, and functions as a first electrolytic solution supply line for supplying salt water. 8b and a supply pipe 8c functioning as a second electrolyte supply line for supplying salt water by connecting to a second electrolyte supply port 5g provided in the lower portion of the second electrolyte chamber 5d of the electrolyte chamber 5. . Electrolyzed water is thereby separately supplied to the first electrolyte chamber 5c and the second electrolyte chamber 5d. Above the first electrolyte chamber 5c, a drain pipe 8d is connected to the first electrolyte drain port 5h and functions as a first electrolyte drain line for draining the electrolyte that has flowed through the first electrolyte chamber 5c. Connected. Above the second electrolyte chamber 5d, a drain pipe 8e is connected to the second electrolyte drain port 5i and functions as a second electrolyte drain line for draining the electrolyte that has flowed through the second electrolyte chamber 5d. is provided. Therefore, the flow of salt water in the first electrolyte chamber 5c is separate from the flow of salt water in the second electrolyte chamber 5d. The drain pipe 8d and the drain pipe 8e are merged to form the drain pipe 8f, and the electrolytic solutions in the drain pipe 8d and the drain pipe 8e are mixed and discharged.
 供給配管8-1aは、電解液室5-1の第1電解液室5-1cの下部に設けられた第1電解液供給口5-1fに接続して塩水を供給する第1電解液供給ラインとして機能する供給配管8-1bと、電解液室5-1の第2電解液室5-1dの下部に設けられた第2電解液供給口5-1gに接続して塩水を供給する第2電解液供給ラインとして機能する供給配管8-1cと、に分岐している。これにより、第1電解液室5-1cと第2電解液室5-1dには電解液が別々に供給される。第1電解液室5-1cの上部には、第1電解液排出口5-1hと接続され、第1電解液室5-1c内を流れた電解液を排水する第1電解液排出ラインとして機能する排水配管8-1dが接続されている。第2電解液室5-1dの上部には、第2電解液排出口5-1iと接続され、第2電解液室5-1d内を流れた電解液を排水する第2電解液排出ラインとして機能する排水配管8-1eが接続されている。このため、第1電解液室5-1cにおける塩水の流れは、第2電解液室5-1dにおける塩水の流れとは別になっている。排水配管8-1dと排水配管8-1eは合流されて排水配管8-1fとなり、排水配管8-1dと排水配管8-1eの電解液は混合して排出される。 The supply pipe 8-1a is connected to a first electrolyte supply port 5-1f provided in the lower portion of the first electrolyte chamber 5-1c of the electrolyte chamber 5-1 to supply salt water. A supply pipe 8-1b functioning as a line is connected to a second electrolytic solution supply port 5-1g provided in the lower part of the second electrolytic solution chamber 5-1d of the electrolytic solution chamber 5-1 to supply salt water. 2, a supply pipe 8-1c functioning as an electrolyte solution supply line. As a result, the electrolyte is separately supplied to the first electrolyte chamber 5-1c and the second electrolyte chamber 5-1d. Above the first electrolyte chamber 5-1c, it is connected to the first electrolyte discharge port 5-1h and serves as a first electrolyte discharge line for draining the electrolyte that has flowed through the first electrolyte chamber 5-1c. A functioning drain pipe 8-1d is connected. Above the second electrolyte chamber 5-1d, a second electrolyte discharge line is connected to the second electrolyte discharge port 5-1i and serves as a second electrolyte discharge line for draining the electrolyte that has flowed through the second electrolyte chamber 5-1d. A functioning drain pipe 8-1e is connected. Therefore, the flow of salt water in the first electrolyte chamber 5-1c is separate from the flow of salt water in the second electrolyte chamber 5-1d. The drain pipe 8-1d and the drain pipe 8-1e are merged to form the drain pipe 8-1f, and the electrolytic solutions in the drain pipe 8-1d and the drain pipe 8-1e are mixed and discharged.
 給水部21は、水を供給する給水源9と、給水源9の出口付近に設けられた開閉バルブ28と、給水源9から陽極室3及び陰極室4の下部に水を導く第1給水配管21aと、を備えている。また、第1電解セル2は、第1排水口3hと接続され、陽極室3を流れた水を陽極室3の上部から排出する第1排水ラインとして機能する第1排水配管21bと、第2排水口4hと接続され、陰極室4を流れた水を陰極室4の上部から排出する第2排水ラインとして機能する第2排水配管21cと、を備えている。第1給水配管21aは、第1給水ラインとして機能する第2給水配管21eと、第2給水ラインとして機能する第3給水配管21fと、に分岐している。第2給水配管21eは第1給水口3fと接続されて陽極室3に水を供給する。第3給水配管21fは第2給水口4fと接続されて陰極室4に水を供給する。第1排水配管21bは、第2排水配管21cの中途部に接続され、混合生成水供給ライン10sとして使用される第1生成水混合部10-1を構成している。これにより、第1排水配管21bから排水される陽極生成水と第2排水配管21cから排水される陰極生成水とが混合され、第1混合生成水となる。第1混合生成水は、弱アルカリ酸から中性域にpH制御された次亜塩素酸水である。 The water supply unit 21 includes a water supply source 9 that supplies water, an opening/closing valve 28 provided near the outlet of the water supply source 9, and a first water supply pipe that guides water from the water supply source 9 to the lower portions of the anode chamber 3 and the cathode chamber 4. 21a. The first electrolytic cell 2 also includes a first drain pipe 21b connected to a first drain port 3h and functioning as a first drain line for discharging water that has flowed through the anode chamber 3 from the upper portion of the anode chamber 3; A second drain pipe 21c that is connected to the drain port 4h and functions as a second drain line for discharging the water that has flowed through the cathode chamber 4 from the upper portion of the cathode chamber 4 is provided. The first water supply pipe 21a branches into a second water supply pipe 21e functioning as a first water supply line and a third water supply pipe 21f functioning as a second water supply line. The second water supply pipe 21 e is connected to the first water supply port 3 f to supply water to the anode chamber 3 . The third water supply pipe 21f is connected to the second water supply port 4f to supply water to the cathode chamber 4. As shown in FIG. The first drain pipe 21b is connected to the middle portion of the second drain pipe 21c, and constitutes the first generated water mixing section 10-1 used as the mixed generated water supply line 10s. As a result, the anode-generated water discharged from the first drainage pipe 21b and the cathode-generated water discharged from the second drainage pipe 21c are mixed to form the first mixed water. The first mixed product water is hypochlorous acid water whose pH is controlled from a weak alkaline acid to a neutral range.
 第1電解セル2から得られた第1混合生成水は、第1生成水混合部10-1により第2電解セル2-1に送られる。第1生成水混合部10-1の下流は、陽極室3-1の下部に設けられた第1給水口3-1fと接続され、第1混合生成水を供給する第3排水配管10-1aと、陰極室4-1の下部に設けられた第2給水口4-1fと接続され、第1混合生成水を供給する第4排水配管10-1bと、に分岐している。この電解水生成装置1-3では、第1生成水混合部10-1、第3排水配管10-1a、及び第4排水配管10-1bは、陽極室3-1及び陰極室4-1に第1混合生成水を供給するための混合生成水供給ライン10sとして使用することができる。 The first mixed product water obtained from the first electrolytic cell 2 is sent to the second electrolytic cell 2-1 by the first product water mixing section 10-1. The downstream of the first generated water mixing section 10-1 is connected to the first water supply port 3-1f provided in the lower part of the anode chamber 3-1, and the third drainage pipe 10-1a for supplying the first mixed generated water. and a fourth drain pipe 10-1b connected to a second water supply port 4-1f provided in the lower part of the cathode chamber 4-1 to supply the first mixed product water. In this electrolyzed water generator 1-3, the first generated water mixing unit 10-1, the third drain pipe 10-1a, and the fourth drain pipe 10-1b are connected to the anode chamber 3-1 and the cathode chamber 4-1. It can be used as the mixed product water supply line 10s for supplying the first mixed product water.
 陽極室3-1の上部に設けられた第1排水口3-1hには陽極室3-1を流れた陽極生成水を排水する第5排水配管10-1cが接続される。陰極室4-1の上部に設けられた第2排出口4-1hには陰極室4-1を流れた陰極生成水を排水する第6排水配管10-1dが接続される。第6排水配管10-1dは、第5排水配管10-1cの中途部に接続されて、第2電解セル2-1の陽極生成水と陰極生成水を混合して第2混合生成水とする第2生成水混合部10-1eを構成している。第2混合生成水は、さらに第2電解セル2-1により微酸性・中性付近にpH制御された次亜塩素酸水である。
 その他、各配管に開閉バルブあるいは流量調整弁を設けてもよい。
A fifth drain pipe 10-1c for draining the anode-generated water flowing through the anode chamber 3-1 is connected to the first drain port 3-1h provided in the upper part of the anode chamber 3-1. A sixth drain pipe 10-1d for draining cathode-generated water flowing through the cathode chamber 4-1 is connected to a second outlet 4-1h provided in the upper portion of the cathode chamber 4-1. The sixth drain pipe 10-1d is connected to the middle portion of the fifth drain pipe 10-1c, and mixes the anode-generated water and the cathode-generated water of the second electrolysis cell 2-1 to obtain second mixed generated water. It constitutes the second water mixing section 10-1e. The second mixed product water is hypochlorous acid water whose pH is controlled to be slightly acidic or near neutral by the second electrolytic cell 2-1.
In addition, each pipe may be provided with an on-off valve or a flow control valve.
 このように、第3実施形態に係る電解水生成装置によれば、第2電解セル2-1の陽極室3-1と陰極室4-1に供給する原水として第1電解セル2の混合生成水(第1混合生成水)を用いることにより、第1電解セル2と第2電解セル2-1とで段階的に生成水のpH調整を行って最終的な混合生成水(第2混合生成水)を得ることができる。
 電解セルとしては、第1実施形態または第2実施形態に用いられる電解セル2、または2-2などを使用することが可能である。ここでは、第1実施形態に用いられる電解セル2を使用している。ここでは、第1電解セル2と第2電解セル2-1は、材質、形状、大きさ等が同じ構成であるものを使用しているが、異なる構成を有することもできる。なお、図9では、電解液供給部8では、第1の電解セル2及び第2の電解セル2-1の電解液供給部を共用としているが、別々であっても構わない。
Thus, according to the electrolyzed water generator according to the third embodiment, mixed production of the first electrolysis cell 2 as raw water to be supplied to the anode chamber 3-1 and the cathode chamber 4-1 of the second electrolysis cell 2-1 By using water (first mixed product water), the pH of the generated water is adjusted step by step in the first electrolytic cell 2 and the second electrolytic cell 2-1, and the final mixed product water (second mixed product water) can be obtained.
As the electrolytic cell, it is possible to use the electrolytic cell 2 or 2-2 used in the first embodiment or the second embodiment. Here, the electrolytic cell 2 used in the first embodiment is used. Here, the first electrolysis cell 2 and the second electrolysis cell 2-1 have the same configuration in material, shape, size, etc., but may have different configurations. In FIG. 9, the electrolytic solution supply unit 8 shares the electrolytic solution supply unit for the first electrolytic cell 2 and the second electrolytic cell 2-1, but may be separate.
 また、第3実施形態に係る電解水生成装置1-3を用いると、第1実施形態と同様に、原水の水質に変動があっても、混合生成水のpHが随時調整可能となり、混合生成水として得られる次亜塩素酸水のpHを微酸性・中性付近に制御することが可能となる。また、給電部7からの通電を第2陰極5b、5-1bに切り替えたとき、第2電解液室5d、5-1dの電解液pHはアルカリ側にシフトする。しかし、第3隔膜5a、5-1aにより電解液室5、5-1を第1電解液室5c、5-1cと第2電解液室5d、5-1dに分離することにより、アルカリ性物質は第2電解液の流れにより排出され、第1電解液の流れにはほとんど混入しない。従って、第1電解液室5c、5-1cの第1隔膜3a、3-1aが劣化しにくく耐久性が良好となる。これに加えて、第1電解セル2と第2電解セル2-1とで段階的にpH調整を行うことで、第2電解液室5d、5-1dのアルカリ度を抑えることができる。このため、第3実施形態によれば、第1実施形態及び第2実施形態よりさらに長期間の使用が可能な電解水生成装置が得られる。 Further, when the electrolyzed water generator 1-3 according to the third embodiment is used, as in the first embodiment, even if the quality of the raw water fluctuates, the pH of the mixed product water can be adjusted at any time. It is possible to control the pH of hypochlorous acid water obtained as water to be slightly acidic or near neutral. Further, when the current supply from the power supply portion 7 is switched to the second cathodes 5b and 5-1b, the pH of the electrolyte in the second electrolyte chambers 5d and 5-1d shifts to the alkaline side. However, by separating the electrolyte chambers 5, 5-1 into the first electrolyte chambers 5c, 5-1c and the second electrolyte chambers 5d, 5-1d by the third diaphragms 5a, 5-1a, alkaline substances can be It is discharged by the flow of the second electrolytic solution and hardly mixed into the flow of the first electrolytic solution. Therefore, the first diaphragms 3a and 3-1a of the first electrolytic solution chambers 5c and 5-1c are less likely to deteriorate and have good durability. In addition to this, the alkalinity of the second electrolytic solution chambers 5d and 5-1d can be suppressed by performing stepwise pH adjustment in the first electrolytic cell 2 and the second electrolytic cell 2-1. Therefore, according to the third embodiment, it is possible to obtain an electrolyzed water generator that can be used for a longer period of time than the first and second embodiments.
  通電比率による水質変更試験 
 電解水生成装置1-3を用い、0.5mL/分で、Ca硬度45g/Lの水道水を第1電解セル2の原水として流水した。第1電解セル2の電解電流を1.0Aに固定し、1サイクルを10秒とした。第1陰極4bの通電時間を7秒及び第2陰極5bの通電時間3秒に設定した。これにより、pH6.9、有効塩素濃度48mg/Lの混合生成水を得た。続いて、この混合生成水を、第2電解セル2-1の原水として用いた。第2電解セル2-1の電解電流を1.0Aに固定し、1サイクルを10秒とした。第1陰極4-1b及び第2陰極5-1bへの通電を切り替えて通電時間の比率を種々変更し、第2電解セル2-1の混合生成水の水質(pH及び有効塩素濃度)を測定した。
Water quality change test by energization ratio
Using the electrolyzed water generator 1-3, tap water having a Ca hardness of 45 g/L was passed as raw water of the first electrolysis cell 2 at 0.5 mL/min. The electrolysis current of the first electrolysis cell 2 was fixed at 1.0 A, and one cycle was 10 seconds. The energization time of the first cathode 4b was set to 7 seconds, and the energization time of the second cathode 5b was set to 3 seconds. As a result, mixed product water having a pH of 6.9 and an effective chlorine concentration of 48 mg/L was obtained. Subsequently, this mixed product water was used as raw water for the second electrolytic cell 2-1. The electrolysis current of the second electrolysis cell 2-1 was fixed at 1.0 A, and one cycle was 10 seconds. By switching the energization to the first cathode 4-1b and the second cathode 5-1b to variously change the ratio of the energization time, the water quality (pH and effective chlorine concentration) of the mixed water produced in the second electrolysis cell 2-1 is measured. did.
 図10は、第3実施形態に係る電解水生成装置における第2電解セル2-1の第2陰極5-1bの通電比率(デューティ比)と混合生成水の水質との関係を表すグラフ図である。
 特性線113は、第2電解セル2-1の第2陰極5-1bの通電比率に対する有効塩素濃度、特性線114は、第2電解セル2-1の第2陰極5-1bの通電比率に対するpHをそれぞれ示している。
 第2陰極の通電比率は、1サイクルの時間に対する第2陰極5-1bの通電時間の比率である。第2電解セル2-1の混合生成水の水質(pH及び有効塩素濃度)の測定は、通電切替による水質差異が十分に積算されて影響しないように、サイクル時間より十分に長い時間で混合生成水を採水して行った。また電解水の生成中、第1電解液室5c、第2電解液室5d、第1電解液室5-1c、第2電解液室5-1dには、各々20%塩化ナトリウム水溶液を3mL/分送液した。
FIG. 10 is a graph showing the relationship between the energization ratio (duty ratio) of the second cathode 5-1b of the second electrolysis cell 2-1 and the quality of the mixed product water in the electrolyzed water generator according to the third embodiment. be.
The characteristic line 113 is the effective chlorine concentration with respect to the energization ratio of the second cathode 5-1b of the second electrolytic cell 2-1, and the characteristic line 114 is the energization ratio of the second cathode 5-1b of the second electrolytic cell 2-1. pH is shown respectively.
The energization ratio of the second cathode is the ratio of the energization time of the second cathode 5-1b to the time of one cycle. The water quality (pH and effective chlorine concentration) of the mixed product water in the second electrolysis cell 2-1 is measured in a time sufficiently longer than the cycle time so that the difference in water quality due to the switching of the power supply is not sufficiently integrated and affected. I collected water. During the production of electrolyzed water, 3 mL/mL of 20% sodium chloride aqueous solution was added to each of the first electrolyte chamber 5c, the second electrolyte chamber 5d, the first electrolyte chamber 5-1c, and the second electrolyte chamber 5-1d. Separately fed.
 第1電解セル2の電解電流を1.0Aに固定し、第1陰極4b通電時間を7秒及び第2陰極5bの通電時間3秒に設定してpH6.9、有効塩素濃度48mg/Lの混合生成水が得られた。この混合生成水を、第2電解セル2-1に供給する原水として用いた場合、特性線114に示すように、第2陰極5-1b通電比率が40%付近から大きくpHが変動し、酸性化する。第2陰極5-1bの通電比率を40%から45%に設定すると、活性成分であるHClOの存在比率の高い微酸性域(pH5~6.5)であり腐食等の影響が少ない酸性水(次亜塩素酸水)を得ることができる。特性線113に示すように、混合生成水の有効塩素濃度はほぼ一定である。 The electrolysis current of the first electrolysis cell 2 was fixed at 1.0 A, the energization time of the first cathode 4b was set to 7 seconds and the energization time of the second cathode 5b was set to 3 seconds, and the pH was 6.9 and the effective chlorine concentration was 48 mg / L. A mixed product water was obtained. When this mixed product water is used as the raw water to be supplied to the second electrolysis cell 2-1, as shown by the characteristic line 114, the pH fluctuates greatly from the second cathode 5-1b energization ratio of around 40%, and becomes acidic. become When the energization ratio of the second cathode 5-1b is set to 40% to 45%, the acidic water (pH 5 to 6.5) is in a slightly acidic region (pH 5 to 6.5) with a high abundance ratio of the active ingredient HClO and is less affected by corrosion ( Hypochlorous acid water) can be obtained. As indicated by the characteristic line 113, the effective chlorine concentration of the mixed product water is almost constant.
 このように、第3実施形態に係る電解水生成装置1-3を用いて少なくとも2台の電解セル2、2-1を直列に接続する。そして、第2電解セル2-1に供給する原水として第1電解セル2の混合生成水を用い、段階的にpH調整を行う。これにより、単独の電解セルを使用した第1実施形態及び第2実施形態に係る電解水生成装置1、1-2よりも低い電解電流、すなわち電極への負荷が少ない条件で、酸性水(次亜塩素酸水)を得ることができる。しかも、電解セル1台当たりのアルカリ性物質の生成量を抑えて、活性成分であるHClOの存在比率がより高く、微酸性域(pH5~6.5)の酸性水(次亜塩素酸水)を得ることができる。これにより、腐食等の影響が少なく、より長時間の稼働が可能となる。 Thus, at least two electrolytic cells 2 and 2-1 are connected in series using the electrolyzed water generator 1-3 according to the third embodiment. Then, the mixed product water of the first electrolytic cell 2 is used as the raw water to be supplied to the second electrolytic cell 2-1, and the pH is adjusted step by step. As a result, acidic water (next chlorous acid water) can be obtained. In addition, the amount of alkaline substances generated per electrolytic cell is suppressed, the abundance ratio of the active ingredient HClO is higher, and acidic water (hypochlorous acid water) in a slightly acidic range (pH 5 to 6.5) is produced. Obtainable. As a result, the influence of corrosion and the like is small, and it is possible to operate for a longer period of time.
  (第4実施形態) 
 図11は、第4実施形態に係る流水式の電解水生成装置を概略的に示す図である。
 第4実施形態に係る電解水生成装置には、2台またはそれ以上の電解セルを並列に接続し、電解水生成量の大量化を図るものである。
 図示するように、電解水生成装置1-4は、所謂3室型の第1電解セル2及び第2電解セル2-1を用いている。第1電解セル2及び第2電解セル2-1の構成は、図9に示した電解セルと同様であるため、ここでは説明を省略する。
 さらに、電解水生成装置1-4は、第1電解セル2の第1及び第2電解液室5c、5d、及び第2電解セル2-1の第1及び第2電解液室5-1c、5-1dに、電解液(例えば塩水)を供給する電解液供給部8-1を備える。また、第1電解セル2の陽極室3及び陰極室4、並びに第2電解セル2-1の陽極室3-1及び陰極室4-1に水を供給する給水部21を備える。また、陽極室3及び陰極室4から排出された陽極生成水及び陰極生成水を混合する第1生成水混合部10と、陽極室3-1及び陰極室4-1から排出された陽極生成水及び陰極生成水を混合する第3生成水混合部10-2と、第1生成水混合部10と第3生成水混合部10-2をさらに混合する第4生成水混合部10-2aと、を備える。
(Fourth embodiment)
FIG. 11 is a diagram schematically showing a running-water electrolyzed water generator according to the fourth embodiment.
In the electrolyzed water generator according to the fourth embodiment, two or more electrolyzed cells are connected in parallel to increase the amount of electrolyzed water generated.
As illustrated, the electrolyzed water generator 1-4 uses a so-called three-chamber type first electrolysis cell 2 and second electrolysis cell 2-1. Since the configurations of the first electrolytic cell 2 and the second electrolytic cell 2-1 are the same as those of the electrolytic cell shown in FIG. 9, description thereof is omitted here.
Furthermore, the electrolyzed water generator 1-4 includes first and second electrolyte chambers 5c and 5d of the first electrolysis cell 2, and first and second electrolyte chambers 5-1c of the second electrolysis cell 2-1, 5-1d is provided with an electrolytic solution supply unit 8-1 for supplying an electrolytic solution (eg, salt water). Further, a water supply unit 21 for supplying water to the anode chamber 3 and cathode chamber 4 of the first electrolysis cell 2 and the anode chamber 3-1 and cathode chamber 4-1 of the second electrolysis cell 2-1 is provided. A first water mixing unit 10 for mixing the anode-generated water and the cathode-generated water discharged from the anode chamber 3 and the cathode chamber 4, and the anode-generated water discharged from the anode chamber 3-1 and the cathode chamber 4-1. and a third generated water mixing unit 10-2 that mixes the cathode generated water, a fourth generated water mixing unit 10-2a that further mixes the first generated water mixing unit 10 and the third generated water mixing unit 10-2, Prepare.
 電解液供給部8-1は、図9に示した電解液供給部と同様の構成を有する。
 給水部21は、水を供給する給水源9と、給水源9の出口付近に設けられた開閉バルブ28と、給水源9から陽極室3及び陰極室4の下部に水を導く第1給水配管21aと、を備えている。また、電解水生成装置1-4は、第1排水口3hと接続され、陽極室3を流れた水を陽極室3の上部から排出する第1排水ラインとして機能する第1排水配管21bと、第2排水口4hと接続され、陰極室4を流れた水を陰極室4の上部から排出する第2排水ラインとして機能する第2排水配管21cと、を備えている。
 第1給水配管21aは、第1給水ラインとして機能する第2給水配管21eと、第2給水ラインとして機能する第3給水配管21fと、に分岐している。第2給水配管21eは第1給水口3fと接続されて陽極室3に水を供給する。第3給水配管21fは第2給水口4fと接続されて陰極室4に水を供給する。
The electrolytic solution supply unit 8-1 has the same configuration as the electrolytic solution supply unit shown in FIG.
The water supply unit 21 includes a water supply source 9 that supplies water, an opening/closing valve 28 provided near the outlet of the water supply source 9, and a first water supply pipe that guides water from the water supply source 9 to the lower portions of the anode chamber 3 and the cathode chamber 4. 21a and. The electrolyzed water generator 1-4 also includes a first drain pipe 21b connected to the first drain port 3h and functioning as a first drain line for discharging the water that has flowed through the anode chamber 3 from the upper portion of the anode chamber 3; A second drain pipe 21c is provided, which is connected to the second drain port 4h and functions as a second drain line for discharging the water that has flowed through the cathode chamber 4 from the upper portion of the cathode chamber 4.
The first water supply pipe 21a branches into a second water supply pipe 21e functioning as a first water supply line and a third water supply pipe 21f functioning as a second water supply line. The second water supply pipe 21 e is connected to the first water supply port 3 f to supply water to the anode chamber 3 . The third water supply pipe 21f is connected to the second water supply port 4f to supply water to the cathode chamber 4. As shown in FIG.
 給水部21は、さらに、開閉バルブ28の下流で第1給水配管21aから分岐して陽極室3-1及び陰極室4-1に水を導く第4給水配管21-1aを備えている。また、陽極室3-1を流れた水を陽極室3-1の上部から排出する第5排水配管21-1bを備えている。また、陰極室4を流れた水を陰極室4-1の上部から排出する第6排水配管21-1c、を備えている。
 第1給水配管21-1aは、第1給水ラインとして機能する第2給水配管21-1eと、第2給水ラインとして機能する第3給水配管21-1fと、に分岐している。第2給水配管21-1eは第1給水口3-1fと接続されて陽極室3-1に水を供給する。第3給水配管21-1fは第2給水口4-1fと接続されて陰極室4-1に水を供給する。
The water supply unit 21 further includes a fourth water supply pipe 21-1a that branches off from the first water supply pipe 21a downstream of the on-off valve 28 and guides water to the anode chamber 3-1 and the cathode chamber 4-1. It also has a fifth drain pipe 21-1b for discharging the water that has flowed through the anode chamber 3-1 from above the anode chamber 3-1. Further, a sixth drain pipe 21-1c for discharging water flowing through the cathode chamber 4 from the upper portion of the cathode chamber 4-1 is provided.
The first water supply pipe 21-1a branches into a second water supply pipe 21-1e functioning as a first water supply line and a third water supply pipe 21-1f functioning as a second water supply line. The second water supply pipe 21-1e is connected to the first water supply port 3-1f to supply water to the anode chamber 3-1. The third water supply pipe 21-1f is connected to the second water supply port 4-1f to supply water to the cathode chamber 4-1.
 第1排水配管21bは、第2排水配管21cの中途部に接続され、第1生成水混合部10を構成している。これにより、第1排水配管21bから排水される陽極生成水と第2排水配管21cから排水される陰極生成水とが混合され、第1混合生成水となる。また、第5排水配管21-1bは、第6排水配管21-1cの中途部に接続され、第3生成水混合部10-2を構成している。これにより、第5排水配管21-1bから排水される陽極生成水と第6排水配管21-1cから排水される陰極生成水とが混合され、第3混合生成水となる。さらに、第1生成水混合部10と第3生成水混合部10-2の後段において、第2排水配管21cと第6排水配管21-1cが合流し、第4生成水混合部10-2aを構成している。第4生成水混合部10-2aでは、第1生成水混合部10の第1混合生成水と第3生成水混合部10-2の第3混合生成水が混合され、第4混合生成水となる。混合生成水は、中性付近にpH制御された次亜塩素酸水である。 The first drainage pipe 21b is connected to the middle portion of the second drainage pipe 21c and constitutes the first generated water mixing section 10. As a result, the anode-generated water discharged from the first drainage pipe 21b and the cathode-generated water discharged from the second drainage pipe 21c are mixed to form the first mixed water. Also, the fifth drain pipe 21-1b is connected to the middle portion of the sixth drain pipe 21-1c to constitute the third generated water mixing section 10-2. As a result, the anode-generated water drained from the fifth drain pipe 21-1b and the cathode-generated water drained from the sixth drain pipe 21-1c are mixed to form the third mixed water. Furthermore, in the rear stage of the first generated water mixing section 10 and the third generated water mixing section 10-2, the second drainage pipe 21c and the sixth drainage piping 21-1c join to form the fourth generated water mixing section 10-2a. Configure. In the fourth generated water mixing section 10-2a, the first mixed generated water of the first generated water mixing section 10 and the third mixed generated water of the third generated water mixing section 10-2 are mixed to form the fourth mixed generated water. Become. The mixed product water is hypochlorous acid water whose pH is controlled near neutral.
 このように、第4実施形態に係る電解水生成装置1-4によれば、少なくとも2台の電解セルを並列に接続する。これにより、電解水生成量の大量化を図ることができる。また、2台の電解セルの第1陰極と第2陰極の切替のタイミングをずらすことが可能となり、より精密に第4生成水混合部10-2aでの混合が可能となる。従って、第4生成水混合部10-2aの後段に貯水部を設けなくてもよい運用が可能となる。 Thus, according to the electrolyzed water generator 1-4 according to the fourth embodiment, at least two electrolysis cells are connected in parallel. As a result, it is possible to increase the amount of electrolyzed water generated. Further, it is possible to shift the switching timing of the first cathode and the second cathode of the two electrolytic cells, so that more precise mixing in the fourth water mixing section 10-2a is possible. Therefore, it is possible to operate without providing a water storage section in the rear stage of the fourth generated water mixing section 10-2a.
 また、第4実施形態に係る電解水生成装置1-4を用いると、第1実施形態と同様に、原水の水質に変動があっても混合生成水のpHが随時調整可能となる。このため、混合生成水として得られる次亜塩素酸水のpHを微酸性・中性付近に制御することが可能となる。
 また、給電部7からの通電を第2陰極5b、5-1bに切り替えたとき、第2電解液室5d、5-1dの電解液pHはアルカリ側にシフトする。しかし、第3隔膜5、5-1aにより電解液室5、5-1を第1電解液室5c、5-1cと第2電解液室5d、5-1dに分離することにより、アルカリ性物質は第2電解液の流れにより排出され、第1電解液の流れにはほとんど混入しない。
 従って、第1電解液室5c、5-1cの第1隔膜3a、3-1aが劣化しにくく耐久性が良好となる。このため、第4実施形態によれば、長期間の使用が可能な電解水生成装置が得られる。
Further, when the electrolyzed water generator 1-4 according to the fourth embodiment is used, similarly to the first embodiment, even if the quality of the raw water fluctuates, the pH of the mixed product water can be adjusted at any time. Therefore, it is possible to control the pH of the hypochlorous acid water obtained as the mixed product water to be slightly acidic or near neutral.
Further, when the current supply from the power supply portion 7 is switched to the second cathodes 5b and 5-1b, the pH of the electrolyte in the second electrolyte chambers 5d and 5-1d shifts to the alkaline side. However, by separating the electrolyte chamber 5, 5-1 into the first electrolyte chamber 5c, 5-1c and the second electrolyte chamber 5d, 5-1d by the third diaphragm 5, 5-1a, alkaline substances It is discharged by the flow of the second electrolytic solution and hardly mixed into the flow of the first electrolytic solution.
Therefore, the first diaphragms 3a and 3-1a of the first electrolytic solution chambers 5c and 5-1c are less likely to deteriorate and have good durability. Therefore, according to the fourth embodiment, it is possible to obtain an electrolyzed water generator that can be used for a long period of time.
 電解セルとしては、第1実施形態または第2実施形態に用いられる電解セル2、または1-2などを使用することが可能である。第1電解セルと第2電解セルが異なる構成を有することもできる。また、図11では、電解液供給部8では、第1の電解セル2及び第2の電解セル2-1の電解液供給部を共用としているが、別々であっても構わない。 As the electrolytic cell, it is possible to use the electrolytic cell 2 or 1-2 used in the first embodiment or the second embodiment. The first electrolytic cell and the second electrolytic cell can also have different configurations. In FIG. 11, the electrolytic solution supply unit 8 shares the electrolytic solution supply unit for the first electrolytic cell 2 and the second electrolytic cell 2-1, but may be separate.
  (第5実施形態)
 図12に、第5実施形態に用いられる電解セルを概略的に表す図を示す。
 図示するように、この電解セル2-3’は、いわゆる3室型の電解セルである。その内部は、陽極側の隔膜として陰イオン交換膜からなる第1隔膜3-2a、及び陰極側の隔膜として陽イオン交換膜からなる第2隔膜4-2aを備えている。これにより、隔膜間に規定された電解液室5-2と、電解液室の両側に位置する陽極室3-2及び陰極室4-2との3室に仕切られている。陽極室3-2内部には第1隔膜3-2aと近接対向して陽極3-2bが設けられ、陰極室4-2内部には第2隔膜4-2aと近接対向して第1陰極4-2bが設けられている。陽極3-2bと第1陰極4-2bは、ほぼ等しい大きさの矩形形状に形成され、電解液室5-2及び第1、第2隔膜3-2a、4-2aを間に挟んで、互いに対向している。また、陽極3-2bは、図1の陽極3bと同様の構成を有する。第1陰極4-2bは、図1の第1陰極4bと同様の構成を有する。さらに、この電解セル2-3’では、陽極室3-2を区画するセル31aの一部が開放されている。また、同様に、陰極室4-2を区画するセル31bの一部が開放されている。セル31a、31bの材質としては、耐酸性、耐アルカリ性に優れた樹脂、例えば塩化ビニル、ポリプロピレン、あるいはポリエチレン等を使用することができる。
(Fifth embodiment)
FIG. 12 shows a diagram schematically representing an electrolytic cell used in the fifth embodiment.
As shown, this electrolytic cell 2-3' is a so-called three-chamber type electrolytic cell. Inside thereof, a first diaphragm 3-2a made of an anion-exchange membrane as a diaphragm on the anode side and a second diaphragm 4-2a made of a cation-exchange membrane as a diaphragm on the cathode side are provided. As a result, the electrolyte chamber 5-2 defined between the diaphragms is partitioned into three chambers, an anode chamber 3-2 and a cathode chamber 4-2 located on both sides of the electrolyte chamber. An anode 3-2b is provided inside the anode chamber 3-2 so as to closely face the first diaphragm 3-2a. -2b is provided. The anode 3-2b and the first cathode 4-2b are formed in rectangular shapes of approximately the same size, sandwiching the electrolytic solution chamber 5-2 and the first and second diaphragms 3-2a and 4-2a. facing each other. Also, the anode 3-2b has the same configuration as the anode 3b in FIG. The first cathode 4-2b has the same configuration as the first cathode 4b in FIG. Furthermore, in this electrolytic cell 2-3', a part of the cell 31a that defines the anode chamber 3-2 is open. Similarly, a part of the cell 31b that defines the cathode chamber 4-2 is opened. As a material for the cells 31a and 31b, a resin excellent in acid resistance and alkali resistance, such as vinyl chloride, polypropylene, or polyethylene, can be used.
 電解液室5-2は、イオン透過の選択性がなく陽イオン及び陰イオンの通過が可能な中性膜からなる第3隔膜5-2aで陽極室3-2側の第1電解液室5-2cと陰極室4-2側の第2電解液室5-2dに仕切られている。第2電解液室5-2dには、第3隔膜5-2aと近接対向して第2陰極5-2bが設けられている。第2陰極5-2bは、第1陰極4-2bと同様に、第1陰極4-2bとほぼ等しい大きさの矩形形状に形成されている。また、第2陰極5-2bは、図1の第2陰極5bと同様の構成を有する。
 第5実施形態に用いられる電解セル2-3’によれば、第2陰極5-2bと第1隔膜3-2aとの間に第3隔膜5-2aを設け、電解液室5-2内を陽極室3-2側の第1電解液室5-2c及び陰極室4-2側の第2電解液室5-2dに分離する。これにより、第2陰極5-2bに通電したとき、第2電解液室5-2dの電解液のpHはアルカリ側にシフトするが、アルカリ性物質は第2電解液の流れにより排出され、第1電解液の流れにはほとんど混入しない。このため、第1電解液室5-2cのpHは第2電解液室5-2dのpHよりも中性付近に維持できる。従って、第1電解液室5-2cの第1隔膜3-2aは劣化しにくくなる。これにより、長期間の使用が可能な電解セルが得られる。
The electrolyte chamber 5-2 is a third diaphragm 5-2a made of a neutral membrane that has no selectivity for ion permeation and allows cations and anions to pass through, and is located on the side of the first electrolyte chamber 5 on the anode chamber 3-2 side. -2c and a second electrolyte chamber 5-2d on the cathode chamber 4-2 side. A second cathode 5-2b is provided in the second electrolyte chamber 5-2d so as to closely face the third diaphragm 5-2a. The second cathode 5-2b, like the first cathode 4-2b, is formed in a rectangular shape having approximately the same size as the first cathode 4-2b. Also, the second cathode 5-2b has the same configuration as the second cathode 5b in FIG.
According to the electrolytic cell 2-3′ used in the fifth embodiment, the third diaphragm 5-2a is provided between the second cathode 5-2b and the first diaphragm 3-2a, and the electrolyte chamber 5-2 are separated into a first electrolyte chamber 5-2c on the anode chamber 3-2 side and a second electrolyte chamber 5-2d on the cathode chamber 4-2 side. As a result, when the second cathode 5-2b is energized, the pH of the electrolyte in the second electrolyte chamber 5-2d shifts to the alkaline side, but alkaline substances are discharged by the flow of the second electrolyte, and the first Almost no entrainment in the electrolyte flow. Therefore, the pH of the first electrolyte chamber 5-2c can be maintained closer to neutral than the pH of the second electrolyte chamber 5-2d. Therefore, the first diaphragm 3-2a of the first electrolyte chamber 5-2c is less likely to deteriorate. Thereby, an electrolytic cell that can be used for a long period of time is obtained.
 また、第5実施形態に使用可能な電解セル2-3’は、陽極室3-2を区画するセル31aの一部、及び陰極室4-2を区画するセル31bの一部が開放されており、貯水型電解水生成装置に適している。
 図12の電解セルは電解水生成装置に組み入れることができる。
 図13に、図12の電解セルの一例を用いた第5実施形態に係る貯水式の電解水生成装置1-5を概略的に表す図を示す。
 本実施形態で用いる電解セル2-3は、図12に示した電解セル2-3’と同様の構成に加えて、第1電解液室5-2cの下部には、電解液を供給するための第1電解液供給口5-2fが設けられている。また、第1電解液室5-2cの上部には、第1電解液室5-2cを流れた電解液を排出するための第1電解液排出口5-2hが設けられている。第2電解液室5-2dの下部には、電解液を供給するための第2電解液供給口5-2gが設けられている。また、第2電解液室5-2dの上部には、第2電解液室5-2dを流れた電解液を排水するための第2電解液排出口5-2iが設けられている。
In the electrolysis cell 2-3′ that can be used in the fifth embodiment, a part of the cell 31a that defines the anode chamber 3-2 and a part of the cell 31b that defines the cathode chamber 4-2 are opened. It is suitable for a storage-type electrolyzed water generator.
The electrolysis cell of FIG. 12 can be incorporated into an electrolyzed water generator.
FIG. 13 schematically shows a storage-type electrolyzed water generator 1-5 according to a fifth embodiment using the example of the electrolysis cell of FIG.
The electrolysis cell 2-3 used in this embodiment has the same configuration as the electrolysis cell 2-3' shown in FIG. is provided with a first electrolytic solution supply port 5-2f. A first electrolytic solution discharge port 5-2h for discharging the electrolytic solution that has flowed through the first electrolytic solution chamber 5-2c is provided in the upper portion of the first electrolytic solution chamber 5-2c. A second electrolytic solution supply port 5-2g for supplying an electrolytic solution is provided in the lower portion of the second electrolytic solution chamber 5-2d. A second electrolytic solution discharge port 5-2i for draining the electrolytic solution that has flowed through the second electrolytic solution chamber 5-2d is provided in the upper portion of the second electrolytic solution chamber 5-2d.
 電解水生成装置1-5は、電解セル2-3の電解液室5-2に電解液(例えば、塩水)を供給する電解液供給部8を備えている。また、陽極室3-2及び陰極室4-2に供給する原水としての水、陽極生成水、及び陰極生成水を一緒に貯留する貯水槽32を備えている。また、陽極3-2bに正電圧、第1陰極4-2b及び/または第2陰極5-2bに負電圧をそれぞれ印加する電源7aを有する給電部7を備えている。
 給電部7は、電解に必要な電流を供給する電源7aと、第1陰極4-2b及び/または第2陰極5-2bに通電するスイッチ7bと、電源7aとスイッチ7bを制御する制御部7cとを有する。ここではスイッチ7bとして、第1陰極4-2b及び第2陰極5-2bへの給電を切り替える切替スイッチが使用される。電源7aとしては定電流電源が望ましい。電源7aの正極は配線を介して電解セル2-3の陽極3-2bと接続されている。電源7aの負極は、スイッチ7b及び2本の配線を介して第1陰極4-2b及び第2陰極5-2bと接続されており、切替スイッチを切り替えることにより、第1陰極4-2b及び第2陰極5-2bに選択的に負電圧を印加することができる。
The electrolyzed water generator 1-5 includes an electrolyte supply unit 8 that supplies electrolyte (eg, salt water) to the electrolyte chamber 5-2 of the electrolytic cell 2-3. Further, a water tank 32 is provided for storing together water as raw water to be supplied to the anode chamber 3-2 and the cathode chamber 4-2, the anode generated water, and the cathode generated water. Further, a power supply unit 7 having a power source 7a for applying a positive voltage to the anode 3-2b and a negative voltage to the first cathode 4-2b and/or the second cathode 5-2b is provided.
The power supply unit 7 includes a power source 7a that supplies a current necessary for electrolysis, a switch 7b that energizes the first cathode 4-2b and/or the second cathode 5-2b, and a control unit 7c that controls the power source 7a and the switch 7b. and Here, as the switch 7b, a selector switch for switching power supply to the first cathode 4-2b and the second cathode 5-2b is used. A constant current power supply is desirable as the power supply 7a. The positive electrode of the power supply 7a is connected to the anode 3-2b of the electrolytic cell 2-3 via wiring. The negative electrode of the power supply 7a is connected to the first cathode 4-2b and the second cathode 5-2b via a switch 7b and two wires. A negative voltage can be selectively applied to the two cathodes 5-2b.
 電解液供給部8は、電解液25a(例えば20%塩化ナトリウム水溶液(塩水))を貯溜した塩水タンク(電解液タンク)25と、塩水タンク25から電解液室5-2の下方に塩水を導く供給配管8aと、供給配管8a中に設けられた送液ポンプ29と、電解液室5-2の上方から塩水を排出する排水配管8fとを備えている。
 供給配管8aは、電解液室5-2の第1電解液室5-2cの下部に設けられた第1電解液供給口5-2fに接続して塩水を供給する供給配管8bと、電解液室5-2の第2電解液室5-2dの下部に設けられた第2電解液供給口5-2gに接続して塩水を供給する供給配管8cに分岐している。これにより、電解液は第1電解液室5-2cと第2電解液室5-2dに別々に供給されている。ここでは、塩水タンク25からの供給配管8b、及び供給配管8cを、貯水槽32の底に設けられた貫通孔32b、32cを通して、第1電解液室5-2cの下部及び第2電解液室5-2dの下部に接続している。
The electrolyte supply unit 8 includes a salt water tank (electrolyte tank) 25 storing an electrolyte 25a (for example, a 20% sodium chloride aqueous solution (salt water)), and leads the salt water from the salt water tank 25 to the lower part of the electrolyte chamber 5-2. It has a supply pipe 8a, a liquid feed pump 29 provided in the supply pipe 8a, and a drain pipe 8f for discharging salt water from above the electrolytic solution chamber 5-2.
The supply pipe 8a is connected to a first electrolyte supply port 5-2f provided in the lower part of the first electrolyte chamber 5-2c of the electrolyte chamber 5-2, and supplies salt water. It is connected to a second electrolyte supply port 5-2g provided in the lower part of the second electrolyte chamber 5-2d of the chamber 5-2 and branches to a supply pipe 8c for supplying salt water. Thereby, the electrolyte is separately supplied to the first electrolyte chamber 5-2c and the second electrolyte chamber 5-2d. Here, the supply pipe 8b and the supply pipe 8c from the salt water tank 25 are passed through the through holes 32b and 32c provided in the bottom of the water tank 32, the lower part of the first electrolytic solution chamber 5-2c and the second electrolytic solution chamber. It connects to the bottom of 5-2d.
 第1電解液室5-2cの上部には、第1電解液排出口5-2hと接続され、第1電解液室5-2c内を流れた電解液を排水する第1電解液排出ラインとして機能する排水配管8dが接続されている。また、第2電解液室5-2dの上部には、第2電解液排出口5-2iと接続され、第2電解液室5-2d内を流れた電解液を排水する第2電解液排出ラインとして機能する排水配管8eが接続されている。このため、第1電解液室5-2cにおける塩水の流れは、第2電解液室5-2dにおける塩水の流れとは別になっている。排水配管8dと排水配管8eは合流されて排水配管8fとなり、排水配管8dと排水配管8eの電解液は混合して排出される。 Above the first electrolyte chamber 5-2c, it is connected to the first electrolyte discharge port 5-2h and serves as a first electrolyte discharge line for draining the electrolyte that has flowed through the first electrolyte chamber 5-2c. A functioning drain pipe 8d is connected. A second electrolyte discharge port 5-2i is connected to the upper portion of the second electrolyte chamber 5-2d, and a second electrolyte discharge port 5-2i drains the electrolyte that has flowed through the second electrolyte chamber 5-2d. A drain pipe 8e that functions as a line is connected. Therefore, the flow of salt water in the first electrolyte chamber 5-2c is separate from the flow of salt water in the second electrolyte chamber 5-2d. The drain pipe 8d and the drain pipe 8e are merged to form the drain pipe 8f, and the electrolytic solutions in the drain pipe 8d and the drain pipe 8e are mixed and discharged.
 貯水槽32内の貯水領域10-3には、初期状態では電解原水、例えば、水道水が貯留されている。電解を行うと、陽極生成水と陰極生成水は、電解原水に混合される。このように、貯水領域10-3は、給水源、陽極室に水を供給する第1給水ライン、陰極室に水を供給する第2給水ライン、陽極生成水と陰極生成水を混合して混合生成水(第1混合生成水)を作成する第1生成水混合部として機能する機能を兼ね備えている。貯水槽32によって得られる混合生成水は、微酸性・中性付近にpH制御された次亜塩素酸水である。貯水槽32には、必要に応じて、図示しない攪拌器を設置することができる。その他、各配管に開閉バルブあるいは流量調整弁を設けてもよい。 In the initial state, electrolyzed raw water, such as tap water, is stored in the water storage area 10-3 in the water storage tank 32. When electrolysis is performed, the anode-generated water and the cathode-generated water are mixed with the electrolyzed raw water. Thus, the water storage area 10-3 includes a water supply source, a first water supply line that supplies water to the anode chamber, a second water supply line that supplies water to the cathode chamber, and a mixture of the water produced by the anode and the water produced by the cathode. It also has a function of functioning as a first generated water mixing section that prepares generated water (first mixed generated water). The mixed product water obtained in the water tank 32 is hypochlorous acid water whose pH is controlled to be slightly acidic/neutral. A stirrer (not shown) can be installed in the water tank 32 as needed. In addition, each pipe may be provided with an on-off valve or a flow control valve.
 上記のように構成された電解水生成装置1-5により、実際に塩水を電解して酸性水(次亜塩素酸及び塩酸)とアルカリ性水(水酸化ナトリウム)を生成し、混合生成水を得る動作について説明する。
 図13に示すように、送液ポンプ29を作動させ、塩水タンク25から電解セル2-3の第1電解液室5-2c及び第2電解液室5-2dに塩水を供給する。陽極室3-2及び陰極室4-2には貯水領域10-3の水が充填されている。
 スイッチ7bを第1陰極4-2bに切り替えて給電するとき、正電圧及び負電圧は電源7aから陽極3-2b及び第1陰極4-2bにそれぞれ印加される。
 第1電解液室5-2c及び第2電解液室5-2dへ流入した塩水中に電離しているナトリウムイオンは、第1陰極4-2bに引き寄せられ、第2隔膜4-2aを通過して、陰極室4-2へ流入する。第3隔膜5-2aは中性膜であるため、ナトリウムイオンは十分透過可能である。その後、第1陰極4-2bで水が電気分解されて陰極室4-2内に水素ガスと水酸化ナトリウムが生成される。生成された水酸化ナトリウム水溶液及び水素ガスは、陰極室4-2から貯水槽32内の原水に混入する。
The electrolyzed water generator 1-5 configured as described above actually electrolyzes salt water to generate acidic water (hypochlorous acid and hydrochloric acid) and alkaline water (sodium hydroxide) to obtain mixed generated water. Operation will be explained.
As shown in FIG. 13, the liquid feed pump 29 is operated to supply salt water from the salt water tank 25 to the first electrolyte chamber 5-2c and the second electrolyte chamber 5-2d of the electrolytic cell 2-3. The anode chamber 3-2 and the cathode chamber 4-2 are filled with water in the water storage area 10-3.
When power is supplied by switching the switch 7b to the first cathode 4-2b, positive and negative voltages are applied from the power supply 7a to the anode 3-2b and the first cathode 4-2b, respectively.
The sodium ions ionized in the salt water flowing into the first electrolyte chamber 5-2c and the second electrolyte chamber 5-2d are attracted to the first cathode 4-2b and pass through the second diaphragm 4-2a. and flows into the cathode chamber 4-2. Since the third diaphragm 5-2a is a neutral membrane, it is sufficiently permeable to sodium ions. After that, water is electrolyzed at the first cathode 4-2b to produce hydrogen gas and sodium hydroxide in the cathode chamber 4-2. The generated sodium hydroxide aqueous solution and hydrogen gas are mixed into the raw water in the water storage tank 32 from the cathode chamber 4-2.
 第1電解液室5-2c及び第2電解液室5-2dの塩水中に電離している塩素イオンは、陽極3-2bに引き寄せられ、第1隔膜3-2aを通過して、陽極室3-2へ流入する。そして、陽極3-2bにて塩素が酸化されて、塩素ガスが生成する。その後直ちに塩素ガスが水と反応して次亜塩素酸と塩酸を生じる。
 陽極室3で生成された次亜塩素酸と塩酸は、貯水槽32内の原水と混入する。このようにして、貯水槽32内に混合生成水としてpHが調整された次亜塩素酸水が得られる。
Chlorine ions ionized in the salt water of the first electrolyte chamber 5-2c and the second electrolyte chamber 5-2d are attracted to the anode 3-2b, pass through the first diaphragm 3-2a, and flow into the anode chamber. Flow into 3-2. Then, the chlorine is oxidized at the anode 3-2b to generate chlorine gas. Immediately thereafter, chlorine gas reacts with water to produce hypochlorous acid and hydrochloric acid.
Hypochlorous acid and hydrochloric acid generated in the anode chamber 3 mix with raw water in the water tank 32 . In this manner, hypochlorous acid water having a pH adjusted is obtained as mixed product water in the water tank 32 .
 また、スイッチ7b(切替スイッチ)を第2陰極5-2bに切り替えて給電するとき、正電圧及び負電圧は電源7aから陽極3-2b及び第2陰極5-2bにそれぞれ印加される。第1電解液室5-2c及び第2電解液室5-2d内の塩水中に電離しているナトリウムイオンは、第2陰極5-2bに引き寄せられる。第1電解液室5-2cのナトリウムイオンは、第3隔膜5-2aを透過して第2電解液室5-2dの第2陰極5-2bに到達することができる。第2陰極5-2bにおける塩水の電気分解により、第2電解液室5-2dにおいて水素ガスと水酸化ナトリウム水溶液が生成される。これにより、第2電解液室5-2d内は、アルカリ側にシフトする。生成されたアルカリ性水(水酸化ナトリウム水溶液)及び水素ガスは、第2電解液室5-2dにおける塩水の流れによって第2電解液室5-2dから排水配管8eに流出した後、排水配管8dの電解液と混合して排水配管8fにより外に排出される。このように、第2電解液室5-2dで生成したアルカリ性水は、陰極室4-2及び第1電解液室5-2cに流入せずに第2電解液室5-2dから排出される。従って、陰極室4-2及び第1電解液室5-2cは、アルカリ側にシフトしない。このため、第1電解液室5-2c内の第1隔膜3-2aは強アルカリに晒されることがなく、劣化しにくくなる。また、陰極室4-2では、貯水槽32の水に、アルカリ性水としての水素ガスと水酸化ナトリウム水溶液はほぼ混入しない。 Also, when power is supplied by switching the switch 7b (switch) to the second cathode 5-2b, a positive voltage and a negative voltage are applied from the power supply 7a to the anode 3-2b and the second cathode 5-2b, respectively. The sodium ions ionized in the salt water in the first electrolyte chamber 5-2c and the second electrolyte chamber 5-2d are attracted to the second cathode 5-2b. Sodium ions in the first electrolyte chamber 5-2c can pass through the third diaphragm 5-2a and reach the second cathode 5-2b in the second electrolyte chamber 5-2d. Electrolysis of salt water at the second cathode 5-2b produces hydrogen gas and an aqueous sodium hydroxide solution in the second electrolyte chamber 5-2d. As a result, the inside of the second electrolytic solution chamber 5-2d shifts to the alkaline side. The generated alkaline water (sodium hydroxide aqueous solution) and hydrogen gas flow out from the second electrolyte chamber 5-2d to the drain pipe 8e due to the flow of salt water in the second electrolyte chamber 5-2d, and then to the drain pipe 8d. It mixes with the electrolytic solution and is discharged to the outside through the drain pipe 8f. Thus, the alkaline water generated in the second electrolyte chamber 5-2d is discharged from the second electrolyte chamber 5-2d without flowing into the cathode chamber 4-2 and the first electrolyte chamber 5-2c. . Therefore, the cathode chamber 4-2 and the first electrolyte chamber 5-2c do not shift to the alkaline side. Therefore, the first diaphragm 3-2a in the first electrolyte chamber 5-2c is not exposed to the strong alkali and is less likely to deteriorate. Further, in the cathode chamber 4-2, the water in the water tank 32 is hardly mixed with hydrogen gas and sodium hydroxide aqueous solution as alkaline water.
 第1電解液室5-2c及び第2電解液室5-2d内の塩水中に電離している塩素イオンは、陽極3-2bに引き寄せられ、第1隔膜3-2aを通過して、陽極室3-2へ流入する。このとき、第1電解液室5-2cの塩素イオンは、第3隔膜5-2aを透過することができる。そして、陽極3-2bにて塩素イオンが酸化され塩素ガスが発生する。その後、塩素ガスは陽極室3-2内で水と反応して次亜塩素酸と塩酸を生じる。生成された次亜塩素酸と塩酸は、陽極室3-2から貯水槽32の水に混入される。このとき、第2電解液室5-2dで生成したアルカリ性水は外へ排出され、陰極室4-2にはアルカリ性水はほとんど混入していない。このため、貯水槽32内に混合生成水として得られる次亜塩素酸水のpHについては、第2陰極5-2bに給電するときのpHは、第1陰極4-2bに給電するときのpHよりも低くなる。
 原水として用いられる水は地域、場所により含まれる不純物が異なり、特に炭酸成分には弱アルカリ性に向かう干渉効果がある。そのため、用いる水によってはpH調整点が合わず、僅かにずれてしまうことが考えられる。一般的には、炭酸イオンはアルカリ成分のカウンターイオンとして水に溶解しているため、硬水ほどアルカリ側にずれやすく、軟水(究極は純水)ほど酸側にずれ易い。
Chlorine ions ionized in the salt water in the first electrolyte chamber 5-2c and the second electrolyte chamber 5-2d are attracted to the anode 3-2b, pass through the first diaphragm 3-2a, It flows into chamber 3-2. At this time, the chlorine ions in the first electrolyte chamber 5-2c can permeate the third diaphragm 5-2a. Chlorine ions are oxidized at the anode 3-2b to generate chlorine gas. After that, the chlorine gas reacts with water in the anode chamber 3-2 to produce hypochlorous acid and hydrochloric acid. The generated hypochlorous acid and hydrochloric acid are mixed into the water in the water tank 32 from the anode chamber 3-2. At this time, the alkaline water produced in the second electrolyte chamber 5-2d is discharged outside, and almost no alkaline water is mixed in the cathode chamber 4-2. Therefore, regarding the pH of the hypochlorous acid water obtained as the mixed product water in the water tank 32, the pH when power is supplied to the second cathode 5-2b is the pH when power is supplied to the first cathode 4-2b. lower than
The water used as raw water contains different impurities depending on the region and location, and especially the carbonic acid component has an interference effect toward weak alkalinity. Therefore, depending on the water used, the pH adjustment point may not match and may shift slightly. In general, since carbonate ions are dissolved in water as counter ions of alkaline components, the harder the water, the more likely it is to shift to the alkaline side, and the softer the water (ultimately, pure water) the more likely it is to shift to the acid side.
 これに対し、実施形態に係る電解水生成装置1-5を用いると、電解液室5-2に第2陰極5-2bを設けて、スイッチ7bを第1陰極4-2bまたは第2陰極5-2bに切り替えて給電することができる。これにより、陰極室4-2内の第1陰極4-2bと第2電解液室5-2dの第2陰極5-2bを選択的に切り替えて通電し、陰極室4-2における水酸化ナトリウム水溶液及び水素ガスの貯水部への混入を制御して、貯水槽32内の混合生成水として得られる次亜塩素酸水のpHを調整することができる。これにより、原水の水質に変動があっても混合生成水のpHは随時調整可能となり、混合生成水として得られる次亜塩素酸水のpHを微酸性・中性付近に制御することが可能となる。また、第2陰極5-2bと第1隔膜3-2aとの間に第3隔膜5-2aを設け、電解液室5-2を、陽極室3-2側の第1電解液室5-2c及び陰極室4-2側の第2電解液室5-2dに分離する。給電部7からの通電を第2陰極5-2bに切り替えたとき、第2電解液室5-2dの電解液pHはアルカリ側にシフトするが、アルカリ性物質は第2電解液の流れにより排出され、第1電解液の流れにはほとんど混入しないので、第1電解液室5-2cのpHは第2電解液室5-2dのpHよりも中性に近くに維持できる。このため、第1電解液室5-2cの第1隔膜3-2aは劣化しにくく耐久性が良好となる。このように、第5実施形態によれば、長期間の使用が可能な電解水生成装置が得られる。 On the other hand, when the electrolyzed water generator 1-5 according to the embodiment is used, the second cathode 5-2b is provided in the electrolyte chamber 5-2, and the switch 7b is set to the first cathode 4-2b or the second cathode 5. Power can be supplied by switching to -2b. Thereby, the first cathode 4-2b in the cathode chamber 4-2 and the second cathode 5-2b in the second electrolyte chamber 5-2d are selectively switched to energize the sodium hydroxide in the cathode chamber 4-2. By controlling the mixing of the aqueous solution and hydrogen gas into the water reservoir, the pH of the hypochlorous acid water obtained as mixed water in the water reservoir 32 can be adjusted. As a result, even if the quality of the raw water fluctuates, the pH of the mixed product water can be adjusted at any time, and the pH of the hypochlorous acid water obtained as the mixed product water can be controlled to be slightly acidic or near neutral. Become. Further, a third diaphragm 5-2a is provided between the second cathode 5-2b and the first diaphragm 3-2a, and the electrolyte chamber 5-2 is replaced with the first electrolyte chamber 5- on the side of the anode chamber 3-2. 2c and a second electrolyte chamber 5-2d on the side of the cathode chamber 4-2. When the energization from the power supply unit 7 is switched to the second cathode 5-2b, the pH of the electrolyte in the second electrolyte chamber 5-2d shifts to the alkaline side, but alkaline substances are discharged by the flow of the second electrolyte. , the pH of the first electrolyte chamber 5-2c can be maintained closer to neutral than the pH of the second electrolyte chamber 5-2d. Therefore, the first diaphragm 3-2a of the first electrolyte chamber 5-2c is less likely to deteriorate and has good durability. Thus, according to the fifth embodiment, an electrolyzed water generator that can be used for a long period of time is obtained.
 陽極3-2b及び第1陰極4-2bに電圧が印加されているとき、陽極室3-2及び陰極室4-2は、各々、酸性水の濃度が高い領域、アルカリ性水の濃度が高い領域となるが、貯水槽32内に図示しない攪拌機を設けることにより、水のpHを微酸性・中性に近づけて水質を均一にすることが可能となる。
 第5実施形態に係る電解水生成装置を用い、以下のように、通電比率による水質変更試験、及び連続稼働試験を行った。
When a voltage is applied to the anode 3-2b and the first cathode 4-2b, the anode chamber 3-2 and the cathode chamber 4-2 are respectively a region with a high concentration of acidic water and a region with a high concentration of alkaline water. However, by providing a stirrer (not shown) in the water tank 32, it is possible to bring the pH of the water close to slightly acidic/neutral to make the water quality uniform.
Using the electrolyzed water generator according to the fifth embodiment, a water quality change test and a continuous operation test were conducted as follows.
  通電比率による水質変更試験 
 電解水生成装置1-5を用い、純水を原水として貯水槽32に20L貯留した。電解電流を2Aに固定し、1サイクルを10秒とした。1サイクルにおける第1陰極4-2b及び第2陰極5-2bへの通電を切り替えて通電時間の比率を種々変更し、それぞれの通電比率で60分間電解し、混合生成水の水質変化(pH及び有効塩素濃度)を測定した。
 図14は、第5実施形態1-5に係る電解水生成装置における第2陰極5-2bの通電比率(デューティ比)と混合生成水の水質との関係を表すグラフ図である。
Water quality change test by energization ratio
Using the electrolyzed water generator 1-5, 20 L of pure water was stored in the water tank 32 as raw water. The electrolysis current was fixed at 2 A and one cycle was 10 seconds. By switching the energization to the first cathode 4-2b and the second cathode 5-2b in one cycle, variously changing the ratio of the energization time, electrolyzing at each energization ratio for 60 minutes, changing the water quality of the mixed product water (pH and Effective chlorine concentration) was measured.
FIG. 14 is a graph showing the relationship between the energization ratio (duty ratio) of the second cathode 5-2b and the water quality of the mixed water in the electrolyzed water generator according to the fifth embodiment 1-5.
 特性線115は、第2陰極5-2bの通電比率に対するpHの変化を示し、特性線116は、第2陰極5-2bの通電比率に対する有効塩素濃度の変化を示している。
 第2陰極の通電比率は、1サイクルの時間に対する第2陰極5-2bの通電時間の比率である。混合生成水の水質(pH及び有効塩素濃度)の測定は、通電切替による水質差異が十分に積算されて影響しないように、混合生成水を十分拡販したのちに行なった。また電解水の生成中、第1電解液室5-2c、第2電解液室5-2dには、各々20%塩化ナトリウム水溶液を3mL/分送液した。
 特性線115に示すように、第2陰極5-2bを用いないとき(通電比率0%)は、混合生成水はアルカリ性にあることがわかる。これは第1陰極4-2bで生成されたアルカリ物質がすべて生成水に混合されるためである。
A characteristic line 115 indicates the change in pH with respect to the energization ratio of the second cathode 5-2b, and a characteristic line 116 indicates the change in effective chlorine concentration with respect to the energization ratio of the second cathode 5-2b.
The energization ratio of the second cathode is the ratio of the energization time of the second cathode 5-2b to the time of one cycle. The water quality (pH and effective chlorine concentration) of the mixed water was measured after the mixed water was sold sufficiently so that the difference in water quality due to the power switching was not sufficiently accumulated and affected. During the production of electrolyzed water, 3 mL/min of a 20% sodium chloride aqueous solution was supplied to each of the first electrolyte chamber 5-2c and the second electrolyte chamber 5-2d.
As shown by the characteristic line 115, when the second cathode 5-2b is not used (energization ratio of 0%), the mixed product water is alkaline. This is because all the alkaline substances produced at the first cathode 4-2b are mixed with the produced water.
 これに対し、第2陰極5-2bの通電比率を0から上げていくと、特性線116に示すように混合生成水の有効塩素濃度はほぼ一定ながら、特性線115に示すようにpHは酸性化していく。これは、第2陰極5-2bで生成されたアルカリ性物質が第2電解液室5-2d中にだけ放出され、混合生成水には混合されないためである。第5実施形態に使用される原水の場合は、第2陰極5-2bの通電比率が20%付近から大きくpHが変動し、酸性化する。第2陰極5-2bの通電比率を22%から27%に設定すると、活性成分であるHClOの存在比率の高い微酸性域(pH5~6.5)であり腐食等の影響が少ない酸性水(次亜塩素酸水)を得ることができる。さらに、第2陰極5-2bの通電比率を上げ、第1陰極4-2bを用いず第2陰極5-2bだけを用いると(通電比率100%)では、混合生成水は強酸性にあることがわかる。これは第1陰極4-2bではアルカリ物質は生成されず、原水がそのまま次亜塩素酸と塩酸と混合され、陽極室3-2で生成した酸性水の水質がそのまま表れる。 On the other hand, when the energization ratio of the second cathode 5-2b is increased from 0, the effective chlorine concentration of the mixed product water is almost constant as shown by the characteristic line 116, but the pH becomes acidic as shown by the characteristic line 115. become. This is because the alkaline substance produced at the second cathode 5-2b is released only into the second electrolyte chamber 5-2d and is not mixed with the mixed product water. In the case of the raw water used in the fifth embodiment, the pH fluctuates greatly from around 20% of the electrification ratio of the second cathode 5-2b, and the raw water is acidified. When the energization ratio of the second cathode 5-2b is set from 22% to 27%, the acidic water (pH 5 to 6.5) is in a slightly acidic region (pH 5 to 6.5) with a high abundance ratio of the active ingredient HClO and is less affected by corrosion ( Hypochlorous acid water) can be obtained. Furthermore, when the energization ratio of the second cathode 5-2b is increased and only the second cathode 5-2b is used without using the first cathode 4-2b (100% energization ratio), the mixed product water is strongly acidic. I understand. This is because no alkali substance is generated in the first cathode 4-2b, the raw water is mixed with hypochlorous acid and hydrochloric acid as it is, and the quality of the acidic water generated in the anode chamber 3-2 appears as it is.
 本実施形態では、純水を原水に用いた。これより硬水を用いると微酸性域を示す第2陰極5-2bの通電比率は大きい方にシフトする。
  連続稼働試験
 電解水生成装置1-5を用い、以下のように連続稼働試験を行った。
 原水として、純水を貯水槽32に20L貯留した。電解水の生成中、第1電解液室5-2c、第2電解液室5-2dには、20%塩化ナトリウム水溶液を3mL/分で送液した。電解電流を2Aに固定し、1サイクルを10秒とし、混合生成水のpHが6となるように、第2陰極5-2bの通電比率を60%(第1陰極4-2bへの通電時間4秒、第2陰極5-2bの通電時間6秒)と設定し、60分間電解した。60分ごとに貯水槽の水を入れ替えながら、電解水生成装置を約700時間運転し、得られた第1混合生成水のpH及び有効塩素濃度を初期は24時間毎に、その後は1週間ごとに測定した。
In this embodiment, pure water is used as raw water. From this, when hard water is used, the energization ratio of the second cathode 5-2b, which indicates a slightly acidic region, shifts to a higher side.
Continuous operation test Using the electrolyzed water generator 1-5, a continuous operation test was performed as follows.
As raw water, 20 L of pure water was stored in the water tank 32 . During the production of electrolyzed water, a 20% sodium chloride aqueous solution was supplied to the first electrolyte chamber 5-2c and the second electrolyte chamber 5-2d at 3 mL/min. The electrolysis current is fixed at 2 A, one cycle is 10 seconds, and the electrification ratio of the second cathode 5-2b is 60% (the electrification time to the first cathode 4-2b is Electrolysis was carried out for 60 minutes with the setting of 4 seconds, and the energization time of the second cathode 5-2b of 6 seconds). While replacing the water in the water tank every 60 minutes, the electrolyzed water generator is operated for about 700 hours, and the pH and effective chlorine concentration of the first mixed product water obtained are measured every 24 hours at the beginning and every week thereafter. measured to
 また、比較例3として、電解セル2-3の電解液室5-2に第3隔膜5-2aを設けないこと以外は第5実施形態と同様の構成を有する電解水生成装置を用意し、同様の条件で電解水生成装置を約700時間運転した。得られた混合生成水の水質の変化として、pH及び有効塩素濃度を第5実施形態と同様に測定した。
 得られた結果を図15に示す。
 図15は、第5実施形態に係る電解水生成装置1-5の連続稼働試験結果を表すグラフ図を示す。
 図において、横軸は、動作時間である。特性線117は、電解水生成装置1-5により得られた混合生成水のpHの変化を示す。また、特性線118は、電解水生成装置1-5により得られた混合生成水の有効塩素濃度の変化を示す。特性線120は、比較例3の有効塩素濃度、特性線119は比較例3のpHをそれぞれ示す。
Further, as Comparative Example 3, an electrolyzed water generator having the same configuration as that of the fifth embodiment except that the third diaphragm 5-2a was not provided in the electrolyte chamber 5-2 of the electrolysis cell 2-3 was prepared. The electrolyzed water generator was operated for about 700 hours under the same conditions. The pH and available chlorine concentration were measured in the same manner as in the fifth embodiment as changes in the quality of the resulting mixed product water.
The results obtained are shown in FIG.
FIG. 15 shows a graph showing the continuous operation test results of the electrolyzed water generator 1-5 according to the fifth embodiment.
In the figure, the horizontal axis is the operating time. A characteristic line 117 indicates the change in pH of the mixed product water obtained by the electrolyzed water generator 1-5. A characteristic line 118 indicates changes in the effective chlorine concentration of the mixed water produced by the electrolyzed water generator 1-5. A characteristic line 120 indicates the effective chlorine concentration of Comparative Example 3, and a characteristic line 119 indicates the pH of Comparative Example 3, respectively.
 比較例3では、48時間を超えたところから、特性線119に示すようにpHが上昇し、特性線120に示すように有効塩素濃度が減少するという現象が確認された。比較例3の電解セルを分解して調査したところ、陽極室の第1隔膜が白濁し、ところどころ膜が破けていることが確認された。このことから、第2陰極で生成されたアルカリ性物質により、電解液室がアルカリ化して、電解液室と接する第1隔膜が変質して、破断に至ったと考えられる。一方、第5実施形態に係る電解水生成装置1-5では、長時間稼働しても、特性線118、及び117に示すように、有効塩素濃度及びpHは一定であり、混合生成水の水質の変化は認められない。これは、電解液室5-2を、イオン透過の選択性のない中性膜からなる第3隔膜5-2aで陽極室3-2側の第1電解液室5-2cと陰極室4-2側の第2電解液室5-2dに仕切り、第2電解液室5-2d内に第3隔膜5-2aと近接対向して第2陰極5-2bを設けたことによる。すなわち、第2陰極5-2bで生成されたアルカリ性物質は第2電解液室5-2d内だけで生成され、ただちに第2電解液室5-2dから排出され、第1隔膜3-2aへのアルカリ性物質への作用が抑制されたためであると考えられる。 In Comparative Example 3, after 48 hours, the pH increased as indicated by characteristic line 119 and the effective chlorine concentration decreased as indicated by characteristic line 120. When the electrolytic cell of Comparative Example 3 was disassembled and investigated, it was confirmed that the first diaphragm in the anode chamber became cloudy and the membrane was torn in places. From this, it is considered that the electrolyte chamber was alkalinized by the alkaline substance generated at the second cathode, and the first diaphragm in contact with the electrolyte chamber was degraded and fractured. On the other hand, in the electrolyzed water generator 1-5 according to the fifth embodiment, even if it operates for a long time, as shown in characteristic lines 118 and 117, the effective chlorine concentration and pH are constant, and the quality of the mixed water is change is not allowed. The electrolyte chamber 5-2 is separated from the first electrolyte chamber 5-2c on the side of the anode chamber 3-2 and the cathode chamber 4- by the third diaphragm 5-2a made of a neutral membrane having no ion permeation selectivity. This is because the second electrolyte chamber 5-2d is divided into the second electrolyte chamber 5-2d, and the second cathode 5-2b is provided in the second electrolyte chamber 5-2d so as to closely face the third diaphragm 5-2a. That is, the alkaline substance produced at the second cathode 5-2b is produced only in the second electrolyte chamber 5-2d, immediately discharged from the second electrolyte chamber 5-2d, and transferred to the first diaphragm 3-2a. This is probably because the action on alkaline substances was suppressed.
 このように、電解液室5-2を、イオン透過の選択性のない中性膜からなる第3隔膜5-2aで陽極室3-2側の第1電解液室5-2cと陰極室4-2側の第2電解液室5-2dに仕切り、第2電解液室5-2d内に第3隔膜5-2aと近接対向して第2陰極5-2bを設けた。これにより、原水のCa硬度が異なる原水を使用しても、第2陰極5-2bの通電比率を変えることで微酸性の混合生成水を生成することが可能で、しかも長時間動作しても、安定して微酸性の混合生成水を生成することが可能である。また、季節変動などで、原水の水質が変動し、混合生成水のpH微酸性域から外れた場合、第2陰極5-2bの通電比率を変更することで容易に微酸性域に調整が可能である。 In this way, the electrolyte chamber 5-2 is separated from the first electrolyte chamber 5-2c on the side of the anode chamber 3-2 and the cathode chamber 4 by the third diaphragm 5-2a made of a neutral membrane having no ion permeation selectivity. A second electrolyte chamber 5-2d on the -2 side is partitioned, and a second cathode 5-2b is provided in the second electrolyte chamber 5-2d so as to be closely opposed to the third diaphragm 5-2a. As a result, even if raw water with different Ca hardness is used, slightly acidic mixed product water can be generated by changing the energization ratio of the second cathode 5-2b. , it is possible to stably generate slightly acidic mixed product water. In addition, when the quality of the raw water fluctuates due to seasonal fluctuations, etc., and the pH of the mixed product water deviates from the slightly acidic range, it can be easily adjusted to the slightly acidic range by changing the energization ratio of the second cathode 5-2b. is.
  第5実施形態の応用例 
 図16に、第5実施形態に係る貯水式の電解水生成装置の応用例を概略的に表す図を示す。
 図16に示す電解水生成装置1-6は、塩水タンク(電解液タンク)25からの供給配管8a、及び供給配管8bを、第1電解液室5-2cの下部及び第2電解液室5-2dの下部に、直接接続したこと、及び、貫通孔32b、32cを持たない貯水容器32-1内に投入して設置していること、が図13の電解水生成装置1-5とは異なる。それ以外は、図13に示した電解水生成装置と同様の構成を有し、同様の作用効果を有する。
 電解水生成装置1-6を用いると、貯水槽32の代わりに、貯水領域10-3が確保可能な任意の貯水容器32-1を使用することが可能となり、電解セル2-3を貯水槽32に設置する工事を行わなくてもよい。つまり、単に、電解セル2-3を任意の貯水容器32-1に投入するだけで簡単に使用することができるので低コストである。このような構成は、電解セル2-3をより小型化した場合により好適である。なお、この場合には、供給配管8a及び排水配管8fを柔軟性がある材料によって構成すると、電解セル2-3の取り扱いが容易になるため好ましい。
Application example of the fifth embodiment
FIG. 16 shows a diagram schematically showing an application example of the storage-type electrolyzed water generator according to the fifth embodiment.
The electrolyzed water generator 1-6 shown in FIG. 16 has a supply pipe 8a and a supply pipe 8b from a salt water tank (electrolyte tank) 25 connected to the lower portion of the first electrolytic solution chamber 5-2c and the second electrolytic solution chamber 5. -The electrolyzed water generator 1-5 of FIG. different. Other than that, it has the same configuration as the electrolyzed water generator shown in FIG. 13, and has the same effects.
When the electrolyzed water generator 1-6 is used, instead of the water storage tank 32, any water storage container 32-1 that can secure the water storage area 10-3 can be used, and the electrolytic cell 2-3 can be used as the water storage tank. 32 does not have to be installed. In other words, it can be used simply by putting the electrolysis cell 2-3 into an arbitrary water storage container 32-1, so that the cost is low. Such a configuration is more suitable when the electrolytic cell 2-3 is made more compact. In this case, it is preferable that the supply pipe 8a and the drain pipe 8f are made of a flexible material so that the electrolytic cell 2-3 can be easily handled.
  (第6実施形態) 
 図17は、第6実施形態に係る貯水式の電解水生成装置を概略的に示す図である。
 図示するように、電解水生成装置1-7は、所謂3室型の電解槽(電解セル)2-4を用いている。電解セル2-4の内部は、第1隔膜(陽極側隔膜、陰イオン交換膜)3-2a及び第2隔膜(陰極側隔膜、陽イオン交換膜)4-2aを備えている。これにより、隔膜間に規定された電解液室5-2と、電解液室5-2の両側に位置する陽極室3-2及び陰極室4-2との3室に仕切られている。陽極室3-2内に陽極3-2bが設けられ、第1隔膜3-2aに対向している。陰極室4-2内に陰極4-2bが設けられ、第2隔膜4-2aに対向している。陽極3-2b及び陰極4-2bは、ほぼ等しい大きさの矩形板状に形成され、電解液室5-2及び第1、第2隔膜3-2a、4-2aを間に挟んで、互いに対向している。
(Sixth embodiment)
FIG. 17 is a diagram schematically showing a storage-type electrolyzed water generator according to the sixth embodiment.
As illustrated, the electrolyzed water generator 1-7 uses a so-called three-chamber type electrolysis tank (electrolysis cell) 2-4. The inside of the electrolytic cell 2-4 is equipped with a first diaphragm (anode side diaphragm, anion exchange membrane) 3-2a and a second diaphragm (cathode side diaphragm, cation exchange membrane) 4-2a. As a result, the electrolyte chamber 5-2 defined between the diaphragms is partitioned into three chambers, an anode chamber 3-2 and a cathode chamber 4-2 located on both sides of the electrolyte chamber 5-2. An anode 3-2b is provided in the anode chamber 3-2 and faces the first diaphragm 3-2a. A cathode 4-2b is provided in the cathode chamber 4-2 and faces the second diaphragm 4-2a. The anode 3-2b and the cathode 4-2b are formed in the shape of rectangular plates of approximately the same size, and are separated from each other with the electrolytic solution chamber 5-2 and the first and second diaphragms 3-2a and 4-2a interposed therebetween. facing each other.
 電解液室5-2は、イオン透過の選択性がなく陽イオン及び陰イオンの通過が可能な中性膜からなる第3隔膜5-2aで、陽極室3-2側の第1電解液室5-2cと陰極室4-2側の第2電解液室5-2dとに仕切られている。第2電解液室5-2dには、第3隔膜5-2aと近接対向して第2陰極5-2bが設けられている。第2陰極5-2bは、陽極3-2bと第1陰極4-2bと同様に、陽極3-2bと第1陰極4-2bとほぼ等しい大きさの矩形形状に形成されている。また、第2陰極5-2bは、Tiに多数の透孔が形成された金属板、もしくは多数の透孔が形成されたTiからなる金属板にIrやPtなどの触媒を塗布したいわゆる不溶性電極、で構成することができる。
 この電解セル2-4では、陽極室3-2を区画するセル31aの一部が開放されている。また、同様に、陰極室4-2を区画するセル31bの一部が開放されている。
 さらに、陽極室3-2側の第1電解液室5-2cの少なくとも一部に、アルカリ性物質の拡散を制御する透水性の拡散抑制部材である多孔質部材5-2eを備える。この多孔質部材5-2eとしては、プラスチック焼結多孔質体(富士ケミカル社製)が設けられている。
The electrolyte chamber 5-2 is a third diaphragm 5-2a made of a neutral membrane having no selectivity of ion permeation and allowing the passage of cations and anions. 5-2c and a second electrolyte chamber 5-2d on the cathode chamber 4-2 side. A second cathode 5-2b is provided in the second electrolyte chamber 5-2d so as to closely face the third diaphragm 5-2a. The second cathode 5-2b, like the anode 3-2b and the first cathode 4-2b, is formed in a rectangular shape having approximately the same size as the anode 3-2b and the first cathode 4-2b. The second cathode 5-2b is a so-called insoluble electrode obtained by applying a catalyst such as Ir or Pt to a metal plate having a large number of through holes formed in Ti, or a metal plate made of Ti having a large number of through holes formed therein. , can consist of:
In this electrolytic cell 2-4, a part of the cell 31a that defines the anode chamber 3-2 is open. Similarly, a part of the cell 31b that defines the cathode chamber 4-2 is opened.
Further, at least part of the first electrolyte chamber 5-2c on the anode chamber 3-2 side is provided with a porous member 5-2e, which is a water-permeable diffusion suppressing member for controlling the diffusion of alkaline substances. A sintered plastic porous body (manufactured by Fuji Chemical Co., Ltd.) is provided as the porous member 5-2e.
 給電部7は、電源7a、この電源7aを制御する制御部7c、並びに第1陰極4-2b及び第2陰極5-2bへの給電を切り替えるスイッチ7b有している。電源7aの正極は、配線を介して陽極3-2bに接続されている。電源7aの負極は、スイッチ7b及び2本の配線を介して、第1陰極4-2b及び第2陰極5-2bに接続されている。すなわち、スイッチ7bを切り替えることにより、第1陰極4-2bまたは第2陰極5-2bに選択的に負電圧を印加することができる。スイッチ7bは、ユーザーにより操作可能に構成されている。
 その他、電解水生成装置1-7は、電解セル2-4の第1及び第2電解液室5-2c、5-2dに電解液、例えば、塩水を供給する電解液供給部8を備え、前述した第5実施形態に係る電解水生成装置1-5と同様に構成されている。
The power supply unit 7 has a power supply 7a, a control unit 7c for controlling the power supply 7a, and a switch 7b for switching power supply to the first cathode 4-2b and the second cathode 5-2b. The positive electrode of the power supply 7a is connected to the anode 3-2b via wiring. The negative electrode of the power supply 7a is connected to the first cathode 4-2b and the second cathode 5-2b via the switch 7b and two wires. That is, by switching the switch 7b, a negative voltage can be selectively applied to the first cathode 4-2b or the second cathode 5-2b. The switch 7b is configured to be operable by a user.
In addition, the electrolyzed water generator 1-7 includes an electrolyte supply unit 8 that supplies an electrolyte, such as salt water, to the first and second electrolyte chambers 5-2c and 5-2d of the electrolytic cell 2-4, It is configured in the same manner as the electrolyzed water generator 1-5 according to the fifth embodiment described above.
 第6実施形態において、電解水生成装置1-7から排水される混合生成水は、中性付近にpH制御した次亜塩素酸水である。すなわち、通常の生成動作において、陽極3-2bに正電圧、第1陰極4-2bまたは第2陰極5-2bに選択的に負電圧が印加される。本実施形態によれば、スイッチ7bを切り替えて、第2陰極5-2bに電圧を印加することにより、接続デューティによる更になるpH調整を行うことが可能となる。さらに、多孔質部材5-2eを設けることにより、第2電解液室5-2d内で生成したアルカリ性物質が、電解水生成装置1-7を停止した際に、第1電解液室5-2c及び第1電解液室5-2cと接している第1隔膜3-2aへ拡散することを抑制できる。 In the sixth embodiment, the mixed water discharged from the electrolyzed water generator 1-7 is hypochlorous acid water whose pH is controlled to near neutral. That is, in a normal generating operation, a positive voltage is applied to the anode 3-2b and a negative voltage is selectively applied to the first cathode 4-2b or the second cathode 5-2b. According to this embodiment, by switching the switch 7b and applying a voltage to the second cathode 5-2b, it is possible to further adjust the pH according to the connection duty. Furthermore, by providing the porous member 5-2e, the alkaline substance generated in the second electrolytic solution chamber 5-2d is released into the first electrolytic solution chamber 5-2c when the electrolyzed water generator 1-7 is stopped. And diffusion to the first diaphragm 3-2a in contact with the first electrolyte chamber 5-2c can be suppressed.
 また、第6実施形態に係る電解水生成装置1-7を用いると、第1実施形態と同様に、原水の水質に変動があっても混合生成水のpHが随時調整可能となり、混合生成水として得られる次亜塩素酸水のpHを微酸性・中性付近に制御することが可能となる。
 また、給電部7からの通電を第2陰極5-2bに切り替えたとき、第2電解液室5-2dの電解液pHはアルカリ側にシフトする。しかし、第3隔膜5-2aにより電解液室5-2を第1電解液室5-2cと第2電解液室5-2dに分離することにより、アルカリ性物質は第2電解液の流れにより排出され、第1電解液の流れにはほとんど混入しない。
 従って、第1電解液室5-2cの第1隔膜3-2aが劣化しにくく耐久性が良好となる。このため、第6実施形態によれば、長期間の使用が可能な電解水生成装置が得られる。
Further, when the electrolyzed water generator 1-7 according to the sixth embodiment is used, as in the first embodiment, the pH of the mixed product water can be adjusted at any time even if the quality of the raw water fluctuates. It is possible to control the pH of the hypochlorous acid water obtained as a slightly acidic / neutral.
Further, when the power supply from the power supply portion 7 is switched to the second cathode 5-2b, the pH of the electrolyte in the second electrolyte chamber 5-2d shifts to the alkaline side. However, by separating the electrolyte chamber 5-2 into the first electrolyte chamber 5-2c and the second electrolyte chamber 5-2d by the third diaphragm 5-2a, the alkaline substance is discharged by the flow of the second electrolyte. and is hardly mixed into the flow of the first electrolytic solution.
Therefore, the first diaphragm 3-2a of the first electrolytic solution chamber 5-2c is less likely to deteriorate and has good durability. Therefore, according to the sixth embodiment, it is possible to obtain an electrolyzed water generator that can be used for a long period of time.
 なお、本発明は、図面を参照して説明した上述の各実施形態及び各変形例に限定されるものではなく、その技術的範囲において他の様々な変形例が考えられる。また、本発明の主旨を逸脱しない限り、上記各実施形態及び各変形例で挙げた構成を取捨選択すること、及び他の構成に適宜変更することが可能である。 It should be noted that the present invention is not limited to the above-described embodiments and modified examples described with reference to the drawings, and various other modified examples are conceivable within its technical scope. In addition, it is possible to select the configurations described in the above embodiments and modifications, and to change them to other configurations as appropriate without departing from the gist of the present invention.
 本発明は、業務用の電解水生成装置、及び家庭用の小型化された電解水生成装置として利用可能である。 The present invention can be used as a commercial electrolyzed water generator and a compact electrolyzed water generator for home use.
1、1-1、1-2、1-3、1-4、1-5、1-6、1-7…電解水生成装置、2、2’、2-1、2-2、2-3、2-3’、2-4…電解セル、3、3-1、3-2…陽極室、3a、3-1a、3-2a…第1隔膜、3b、3-1b、3-2b…陽極、4、4-1、4-2…陰極室、4a、4-1a、4-2a…第2隔膜、4b、4-1b、4-2b…第1陰極、5、5-1、5-2…電解液室、5a、5-1a、5-2a…第3隔膜、5b、5-1b、5-2b…第2陰極、5c、5-1c、5-2c…第1電解液室、5d、5-1d、5-2d…第2電解液室、5e、5-2e…拡散抑制部材(多孔質部材)、7…給電部、7-1…給電部(第2給電部)、7b…スイッチ、7-1b…スイッチ(第2スイッチ)、7c、7-1c…制御部、8a、8-1a…供給配管、8b、8-1b…供給配管(第1電解液供給ライン)、8c、8-1c…供給配管(第2電解液供給ライン)、10…第1生成水混合部、10-1…第1生成水混合部、10-1e…第2生成水混合部、10-2…第3生成水混合部、10-2a…第4生成水混合部、10-3…貯水領域、10s…混合生成水供給ライン、12…オンラインpHメーター(pH測定部) 1, 1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7 ... electrolyzed water generator, 2, 2', 2-1, 2-2, 2- 3, 2-3′, 2-4... electrolytic cell, 3, 3-1, 3-2... anode chamber, 3a, 3-1a, 3-2a... first diaphragm, 3b, 3-1b, 3-2b Anode 4, 4-1, 4-2 Cathode chamber 4a, 4-1a, 4-2a Second diaphragm 4b, 4-1b, 4-2b First cathode 5, 5-1, 5-2... electrolyte chamber, 5a, 5-1a, 5-2a... third diaphragm, 5b, 5-1b, 5-2b... second cathode, 5c, 5-1c, 5-2c... first electrolyte Chamber 5d, 5-1d, 5-2d Second electrolytic solution chamber 5e, 5-2e Diffusion suppressing member (porous member) 7 Feeder 7-1 Feeder (second feeder) , 7b... switch, 7-1b... switch (second switch), 7c, 7-1c... control section, 8a, 8-1a... supply pipe, 8b, 8-1b... supply pipe (first electrolytic solution supply line) , 8c, 8-1c... Supply pipe (second electrolytic solution supply line), 10... First generated water mixing portion, 10-1... First generated water mixing portion, 10-1e... Second generated water mixing portion, 10 -2... Third generated water mixing unit 10-2a... Fourth generated water mixing unit 10-3... Water storage area 10s... Mixed generated water supply line 12... Online pH meter (pH measurement unit)

Claims (13)

  1.  電解液を収容する電解液室と、
     第1隔膜により前記電解液室に対して仕切られた陽極室と、
     第2隔膜により前記電解液室に対して仕切られた陰極室と、
     前記第1隔膜に対向して前記陽極室に設けられた陽極と、
     前記第2隔膜に対向して前記陰極室に設けられた第1陰極と、
     前記電解液室に設けられ、前記第1隔膜を介して前記陽極に対向する第2陰極と、
     前記第2陰極と前記第1隔膜との間に設けられ、前記電解液室内を、前記陽極室側の第1電解液室、及び前記陰極室側の第2電解液室に分離する第3隔膜と、を備える電解セル。
    an electrolyte chamber containing an electrolyte;
    an anode chamber separated from the electrolyte chamber by a first diaphragm;
    a cathode chamber separated from the electrolyte chamber by a second diaphragm;
    an anode provided in the anode chamber facing the first diaphragm;
    a first cathode provided in the cathode chamber facing the second diaphragm;
    a second cathode provided in the electrolyte chamber and facing the anode via the first diaphragm;
    A third diaphragm provided between the second cathode and the first diaphragm for separating the electrolyte chamber into a first electrolyte chamber on the anode chamber side and a second electrolyte chamber on the cathode chamber side. and an electrolytic cell comprising:
  2.  前記第1電解液室に設けられた第1電解液供給口と、前記第2電解液室に設けられた第2電解液供給口とをさらに備えた請求項1に記載の電解セル。 The electrolytic cell according to claim 1, further comprising a first electrolytic solution supply port provided in the first electrolytic solution chamber and a second electrolytic solution supply port provided in the second electrolytic solution chamber.
  3.  前記第1隔膜は陰イオン交換膜を含み、前記第2隔膜は陽イオン交換膜を含み、前記第3隔膜は中性膜を含む請求項1または2に記載の電解セル。 The electrolytic cell according to claim 1 or 2, wherein the first diaphragm contains an anion exchange membrane, the second diaphragm contains a cation exchange membrane, and the third diaphragm contains a neutral membrane.
  4.  前記第1電解液室の少なくとも一部に、透水性の拡散抑制部材をさらに含む請求項1ないし3のいずれか1項に記載の電解セル。 The electrolytic cell according to any one of claims 1 to 3, further comprising a water-permeable diffusion suppressing member in at least part of the first electrolyte chamber.
  5.  前記陽極室の一部、及び前記陰極室の一部が開放されている請求項1ないし4のいずれか1項に記載の電解セル。 The electrolytic cell according to any one of claims 1 to 4, wherein a part of the anode chamber and a part of the cathode chamber are open.
  6.  電解液を収容する電解液室、
     第1隔膜により前記電解液室に対して仕切られた陽極室、
     第2隔膜により前記電解液室に対して仕切られた陰極室、
     前記第1隔膜に対向して前記陽極室に設けられた陽極、
     前記第2隔膜に対向して前記陰極室に設けられた第1陰極、
     前記電解液室に設けられ、前記第1隔膜を介して前記陽極に対向する第2陰極、及び
     前記第2陰極と前記第1隔膜との間に設けられ、前記電解液室内を、前記陽極室側の第1電解液室、及び前記陰極室側の第2電解液室に分離する第3隔膜、を備える第1電解セルと、
     前記陽極、前記第1陰極、及び前記第2陰極に給電する第1給電部と、
     前記第1給電部から前記第1陰極及び/または第2陰極へ通電するスイッチと、
     前記第1電解セルにおいて電解液を電解することで得られる陽極生成水と陰極生成水を混合して第1混合生成水を作成する第1生成水混合部と、を備える電解水生成装置。
    an electrolyte chamber containing an electrolyte;
    an anode chamber separated from the electrolyte chamber by a first diaphragm;
    a cathode chamber separated from the electrolyte chamber by a second diaphragm;
    an anode provided in the anode chamber facing the first diaphragm;
    a first cathode provided in the cathode chamber facing the second diaphragm;
    a second cathode provided in the electrolyte chamber and opposed to the anode via the first diaphragm; a first electrolytic cell comprising a first electrolyte chamber on the side of the cathode chamber and a third diaphragm separating a second electrolyte chamber on the side of the cathode chamber;
    a first power supply unit that supplies power to the anode, the first cathode, and the second cathode;
    a switch for energizing the first cathode and/or the second cathode from the first power supply;
    An electrolyzed water generator, comprising: a first generated water mixing unit for mixing anode generated water and cathode generated water obtained by electrolyzing an electrolytic solution in the first electrolytic cell to prepare first mixed generated water.
  7.  前記第1電解セルの第1電解液室に接続され、前記第1電解液室に電解液を供給する第1電解液供給ラインと、前記第1電解セルの第2電解液室に接続され、前記第2電解液室に電解液を供給する第2電解液供給ラインとをさらに備えた請求項6に記載の電解水生成装置。 a first electrolytic solution supply line connected to the first electrolytic solution chamber of the first electrolytic cell to supply an electrolytic solution to the first electrolytic solution chamber; and connected to a second electrolytic solution chamber of the first electrolytic cell, 7. The electrolyzed water generator according to claim 6, further comprising a second electrolytic solution supply line for supplying electrolytic solution to said second electrolytic solution chamber.
  8.  前記第1混合生成水のpHを測定するpH測定部と、前記pH測定部に接続され、前記第1混合生成水のpH測定結果に基づき、前記第1陰極及び/または第2陰極へ通電するスイッチを制御する制御部とをさらに備える請求項6または7に記載の電解水生成装置。 a pH measuring unit for measuring the pH of the first mixed product water, connected to the pH measuring unit, and energizing the first cathode and/or the second cathode based on the pH measurement result of the first mixed product water; The electrolyzed water generator according to claim 6 or 7, further comprising a controller that controls the switch.
  9.  電解液を収容する電解液室、
     第1隔膜により前記電解液室に対して仕切られた陽極室、
     第2隔膜により前記電解液室に対して仕切られた陰極室、
     前記第1隔膜に対向して前記陽極室に設けられた陽極、
     前記第2隔膜に対向して前記陰極室に設けられた第1陰極、
     前記電解液室に設けられ、前記第1隔膜を介して前記陽極に対向する第2陰極、及び
     前記第2陰極と前記第1隔膜との間に設けられ、前記電解液室内を、前記陽極室側の第1電解液室、及び前記陰極室側の第2電解液室に分離する第3隔膜、を備え、前記第1電解セルの前記第1生成水混合部の後段に設けられる第2電解セルと、
     前記第2電解セルの陽極、第1陰極、及び第2陰極に給電する第2給電部と、
     前記第2電解セルの前記給電部から前記第1陰極及び/または前記第2陰極へ通電する第2スイッチと、
     前記第2電解セルにおいて電解液を電解することで得られる陽極生成水と陰極生成水を混合して第2混合生成水とする第2生成水混合部と、をさらに備え、
     前記第1生成水混合部は、前記第2電解セルの前記陽極室及び前記陰極室に接続され、前記第1混合生成水を供給する混合生成水供給ラインとして使用される請求項6ないし8のいずれか1項に記載の電解水生成装置。
    an electrolyte chamber containing an electrolyte;
    an anode chamber separated from the electrolyte chamber by a first diaphragm;
    a cathode chamber separated from the electrolyte chamber by a second diaphragm;
    an anode provided in the anode chamber facing the first diaphragm;
    a first cathode provided in the cathode chamber facing the second diaphragm;
    a second cathode provided in the electrolyte chamber and opposed to the anode via the first diaphragm; and a third diaphragm separating a first electrolyte chamber on the side and a second electrolyte chamber on the cathode chamber side; a cell;
    a second power supply unit that supplies power to the anode, the first cathode, and the second cathode of the second electrolysis cell;
    a second switch for energizing the first cathode and/or the second cathode from the power supply portion of the second electrolysis cell;
    a second generated water mixing unit that mixes the anode generated water and the cathode generated water obtained by electrolyzing the electrolytic solution in the second electrolytic cell to form a second mixed generated water,
    9. The method according to any one of claims 6 to 8, wherein the first product water mixing unit is connected to the anode chamber and the cathode chamber of the second electrolysis cell and used as a mixed product water supply line for supplying the first mixed product water. The electrolyzed water generator according to any one of items 1 and 2.
  10.  電解液を収容する電解液室、
     第1隔膜により前記電解液室に対して仕切られた陽極室、
     第2隔膜により前記電解液室に対して仕切られた陰極室、
     前記第1隔膜に対向して前記陽極室に設けられた陽極、
     前記第2隔膜に対向して前記陰極室に設けられた第1陰極、
     前記電解液室に設けられ、前記第1隔膜を介して前記陽極に対向する第2陰極、及び
     前記第2陰極と前記第1隔膜との間に設けられ、前記電解液室内を、前記陽極室側の第1電解液室、及び前記陰極室側の第2電解液室に分離する第3隔膜、を備え、前記第1電解セルと並列して配置された第2電解セルと、
     前記第2電解セルの前記陽極、前記第1陰極、及び前記第2陰極に給電する第2給電部と、
     前記第2電解セルの前記給電部から前記第1陰極及び/または第2陰極へ通電する第2スイッチと、をさらに備え、
     前記第1生成水混合部は、前記第2電解セルにおいて電解液を電解することで得られる陽極生成水と陰極生成水がさらに混合される請求項6ないし8のいずれか1項に記載の電解水生成装置。
    an electrolyte chamber containing an electrolyte;
    an anode chamber separated from the electrolyte chamber by a first diaphragm;
    a cathode chamber separated from the electrolyte chamber by a second diaphragm;
    an anode provided in the anode chamber facing the first diaphragm;
    a first cathode provided in the cathode chamber facing the second diaphragm;
    a second cathode provided in the electrolyte chamber and opposed to the anode via the first diaphragm; a second electrolysis cell arranged in parallel with the first electrolysis cell, the second electrolysis cell comprising a first electrolyte chamber on the side of the cathode chamber and a third diaphragm separating the second electrolyte chamber on the side of the cathode chamber;
    a second power supply unit that supplies power to the anode, the first cathode, and the second cathode of the second electrolysis cell;
    a second switch that supplies current from the power supply portion of the second electrolysis cell to the first cathode and/or the second cathode;
    The electrolysis according to any one of claims 6 to 8, wherein the first generated water mixing part further mixes the anode generated water and the cathode generated water obtained by electrolyzing the electrolytic solution in the second electrolytic cell. water generator.
  11.  前記第1隔膜は陰イオン交換膜を含み、前記第2隔膜は陽イオン交換膜を含み、前記第3隔膜は中性膜を含む請求項6ないし10のいずれか1項に記載の電解水生成装置。 Electrolyzed water generation according to any one of claims 6 to 10, wherein the first membrane comprises an anion exchange membrane, the second membrane comprises a cation exchange membrane, and the third membrane comprises a neutral membrane. Device.
  12.  前記第1電解液室の少なくとも一部に、透水性の拡散抑制部材をさらに含む請求項6ないし11のいずれか1項に記載の電解水生成装置。 The electrolyzed water generator according to any one of claims 6 to 11, further comprising a water-permeable diffusion suppressing member in at least part of the first electrolyte chamber.
  13.  前記陽極室の一部、及び前記陰極室の一部が開放されている請求項6ないし12のいずれか1項に記載の電解水生成装置。 The electrolyzed water generator according to any one of claims 6 to 12, wherein a part of the anode chamber and a part of the cathode chamber are open.
PCT/JP2021/045508 2021-05-26 2021-12-10 Electrolysis cell and electrolyzed water generator WO2022249519A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021088478A JP7052121B1 (en) 2021-05-26 2021-05-26 Electrolyzed cell and electrolyzed water generator
JP2021-088478 2021-05-26

Publications (1)

Publication Number Publication Date
WO2022249519A1 true WO2022249519A1 (en) 2022-12-01

Family

ID=81259566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045508 WO2022249519A1 (en) 2021-05-26 2021-12-10 Electrolysis cell and electrolyzed water generator

Country Status (2)

Country Link
JP (1) JP7052121B1 (en)
WO (1) WO2022249519A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141284A1 (en) * 2016-02-15 2017-08-24 株式会社 ゴーダ水処理技研 Electrolyzed water generation device
WO2018034317A1 (en) * 2016-08-19 2018-02-22 株式会社 ゴーダ水処理技研 Hydrogencarbonate water and cleaning method using same
JP2019076800A (en) * 2017-10-19 2019-05-23 パナソニックIpマネジメント株式会社 Functional water generator
JP2021080508A (en) * 2019-11-15 2021-05-27 パナソニックIpマネジメント株式会社 Electrolytic water generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017170421A (en) * 2016-03-22 2017-09-28 株式会社東芝 Electrolytic water generator and electrolytic water generating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017141284A1 (en) * 2016-02-15 2017-08-24 株式会社 ゴーダ水処理技研 Electrolyzed water generation device
WO2018034317A1 (en) * 2016-08-19 2018-02-22 株式会社 ゴーダ水処理技研 Hydrogencarbonate water and cleaning method using same
JP2019076800A (en) * 2017-10-19 2019-05-23 パナソニックIpマネジメント株式会社 Functional water generator
JP2021080508A (en) * 2019-11-15 2021-05-27 パナソニックIpマネジメント株式会社 Electrolytic water generator

Also Published As

Publication number Publication date
JP7052121B1 (en) 2022-04-11
JP2022181491A (en) 2022-12-08

Similar Documents

Publication Publication Date Title
JP3349710B2 (en) Electrolyzer and electrolyzed water generator
JP6062597B2 (en) ELECTROLYTIC DEVICE, ELECTRODE UNIT, AND ELECTROLYTIC WATER GENERATION METHOD
GB2441427A (en) Method and apparatus for generating electrolysed water
EP1926842A2 (en) Acidic electrolyzed water production system and protection membrane
JP2021169084A (en) Electrolytic water generator and electrolytic water generating method
JP4705190B1 (en) Electrolyzed water production apparatus and production method thereof
WO2022249519A1 (en) Electrolysis cell and electrolyzed water generator
JP4024278B2 (en) Batch type acidic electrolyzed water production apparatus and method for producing acid electrolyzed water using the same
WO2016147439A1 (en) Electrolysis tank and electrolyzed water-generating method
JP5244038B2 (en) Electrolyzed water mixing device
JP4685838B2 (en) Electrolyzed water production apparatus, electrolyzed water production method, and electrolyzed water
JP4685830B2 (en) Electrolyzed water production apparatus, electrolyzed water production method, and electrolyzed water
JP2017164692A (en) Electrolytic water generator
JP4415444B2 (en) Electrolyzer
JP2008086886A (en) Electrolytic water generator
JP2007090147A (en) Electrolytic water generator
JP2007054762A (en) Electrolytic water generator
JP2019147073A (en) Production apparatus of hypochlorous acid water
JP2017170421A (en) Electrolytic water generator and electrolytic water generating method
JP2001246381A (en) Method and device for manufacturing alkaline ionized water
JPH08117753A (en) Electrolytic water-making apparatus
JP4641040B2 (en) Electrolytic reforming method of alcohol solution and electrolytic reforming apparatus thereof
WO2022014127A1 (en) Electrolyzed water generation device
JP6796816B2 (en) Electrolyzed water generator and electrolyzed water generator
JP2019118862A (en) Liquid reformer and liquid reforming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943152

Country of ref document: EP

Kind code of ref document: A1