JP3905583B2 - Ionized water generator with pH adjusting substance addition tank - Google Patents

Ionized water generator with pH adjusting substance addition tank Download PDF

Info

Publication number
JP3905583B2
JP3905583B2 JP24555296A JP24555296A JP3905583B2 JP 3905583 B2 JP3905583 B2 JP 3905583B2 JP 24555296 A JP24555296 A JP 24555296A JP 24555296 A JP24555296 A JP 24555296A JP 3905583 B2 JP3905583 B2 JP 3905583B2
Authority
JP
Japan
Prior art keywords
water
pipe
chamber
inflow
cathode chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24555296A
Other languages
Japanese (ja)
Other versions
JPH1066974A (en
Inventor
金治 肥田
源喜 中野
豊 裏谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP24555296A priority Critical patent/JP3905583B2/en
Publication of JPH1066974A publication Critical patent/JPH1066974A/en
Application granted granted Critical
Publication of JP3905583B2 publication Critical patent/JP3905583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は水道水等の原水を浄化した後、pH調整物質を添加してイオン水を生成するイオン水生成器に関する。
【0002】
【従来の技術】
近年、安全でおいしく、健康に良い水が求められるようになった。このような水として、水道水等の原水を電気分解して得られる水が注目され、一般家庭や料理店等にイオン水生成器が普及し始めている。イオン水生成器を用いると、原水を電気分解してアルカリ性水、酸性水等のイオン水を得て使用することができる。その際、アルカリ性水は制酸効果、膨潤効果等を有するため飲料用或いは料理用等に使用し、酸性水はアストリンゼン効果等を有するため化粧水等として使う。特に、強酸性水は何日か放置しておくと普通の水に戻るため環境を汚染することがなく、茶渋落とし等の洗い物用の水に適している。
【0003】
一般に、イオン水生成器は浄水器、pH調整物質添加槽、電解槽、各通水管、マイクロコンピュータ等を備える制御回路部品、電源トランス等を備える電力回路部品等をまとめてケース中に収納し、全体を小形化して取り扱い易くしてある。使用時、水道の蛇口等にイオン水生成器の取水口を結合し、水道水等の原水を送り込む。すると、先ず浄水器によって水の浄化を行なえる。その際、浄水器に例えば抗菌活性炭と中空糸膜とを用いたものを使用すると、活性炭でカルキ臭やかび臭等の臭いのもとになる物質を分解し、中空糸膜で雑菌等を取り除くことができる。
【0004】
次に、浄化した水をpH調整物質添加槽に送り込むと、その添加槽でアルカリ性水のカルシウムイオン濃度を上げる例えば乳酸カルシウムを水に溶かして添加し、或いは酸性水のpH値を下げる例えば食塩を水に溶かして添加できる。そこで、浄水、添加水等を電解槽に送り込むと、電気分解を行なって隔膜で仕切った陰極室からアルカリ性水又陽極室から酸性水をそれぞれ得ることができる。その際、アルカリ性水のカルシウムイオン濃度を上げる乳酸カルシウム等は電解槽の陽極室に入る水に添加し、酸性水のpH値を下げる食塩等は陰極室と陽極室に入る水にそれぞれ添加する。なお、カルシウムイオン濃度を上げる物質を水に添加した場合にも、当然生成水のpH値が変化する。
【0005】
【発明が解決しようとする課題】
しかしながら、このようなイオン水生成器を用いても、カルキ臭が無くなるだけで、塩素イオンは水に溶けて電解槽に達する。それ故、電気分解によって陽極室に塩素ガスが発生する。この塩素ガスは酸性水と一緒に隔膜を通過して陰極室に入り易い。すると、飲料用等に使用するアルカリ性水に酸性水が混じるばかりでなく、アルカリ性水が塩素ガス臭くなる。又、陰極室で発生したアルカリ性水も隔膜を通過して陽極室に入り易く、酸性水にアルカリ性水が混じるため、食塩を添加しても、純度の高い強酸性水を得難いという問題がある。なお、陽極室に入る水のみに食塩を添加しても、陰極室側の導電率が上がり難いため、強酸性水を得ることができない。
【0006】
本発明はこのような従来の問題点に着目してなされたものであり、第1にpH値、酸化還元電位の安定した純度の高い強酸性水を生成できるpH調整物質添加槽を備えたイオン水生成器を提供することを目的とする。
【0007】
又、第にpH調整物質添加槽中に、弱アルカリ性水が必要な場合にはカルシウムイオン濃度上昇物質を入れて使用し、強酸性水が必要な場合にはpH値下降物質を入れて使用できると共に、そのpH調整物質の交換を簡単に行なえるpH調整物質添加槽を備えたイオン水生成器を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明による第目的対応のpH調整物質添加槽を備えたイオン水生成器では浄水器から浄水を電解槽に送る通水本管を途中で電解槽の陰極室に至る流入管と陽極室に至る流入管とに分岐して配管し、更に電解槽に陰極室から出る流出管と陽極室から出る流出管とを設け、その通水本管の水路に酸性水のpH値を下げる物質を添加するpH調整物質添加槽を備える。
【0011】
そして、電解槽の陽極室に入る添加水量を多く、陰極室に入る添加水量を少なくし、又陰極室から出るアルカリ性水量を多く、陽極室から出る酸性水量を少なくして、その陽陰各極室に入る添加水量の流量比を陰陽各極室から出るアルカリ性水と酸性水との流量比より大きくする。そのためには、陰極室流入管の水路に径の小さなオリフィスを設ける等して、陽極室流入管の水路を陰極室流入管の水路より太くし、更に陽極室流出管の水路に陰極室流入管の水路に設けたオリフィスより径の大きなオリフィスを設ける等して、陰極室流出管の水路を陽極室流出管の水路より太くすればよい。
【0012】
又、第目的対応のpH調整物質添加槽を備えたイオン水生成器では浄水器から浄水を電解槽に送る通水本管を途中で電解槽の陰極室に至る流入管と陽極室に至る流入管とに分岐して配管し、更に電解槽に陰極室から出る流出管と陽極室から出る流出管とを設け、その流入側の管水路に浄水のpH値を調整する物質を添加するpH調整物質添加槽を備える。
【0013】
そして、pH調整物質添加槽を構成する一端部を閉鎖し、他端部を開閉自在のキャップで閉じる外筒に、通水本管と、陰極室流入管又は陽極室流入管或いは両室流入管のいずれかの働きをする2本の流入管とを備え付けて、その外筒の内部空間に各管の内部空間を連通し、更に通水本管と1本の流入管とを連通管により結合し、その連通管を結合した流入管の外筒と連通管を結ぶ一部水路を連通管と結合する他部水路より細くし、又陽極室流出管の水路を陰極室流出管の水路より細くして、それ等の細める割合を流入管側で大きく、流出管側で小さくする。
【0014】
その上で、アルカリ性水が必要な場合にはその外筒内に、収納したカルシウムイオン濃度を上げる物質を浸す水通過口を有し、キャップ閉鎖時に通水本管の内部開口を閉じるアルカリ性水pH調整物質収納交換用中筒を入れて、アルカリ性水pH調整物質添加槽ユニットとして用い、酸性水が必要な場合にはその外筒内に、収納したpH値を下げる物質を浸す水通過口を有し、キャップ閉鎖時に連通管を閉じる酸性水pH調整物質収納交換用中筒を入れて、酸性水pH調整物質添加槽ユニットとして用いる。
【0015】
【発明の実施の形態】
以下、添付図面に基づいて、本発明の実施の形態を説明する。
図1は本発明を適用したイオン水生成器に備えるアルカリ性水pH調整物質添加槽ユニットの要部を示す部分断面図である。図中、10はアルカリ性水pH調整物質添加槽ユニット、12はそのユニット10のアルカリ性水pH調整物質添加槽、14は浄水器(図示なし)から浄水を電解槽に送る通水本管、16は通水本管14に流れる浄水を分けて、電解槽の陰極室と陽極室に送る水の流量比を調節する流入管、18は通水本管14と流量比調節用流入管16とを連通する連通管である。なお、添加槽12には流入管16を含めて2本の流入管を備え付ける。
【0016】
このアルカリ性水pH調整物質添加槽12は下端部を閉鎖し上端部を開放した外側円筒20と、同様に下端部を閉鎖し上端部を開放したアルカリ性水pH調整物質収納交換用の中側円筒22と、それ等の中外両筒20、22の上端部を閉じる開閉自在のキャップ24等から構成する。そして、外筒20には通水本管14と2本の流入管16等の各端部をそれぞれ結合して、その外筒20の内部空間に各管14、16等の内部空間を連通する。その際、通水本管14はその上端部が外筒20の底壁中央から少し内方に突出するように設置し、各流入管16等はその上端開口が外筒20の下端部側壁を一部外方に突出させて2箇所設けた内部空間拡張部26(26a、26b)にそれぞれ連通するように配設する。又、外筒20にはその上端部の側壁内面の対称位置に、閉鎖時にキャップを回しながら押し込んでその上部側壁の対称位置にある突起28(28a、28b)をそれぞれ嵌める上端が開放した斜め溝30(30a、30b)を設ける。
【0017】
又、中筒22はその底壁32を円錐台状に内側に突出し、下端部側壁に水通過口34を数箇所例えば6箇所均等に配設する。そして、各水通過口34をそれぞれ網36で閉じる。更に、中筒22にはその上端部の側壁外面の対称位置にキャップ24との連結用突起38(38a、38b)をそれぞれ設ける。それ故、キャップ24の下部側壁には中筒22の上端部にキャップ24を被せて押し込み、回しながら嵌める下端が開放した細長いL形状の貫通穴40(40a、40b)を対称位置にそれぞれ設ける。そして、キャップ24には更にその頂部につまみ42を設け、側壁の外面中央に密閉用Oリング44を嵌める。
【0018】
この中筒22はキャップ24のみで閉鎖してもよいが、中筒22の密閉度を上げ、キャップ24と中筒22との連結強度を上げるため、中筒22の上端部に押し込んで用いる中蓋(図示なし)を使用する。そこで、中蓋の本体を下端部を閉じ上端部を開放した円筒体とし、その底壁中央から上方に向けてつまみ用の突起を設ける。又、中蓋には中筒22内への落ちこみを防ぐため、その円筒体の上縁に中筒22の上縁を被う鍔部を設ける。なお、46は後述する酸性水pH調整物質収納交換用中筒に備え付けたステンレスリングを検出するための金属センサーである。
【0019】
そして、流量比調節用流入管16には電解槽の陰極室と陽極室に送る水の流量比を調節するため、その外筒20と連通管18を結ぶその一部48の水路の入口付近にオリフィス50を設ける。それ故、通水本管14に送られてくる浄水が連通管18を経て流入管16に入ると分流し、一部の水はアルカリ性水pH調整物質添加槽12を通過して電解槽の陽極室へ行き、大部分の水は陰極室へ行く。
【0020】
使用時には、先ず中筒22の中にアルカリ性水のカルシウムイオン濃度を上げる調整物質として、例えば乳酸カルシウムの錠剤を数個入れる。そして、中蓋をしキャップ24を被せて、キャップ24と中筒22とを連結する。次に、それ等を外筒20の中に入れキャップ24を締めて、外筒20を閉じる。すると、中筒24の底壁32で通水本管14の内部開口52を被うようにして外筒20の底壁54に押し付け、通水本管14から添加槽12中への水の流入を遮断できる。
【0021】
このため、水道水等の原水を浄水器によって浄化した後、通水本管14に送り込むと、図2の矢印で示すように浄水は流れて行く。そして、大部分の浄水は流入管16をそのまま通過して電解槽の陰極室に流れ込むが、オリフィス50を通過した一部の浄水は流入管16の一部48を通過して添加槽12に入り、乳酸カルシウムの錠剤56を浸し、それを溶かし込んだ添加水となって、他の流入管58を経て陽極室に入る。このようにオリフィス50等を設けると、流量比調節用流入管16の外筒20と連通管18を結ぶ一部48の水路を連結管18と結合する他部60の水路より細くし、陰極室に入る浄水量を多く、陽極室に入る添加水量を少なくして流量比を相当大きくすることができる。その際、浄水量と添加水量との流量比を8対1にすると好ましくなる。
【0022】
このような浄水と添加水の入る電解槽は図3に示すような構成を備えている。図中、62が電解槽、64がその陰極室、66が陽極室、68が両室64、66を仕切る隔膜、70が陰極、72が陽極である。又、74が添加槽ユニット10の流入管16と連結する流入管、76がその流入管58と連結する流入管、78がアルカリ性水を送り出す流出管、80が酸性水を送り出す流出管、82がその流出管80の水路の入口付近に設けたオリフィスである。このようにオリフィス82等を設けると、流出管80の水路を流出管78の水路より細くし、陰極室64から出るアルカリ性水量を多く、陽極室66から出る酸性水量を少なくして、その流量比を両室64、66にそれぞれ入る浄水と添加水の流量比より小さくすることができる。その際、アルカリ性水と酸性水との流量比を3対1にすると好ましくなる。
【0023】
このようにして、電解槽62の陰極室64に入る浄水量を多く、陽極室66に入る添加水量を少なくし、又陰極室64から出るアルカリ性水量を多く、陽極室66から出る酸性水量を少なくして、その陰陽各極室64、66に入る浄水と添加水量との流量比を陰陽各極室64、66から出るアルカリ性水と酸性水との流量比より大きくすると、陰極室64に入る浄水量が多く、その室64から出るアルカリ性水量は少なくなり、陽極室66に入る添加水量が少なく、その室66から出る酸性水量は多くなる。このため、浄水や添加水に溶けて電解槽62に流入した塩素イオンにより、塩素イオンはマイナスイオンであるため電気分解によって陽極室66に塩素ガスが発生し、その塩素ガスが陰極室64に入ろうとしても、陰極室64から隔膜68を通って陽極室66に入り流出管80から流れ出すアルカリ性水の水流に妨げられ、塩素ガスは酸性水等と一緒に流出管80から送り出される。それ故、陰極室64の流出管78から出るアルカリ性水に塩素ガスが含まれ難く、酸性水も混じり難い。
【0024】
又、添加水に溶けて電解槽62に流入した乳酸カルシウムは乳酸イオンとカルシウムイオンとに分離し、カルシウムイオンはプラスイオンであるため、陰極室64に達する。それ故、水に乳酸カルシウムを加えると、アルカリ性水のカルシウムイオン濃度とpH値を高めて安定化させることができる。しかし、実際には多量の乳酸カルシウムを加えると隔膜68に付着して不都合を発生するので、原水に含まれるカルシウム塩(炭酸水素カルシウム、硫酸カルシウム等)が少ない時に電気分解補助剤として加える程度にした方がよい。しかも、このようにして陰極室64の流出管78から出るアルカリ性水に酸性水が混じらないようにすると、そのアルカリ性水の酸化還元電位(ORP)も安定して−50mV程になるため、飲料水として体に最も適した弱アルカリ性水になる。なお、電解槽62には0〜40Vの可変電圧を印加するが、当然電圧値が高い程pH値も高くなる。
【0025】
図4は本発明を適用したイオン水生成器に備える酸性水pH調整物質添加槽ユニットの要部を示す部分断面図である。この酸性水pH調整物質添加槽ユニット84と上述したアルカリ性水pH調整物質添加槽ユニット10とを比べると、そのアルカリ性水pH調整物質収納交換用中筒22に替え、酸性水pH調整物質収納交換用中筒86を用いて酸性水pH調整物質添加槽88を構成している点が異なる。そして、酸性水pH調整物質収納交換用中筒86を用いることによって水路構成が異なるようになる。しかし、その他のユニット構成は同一であるので、以下必要に応じて対応する同一部分には同一の符号を使用する。
【0026】
この中筒86も下端部を閉鎖し上端部を開放した円筒体にし、その底壁90を円錐台状に内側に突出する。そして、底壁90の中央に連通管18を閉鎖して、通水本管14の水を内部空間内に導くための突出管92を設け、下端部側壁に水通過口94を数箇所例えば4箇所均等に配設する。又、水通過空間部96の天井に当る位置を閉鎖し、そこをpH値を下げる物質例えば食塩を収納する空間部の底壁98に形成して、そこに数箇所例えば中央とその左右の3箇所に少量の水出入り用の小孔を設ける。又、中央部側壁の外面に帯状のステンレスリング100を巻回して装着し、上端部側壁の外面の対称位置にキャップ24との連結用突起102(102a、102b)をそれぞれ設ける。なお、この酸性水pH調整物質収納交換用中筒86にも中蓋を用いるが、その中蓋はアルカリ性水調整物質収納交換用中筒22との兼用蓋にする。
【0027】
使用時には、先ず中筒86のpH調整物質収納空間部に食塩を入れる。そして、同様に中蓋をしキャップ24を嵌めて、キャップ24と中筒86とを連結する。更に、それ等を外筒20の中に入れ、キャップ24を締めて外筒20を閉じる。すると、中筒84の底壁90に設けた突出管92を通水本管14の中に挿入し、連通管18への水の流入を遮断できる。
【0028】
このため、通水本管14に浄水を送り込むと、図5の矢印で示すように水が流れて行き、先ず酸性水pH調整物質添加槽88を構成する中筒86の水通過空間部96の中に入る。すると、底壁98に設けた各小孔104を通じてpH調整物質収納空間部106の中に入り、食塩108を浸してそれを少量ずつ溶かし込んだ添加水となる。そして、中筒86の内部で分流し、図6に示すように流入管16にはオリフィス50を設けてあるため、大部分の添加水は流入管58を通過して電解槽62の陽極室66に流れ込むが、一部の添加水は流入管16を経て陰極室64に流れ込む。そこで、陽極室66と陰極室64にそれぞれ入る添加水の流量比を相当大きくする。例えば8対1にするのが好ましい。
【0029】
そして、電解槽62でアルカリ性水と酸性水を生成して各流出管78、80よりそれぞれ送り出すが、流出管80にはオリフィス82を設けてあるため、陰極室64から出るアルカリ性水量を多く、陽極室66から出る酸性水量を少なくすることができる。その際、アルカリ性水と酸性水との流量比を例えば3対1にするのが好ましい。このようにして、陽極室66に入る添加水量を多く、陰極室64に入る添加水量を少なくし、又陰極室64から出るアルカリ性水量を多く、陽極室66から出る酸性水量を少なくして、その陽陰各極室66、64に入る添加水量の流量比を陰陽各極室64、66から出るアルカリ性水と酸性水との流量比より大きくすると、陽極室66に入る添加水量が多く、その室66から出る酸性水量は少なくなり、陰極室64に入る添加水量が少なく、その室64から出るアルカリ性水量は多くなる。
【0030】
このため、今度は陽極室66から隔膜68を通って陰極室64に入り、流出管78より流れ出す酸性水の水流が生じる。それ故、陽極室66の流出管80が出る酸性水にアルカリ性水が混じり難い上、各室64、66に入る添加水の濃度が等しく槽内の導電率が均一であるため電気分解が進み易くなり、純度の高い強酸性水が得られる。その際、酸性水として陰極室66に塩酸水、過酸化水素水ができ、陽極室64に水酸化ナトリウム水ができるが、水酸化ナトリウム水の方はアルカリ性水に混入するので陰極室64の流出管78から送り出す。このようにして、水に食塩を加えると酸性水のpH値を2.5程にして安定させることができ、アルカリ性水が混じらないので、酸性水の酸化還元電位を+1100mV以上にして安定化できる。しかも、陽極室66に多量の塩素ガスが発生するため、酸性水の塩素濃度が30ppm程になる。それ故、茶渋落とし等の洗い物用の水として好適なものになる。なお、従来のイオン水生成器で得られた酸性水はpH値が4程である。
【0031】
当然、流出管78から送り出されるアルカリ性水は強アルカリ性水であり、そこに多量の塩素ガスが含まれる。それ故、このようなアルカリ性水を誤って飲料用に使用しないようにしなければならない。そこで、通常の飲料用等に適する弱アルカリ性水を必要とする場合と、衛生水としての強酸性水を必要とする場合とでイオン水生成器の動作モードを異ならしめる。そして、外筒20の中に酸性水pH調整物質収納交換用中筒86を入れた時、ステンレスリング100を金属センサー46で検出して、通常モードから強酸性水モードへの切替えを行なう。すると、例えばモータ式スプール弁を駆動して水路を切替え、通常モード時に弱アルカリ性水を放出した放水口から強酸性水モード時には水を放出させないようにし、他の放出口から多量の塩素ガスや水酸化ナトリウムを含む強アルカリ性水を放出させるようにすることができる。それ故、多量の塩素ガス等を含む強アルカリ性水を誤って飲料用に供することもない。
【0032】
なお、上記実施の形態では酸性水pH調整物質収納交換用中筒に識別用部材としてステンレスリングを使用し、外筒に金属センサーを設置したが、磁石に対し磁気センサーを用いる等、適宜他の識別用部材と対応するセンサーを用いてもよい。当然、識別用部材はアルカリ性水pH調整物質収納交換用中筒の方に設置してもよい。
【0033】
なお、上記実施の形態ではカルシウムイオン濃度を上げる物質を添加して弱アルカリ性水を多量に生成したが、弱酸性水を多量に必要とする場合には両電極の極性を反対にすればよい。
【0035】
【発明の効果】
以上説明した本発明によれば、請求項記載の発明では陰陽両極室に入る水に酸性水のpH値を下げる物質を添加し、陽極室から陰極室に流れ込み、その陰極室に設けた流出管より流れ出す酸性水の水流を発生させると共に、陽極室に塩素ガスを発生させているため、必要とする酸性水に塩素ガスが含まれ易く、アルカリ性水も混じり難くなる。それ故、pH値を下げて安定させた純度の高い強酸性水を得ることができる。しかも、その酸化還元電位を衛生水として好適な安定した値のものにすることができる。
【0036】
請求項記載の発明ではpH調整物質添加槽を構成する同一の外筒内に、弱アルカリ性水が必要な場合にはカルシウムイオン濃度上昇物質を収納した中筒を入れて使用し、強酸性水が必要な場合にはpH値下降物質を収納した中筒を入れて使用することにより、中筒を交換するだけの簡単な操作で、適宜飲料用等に好適な弱アルカリ性水と衛生水として好適な強酸性水を得ることができる。
【図面の簡単な説明】
【図1】本発明を適用したイオン水生成器に備えるアルカリ性水pH調整物質添加槽ユニットの要部を示す部分断面図である。
【図2】同アルカリ性水pH調整物質添加槽ユニットの動作時における水流方向等を示す模式図である。
【図3】同アルカリ性水pH調整物質添加槽ユニット使用時の電解槽における水流方向等を示す模式図である。
【図4】本発明を適用したイオン水生成器に備える酸性水pH調整物質添加槽ユニットの要部を示す部分断面図である。
【図5】同酸性水pH調整物質添加槽ユニットの動作時における水流方向等を示す模式図である。
【図6】同酸性水pH調整物質添加槽ユニット使用時の電解槽における水流方向等を示す模式図である。
【符号の説明】
10……アルカリ性水pH調整物質添加槽ユニット 12…アルカリ性水pH調整物質添加槽 14…通水本管 16、58、74、76…流入管 18…連通管 20…外筒 22…アルカリ性水pH調整物質収納交換用中筒 24…キャップ 32、54、90、98…底壁 34、94…水通過口 36…網 46…金属センサー 48、60…流入管16の一部、他部 50、82…オリフィス 52…内部開口 56…乳酸カルシウム錠剤 62…電解槽 64、66…陰、陽極室 68…隔膜 70、72…陰、陽極 78、80…流出管 84…酸性水pH調整物質添加槽ユニット 86…酸性水pH調整物質収納交換用中筒 88…酸性水pH調整物質添加槽 92…突出管 96…水通過空間部 100…ステンレスリング 104…小孔 106…pH調整物質収納空間部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ionic water generator that purifies raw water such as tap water and then adds a pH adjusting substance to generate ionic water.
[0002]
[Prior art]
In recent years, there has been a demand for safe, delicious and healthy water. As such water, water obtained by electrolyzing raw water such as tap water has attracted attention, and ionic water generators have begun to spread in ordinary homes and restaurants. When an ionic water generator is used, raw water can be electrolyzed to obtain ionic water such as alkaline water or acidic water. At that time, alkaline water has an antacid effect, a swelling effect, etc., so it is used for beverages or cooking, and acidic water has an astringent effect, etc., and is used as a lotion. In particular, strong acid water returns to normal water if left undisturbed for several days, so it does not pollute the environment and is suitable for washing water such as tea astringent drops.
[0003]
In general, an ionic water generator collects a water purifier, a pH adjusting substance addition tank, an electrolytic tank, each water pipe, a control circuit component including a microcomputer, a power circuit component including a power transformer, and the like in a case, The whole is downsized for easy handling. At the time of use, the water inlet of the ion water generator is connected to a tap and the like, and raw water such as tap water is fed. Then, first of all, the water can be purified by the water purifier. At that time, if the water purifier uses antibacterial activated carbon and hollow fiber membrane, for example, the activated carbon decomposes the odor-causing odor or musty odor and removes germs and the like with the hollow fiber membrane. Can do.
[0004]
Next, when purified water is fed into a pH adjusting substance addition tank, the calcium ion concentration of alkaline water is increased in the addition tank, for example, calcium lactate is dissolved in water and added, or the pH value of acidic water is decreased, for example, salt Can be added by dissolving in water. Therefore, when purified water, added water, or the like is fed into the electrolytic cell, alkaline water or acidic water can be obtained from the cathode chamber divided by a diaphragm and from the anode chamber, respectively. At that time, calcium lactate or the like for increasing the calcium ion concentration of alkaline water is added to the water entering the anode chamber of the electrolytic cell, and sodium chloride or the like for lowering the pH value of acidic water is added to the water entering the cathode chamber and the anode chamber, respectively. Even when a substance that increases the calcium ion concentration is added to water, the pH value of the produced water naturally changes.
[0005]
[Problems to be solved by the invention]
However, even if such an ionic water generator is used, the chlorine odor dissolves in water and reaches the electrolytic cell only by eliminating the odor of chalk. Therefore, chlorine gas is generated in the anode chamber by electrolysis. This chlorine gas tends to enter the cathode chamber through the diaphragm together with acidic water. Then, not only acidic water is mixed with alkaline water used for beverages and the like, but also alkaline water has a chlorine gas odor. Further, alkaline water generated in the cathode chamber easily passes through the diaphragm and enters the anode chamber, and since alkaline water is mixed with acidic water, there is a problem that it is difficult to obtain highly acidic water with high purity even if sodium chloride is added. Even if salt is added only to the water entering the anode chamber, it is difficult to increase the conductivity on the cathode chamber side, so that strongly acidic water cannot be obtained.
[0006]
The present invention has been made paying attention to such conventional problems. First, an ion equipped with a pH adjusting substance addition tank capable of generating highly pure water having a stable pH value and oxidation-reduction potential and having high purity. An object is to provide a water generator.
[0007]
Second , if weak alkaline water is required, use a substance that increases calcium ion concentration in the pH adjustment substance addition tank. If strong acidic water is required, use a substance that decreases pH value. Another object of the present invention is to provide an ionic water generator equipped with a pH adjusting substance addition tank that can easily exchange the pH adjusting substance.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, in the ionic water generator provided with the pH adjusting substance addition tank corresponding to the first object according to the present invention , the water supply main pipe for sending the purified water from the water purifier to the electrolytic cell is provided in the middle of the cathode of the electrolytic cell. The inflow pipe leading to the chamber and the inflow pipe leading to the anode chamber are divided into pipes, and the electrolytic cell is further provided with an outflow pipe exiting from the cathode chamber and an outflow pipe exiting from the anode chamber. A pH adjusting substance addition tank for adding a substance that lowers the pH value of water is provided.
[0011]
The amount of added water entering the anode chamber of the electrolytic cell is increased, the amount of added water entering the cathode chamber is decreased, the amount of alkaline water exiting from the cathode chamber is increased, the amount of acidic water exiting from the anode chamber is decreased, The flow rate ratio of the amount of added water entering the chamber is made larger than the flow rate ratio of alkaline water and acidic water exiting from each of the yin and yang electrode chambers. For this purpose, the anode channel inflow tube is made thicker than the cathode chamber inflow tube by providing an orifice with a small diameter in the cathode chamber inflow tube, and the cathode chamber inflow tube is further connected to the anode chamber outflow tube. What is necessary is just to make the water channel of a cathode chamber outflow pipe thicker than the water channel of an anode chamber outflow pipe by providing an orifice with a diameter larger than the orifice provided in this water channel.
[0012]
Further, the ion water generator having a pH adjusting agent addition tank of the second object corresponding to the inlet pipe and anode chamber leading to the cathode compartment of the electrolytic cell the water passing mains to send water purification to the electrolytic cell from the water purifier in the middle Branch to the inflow pipe to reach the inflow pipe. In addition, an outflow pipe from the cathode chamber and an outflow pipe from the anode chamber are provided in the electrolytic cell, and a substance that adjusts the pH value of the purified water is added to the inflow pipe. A pH adjusting substance addition tank is provided.
[0013]
Then, one end constituting the pH adjusting substance adding tank is closed, and the other end is closed with an openable / closable cap, and the water main, the cathode chamber inflow tube, the anode chamber inflow tube, or the both chambers inflow tube Are provided with two inflow pipes that function as any of the above, the internal space of each pipe communicates with the internal space of the outer cylinder, and the water main pipe and one inflow pipe are coupled by a communication pipe The water passage of the anode chamber outflow pipe is made narrower than the water passage of the cathode chamber outflow pipe, and the water passage of the anode chamber outflow pipe is made narrower than the water passage of the cathode chamber outflow pipe. Then, the rate of thinning them is increased on the inflow pipe side and decreased on the outflow pipe side.
[0014]
In addition, when alkaline water is required, the outer cylinder has a water passage opening for immersing the stored substance that increases the calcium ion concentration, and the alkaline water pH that closes the internal opening of the water main when the cap is closed. A medium cylinder for adjusting substance storage and replacement is inserted and used as an alkaline water pH adjustment substance addition tank unit. When acid water is required, the outer cylinder has a water passage port for immersing the substance that lowers the stored pH value. Then, an acidic water pH adjusting substance housing / replacement inner cylinder for closing the communication pipe when the cap is closed is inserted and used as an acidic water pH adjusting substance adding tank unit.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a partial cross-sectional view showing a main part of an alkaline water pH adjusting substance addition tank unit provided in an ionic water generator to which the present invention is applied. In the figure, 10 is an alkaline water pH adjusting substance adding tank unit, 12 is an alkaline water pH adjusting substance adding tank of the unit 10, 14 is a water main that sends purified water from a water purifier (not shown) to an electrolytic tank, 16 is An inflow pipe for adjusting the flow rate ratio of the water to be sent to the cathode chamber and the anode chamber of the electrolytic cell by dividing the purified water flowing through the water flow main pipe, and 18 is a communication between the water flow main pipe and the flow rate adjusting inflow pipe 16. This is a communication pipe. The addition tank 12 includes two inflow pipes including the inflow pipe 16.
[0016]
The alkaline water pH adjusting substance addition tank 12 has an outer cylinder 20 with the lower end closed and the upper end opened, and an inner cylinder 22 for storing and replacing an alkaline water pH adjusting substance with the lower end closed and the upper end opened. And an openable and closable cap 24 that closes the upper ends of the inner and outer cylinders 20 and 22. The outer cylinder 20 is connected to the ends of the water main pipe 14 and the two inflow pipes 16, and the inner space of the outer cylinder 20 is communicated with the inner space of the pipes 14, 16. . At that time, the water main pipe 14 is installed so that its upper end protrudes slightly inward from the center of the bottom wall of the outer cylinder 20, and each inflow pipe 16 etc. has its upper end opening at the lower end side wall of the outer cylinder 20. It is arranged so as to communicate with the internal space expansion portions 26 (26a, 26b) provided at two locations by partially protruding outward. In addition, the outer cylinder 20 has an oblique groove whose upper end is opened into the symmetrical position of the inner wall of the upper end of the outer cylinder 20 while the cap 28 is pushed in while closing and the protrusions 28 (28a, 28b) at the symmetrical position of the upper side wall are fitted respectively. 30 (30a, 30b) are provided.
[0017]
Further, the middle cylinder 22 has a bottom wall 32 protruding inwardly in a truncated cone shape, and water passages 34 are equally disposed at several places, for example, six places on the lower end side wall. Then, each water passage 34 is closed with a net 36. Further, the middle cylinder 22 is provided with a projection 38 (38a, 38b) for connection with the cap 24 at a symmetrical position on the outer surface of the side wall at the upper end. Therefore, the lower side wall of the cap 24 is provided with an elongated L-shaped through-hole 40 (40a, 40b) having a lower end that is fitted with the cap 24 on the upper end portion of the middle cylinder 22 and is opened while being rotated. The cap 24 is further provided with a knob 42 at the top, and a sealing O-ring 44 is fitted in the center of the outer surface of the side wall.
[0018]
The middle cylinder 22 may be closed only by the cap 24. However, in order to increase the sealing degree of the middle cylinder 22 and increase the connection strength between the cap 24 and the middle cylinder 22, the middle cylinder 22 is used by being pushed into the upper end portion of the middle cylinder 22. Use a lid (not shown). Therefore, the main body of the inner lid is a cylindrical body with the lower end closed and the upper end opened, and a knob projection is provided upward from the center of the bottom wall. Further, in order to prevent the inner lid from falling into the inner cylinder 22, a collar portion that covers the upper edge of the inner cylinder 22 is provided on the upper edge of the cylindrical body. Reference numeral 46 denotes a metal sensor for detecting a stainless steel ring provided in an acidic water pH adjusting substance housing replacement cylinder described later.
[0019]
The flow rate adjusting inflow pipe 16 is provided near the inlet of the water channel of a part 48 that connects the outer cylinder 20 and the communication pipe 18 in order to adjust the flow ratio of water sent to the cathode chamber and the anode chamber of the electrolytic cell. An orifice 50 is provided. Therefore, when the purified water sent to the water main pipe 14 enters the inflow pipe 16 through the communication pipe 18, a part of the water passes through the alkaline water pH adjusting substance addition tank 12 and passes through the anode of the electrolytic cell. Go to the chamber and most of the water goes to the cathode chamber.
[0020]
At the time of use, first, for example, several calcium lactate tablets are placed in the inner cylinder 22 as an adjusting substance for increasing the calcium ion concentration of alkaline water. Then, the inner lid is put on and the cap 24 is put on to connect the cap 24 and the inner cylinder 22. Next, they are put in the outer cylinder 20, the cap 24 is tightened, and the outer cylinder 20 is closed. Then, the bottom wall 32 of the middle cylinder 24 is pressed against the bottom wall 54 of the outer cylinder 20 so as to cover the inner opening 52 of the water main pipe 14, and water flows into the addition tank 12 from the water main pipe 14. Can be cut off.
[0021]
For this reason, when raw water such as tap water is purified by a water purifier and then fed into the water main pipe 14, the purified water flows as shown by the arrows in FIG. Most of the purified water passes through the inflow pipe 16 as it is and flows into the cathode chamber of the electrolytic cell, but a part of the purified water that has passed through the orifice 50 passes through a part 48 of the inflow pipe 16 and enters the addition tank 12. Then, the calcium lactate tablet 56 is soaked and added water in which it is dissolved, and enters the anode chamber through another inflow pipe 58. When the orifice 50 or the like is provided in this way, the water channel of a part 48 connecting the outer tube 20 of the inflow pipe 16 for adjusting the flow rate ratio and the communication pipe 18 is made narrower than the water channel of the other part 60 connected to the connection pipe 18, The flow rate ratio can be considerably increased by increasing the amount of purified water entering and decreasing the amount of added water entering the anode chamber. At that time, it is preferable to set the flow rate ratio between the purified water amount and the added water amount to 8: 1.
[0022]
Such an electrolytic cell containing purified water and added water has a structure as shown in FIG. In the figure, 62 is an electrolytic cell, 64 is a cathode chamber thereof, 66 is an anode chamber, 68 is a diaphragm partitioning both chambers 64 and 66, 70 is a cathode, and 72 is an anode. In addition, 74 is an inflow pipe connected to the inflow pipe 16 of the addition tank unit 10, 76 is an inflow pipe connected to the inflow pipe 58, 78 is an outflow pipe for sending out alkaline water, 80 is an outflow pipe for sending out acid water, and 82 is It is an orifice provided near the inlet of the water channel of the outflow pipe 80. When the orifice 82 or the like is provided in this way, the flow path of the outflow pipe 80 is made narrower than the flow path of the outflow pipe 78, the amount of alkaline water coming out of the cathode chamber 64 is increased, and the amount of acidic water coming out of the anode chamber 66 is reduced. Can be made smaller than the flow ratio of the purified water and the added water entering the two chambers 64 and 66, respectively. At that time, it is preferable to set the flow ratio of alkaline water and acidic water to 3: 1.
[0023]
In this way, the amount of purified water entering the cathode chamber 64 of the electrolytic cell 62 is increased, the amount of added water entering the anode chamber 66 is decreased, the amount of alkaline water exiting from the cathode chamber 64 is increased, and the amount of acidic water exiting from the anode chamber 66 is decreased. Then, if the flow rate ratio of the purified water entering the Yin / Yang polar chambers 64 and 66 and the amount of added water is larger than the flow rate ratio of alkaline water and acidic water coming out of the Yin / Yang polar chambers 64 and 66, the purified water entering the cathode chamber 64. The amount of alkaline water coming out of the chamber 64 is small, the amount of added water entering the anode chamber 66 is small, and the amount of acidic water coming out of the chamber 66 is large. For this reason, chlorine ions dissolved in purified water or added water and flowing into the electrolytic cell 62 are negative ions, so that chlorine gas is generated in the anode chamber 66 by electrolysis, and the chlorine gas enters the cathode chamber 64. Even so, the flow of alkaline water that flows from the cathode chamber 64 through the diaphragm 68 to the anode chamber 66 and flows out from the outflow pipe 80 is hindered, and chlorine gas is sent out from the outflow pipe 80 together with acidic water and the like. Therefore, the alkaline water that exits from the outflow pipe 78 of the cathode chamber 64 is unlikely to contain chlorine gas, and acid water is also unlikely to be mixed.
[0024]
The calcium lactate dissolved in the added water and flowing into the electrolytic cell 62 is separated into lactate ions and calcium ions, and the calcium ions reach the cathode chamber 64 because they are positive ions. Therefore, when calcium lactate is added to water, the calcium ion concentration and pH value of alkaline water can be increased and stabilized. However, in reality, if a large amount of calcium lactate is added, it will adhere to the diaphragm 68 and cause inconvenience. Therefore, when calcium salt (calcium hydrogen carbonate, calcium sulfate, etc.) contained in the raw water is small, it is added as an electrolysis aid. You should do it. In addition, if acidic water is prevented from being mixed with the alkaline water exiting from the outflow pipe 78 of the cathode chamber 64 in this way, the oxidation-reduction potential (ORP) of the alkaline water is stably about -50 mV. As it becomes weak alkaline water most suitable for the body. Note that a variable voltage of 0 to 40 V is applied to the electrolytic cell 62, but naturally the higher the voltage value, the higher the pH value.
[0025]
FIG. 4 is a partial cross-sectional view showing a main part of an acidic water pH adjusting substance addition tank unit provided in an ionic water generator to which the present invention is applied. When the acidic water pH adjusting substance adding tank unit 84 is compared with the alkaline water pH adjusting substance adding tank unit 10 described above, the acidic water pH adjusting substance storage exchange is replaced with the alkaline water pH adjusting substance storage inner cylinder 22. The point which comprises the acidic water pH adjustment substance addition tank 88 using the middle cylinder 86 differs. Further, the use of the acidic water pH adjusting substance housing replacement cylinder 86 makes the water channel configuration different. However, since the other unit configurations are the same, the same reference numerals are used for the same corresponding parts as necessary.
[0026]
The middle cylinder 86 also has a cylindrical body with the lower end closed and the upper end opened, and the bottom wall 90 projects inward in a truncated cone shape. And the communication pipe 18 is closed in the center of the bottom wall 90, the protrusion pipe | tube 92 for guide | inducing the water of the water main pipe 14 in internal space is provided, and the water passage port 94 is provided in several places, for example, four places in the lower end side wall. Distribute evenly. Further, the position corresponding to the ceiling of the water passage space portion 96 is closed and formed on the bottom wall 98 of the space portion for storing a substance that lowers the pH value, for example, salt, and there are several places such as the center and the left and right 3 A small hole for entering and exiting a small amount of water is provided at the location. Further, a belt-shaped stainless ring 100 is wound and mounted on the outer surface of the central side wall, and connection projections 102 (102a, 102b) for connection with the cap 24 are provided at symmetrical positions on the outer surface of the upper end side wall. An inner lid is also used for the acidic water pH adjusting substance accommodating / replacement inner cylinder 86, but the inner lid is also used as the lid for the alkaline water adjusting substance accommodating / replacement inner cylinder 22.
[0027]
At the time of use, salt is first put in the pH adjusting substance storage space of the middle cylinder 86. Similarly, the inner lid is put on and the cap 24 is fitted, and the cap 24 and the middle cylinder 86 are connected. Further, they are put in the outer cylinder 20 and the cap 24 is tightened to close the outer cylinder 20. Then, the protruding pipe 92 provided on the bottom wall 90 of the middle cylinder 84 is inserted into the water main pipe 14 so that the inflow of water into the communication pipe 18 can be blocked.
[0028]
For this reason, when purified water is fed into the water main 14, the water flows as shown by the arrow in FIG. 5, and first of the water passage space 96 of the middle cylinder 86 constituting the acidic water pH adjusting substance addition tank 88. go inside. Then, it enters into the pH adjusting substance storage space 106 through each small hole 104 provided in the bottom wall 98, and becomes the added water in which the salt 108 is soaked and dissolved little by little. Then, the flow is divided inside the intermediate cylinder 86, and the orifice 50 is provided in the inflow pipe 16 as shown in FIG. 6, so that most of the added water passes through the inflow pipe 58 and the anode chamber 66 of the electrolytic cell 62. However, a part of the added water flows into the cathode chamber 64 through the inflow pipe 16. Therefore, the flow rate ratio of the additive water entering the anode chamber 66 and the cathode chamber 64 is considerably increased. For example, 8 to 1 is preferable.
[0029]
Then, alkaline water and acidic water are generated in the electrolytic cell 62 and sent out from the outflow pipes 78 and 80, respectively. Since the outflow pipe 80 is provided with the orifice 82, the amount of alkaline water coming out from the cathode chamber 64 is increased, and the anode The amount of acidic water coming out of the chamber 66 can be reduced. In that case, it is preferable to make the flow rate ratio of alkaline water and acidic water into 3: 1, for example. In this way, the amount of added water entering the anode chamber 66 is increased, the amount of added water entering the cathode chamber 64 is decreased, the amount of alkaline water exiting from the cathode chamber 64 is increased, and the amount of acidic water exiting from the anode chamber 66 is decreased. When the flow rate ratio of the added water amount entering each of the positive and negative electrode chambers 66, 64 is larger than the flow rate ratio of alkaline water and acidic water exiting from each of the positive and negative electrode chambers 64, 66, the added water amount entering the anode chamber 66 increases. The amount of acidic water exiting from 66 decreases, the amount of added water entering the cathode chamber 64 decreases, and the amount of alkaline water exiting from the chamber 64 increases.
[0030]
For this reason, this time, acidic water flows from the anode chamber 66 through the diaphragm 68 to the cathode chamber 64 and flows out from the outflow pipe 78. Therefore, it is difficult for alkaline water to be mixed with the acidic water from the outflow pipe 80 of the anode chamber 66, and the concentration of the added water entering each chamber 64, 66 is equal and the conductivity in the tank is uniform, so that the electrolysis can proceed easily. Thus, highly acidic water with high purity is obtained. At that time, hydrochloric acid water and hydrogen peroxide water are formed in the cathode chamber 66 as acidic water, and sodium hydroxide water is formed in the anode chamber 64. However, sodium hydroxide water is mixed in alkaline water, so that the cathode chamber 64 flows out. Feed out from tube 78. In this way, when salt is added to water, the pH value of acidic water can be stabilized at about 2.5, and since alkaline water is not mixed, the oxidation-reduction potential of acidic water can be stabilized at +1100 mV or more. . Moreover, since a large amount of chlorine gas is generated in the anode chamber 66, the chlorine concentration of the acidic water becomes about 30 ppm. Therefore, it becomes suitable as water for washing such as tea dripping. In addition, the acidic water obtained with the conventional ionic water generator has a pH value of about 4.
[0031]
Naturally, the alkaline water sent out from the outflow pipe 78 is strong alkaline water, and a large amount of chlorine gas is contained therein. Therefore, it must be ensured that such alkaline water is not accidentally used for beverages. Therefore, the operation mode of the ionic water generator is made different between the case where weak alkaline water suitable for ordinary beverages is required and the case where strongly acidic water as sanitary water is required. Then, when the acidic water pH adjusting substance storage and replacement inner cylinder 86 is put in the outer cylinder 20, the stainless steel ring 100 is detected by the metal sensor 46, and the normal mode is switched to the strongly acidic water mode. Then, for example, the motor-type spool valve is driven to switch the water channel so that water is not released from the outlet from which the weak alkaline water is released in the normal mode in the strong acid water mode, and a large amount of chlorine gas or water is discharged from the other outlets. Strong alkaline water containing sodium oxide can be released. Therefore, strong alkaline water containing a large amount of chlorine gas or the like is not erroneously provided for beverages.
[0032]
In the above embodiment, a stainless steel ring is used as a member for identification in the acidic water pH adjusting substance storage replacement cylinder, and a metal sensor is installed in the outer cylinder. A sensor corresponding to the identification member may be used. Naturally, the identification member may be installed on the inner cylinder for storing and replacing the alkaline water pH adjusting substance.
[0033]
In the above embodiment, a substance that increases the calcium ion concentration is added to generate a large amount of weak alkaline water. However, when a large amount of weak acidic water is required, the polarities of both electrodes may be reversed.
[0035]
【The invention's effect】
According to the present invention described above, in the invention of claim 1, wherein the addition of substances which lower the pH value of the acidic water in the water entering the cathode and anode chamber, flows from the anode chamber to the cathode chamber, outflow provided to the cathode chamber Since the acidic water flowing out from the pipe is generated and the chlorine gas is generated in the anode chamber, the required acidic water is likely to contain chlorine gas and the alkaline water is hardly mixed. Therefore, it is possible to obtain highly acidic water with high purity which is stabilized by lowering the pH value. Moreover, the oxidation-reduction potential can be set to a stable value suitable for sanitary water.
[0036]
Further, in the same external cylinder constituting the pH adjusting agent addition tank at the second aspect of the present invention, using put cylindrical in accommodating the calcium ion concentration rises substance if necessary weakly alkaline water, strong acids When alkaline water is required, a weakly alkaline water and sanitary water suitable for beverages can be used by simply inserting the inner cylinder containing the pH-decreasing substance. As a result, it is possible to obtain a strong acidic water suitable as
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing a main part of an alkaline water pH adjusting substance addition tank unit provided in an ionic water generator to which the present invention is applied.
FIG. 2 is a schematic view showing a water flow direction and the like during operation of the alkaline water pH adjusting substance addition tank unit.
FIG. 3 is a schematic diagram showing a water flow direction and the like in an electrolytic cell when the alkaline water pH adjusting substance addition tank unit is used.
FIG. 4 is a partial cross-sectional view showing a main part of an acidic water pH adjusting substance addition tank unit provided in an ionic water generator to which the present invention is applied.
FIG. 5 is a schematic view showing a water flow direction and the like during operation of the acidic water pH adjusting substance addition tank unit.
FIG. 6 is a schematic view showing a water flow direction and the like in the electrolytic cell when the acidic water pH adjusting substance addition tank unit is used.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Alkaline water pH adjustment substance addition tank unit 12 ... Alkaline water pH adjustment substance addition tank 14 ... Water flow main pipe 16, 58, 74, 76 ... Inflow pipe 18 ... Communication pipe 20 ... Outer cylinder 22 ... Alkaline water pH adjustment Material storage and replacement inner cylinder 24 ... cap 32, 54, 90, 98 ... bottom wall 34, 94 ... water passage 36 ... net 46 ... metal sensor 48, 60 ... part of inflow pipe 16, other parts 50, 82 ... Orifice 52 ... Internal opening 56 ... Calcium lactate tablet 62 ... Electrolysis tank 64, 66 ... Negative, anode chamber 68 ... Separation membrane 70, 72 ... Negative, anode 78, 80 ... Outflow pipe 84 ... Acidic water pH adjusting substance addition tank unit 86 ... Middle tube 88 for storing and replacing acidic water pH adjusting substance 88 ... Acid water pH adjusting substance addition tank 92 ... Protruding tube 96 ... Water passage space part 100 ... Stainless steel ring 104 ... Small hole 106 ... pH adjusting substance Storage space

Claims (2)

浄水器から浄水を電解槽に送る通水本管を途中で電解槽の陰極室に至る流入管と陽極室に至る流入管とに分岐して配管し、更に電解槽に陰極室から出る流出管と陽極室から出る流出管とを設け、その通水本管の水路に酸性水のpH値を下げる物質を添加するpH調整物質添加槽を備えたイオン水生成器において、上記電解槽の陽極室に入る添加水量を多く、陰極室に入る添加水量を少なくし、又陰極室から出るアルカリ性水量を多く、陽極室から出る酸性水量を少なくして、その陽陰各極室に入る添加水量の流量比を陰陽各極室から出るアルカリ性水と酸性水との流量比より大きくすることを特徴とするpH調整物質添加槽を備えたイオン水生成器。  The water main that sends purified water from the water purifier to the electrolytic cell is divided into an inflow tube that leads to the cathode chamber of the electrolytic cell and an inflow tube that reaches the anode chamber, and the outflow tube exits from the cathode chamber to the electrolytic cell. And an ionic water generator having a pH adjusting substance addition tank for adding a substance that lowers the pH value of acidic water to the water channel of the water main pipe. Increase the amount of added water entering the cathode chamber, decrease the amount of added water entering the cathode chamber, increase the amount of alkaline water coming out of the cathode chamber, and reduce the amount of acidic water coming out of the anode chamber, and the flow rate of the amount of added water entering each positive and negative electrode chamber An ionic water generator comprising a pH adjusting substance addition tank, characterized in that the ratio is larger than the flow rate ratio of alkaline water and acidic water exiting from each of the yin and yang electrode chambers. 浄水器から浄水を電解槽に送る通水本管を途中で電解槽の陰極室に至る流入管と陽極室に至る流入管とに分岐して配管し、更に電解槽に陰極室から出る流出管と陽極室から出る流出管とを設け、その流入側の管水路に浄水のpH値を調整する物質を添加するpH調整物質添加槽を備えたイオン水生成器において、上記pH調整物質添加槽を構成する一端部を閉鎖し、他端部を開閉自在のキャップで閉じる外筒に、通水本管と、陰極室流入管又は陽極室流入管或いは両室流入管のいずれかの働きをする2本の流入管とを備え付けて、その外筒の内部空間に各管の内部空間を連通し、更に通水本管と1本の流入管とを連通管により結合し、その連通管を結合した流入管の外筒と連通管を結ぶ一部水路を連通管と結合する他部水路より細くし、又陽極室流出管の水路を陰極室流出管の水路より細くして、それ等の細める割合を流入管側で大きく、流出管側で小さくし、アルカリ性水が必要な場合にはその外筒内に、収納したカルシウムイオン濃度を上げる物質を浸す水通過口を有し、キャップ閉鎖時に通水本管の内部開口を閉じるアルカリ性水pH調整物質収納交換用中筒を入れて、アルカリ性水pH調整物質添加槽ユニットとして用い、酸性水が必要な場合にはその外筒内に、収納したpH値を下げる物質を浸す水通過口を有し、キャップ閉鎖時に連通管を閉じる酸性水pH調整物質収納交換用中筒を入れて、酸性水pH調整物質添加槽ユニットとして用いることを特徴とするpH調整物質添加槽を備えたイオン水生成器。  The water main that sends purified water from the water purifier to the electrolytic cell is divided into an inflow tube that leads to the cathode chamber of the electrolytic cell and an inflow tube that reaches the anode chamber, and the outflow tube exits from the cathode chamber to the electrolytic cell. And an outflow pipe exiting from the anode chamber, and an ion water generator having a pH adjustment substance addition tank for adding a substance for adjusting the pH value of purified water to the inflow side pipe channel, the pH adjustment substance addition tank The outer cylinder which closes one end part which constitutes and closes the other end part with an openable / closable cap functions as either a water flow main pipe, a cathode chamber inflow tube, an anode chamber inflow tube, or both chamber inflow tubes. An inflow pipe is connected to the internal space of the outer cylinder, the internal space of each pipe is connected, and the water main pipe and one inflow pipe are connected by a communication pipe, and the communication pipe is connected. Some water channels connecting the outer cylinder of the inflow pipe and the communication pipe are made narrower than the other water channels connected to the communication pipe. The water channel of the chamber outflow pipe is made narrower than the water channel of the cathode chamber outflow pipe, and the ratio of such reduction is increased on the inflow pipe side and smaller on the outflow pipe side, and when alkaline water is required, in the outer cylinder, Alkaline water pH adjusting substance addition tank with a water exchange port that immerses the stored substance that increases the calcium ion concentration, and an inner cylinder for storing and replacing the alkaline water pH adjusting substance that closes the internal opening of the water main when the cap is closed Used as a unit, and when acid water is required, the outer cylinder has a water passage for immersing a substance that lowers the stored pH value. An ionic water generator equipped with a pH adjusting substance addition tank, characterized in that it is used as an acidic water pH adjusting substance addition tank unit.
JP24555296A 1996-08-27 1996-08-27 Ionized water generator with pH adjusting substance addition tank Expired - Fee Related JP3905583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24555296A JP3905583B2 (en) 1996-08-27 1996-08-27 Ionized water generator with pH adjusting substance addition tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24555296A JP3905583B2 (en) 1996-08-27 1996-08-27 Ionized water generator with pH adjusting substance addition tank

Publications (2)

Publication Number Publication Date
JPH1066974A JPH1066974A (en) 1998-03-10
JP3905583B2 true JP3905583B2 (en) 2007-04-18

Family

ID=17135402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24555296A Expired - Fee Related JP3905583B2 (en) 1996-08-27 1996-08-27 Ionized water generator with pH adjusting substance addition tank

Country Status (1)

Country Link
JP (1) JP3905583B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012223685A (en) * 2011-04-18 2012-11-15 Panasonic Corp Device for generating electrolyzed water and sink provided with device for generating electrolyzed water
JP2015016441A (en) * 2013-07-12 2015-01-29 株式会社レドックス Electrolytic water for cosmetics

Also Published As

Publication number Publication date
JPH1066974A (en) 1998-03-10

Similar Documents

Publication Publication Date Title
US4767511A (en) Chlorination and pH control system
US5795459A (en) Apparatus and method for water purification
KR101575164B1 (en) Apparatus for manufacturing ionic water
MXPA03007923A (en) Method and apparatus for producing negative and positive oxidative reductive potential (orp) water.
JP2021169084A (en) Electrolytic water generator and electrolytic water generating method
KR20110009584A (en) Water purifier for generation hydrogen
JP3905583B2 (en) Ionized water generator with pH adjusting substance addition tank
JP3468834B2 (en) Electrolyzed water generator
KR100311911B1 (en) Apparatus for making drinking water and disinfected water simultaneously
CN211056735U (en) Water purification system
JP2001115285A (en) Electrolytic water generator
JPH1190457A (en) Water treatment apparatus
CN218345551U (en) Full-automatic intelligent hypochlorous acid generator and hypochlorous acid disinfectant preparation facilities
JP3056511B2 (en) Treatment water treatment equipment
CN219713740U (en) Refrigerator with a refrigerator body
JP2605642B2 (en) Electrolytic ionic water generating apparatus and electrolytic ionic water generating method
JP2007111647A (en) Electrolyzer
JP2006035108A (en) Electrolytic water producing apparatus
JP4543884B2 (en) Alkaline ion water conditioner
JP3477908B2 (en) Ion water generator
JP3611849B1 (en) Strong electrolyzed water generator
JPH09234469A (en) Electrolyzed water producer
JPH06198284A (en) Double diaphragm electrolytic device
JP3364769B2 (en) Continuous electrolyzed water generator
JP4182559B2 (en) Calcium feeder for ion water conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees