JP2004066137A - Water treatment equipment - Google Patents

Water treatment equipment Download PDF

Info

Publication number
JP2004066137A
JP2004066137A JP2002230467A JP2002230467A JP2004066137A JP 2004066137 A JP2004066137 A JP 2004066137A JP 2002230467 A JP2002230467 A JP 2002230467A JP 2002230467 A JP2002230467 A JP 2002230467A JP 2004066137 A JP2004066137 A JP 2004066137A
Authority
JP
Japan
Prior art keywords
water
tank
reaction tank
gas
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002230467A
Other languages
Japanese (ja)
Other versions
JP3659945B2 (en
Inventor
Yoshiyuki Sawada
澤田 善行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002230467A priority Critical patent/JP3659945B2/en
Publication of JP2004066137A publication Critical patent/JP2004066137A/en
Application granted granted Critical
Publication of JP3659945B2 publication Critical patent/JP3659945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make efficiently treatable a waste water containing an organic material without necessitating the removal of residual chlorides such as sodium chloride. <P>SOLUTION: This water treatment equipment is provided with an electrolysis cell 10 provided with a cathode plate 11a having a property of producing chlorine in water by energizing and an anode plate 11b, a reaction vessel 20 provided with a heater 21 for heating water treated in the electrolysis cell 10 and a gas dissolving apparatus 30 for dissolving chlorine gas produced in the electrolysis cell 10 into the water in the reaction vessel 20. As a result, the chlorine gas produced in the electrolysis cell 10 is dissolved in the water in the reaction vessel 20 by the gas dissolving apparatus 30 and the water kept normally at a temperature of 40-60°C with the heater 21 in the reaction vessel 20 exhibits remarkably high oxidation. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、工場、畜産場、し尿処理場や産業廃棄物処分場等の排水を処理する水処理装置に関する。
【0002】
【従来の技術】
有機物を含有する排水、例えば工場、畜産場、し尿処理場や産業廃棄物処分場等からの排水は、微生物処理による曝気法、すなわち活性汚泥法にて処理されている。また、色素を含む廃液に対して活性汚泥法による分解が試みられているが、特に、畜産場やし尿処理場における糞尿の色まで分解することは困難であった。
【0003】
このような有機性の着色排水の処理として、特開平7−256297号公報には、廃液に食塩を添加した後、通電により分解する方法が開示されている。このような方法で処理された廃水は脱塩処理された後、河川等に放流される。
【0004】
【発明が解決しようとする課題】
このように、廃液に塩分を添加して電気分解を行う方法では、最大20%もの食塩を添加するため、脱塩のため後段の工程に電気透析槽を設ける必要がある。そのため、工程が複雑となり、コストが高くなるという問題がある。
【0005】
そこで、本発明においては、食塩等の残留性の塩化物等の除去を必要とせず、高効率に排水を処理することが可能な水処理装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の水処理装置は、通電により水中に塩素を発生する性質を有する電極を備えた電気分解槽と、この電気分解槽によって処理された水を加熱する加熱器を備えた反応槽と、電気分解槽において発生する塩素ガスを反応槽の水中へ溶解させるガス溶解装置とを備えたものである。
【0007】
本発明の水処理装置では、工場、畜産場、し尿処理場や産業廃棄物処分場等の排水を電気分解槽に導入し、電極へ通電することによって水中に塩素が発生する。これにより、電気分解槽内で塩素による酸化処理が行われるが、これと同時に塩素ガスが発生し、電気分解槽の上部へ集まってくる。
【0008】
そして、この電気分解槽において発生する塩素ガスをガス溶解装置によって反応槽の水中へ溶解させ、塩素濃度を高める。そのため、反応槽では、電気分解槽によって処理された水が、このガス溶解装置によって塩素濃度が高められた水によりさらに酸化処理が行われる。
【0009】
さらに、本発明の水処理装置では、この反応槽内の塩素を含む水を加熱器によって加熱するため、塩素による酸化作用が効率良く行われる。そのため、水中に含まれる塩素分は、この反応槽内で完全に消費される。なお、塩素による酸化作用は40〜60℃のときに最も効率良く行われる。そのため、本発明に係る加熱器は、反応槽の水をこの40〜60℃に加熱するものであることが望ましい。
【0010】
また、本発明に係る電気分解槽の電極は、白金系材料またはルテニウム系材料によって被覆したものを用いることができる。白金系材料によって被覆した電極は水中に塩素を発生させる。特に、ルテニウム系材料によって被覆した電極では、水中に高濃度の次亜塩素酸を発生するため、非常に強い酸化作用を得ることができる。
【0011】
本発明に係るガス溶解装置は、さらにオゾンを反応槽の水中へ溶解させるものとすることが望ましい。反応槽の水中へ塩素ガスとともにオゾンを溶解させることによって、オゾンが塩素と反応し、相乗効果により互いの酸化作用が3〜4倍に高められる。
【0012】
なお、電気分解槽では、陰陽両極から絶えず塩素ガスの気泡が発生するため、この気泡によって水中の浮遊物が酸化物となり、水面付近にスカムとして浮上する。したがって、本発明の水処理装置は、電気分解槽の水面付近を鰭状体によって連続的に掻く手段を備えたものとするのが望ましい。これにより、このスカムを鰭状体によって連続的に掻き取り、排出することができる。
【0013】
また、本発明の水処理装置は、反応槽の上部に活性炭フィルタを介してガスを排出するガス抜き弁を備えたものとするのが望ましい。これにより、反応槽での反応に使われた後に浮上した極微量の塩素ガスを分解し、臭気成分を除去して安全に排出することができる。
【0014】
また、本発明の水処理装置は、反応槽の処理水排出口と電気分解槽の原水導入口との間で熱交換を行う熱交換器を備えたものとするのが望ましい。これにより、反応槽内で加熱器によって加熱された水の温度を下げて処理水排出口から排出することができるとともに、電気分解槽に導入する水の温度を上げて電気分解槽において発生した塩素による酸化作用を高めることができる。
【0015】
【発明の実施の形態】
図1は本発明の実施の形態における水処理装置の概略構成を示す平面図、図2は図1の電気分解槽の縦断面を示す概略図である。
【0016】
図1に示すように、本実施形態における水処理装置は、一対の陰極板11aおよび陽極板11bを交互に配置した電気分解槽10と、加熱器21を内部に設けた反応槽20と、反応槽20内の水を循環して電気分解槽10から取り出した塩素ガスを溶解させるガス溶解装置30と、電気分解槽10の水面付近に浮上したスカムを排出するスカム排出槽40とを備える。
【0017】
電気分解槽10の陰極板11aおよび陽極板11bは、チタン基体にルテニウム系材料の被覆層を熱分解(焼成)によって形成した金属電極である。ここで、ルテニウム系材料とは、ルテニウム(Ru)を含む材料であり、純ルテニウムおよびルテニウムを白金やその他の材料にブレンドした複合材料を含むものとする。また、チタン以外の金属基体に被覆したものを使用することもできる。
【0018】
また、図2に示すように、電気分解槽10の上部には、所定間隔で複数の鰭状体12を設けた無担環状ベルト13を配置している。鰭状体12は、弾性を有するゴム板などにより形成したものである。鰭状体12は、無担環状ベルト13の回転によって、電気分解槽10の水面付近を掻くように連続的に進行し、水面近くの浮上物(スカム)をスカム排出槽40へ掻き出す。
【0019】
また、電気分解槽10の上面には、電気分解槽10の上部に集まった塩素ガスをガス溶解装置30へ導出するガス管14が接続されている。
【0020】
図1に戻って、反応槽20に備える加熱器21は、反応槽20内の水を加熱するための電極ヒータである。この加熱器21は、反応槽20内に設けた温度センサ(図示せず)による水温の検出結果に基づいて、水温が常時40〜60℃に維持されるように制御される。また、反応槽20の上部には、活性炭フィルタを介してガスを排出するガス抜き弁(図示せず)を備える。
【0021】
ガス溶解装置30は、ガス管14によって電気分解槽10から導入された塩素ガスを、反応槽20から取り込んだ水内に溶解させ、反応槽20へ戻すものである。このガス溶解装置30としては、例えば本発明者自らが先に出願し、国際公開番号WO99/33552において国際公開された気液混合装置を用いることができる。
【0022】
上記構成の水処理装置において、工場、畜産場、し尿処理場や産業廃棄物処分場等の排水(以下、「原水」と称す)を電気分解槽10の下部の原水導入口16から電気分解槽10内に導入する。これらの原水は一般に塩分を含むものであるため電導度が高いが、塩分を含まない原水の場合には塩化物を投入して水の電導度を高めておくようにする。
【0023】
電気分解槽10内では、陰極板11aおよび陽極板11bへの通電によって原水の電気分解が行われるとともに、水中に塩素が発生する。特に、本実施形態においては、これらの陰極板11aおよび陽極板11bにルテニウム系材料を被覆した金属電極を用いているため、電気分解によってこれらの電極から強い酸化作用を有する高濃度の次亜塩素酸を発生する。この次亜塩素酸の水溶液は不安定であり、塩酸と酸素と塩素酸を生じる。電気分解槽10では、この高濃度の次亜塩素酸による強い酸化作用によって原水の脱色・脱臭が行われ、また溶解性COD(化学的酸素要求量)なども大幅に改善される。また、電気分解槽10では、この次亜塩素酸の発生に水中の塩分が利用されることから、原水の脱塩も同時に行われる。
【0024】
また、電気分解槽10内では、電気分解によって凝集作用が起こりフロックが発生するとともに、電気分解によって陰極板11aおよび陽極板11bから絶えず気泡(塩素ガス)が発生する。発生したフロックはこの気泡によって水面付近にスカムSとして浮上する。また、この気泡によって水中に含まれる浮遊物が酸化物となり、水面付近にスカムSとして浮上する。水面付近に浮上したスカムSは、回転する無担環状ベルト13の鰭状体12によってスカム排出槽40へ掻き出され、スカム排出槽40の排出口41から排出される。これにより、電気分解槽10内の水はSS(浮遊物質量)が低いものとなり、CODおよびBOD(生物化学的酸素要求量)も低く改善されたものとなる。
【0025】
電気分解槽10で電気分解により脱色・脱臭・脱塩された水は、電気分解槽10上部の処理水連通口17から反応槽20内に導入される。一方、電気分解槽10内で発生した塩素ガスは、ガス溶解装置30によって反応槽20の水中に溶解される。このガス溶解装置30によって溶解された塩素は、反応槽20内の水が加熱器21によって常時40〜60℃に維持されていることから、非常に高い酸化作用を発揮し、脱色・脱臭作用が増すとともに、殺菌作用が生じる。
【0026】
これにより、電気分解槽10で電気分解により脱色・脱臭・脱塩された水は、さらにこの反応槽20内で脱色・脱臭・殺菌がなされ、処理水排出口23から処理水として排出される。ここで、電気分解槽10内で発生した塩素ガスおよび原水中に含まれる塩素分は、この反応槽20内での酸化作用にすべて利用され、反応槽20内で完全に消費されるため、処理水排出口23から排出される処理水中には塩素分が含まれない。
【0027】
なお、本実施形態におけるガス溶解装置30を、さらに反応槽20の水中にオゾンを溶解するものとすることで、反応槽20内における酸化作用を3〜4倍に高めることが可能である。反応槽の水中へ塩素ガスとともにオゾンを溶解させることによって、オゾンが塩素と反応し、相乗効果により互いの酸化作用が高められるからである。
【0028】
また、本実施形態においては、反応槽20の上部に反応に使われた後に浮上した極微量の塩素ガスが溜まった場合、この反応槽20の上部に設けたガス抜き弁から活性炭フィルタを介して排出する。これにより、ガス抜き弁から排出されるガスは、活性炭フィルタによって塩素分が分解され、臭気成分が除去されたものとなるため、安全性が高められている。
【0029】
また、本実施形態の水処理装置において、反応槽20の処理水排出口23と電気分解槽10の原水導入口16との間で熱交換を行う熱交換器を備えた構成とすることもできる。これにより、反応槽20内で加熱器21によって加熱された水の温度を下げて処理水排出口23から排出することができるため、処理水を排出する環境への温度上昇による影響を少なくすることができる。また、この熱交換によって原水導入口16から電気分解槽10に導入する水の温度を上げることができるため、電気分解槽10において発生した塩素による酸化作用をより一層高めることが可能となる。
【0030】
また、本実施形態においては、電気分解槽10の陰極板11aおよび陽極板11bはすべてルテニウム系材料により被覆したものを用いているが、これらの陰極板11aおよび陽極板11bの一部を鉄電極とすることも有効である。このような構成とすれば、鉄電極の電気分解によって鉄が溶出し、溶出した鉄による水中のリンや窒素を凝集して取り除くことが可能となる。
【0031】
なお、原水導入口16から導入した水が、還元性の廃液(無酸素状態)や硫化物を含む廃液の場合、鉄凝集によって硫化鉄を発生し、色素を残留させることがある。この場合、前述のように反応槽20内の水にオゾンを溶解させることで、この硫化物を酸化処理することができるが、イニシャルコストが高くなる可能性がある。
【0032】
そこで、この場合、電気分解槽10の陰極板11aおよび陽極板11bの一部をさらにチタン基体に二酸化イリジウム系材料の被覆層を熱分解(焼成)によって形成した金属電極とするのがよい。ここで、二酸化イリジウム系材料とは、二酸化イリジウムを主体とした材料であり、二酸化イリジウムのみ、および二酸化イリジウムをその他の材料にブレンドした複合材料を含むものとする。
【0033】
このように、二酸化イリジウム系材料を被覆した金属電極は、電気分解によって水中に酸素を発生させる。この発生した酸素により、鉄凝集によって発生した硫化物を電気分解槽10内において酸化することができる。これにより、反応槽20内でのオゾンによる酸化処理の前処理を行うことができるため、反応槽20での必要オゾン量を下げて、装置のイニシャルコストを下げることが可能となる。
【0034】
また、本実施形態における水処理装置では、ガス溶解装置30によって塩素ガスやオゾンを溶解させた水を電気分解槽10の原水導入口16に導入し、さらにこの電気分解槽10において電気分解された水をガス溶解装置30に導出して循環させる構成とすることも有効である。このように、原水に対して塩素ガスやオゾンを溶解させた水を混合してから電気分解槽10へ導入することによって、電気分解槽10における酸化作用をより一層高めることができる。
【0035】
【発明の効果】
本発明により、以下の効果を奏することができる。
【0036】
(1)通電により水中に塩素を発生する性質を有する電極を備えた電気分解槽と、この電気分解槽によって処理された水を加熱する加熱器を備えた反応槽と、電気分解槽において発生する塩素ガスを反応槽の水中へ溶解させるガス溶解装置とを備えたことにより、電気分解により脱色・脱臭するとともに、電気分解によって発生した塩素を水中へ溶解して加熱することで脱色、脱臭、殺菌を行うことができる。また、塩素分は加熱によってすべて酸化処理に消費されることから、処理水には塩素分が含まれず、処理水からの塩素分の除去は不要となる。これにより、本発明の水処理装置では、従来の水処理装置よりも小さな電極、小さな電力量で、より大きな水処理効果が得られ、装置自体のコストを減らすとともにそのランニングコストを減らすことができる。
【0037】
(2)電極から発生する塩素ガスの気泡によって水中に含まれる浮遊物を酸化物として浮上させることができるため、SS(浮遊物質量)、COD(化学的酸素要求量)およびBOD(生物化学的酸素要求量)を低く改善することができる。また、この浮上した酸化物は、電気分解槽の水面付近に備えた鰭状体によって連続的に掻き出して排出することができる。
【0038】
(3)ガス溶解装置が、さらにオゾンを反応槽の水中へ溶解させるものとすることによって、反応槽内における酸化作用を高め、より一層高い水処理効果を得ることができる。
【0039】
(4)反応槽の上部に活性炭フィルタを介してガスを排出するガス抜き弁を備えたことにより、反応槽での反応に使われた後に浮上した極微量の塩素ガスを分解し、臭気成分を除去して安全に排出することができる。
【0040】
(5)反応槽の処理水排出口と電気分解槽の原水導入口との間で熱交換を行う熱交換器を備えたことによって、反応槽内で加熱器によって加熱された水の温度を下げて処理水排出口から排出することができるとともに、電気分解槽に導入する水の温度を上げて電気分解槽において発生した塩素による酸化作用を高めることができる。これにより、処理水を排出する環境への温度上昇による影響を少なくすることができるとともに、より一層高い水処理効果を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態における水処理装置の概略構成を示す平面図である。
【図2】図1の電気分解槽の縦断面を示す概略図である。
【符号の説明】
10 電気分解槽
11a 陰極板
11b 陽極板
12 鰭状体
13 無担環状ベルト
14 ガス管
16 原水導入口
17 処理水連通口
20 反応槽
21 加熱器
22 活性炭
23 処理水排出口
30 ガス溶解装置
40 スカム排出槽
41 排出口
S スカム
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a water treatment apparatus for treating wastewater in factories, livestock farms, human waste treatment plants, industrial waste disposal sites, and the like.
[0002]
[Prior art]
Wastewater containing organic matter, for example, wastewater from factories, livestock farms, human waste treatment plants, industrial waste disposal sites, and the like, is treated by an aeration method using microbial treatment, that is, an activated sludge method. Decomposition of wastewater containing pigment by the activated sludge method has been attempted, but it has been particularly difficult to decompose the color of manure in livestock farms and human waste treatment plants.
[0003]
As a treatment of such organic colored wastewater, Japanese Patent Application Laid-Open No. Hei 7-256297 discloses a method in which salt is added to a waste liquid and then decomposed by applying electricity. Wastewater treated by such a method is discharged to rivers and the like after desalination.
[0004]
[Problems to be solved by the invention]
As described above, in the method of performing the electrolysis by adding the salt to the waste liquid, since a maximum of 20% of salt is added, it is necessary to provide an electrodialysis tank in a later step for desalting. Therefore, there is a problem that the process becomes complicated and the cost increases.
[0005]
Therefore, an object of the present invention is to provide a water treatment apparatus capable of treating wastewater with high efficiency without removing residual chlorides such as salt.
[0006]
[Means for Solving the Problems]
The water treatment apparatus of the present invention has an electrolysis tank provided with an electrode having a property of generating chlorine in water when energized, a reaction tank provided with a heater for heating water treated by the electrolysis tank, A gas dissolving device for dissolving chlorine gas generated in the decomposition tank into water in the reaction tank.
[0007]
In the water treatment apparatus of the present invention, chlorine is generated in water by introducing wastewater from factories, livestock farms, human waste treatment plants, industrial waste disposal sites, and the like into the electrolysis tank and supplying electricity to the electrodes. As a result, the oxidation treatment with chlorine is performed in the electrolysis tank. At the same time, chlorine gas is generated and collects at the upper part of the electrolysis tank.
[0008]
Then, chlorine gas generated in the electrolysis tank is dissolved in water in the reaction tank by a gas dissolving device to increase the chlorine concentration. Therefore, in the reaction tank, the water treated by the electrolysis tank is further oxidized by the water whose chlorine concentration is increased by the gas dissolving device.
[0009]
Further, in the water treatment apparatus of the present invention, the chlorine-containing water in the reaction tank is heated by the heater, so that the oxidizing action by chlorine is efficiently performed. Therefore, the chlorine contained in the water is completely consumed in the reaction tank. The oxidizing action by chlorine is most efficiently performed at 40 to 60 ° C. Therefore, the heater according to the present invention desirably heats the water in the reaction tank to the temperature of 40 to 60 ° C.
[0010]
Further, the electrode of the electrolysis tank according to the present invention may be one coated with a platinum-based material or a ruthenium-based material. Electrodes coated with platinum-based materials generate chlorine in water. In particular, an electrode coated with a ruthenium-based material generates a high concentration of hypochlorous acid in water, so that a very strong oxidizing action can be obtained.
[0011]
It is desirable that the gas dissolving apparatus according to the present invention further dissolves ozone into water in the reaction tank. By dissolving the ozone together with the chlorine gas in the water of the reaction tank, the ozone reacts with the chlorine, and the oxidizing action of each other is increased three to four times by a synergistic effect.
[0012]
In the electrolysis tank, chlorine gas bubbles are constantly generated from the cathode and the anode, and the bubbles cause floating substances in the water to become oxides and float as scum near the water surface. Therefore, it is desirable that the water treatment apparatus of the present invention is provided with a means for continuously scraping the vicinity of the water surface of the electrolysis tank with the fins. Thus, the scum can be continuously scraped off by the fins and discharged.
[0013]
Further, it is desirable that the water treatment apparatus of the present invention is provided with a gas vent valve for discharging gas through an activated carbon filter above the reaction tank. This makes it possible to decompose the trace amount of chlorine gas that floats after being used for the reaction in the reaction tank, remove odor components, and safely discharge the chlorine gas.
[0014]
Further, the water treatment apparatus of the present invention is preferably provided with a heat exchanger for performing heat exchange between the treated water discharge port of the reaction tank and the raw water introduction port of the electrolysis tank. As a result, the temperature of the water heated by the heater in the reaction tank can be lowered and discharged from the treated water outlet, and the temperature of the water introduced into the electrolysis tank can be raised to increase the chlorine generated in the electrolysis tank. The oxidizing action by the oxidizing agent.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a plan view showing a schematic configuration of a water treatment apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic view showing a vertical section of the electrolysis tank of FIG.
[0016]
As shown in FIG. 1, a water treatment apparatus according to the present embodiment includes an electrolysis tank 10 in which a pair of cathode plates 11a and an anode plate 11b are alternately arranged, a reaction tank 20 in which a heater 21 is provided, and a reaction tank 20. The apparatus includes a gas dissolving device 30 that circulates water in the tank 20 to dissolve chlorine gas taken out of the electrolysis tank 10, and a scum discharge tank 40 that discharges scum floating near the water surface of the electrolysis tank 10.
[0017]
The cathode plate 11a and the anode plate 11b of the electrolysis tank 10 are metal electrodes formed by thermally decomposing (firing) a coating layer of a ruthenium-based material on a titanium substrate. Here, the ruthenium-based material is a material containing ruthenium (Ru), and includes pure ruthenium and a composite material in which ruthenium is blended with platinum or another material. Further, a material coated on a metal substrate other than titanium can also be used.
[0018]
As shown in FIG. 2, an unsupported annular belt 13 having a plurality of fins 12 at predetermined intervals is disposed above the electrolysis tank 10. The fins 12 are formed of an elastic rubber plate or the like. The fins 12 continuously advance as if scraping near the water surface of the electrolysis tank 10 by the rotation of the unsupported annular belt 13, and scrape the floating material (scum) near the water surface to the scum discharge tank 40.
[0019]
In addition, a gas pipe 14 that leads the chlorine gas collected at the upper part of the electrolysis tank 10 to the gas dissolving device 30 is connected to the upper surface of the electrolysis tank 10.
[0020]
Returning to FIG. 1, a heater 21 provided in the reaction tank 20 is an electrode heater for heating water in the reaction tank 20. The heater 21 is controlled such that the water temperature is constantly maintained at 40 to 60 ° C. based on the detection result of the water temperature by a temperature sensor (not shown) provided in the reaction tank 20. Further, a gas vent valve (not shown) for discharging gas through an activated carbon filter is provided at an upper portion of the reaction tank 20.
[0021]
The gas dissolving device 30 is for dissolving the chlorine gas introduced from the electrolysis tank 10 by the gas pipe 14 in water taken in from the reaction tank 20 and returning the chlorine gas to the reaction tank 20. As the gas dissolving apparatus 30, for example, a gas-liquid mixing apparatus which the present inventor himself applied for and published internationally under International Publication No. WO99 / 33552 can be used.
[0022]
In the water treatment apparatus having the above-described configuration, wastewater (hereinafter, referred to as “raw water”) from a factory, a livestock farm, a human waste treatment plant, an industrial waste disposal site, or the like is fed from a raw water inlet 16 below the electrolysis tank 10 to the Introduce into 10. These raw waters generally have high electrical conductivity because they contain salt, but in the case of raw water that does not contain salt, chloride is introduced to increase the electrical conductivity of the water.
[0023]
In the electrolysis tank 10, the raw water is electrolyzed by energizing the cathode plate 11a and the anode plate 11b, and chlorine is generated in the water. In particular, in the present embodiment, since metal electrodes coated with a ruthenium-based material are used for the cathode plate 11a and the anode plate 11b, a high concentration of hypochlorite having a strong oxidizing action from these electrodes by electrolysis. Generates acids. This aqueous solution of hypochlorous acid is unstable and produces hydrochloric acid, oxygen and chloric acid. In the electrolysis tank 10, the decolorization and deodorization of the raw water are performed by the strong oxidizing action of the high-concentration hypochlorous acid, and the solubility COD (chemical oxygen demand) is also greatly improved. In addition, in the electrolysis tank 10, since salt in water is used for the generation of hypochlorous acid, desalination of raw water is performed at the same time.
[0024]
In addition, in the electrolysis tank 10, a flocculation action occurs due to electrolysis, and bubbles (chlorine gas) are constantly generated from the cathode plate 11 a and the anode plate 11 b by electrolysis. The generated flocks float as scum S near the water surface due to the bubbles. In addition, the suspended matter contained in the water becomes an oxide due to the bubbles, and floats as scum S near the water surface. The scum S floating near the water surface is scraped out to the scum discharge tank 40 by the fins 12 of the rotating unsupported annular belt 13 and discharged from the discharge port 41 of the scum discharge tank 40. As a result, the water in the electrolysis tank 10 has a low SS (floating substance amount), and the COD and the BOD (biochemical oxygen demand) are low and improved.
[0025]
The water that has been decolorized, deodorized, and desalted by electrolysis in the electrolysis tank 10 is introduced into the reaction tank 20 from the treated water communication port 17 in the upper part of the electrolysis tank 10. On the other hand, chlorine gas generated in the electrolysis tank 10 is dissolved in the water in the reaction tank 20 by the gas dissolving device 30. The chlorine dissolved by the gas dissolving device 30 exerts a very high oxidizing effect because the water in the reaction tank 20 is constantly maintained at 40 to 60 ° C. by the heater 21, and the decoloring / deodorizing effect is obtained. As it increases, a bactericidal action occurs.
[0026]
Thus, the water that has been decolorized, deodorized, and desalinated by electrolysis in the electrolysis tank 10 is further decolorized, deodorized, and sterilized in the reaction tank 20, and is discharged as treated water from the treated water discharge port 23. Here, the chlorine gas generated in the electrolysis tank 10 and the chlorine contained in the raw water are all used for the oxidizing action in the reaction tank 20 and are completely consumed in the reaction tank 20. The treated water discharged from the water discharge port 23 contains no chlorine.
[0027]
In addition, by using the gas dissolving device 30 in the present embodiment to further dissolve ozone in the water of the reaction tank 20, the oxidizing action in the reaction tank 20 can be increased three to four times. This is because by dissolving the ozone together with the chlorine gas in the water of the reaction tank, the ozone reacts with the chlorine, and the mutual oxidizing action is enhanced by a synergistic effect.
[0028]
Further, in the present embodiment, when a trace amount of chlorine gas floating after being used for the reaction is accumulated in the upper part of the reaction tank 20, the gas is released from the gas release valve provided in the upper part of the reaction tank 20 through the activated carbon filter. Discharge. Thereby, the gas discharged from the vent valve is one in which the chlorine content is decomposed by the activated carbon filter and the odor component is removed, thereby enhancing safety.
[0029]
Further, the water treatment apparatus of the present embodiment may be configured to include a heat exchanger that exchanges heat between the treated water outlet 23 of the reaction tank 20 and the raw water inlet 16 of the electrolysis tank 10. . Thereby, the temperature of the water heated by the heater 21 in the reaction tank 20 can be lowered and discharged from the treated water outlet 23, so that the influence of the temperature rise on the environment for discharging the treated water can be reduced. Can be. Further, since the temperature of the water introduced from the raw water inlet 16 to the electrolysis tank 10 can be increased by this heat exchange, the oxidizing effect of chlorine generated in the electrolysis tank 10 can be further enhanced.
[0030]
In this embodiment, the cathode plate 11a and the anode plate 11b of the electrolysis tank 10 are all coated with a ruthenium-based material, but a part of the cathode plate 11a and the anode plate 11b is replaced with an iron electrode. Is also effective. With such a configuration, iron is eluted by electrolysis of the iron electrode, and phosphorus and nitrogen in water due to the eluted iron can be aggregated and removed.
[0031]
If the water introduced from the raw water inlet 16 is a reducing waste liquid (anoxic state) or a waste liquid containing sulfide, iron sulfide may be generated due to iron agglomeration and the dye may remain. In this case, the sulfide can be oxidized by dissolving ozone in the water in the reaction tank 20 as described above, but the initial cost may increase.
[0032]
Therefore, in this case, it is preferable that a part of the cathode plate 11a and the anode plate 11b of the electrolysis tank 10 be a metal electrode in which a coating layer of an iridium dioxide-based material is further formed on a titanium substrate by thermal decomposition (firing). Here, the iridium dioxide-based material is a material mainly composed of iridium dioxide, and includes only iridium dioxide and a composite material in which iridium dioxide is blended with another material.
[0033]
Thus, the metal electrode coated with the iridium dioxide-based material generates oxygen in water by electrolysis. By the generated oxygen, sulfide generated by iron coagulation can be oxidized in the electrolysis tank 10. Thereby, since the pretreatment of the oxidation treatment with ozone in the reaction tank 20 can be performed, the required amount of ozone in the reaction tank 20 can be reduced, and the initial cost of the apparatus can be reduced.
[0034]
In the water treatment apparatus according to the present embodiment, water in which chlorine gas or ozone is dissolved by the gas dissolving device 30 is introduced into the raw water inlet 16 of the electrolysis tank 10, and is further electrolyzed in the electrolysis tank 10. It is also effective to adopt a configuration in which water is led to the gas dissolving device 30 and circulated. As described above, by mixing the raw water with water in which chlorine gas or ozone is dissolved and then introducing the mixed water into the electrolysis tank 10, the oxidizing action in the electrolysis tank 10 can be further enhanced.
[0035]
【The invention's effect】
According to the present invention, the following effects can be obtained.
[0036]
(1) An electrolysis tank provided with an electrode having the property of generating chlorine in water when energized, a reaction tank provided with a heater for heating water treated by the electrolysis tank, and an electrolysis tank. With a gas dissolving device that dissolves chlorine gas in the water of the reaction tank, decolorization and deodorization are achieved by electrolysis, and chlorine generated by electrolysis is dissolved in water and heated to decolorize, deodorize, and sterilize. It can be performed. Further, since all the chlorine is consumed in the oxidation treatment by heating, the treated water does not contain the chlorine, and the removal of the chlorine from the treated water becomes unnecessary. Thereby, in the water treatment apparatus of the present invention, a larger water treatment effect can be obtained with a smaller electrode and a smaller amount of power than the conventional water treatment apparatus, and the running cost of the apparatus can be reduced while reducing the cost of the apparatus itself. .
[0037]
(2) Since suspended matter contained in water can be floated as oxide by bubbles of chlorine gas generated from the electrode, SS (suspended substance amount), COD (chemical oxygen demand) and BOD (biochemical Oxygen demand) can be improved. The floating oxide can be continuously scraped and discharged by the fins provided near the water surface of the electrolysis tank.
[0038]
(3) Since the gas dissolving device further dissolves ozone into water in the reaction tank, the oxidizing action in the reaction tank can be enhanced, and a higher water treatment effect can be obtained.
[0039]
(4) Equipped with a gas vent valve at the top of the reaction tank to discharge gas through an activated carbon filter, it decomposes the trace amount of chlorine gas that floated after being used for the reaction in the reaction tank and reduced odor components. It can be removed and safely discharged.
[0040]
(5) By providing a heat exchanger for performing heat exchange between the treated water outlet of the reaction tank and the raw water inlet of the electrolysis tank, the temperature of the water heated by the heater in the reaction tank is reduced. The water can be discharged from the treated water discharge port, and the temperature of the water introduced into the electrolysis tank can be increased to increase the oxidizing effect of chlorine generated in the electrolysis tank. Thereby, the influence of the temperature rise on the environment for discharging the treated water can be reduced, and a higher water treatment effect can be obtained.
[Brief description of the drawings]
FIG. 1 is a plan view showing a schematic configuration of a water treatment apparatus according to an embodiment of the present invention.
FIG. 2 is a schematic view showing a vertical cross section of the electrolysis tank of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Electrolysis tank 11a Cathode plate 11b Anode plate 12 Fins 13 Unsupported annular belt 14 Gas pipe 16 Raw water inlet 17 Treated water communication port 20 Reaction tank 21 Heater 22 Activated carbon 23 Treated water discharge port 30 Gas dissolving device 40 Scum Discharge tank 41 Discharge port S Scum

Claims (7)

通電により水中に塩素を発生する性質を有する電極を備えた電気分解槽と、この電気分解槽によって処理された水を加熱する加熱器を備えた反応槽と、前記電気分解槽において発生する塩素ガスを前記反応槽の水中へ溶解させるガス溶解装置とを備えた水処理装置。An electrolysis tank provided with an electrode having a property of generating chlorine in water when energized, a reaction tank provided with a heater for heating water treated by the electrolysis tank, and chlorine gas generated in the electrolysis tank And a gas dissolving device for dissolving the compound in water of the reaction tank. 前記電極は、白金系材料またはルテニウム系材料によって被覆したものである請求項1記載の水処理装置。The water treatment device according to claim 1, wherein the electrode is coated with a platinum-based material or a ruthenium-based material. 前記加熱器は、前記水を40〜60℃に加熱するものである請求項1または2記載の水処理装置。The water treatment device according to claim 1, wherein the heater heats the water to 40 to 60 ° C. 4. 前記ガス溶解装置は、さらにオゾンを前記反応槽の水中へ溶解させるものである請求項1から3のいずれかに記載の水処理装置。The water treatment apparatus according to any one of claims 1 to 3, wherein the gas dissolution apparatus further dissolves ozone into water in the reaction tank. 前記電気分解槽の水面付近を鰭状体によって連続的に掻く手段を備えた請求項1から4のいずれかに記載の水処理装置。The water treatment apparatus according to any one of claims 1 to 4, further comprising a means for continuously scratching the vicinity of the water surface of the electrolysis tank with a fin. 前記反応槽の上部に活性炭フィルタを介してガスを排出するガス抜き弁を備えた請求項1から5のいずれかに記載の水処理装置。The water treatment apparatus according to any one of claims 1 to 5, further comprising a gas vent valve for discharging gas through an activated carbon filter at an upper part of the reaction tank. 前記反応槽の処理水排出口と前記電気分解槽の原水導入口との間で熱交換を行う熱交換器を備えた請求項1から6のいずれかに記載の水処理装置。The water treatment apparatus according to any one of claims 1 to 6, further comprising a heat exchanger that performs heat exchange between a treated water outlet of the reaction tank and a raw water inlet of the electrolysis tank.
JP2002230467A 2002-08-07 2002-08-07 Water treatment equipment Expired - Fee Related JP3659945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002230467A JP3659945B2 (en) 2002-08-07 2002-08-07 Water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002230467A JP3659945B2 (en) 2002-08-07 2002-08-07 Water treatment equipment

Publications (2)

Publication Number Publication Date
JP2004066137A true JP2004066137A (en) 2004-03-04
JP3659945B2 JP3659945B2 (en) 2005-06-15

Family

ID=32016536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230467A Expired - Fee Related JP3659945B2 (en) 2002-08-07 2002-08-07 Water treatment equipment

Country Status (1)

Country Link
JP (1) JP3659945B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082864A (en) * 2007-10-02 2009-04-23 Matsue Doken Kk Wastewater cleaning method
JP2011005494A (en) * 2010-09-07 2011-01-13 Mitsubishi Heavy Industries Environment & Chemical Engineering Co Ltd Treatment method and treatment equipment of waste
KR101373486B1 (en) * 2011-12-31 2014-03-14 전주대학교 산학협력단 Treating and reusing method of high salinity waste water
KR101373522B1 (en) * 2011-12-31 2014-03-14 전주대학교 산학협력단 Apparatus for treating high salinity waste water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082864A (en) * 2007-10-02 2009-04-23 Matsue Doken Kk Wastewater cleaning method
JP2011005494A (en) * 2010-09-07 2011-01-13 Mitsubishi Heavy Industries Environment & Chemical Engineering Co Ltd Treatment method and treatment equipment of waste
KR101373486B1 (en) * 2011-12-31 2014-03-14 전주대학교 산학협력단 Treating and reusing method of high salinity waste water
KR101373522B1 (en) * 2011-12-31 2014-03-14 전주대학교 산학협력단 Apparatus for treating high salinity waste water

Also Published As

Publication number Publication date
JP3659945B2 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
Martínez-Huitle et al. A critical review over the electrochemical disinfection of bacteria in synthetic and real wastewaters using a boron-doped diamond anode
Drogui et al. Oxidising and disinfecting by hydrogen peroxide produced in a two-electrode cell
ES2327808B1 (en) PROCEDURE TO TREAT WATER OR LIQUID WASTE AND SET OF ELECTROCHEMICAL REACTORS TO TREAT SUCH WATER OR WASTE ACCORDING TO SUCH PROCEDURE.
CN110759437B (en) Method for electrochemical-UV composite treatment of refractory organic matters
WO2003091165A1 (en) Mediated electrochemical oxidation process used as a hydrogen fuel generator
JP3978124B2 (en) Hypochlorous acid self-sufficiency method and equipment in organic waste treatment system
JP6649988B2 (en) Method for controlling the generation of halogen-containing by-products in drinking water treatment
BRPI0809704A2 (en) &#34;WASTE TREATMENT SYSTEM TO TREAT A SUBSTANTIALLY LIQUID WASTE CURRENT AND WASTE CURRENT METHOD&#34;
EP2496526B1 (en) Adsorption of contaminants from liquid and electrochemichal regeneration of adsorbent
JP2006312124A (en) Sludge treatment method
JP3659945B2 (en) Water treatment equipment
JP2008264668A (en) Method and apparatus for electrolytic treatment of wastewater
JP4662327B2 (en) Wastewater treatment method and apparatus
JP2012024711A (en) Electrochemical accelerated oxidation treatment apparatus for generating oh radical and ozone, treatment method of the same, and liquid purification apparatus using the same
KR100602058B1 (en) Electrolysis and electro-coagulation treatment apparatus of wastewater
JP4641435B2 (en) Endocrine disrupting chemical substance decomposition method and apparatus
JP6319719B2 (en) Waste water treatment method and waste water treatment equipment
JP2002079258A (en) Method for treating hardly decomposable organic matter
JP2000263049A (en) Method and apparatus for cleaning barn effluent
JP2010099581A (en) Wastewater treatment method
KR20000021417A (en) Device for pasteurizing and desalting food waste
KR100650333B1 (en) Device and method of advanced disposal and stink removal disposal of dirty waste water by using electrolysis and rotation filtration
KR200287646Y1 (en) a discomposition Vessel for a waste water disposal Plant
KR101265731B1 (en) Recycling water purifying equipment
JP2008200667A (en) Method and apparatus for deodorizing, decolorizing and sterilizing water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080325

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090325

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110325

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370