JP3978124B2 - Hypochlorous acid self-sufficiency method and equipment in organic waste treatment system - Google Patents

Hypochlorous acid self-sufficiency method and equipment in organic waste treatment system Download PDF

Info

Publication number
JP3978124B2
JP3978124B2 JP2002350742A JP2002350742A JP3978124B2 JP 3978124 B2 JP3978124 B2 JP 3978124B2 JP 2002350742 A JP2002350742 A JP 2002350742A JP 2002350742 A JP2002350742 A JP 2002350742A JP 3978124 B2 JP3978124 B2 JP 3978124B2
Authority
JP
Japan
Prior art keywords
hypochlorous acid
treated water
organic waste
treatment
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002350742A
Other languages
Japanese (ja)
Other versions
JP2004181339A (en
Inventor
玲朋 加藤
洋 水谷
弘一 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002350742A priority Critical patent/JP3978124B2/en
Publication of JP2004181339A publication Critical patent/JP2004181339A/en
Application granted granted Critical
Publication of JP3978124B2 publication Critical patent/JP3978124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、し尿、浄化槽汚泥若しくは生ごみを含む有機性廃棄物に生物処理をはじめとする一連の処理を行った後に、殺菌消毒して汚濁物質を浄化する有機性廃棄物処理システムに関し、特に消毒用薬品として次亜塩素酸系薬剤を利用する有機性廃棄物処理システムの次亜塩素酸系薬剤の自給方法及びその設備に関する。
【0002】
【従来の技術】
し尿、浄化槽汚泥若しくは生ごみ等の有機性廃棄物には、環境や人体に悪影響を及ぼす汚濁物質が含まれており、従来よりこれらを除去する様々な方法が開発、実用化されている。
一般に、有機性廃棄物の処理は図5に示される処理システムにて行われる。まず、前処理手段1にて有機性廃棄物に含まれる夾雑物を除去し、硝化脱窒等の生物処理を施す主処理手段により有機性廃棄物中の有機物及び窒素分を分解除去する。さらに主処理を施した有機性廃棄物を固液分離手段3で汚泥固形物と上澄液とに分離し、汚泥固形物は脱水、堆肥化、焼却若しくは炭化処理をし、一方上澄液は活性炭吸着処理等の高度処理を施した後に殺菌消毒手段5にて処理水中の病原菌細菌等を死滅させる。また、かかるシステムでは、硫黄化合物等を含む臭気を帯びた排ガスが発生するため脱臭手段が併設されている。
【0003】
近年、これらの処理システムより放出される処理水、排ガスの環境へ与える影響が問題となっており、これに伴い処理最終段階における処理水、排ガスの適正な浄化、脱臭処理が必要とされている。通常、放流前の処理水の浄化には塩素処理、紫外線照射若しくはオゾン消毒による殺菌消毒が行われる。この中でも、簡易でかつ確実な殺菌効果を有する塩素処理が広く用いられている(例えば、特許文献1)。
【0004】
また、特開平7−969号公報(特許文献2)では、家庭廃水中のBOD(生物化学的酸素要求量)、COD(化学的酸素要求量)及び懸濁固形分の減少、さらに廃水の消毒を目的として、廃水に塩含有物質を添加した後に電解槽に導入し、酸素化成分および次亜塩素酸塩を生成する装置を開示している。このとき、塩含有物質は、人工若しくは天然のブライン、または海水、固体塩化ナトリウム等を指す。これによりBOD、COD及び懸濁固形分を大幅に減少させることができるとともに、排出される残留塩素も減少させることができる。
【0005】
【特許文献1】
特開平7−328658号公報
【特許文献2】
特開平7−969号公報
【0006】
【発明が解決しようとする課題】
このように、廃水処理システムの浄化過程においては安全性、取扱い性の面から次亜塩素酸ソーダ(NaClO)等の次亜塩素酸系薬剤が多く用いられるが、薬剤コストが高くランニングコストが嵩むという問題がある。
また、前記特開平7−969号公報は孤立した立地条件に設置されるシステムを対象としており、処理系統に電解槽を設置して次亜塩素酸塩を生成する方法は有効な方法ではあるが、廃水に塩含有物質を混合させる必要がありコスト的には従来と然程変わらない。塩含有物質に海水を利用した場合にはコストダウンが見込めるが、臨海地に設置されない限り実用化は難しい。
【0007】
さらに、かかるシステムでは、懸濁有機固形分を含有する廃水をそのまま電解槽に導入しているため、電極にスケールが付着して電解機能が低下してしまい頻繁に洗浄しなければならない。
そこで本発明はかかる従来技術の問題に鑑み、高価な次亜塩素酸系薬剤を外部より購入することなく場内で自給可能で、ランニングコストの低減を可能とした有機性廃棄物処理システムの次亜塩素酸系薬剤の自給方法及びその設備を提供することを目的とする。
【0008】
【課題を解決するための手段】
そこで、本発明ではかかる課題を解決するために、し尿、浄化槽汚泥若しくは生ごみを含む有機性廃棄物に生物処理からなる主処理を施し、固液分離若しくは高度処理した後の処理水に次亜塩素酸系薬剤を添加して殺菌消毒する有機性廃棄物処理システムにおいて、
前記処理水の少なくとも一部を電気分解することにより次亜塩素酸系薬剤を生成し、該次亜塩素酸系薬剤を前記殺菌消毒に利用することを要旨とする有機性廃棄物処理システムにおける次亜塩素酸系薬剤の自給方法を提案する。
【0009】
かかる要旨では、処理液を電気分解することにより処理液中に含有される塩化物イオン、水及びナトリウムイオンが下記のような反応を示す。
(陽極) 2Cl →Cl+2e
(陰極) 2HO+2e →2OH+H
2Na++2OH →2NaOH
さらに、陽極で発生した塩素が、陰極で発生した水酸化ナトリウムと次式のように反応して強力な酸化力を有する次亜塩素酸ソーダ(NaClO)等の次亜塩素酸系薬剤を生成する。生成する次亜塩素酸系薬剤は次亜塩素酸ソーダ、次亜塩素酸カルシウム(Ca(ClO))等、次亜塩素酸系の酸化物質であれば何れでも良い。
Cl+2NaOH → NaClO+NaCl+H
NaClO+HO ⇔ HClO+NaOH
【0010】
このようにして生成した次亜塩素酸系薬剤は、その酸化力により処理水中の病原性細菌等を死滅させる殺菌効果を発揮する。
また、かかる要旨は固液分離若しくは高度処理した後の処理水を電気分解しているため、電極にスケール等の付着物が付き難く、電解効率を長期間高く保持することができ洗浄の手間を最小限に抑えることができる。尚、固液分離した処理水をさらに活性炭吸着処理等の高度処理した後に電気分解することが好ましい。
【0011】
そして本発明は、前記処理水のうち、少なくとも電気分解する処理水を予め脱塩処理し、濃縮された塩化物イオン含有水を電気分解することを第1の発明とする。前記脱塩処理は、蒸発濃縮法、逆浸透膜法及び電気透析法を利用することができる。このように、濃縮された塩化物イオン含有水を電気分解することにより効率良く次亜塩素酸系薬剤を生成することができ、電力コストも低減することができる。
さらに、前記電気分解により生成した次亜塩素酸系薬剤を、前記処理システム内で発生した排ガスの脱臭に利用することもできる。これにより、かかる廃棄物処理システム内で必要とされる次亜塩素酸系薬剤の一部若しくは全量を確保することができる。(第2の発 明)
【0012】
さらにまた本発明は、前記処理水の塩化物イオン含有量を検出し、該塩化物イオン含有量に基づき需要に応じた次亜塩素酸系薬剤量を生成するように、電気分解する処理水の量を調整することを第3の発明とする。これにより、薬剤を過剰に生成することなく電力コストを最小限に抑えることができる。
【0013】
また、前記発明の要旨を利用した基本構成システムは、し尿若しくは生ごみを主体とする有機性廃棄物に生物処理を施す主処理手段と、主処理した後の有機性廃棄物を固液分離若しくは高度処理した処理水に次亜塩素酸系薬剤を添加して殺菌消毒する手段とを備えた有機性廃棄物処理システムにおいて、
前記処理水の少なくとも一部を導入され、該処理水を電気分解することにより次亜塩素酸系薬剤を生成する電解装置と、
該電解装置により生成した次亜塩素酸系薬剤を貯留する貯留槽と、を設け、
該貯留した次亜塩素酸系薬剤を前記殺菌消毒手段に供給することを特徴とする。
【0014】
かかる基本構成システムはし尿若しくは生ごみを主体とする有機性廃棄物を処理対象としたシステムに好適に利用できる。これは、し尿や生ごみが塩類を高濃度で含有しており、電解装置にて過剰の次亜塩素酸系薬剤が生成してしまう可能性があるため、前記貯留槽を設けて殺菌消毒に利用する次亜塩素酸系薬剤量を調節する第2の要旨とする。これにより、殺菌消毒に利用されない次亜塩素酸系薬剤が処理水とともに放流されて環境に悪影響を及ぼすことがない。
【0015】
また、別の装置として、浄化槽汚泥を主体とする有機性廃棄物に生物処理を施す主処理手段と、主処理した後の有機性廃棄物を固液分離若しくは高度処理した処理水に次亜塩素酸系薬剤を添加して殺菌消毒する手段とを備えた有機性廃棄物処理システムにおいて、
前記主処理手段の後段に、前記処理水を電気分解することにより次亜塩素酸系薬剤を生成する電解装置を設け、
前記殺菌消毒手段にて、該電解装置で生成した次亜塩素酸系薬剤を利用することを第3の要旨とする。
【0016】
かかる前記第3の要旨からなる有機性廃棄物処理システムは、浄化槽汚泥を主体とする有機性廃棄物を処理対象としたシステムに好適に利用できる。浄化槽汚泥は含水率が非常に高く、廃棄物中の塩類濃度が低いため、かかる第2の要旨のように電解装置を処理システムに直列に配設することが可能である。このように電解装置を処理システムの一部として組み込むことによりシステム全体を小型化することができる。
尚、前記有機性廃棄物処理システムは、前記固液分離及び高度処理の両方を行うシステムであっても良い。
さらに、浄化槽汚泥を主体とする有機性廃棄物を処理対象としたシステムにおいて、前記電解装置の前段に脱塩手段を設け、濃縮された塩化物イオン含有水を電解装置に導入する構成とすることを第4の発明の特徴とし、これにより次亜塩素酸系薬剤を効率良く生成することができる。
【0017】
また、前記貯留槽に貯留した次亜塩素酸系薬剤を前記処理システム内の脱臭装置に導入し、該次亜塩素酸系薬剤により臭気の脱臭を行うことにより、薬剤コストの一層のコストダウンが可能となる。
また、前記処理水の塩化物イオン含有量を検出する手段と、該検出された値に基づき電解槽への処理水導入量を制御する手段とを設け、システム内での需要に応じた次亜塩素酸系薬剤を生成する構成とすることで、電力コストを最小限に抑えることができる。
【0018】
【発明の実施の形態】
以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
図1は本発明の第1実施形態に係る有機性廃棄物処理システムの全体構成図、図2は本実施形態に適用される電解装置の説明図、図3は本発明の第2実施形態に係る有機性廃棄物処理システムの全体構成図、図4は図3の別の実施形態を示す次亜塩素酸系薬剤自給設備の概略構成図である。
【0019】
図1に示される第1実施形態は、し尿若しくは生ごみを主体とした有機性廃棄物を処理対象とし、処理最終段階にて処理水の殺菌消毒に利用する次亜塩素酸系薬剤の自給設備を備えた有機性廃棄物処理システムであって、有機性廃棄物が塩類を高濃度で含む場合に適している。
かかる実施形態では、まず有機性廃棄物を前処理手段1に導入し夾雑物を除去する。該前処理手段1は、除渣スクリーン若しくは遠心分離機等からなる夾雑物除去装置に破砕機を具備することが好ましい。
【0020】
前記前処理を施した後の有機性廃棄物は、生物処理を施す主処理手段2に導入し高分子有機物等の汚濁物質を分解除去する。生物処理としては硝化脱窒処理が好ましく、有機性廃棄物中の有機物及び窒素分を分解除去する。
そして、主処理を施した有機性廃棄物は固液分離手段3に導き、汚泥固形分と上澄液とに分離する。分離した汚泥固形分は堆肥化、焼却若しくは炭化処理設備に送り、一方上澄液はさらなる浄化処理のために高度処理手段4に送給する。
【0021】
前記高度処理手段4は、活性炭吸着装置、イオン交換膜装置等を適宜組み合わせて設ける。ここで、溶解性、難分解性有機物や無機物を除去する。
このように一連の処理が行われた処理水は放流前の最終段階として消毒手段5に導入して薬剤による消毒殺菌を行う。該消毒手段5は、電解装置6をはじめとする次亜塩素酸系薬剤20の自給設備を併設している。
【0022】
かかる次亜塩素酸系薬剤自給設備は、電解装置6と、貯留槽7と、コントローラ9と、塩化物イオン検出手段10と、三方弁11とから構成される。
前記電解装置6は、図2に示されるように高度処理後の処理水を受け入れる処理槽61と、該処理槽61内に導入された処理液内に浸漬するように、対向して配された陽極62と陰極63からなる電極と、該電極に接続される電源装置64とを有している。そして、各電極での代表的な反応として、処理液中に含有される塩化物イオン、水及びナトリウムイオンにより下記の反応が引起される。
(陽極) 2Cl →Cl+2e
(陰極) 2HO+2e →2OH+H
2Na++2OH →2NaOH
【0023】
さらに、陽極62で発生した塩素が、陰極33で発生した水酸化ナトリウムと次式のように反応して強力な酸化力を有する次亜塩素酸ソーダ(NaClO)等の次亜塩素酸系薬剤を生成する。該次亜塩素薬剤は次亜塩素酸ソーダ、次亜塩素酸カルシウム(Ca(ClO))等、次亜塩素酸系の物質であれば何れでも良い。
Cl+2NaOH → NaClO+NaCl+H
NaClO+HO ⇔ HClO+NaOH
【0024】
このようにして生成した次亜塩素系薬剤はその酸化力により処理液中の病原性細菌を死滅する作用を有する。
かかる電解装置6は、電極の付着物質を除去するために一定期間毎に逆電圧をかけたり、処理を停止して水若しくは薬品により洗浄したりして電解効率を維持することが好ましい。
また、高度処理手段4の出口側に塩化物イオン検出センサ10と三方弁11とこれらに接続されたコントローラ9を設け、該検出センサ10にて測定された塩化物イオン濃度に基づき、システム内で使用される次亜塩酸系薬剤量を生成可能な処理水量が前記電解装置6に導入されるように前記コントローラ9で三方弁11を制御すると良い。これにより、過剰の薬剤が処理水に使用されることがなく処理水とともに外部へ放流されることによる環境汚染を防止できる。また、必要量の次亜塩素酸系薬剤のみを生成しているため電力コストの削減にも繋がる。
【0025】
このようにして生成した次亜塩素酸系薬剤は貯留槽7に一時的に貯留され、必要に応じて前記消毒手段5、若しくはシステム内で発生した臭気を処理する脱臭手段8に導入され、該薬剤の酸化力により処理水の殺菌消毒、或いは脱臭が行われる。かかる構成によれば、外部から次亜塩素酸系薬剤を購入する必要がなく、システム内で自給することができ、ランニングコストを低減することが可能となる。さらに、かかる次亜塩素酸系薬剤自給設備を設けることにより、処理水中の塩類濃度を低減する効果も期待できる。
また、本実施形態では、主処理、固液分離、或いは高度処理を施した後の処理水を電気分解して次亜塩素酸系薬剤を生成しているため、電解装置6の電極にスケールが付き難く長期間運転が可能である。
【0026】
図3は浄化槽汚泥を主体の有機性廃棄物を処理対象としたシステムであって、含水率が非常に高く塩類濃度が低い有機性廃棄物に適している。
本第2実施形態に係る処理システムは、有機性廃棄物を前処理手段1にて除渣した後主処理手段2で生物処理を施して高分子有機物等を分解し、固液分離手段3で汚泥固形分と上澄液とに分離する。汚泥固形分は脱水、堆肥化、焼却若しくは炭化処理し、一方上澄液は活性炭吸着処理等の高度処理した後に電解装置6に導入する。該電解装置6はかかる処理システムに直列に配設する。このとき、前記高度処理した後の処理水の一部をバイパスライン13により電解装置6を通過させずに消毒手段5に導入してもよい。
【0027】
そして、電解装置6にて処理水を電気分解して次亜塩素酸系薬剤を生成し、該薬剤とともに処理水を消毒手段5に導入して殺菌消毒した後に放流する。
また、前記電解装置6にて生成した次亜塩素酸系薬剤含有処理水は、処理システム内で発生した臭気を脱臭するための脱臭手段8に導入して脱臭に利用することも可能である。
浄化槽汚泥は含水率が非常に高く、廃棄物中の塩類濃度が低いため、かかる実施形態のように電解装置を処理システムに直列に配設することが可能である。このように電解装置を処理システムの一部として組み込むことによりシステム全体を小型化することができる。
【0028】
さらに、前記第1、第2実施形態において、図4に示されるように高度処理手段4と電解装置6との間に脱塩手段12を配設しても良い。該脱塩手段12には逆浸透膜、電気透析等が利用できる。
かかる実施形態では、前記高度処理後の処理水の一部を抜き出して膜分離手段12に導入し、他の処理水は消毒手段5に導く。そして、前記膜分離手段12にて濃縮された塩類を含む処理水を電解装置6に導入して次亜塩素酸系薬剤を生成し、該次亜塩素酸系薬剤を前記消毒手段5若しくは脱臭手段8に供給して殺菌消毒、脱臭を行う。このとき、該システムが臨海地に立地する場合には、処理水に加えて海水を電気分解に利用しても良い。
このように、処理水に含有する塩類を濃縮することにより、電気分解する処理水量を低減することができ効率良く次亜塩素酸系薬剤を生成できるとともに、電力コストを削減することが可能となる。
【0029】
【発明の効果】
以上記載のごとくかかる発明によれば、有機物廃棄物処理システム内に電解装置を設置して固液分離若しくは高度処理後の処理水を電気分解し次亜塩素酸系薬剤を生成することにより、システム内で使用する薬剤を自給することができる。次亜塩素酸系薬剤は高価であるため、かかる発明によりランニングコストを低減することが可能となる。
また、処理水に含有する塩類を脱塩して濃縮することにより、電気分解する処理水量を低減することができ効率良く次亜塩素酸系薬剤を生成できるとともに、電力コストを削減することが可能となる。
さらに、かかる発明は固液分離、若しくは高度処理を施した後の処理水を電気分解しているため、電極にスケールが付着し難く電解効率を長期間高く保持することができる。
【図面の簡単な説明】
【図1】 本発明の第1実施形態に係る有機性廃棄物処理システムの概略構成図である。
【図2】 本実施形態に適用される電解装置の説明図である。
【図3】 本発明の第2実施形態に係る有機性廃棄物処理システムの概略構成図である。
【図4】 図3の別の実施形態を示す次亜塩素酸系薬剤自給設備の概略構成図である。
【図5】 従来の有機性廃棄物処理システムを示す全体構成図である。
【符号の説明】
1 前処理手段
2 主処理手段
3 固液分離手段
4 高度処理手段
5 消毒手段
6 電解装置
7 貯留槽
8 脱臭手段
9 コントローラ
10 塩化物イオン検出センサ
12 脱塩手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic waste treatment system for purifying contaminants by sterilizing and disinfecting organic waste including human waste, septic tank sludge, or garbage, after performing a series of treatments including biological treatment. The present invention relates to a self-sufficiency method and equipment for a hypochlorous acid chemical in an organic waste treatment system that uses a hypochlorous acid chemical as a disinfectant.
[0002]
[Prior art]
Organic wastes such as human waste, septic tank sludge or garbage contain pollutants that adversely affect the environment and the human body, and various methods for removing these have been developed and put into practical use.
In general, organic waste is treated by the treatment system shown in FIG. First, the pretreatment means 1 removes impurities contained in the organic waste, and the main treatment means for performing biological treatment such as nitrification denitrification decomposes and removes organic matter and nitrogen content in the organic waste. Further, the organic waste subjected to the main treatment is separated into sludge solids and supernatant by the solid-liquid separation means 3, and the sludge solids are dehydrated, composted, incinerated or carbonized, while the supernatant is After performing advanced treatment such as activated carbon adsorption treatment, the sterilization means 5 kills pathogenic bacteria in the treated water. In addition, in such a system, an odorous exhaust gas containing a sulfur compound or the like is generated, so that a deodorizing means is additionally provided.
[0003]
In recent years, the influence of treated water and exhaust gas discharged from these treatment systems on the environment has become a problem, and accordingly, it is necessary to appropriately treat and deodorize the treated water and exhaust gas at the final stage of treatment. . Usually, sterilization by chlorination, ultraviolet irradiation or ozone disinfection is performed for purification of treated water before discharge. Among these, chlorination having a simple and reliable sterilization effect is widely used (for example, Patent Document 1).
[0004]
Japanese Patent Application Laid-Open No. 7-969 (Patent Document 2) discloses reduction of BOD (biochemical oxygen demand), COD (chemical oxygen demand) and suspended solids in household wastewater, and further disinfection of wastewater. For this purpose, an apparatus is disclosed in which a salt-containing substance is added to wastewater and then introduced into an electrolytic cell to generate oxygenated components and hypochlorite. At this time, the salt-containing substance refers to artificial or natural brine, seawater, solid sodium chloride, or the like. As a result, BOD, COD and suspended solids can be greatly reduced, and the residual chlorine discharged can also be reduced.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-328658 [Patent Document 2]
JP-A-7-969 [0006]
[Problems to be solved by the invention]
As described above, in the purification process of the wastewater treatment system, hypochlorous acid-based chemicals such as sodium hypochlorite (NaClO) are often used from the viewpoint of safety and handling, but the chemical cost is high and the running cost is increased. There is a problem.
JP-A-7-969 is directed to a system installed in an isolated location, and a method of generating hypochlorite by installing an electrolytic cell in a processing system is an effective method. In addition, it is necessary to mix a salt-containing substance with waste water, and the cost is not so different from the conventional one. If seawater is used as a salt-containing substance, cost reduction can be expected, but it is difficult to put it to practical use unless it is installed in a coastal area.
[0007]
Furthermore, in such a system, since waste water containing suspended organic solids is introduced into the electrolytic cell as it is, the scale adheres to the electrodes and the electrolysis function deteriorates, so it must be washed frequently.
Therefore, in view of the problems of the prior art, the present invention is capable of self-sufficiency in the field without purchasing expensive hypochlorous acid-based chemicals from the outside, and hypoxia of the organic waste treatment system capable of reducing running costs. An object is to provide a self-sufficiency method and equipment for chloric acid chemicals.
[0008]
[Means for Solving the Problems]
Therefore, in the present invention, in order to solve such a problem, the organic waste containing human waste, septic tank sludge or garbage is subjected to a main treatment consisting of biological treatment, and the treated water after solid-liquid separation or advanced treatment is treated with hypoxia. In an organic waste treatment system that disinfects by adding chloric acid chemicals,
Next in the organic waste treatment system to generate hypochlorous acid drugs, and summarized in that utilizing this next hypochlorite drugs to the sterilization by electrolyzing at least a portion of the treated water We propose a self-sufficiency method for chlorite drugs.
[0009]
In this summary , chloride ions, water, and sodium ions contained in the treatment liquid exhibit the following reaction by electrolyzing the treatment liquid.
(Anode) 2Cl → Cl 2 + 2e
(Cathode) 2H 2 O + 2e → 2OH + H 2
2Na ++ 2OH → 2NaOH
Further, chlorine generated at the anode reacts with sodium hydroxide generated at the cathode as shown in the following formula to generate hypochlorous acid-based chemicals such as sodium hypochlorite (NaClO) having strong oxidizing power. . The hypochlorous acid-based chemical to be generated may be any hypochlorous acid-based oxidizing substance such as sodium hypochlorite and calcium hypochlorite (Ca (ClO) 2 ).
Cl 2 + 2NaOH → NaClO + NaCl + H 2 O
NaClO + H 2 O HCl HClO + NaOH
[0010]
The hypochlorous acid-based chemical thus produced exhibits a bactericidal effect that kills pathogenic bacteria and the like in the treated water by its oxidizing power.
In addition, since the treated water after solid-liquid separation or advanced treatment is electrolyzed, the gist of the gist is less likely to have deposits such as scale on the electrodes, and the electrolytic efficiency can be kept high for a long period of time. Can be minimized. In addition, it is preferable to electrolyze the treated water that has been subjected to solid-liquid separation after further advanced treatment such as activated carbon adsorption treatment.
[0011]
And this invention makes it the 1st invention to carry out the desalination process of the treated water at least among the said treated water previously, and to electrolyze the concentrated chloride ion containing water . For the desalting treatment, an evaporation concentration method, a reverse osmosis membrane method and an electrodialysis method can be used. Thus, hypochlorous acid-based chemicals can be efficiently generated by electrolyzing the concentrated chloride ion-containing water, and the power cost can be reduced.
Furthermore, the hypochlorous acid chemical | medical agent produced | generated by the said electrolysis can also be utilized for the deodorization of the waste gas generated within the said processing system. Thereby, a part or all of the hypochlorous acid chemical | medical agent required in this waste disposal system is securable. (The second of the inventions)
[0012]
Furthermore, the present invention detects the chloride ion content of the treated water and electrolyzes the treated water to be electrolyzed so as to generate a hypochlorous acid chemical amount according to demand based on the chloride ion content. It is a third invention to adjust the amount . This can minimize power costs without generating excessive drug.
[0013]
The basic configuration system using the gist of the invention includes a main processing means for performing biological treatment on organic waste mainly composed of human waste or garbage, and solid-liquid separation or separation of the organic waste after the main processing. In an organic waste treatment system equipped with a means for sterilization and disinfection by adding a hypochlorous acid-based chemical to highly treated treated water,
An electrolysis apparatus that introduces at least a part of the treated water and electrolyzes the treated water to produce a hypochlorous acid-based agent;
A storage tank for storing a hypochlorous acid-based chemical produced by the electrolyzer, and
The stored hypochlorous acid chemical is supplied to the sterilizing / disinfecting means.
[0014]
Such a basic configuration system can be suitably used for a system for treating organic waste mainly composed of human waste or garbage. This is because human waste and garbage contain a high concentration of salts, and there is a possibility that excessive hypochlorous acid chemicals may be generated in the electrolyzer. It is set as the 2nd summary which adjusts the amount of hypochlorous acid type chemical | medical agents utilized . Thereby, the hypochlorous acid chemical | medical agent which is not utilized for sterilization disinfection is discharged with a treated water, and does not have a bad influence on an environment.
[0015]
As another device, main treatment means for biological treatment of organic waste mainly composed of septic tank sludge, and hypochlorite in treated water obtained by solid-liquid separation or advanced treatment of organic waste after main treatment In an organic waste treatment system equipped with a means for sterilization and disinfection by adding an acid-based chemical,
An electrolyzer that generates a hypochlorous acid chemical by electrolyzing the treated water is provided at the subsequent stage of the main treatment means,
A third gist is to use a hypochlorous acid-based chemical produced by the electrolysis device in the sterilizing and disinfecting means.
[0016]
The organic waste treatment system according to the third aspect can be suitably used for a system that treats organic waste mainly composed of septic tank sludge. Since the septic tank sludge has a very high moisture content and a low salt concentration in the waste, it is possible to arrange the electrolyzer in series with the treatment system as in the second aspect . Thus, the entire system can be reduced in size by incorporating the electrolysis apparatus as a part of the processing system.
The organic waste treatment system may be a system that performs both the solid-liquid separation and the advanced treatment.
Furthermore, Oite the system in which the organic waste composed mainly of septic tank sludge processed, desalted means upstream of the electrolysis device is provided, a configuration for introducing the concentrated chloride ion containing water to the electrolysis unit This is a feature of the fourth invention, whereby a hypochlorous acid-based drug can be efficiently produced.
[0017]
Moreover, by introducing the hypochlorous acid-based chemical stored in the storage tank into the deodorizing device in the processing system and deodorizing the odor with the hypochlorous acid-based chemical, the cost of the chemical can be further reduced. It becomes possible.
In addition, a means for detecting the chloride ion content of the treated water and a means for controlling the amount of treated water introduced into the electrolytic cell based on the detected value are provided. By adopting a configuration that generates a chloric acid-based chemical, the power cost can be minimized.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
1 is an overall configuration diagram of an organic waste treatment system according to a first embodiment of the present invention, FIG. 2 is an explanatory diagram of an electrolysis apparatus applied to the present embodiment, and FIG. 3 is a second embodiment of the present invention. FIG. 4 is a schematic configuration diagram of a hypochlorous acid-based chemical self-sufficing facility showing another embodiment of FIG. 3.
[0019]
The first embodiment shown in FIG. 1 is a self-sufficiency facility for hypochlorous acid-based chemicals that are treated as organic waste mainly composed of human waste or garbage and are used for sterilization and disinfection of treated water at the final stage of treatment. It is suitable for the case where the organic waste contains a high concentration of salts.
In such an embodiment, first, organic waste is introduced into the pretreatment means 1 to remove impurities. The pretreatment means 1 is preferably provided with a crusher in a contaminant removal apparatus comprising a debris screen or a centrifuge.
[0020]
The organic waste after the pretreatment is introduced into the main treatment means 2 that performs biological treatment to decompose and remove contaminants such as polymer organic matter. As the biological treatment, nitrification denitrification treatment is preferable, and organic matter and nitrogen content in organic waste are decomposed and removed.
And the organic waste which performed the main process is led to the solid-liquid separation means 3, and is isolate | separated into sludge solid content and a supernatant liquid. The separated sludge solids are sent to a composting, incineration or carbonization facility, while the supernatant is sent to the advanced processing means 4 for further purification.
[0021]
The advanced processing means 4 is provided by appropriately combining an activated carbon adsorption device, an ion exchange membrane device, and the like. Here, soluble and hardly decomposable organic substances and inorganic substances are removed.
The treated water thus subjected to a series of treatments is introduced into the disinfecting means 5 as a final stage before being discharged, and is sterilized by chemicals. The disinfecting means 5 is provided with a self-supporting facility for hypochlorous acid-based chemicals 20 including the electrolyzer 6.
[0022]
Such hypochlorous acid-based chemical self-sufficiency equipment includes an electrolysis device 6, a storage tank 7, a controller 9, chloride ion detection means 10, and a three-way valve 11.
As shown in FIG. 2, the electrolyzer 6 is disposed so as to face a treatment tank 61 that receives treated water after advanced treatment and a treatment liquid introduced into the treatment tank 61. It has an electrode composed of an anode 62 and a cathode 63, and a power supply device 64 connected to the electrode. And as a typical reaction in each electrode, the following reaction is caused by chloride ions, water and sodium ions contained in the treatment liquid.
(Anode) 2Cl → Cl 2 + 2e
(Cathode) 2H 2 O + 2e → 2OH + H 2
2Na ++ 2OH → 2NaOH
[0023]
Further, a hypochlorous acid-based agent such as sodium hypochlorite (NaClO) having strong oxidizing power by reacting chlorine generated at the anode 62 with sodium hydroxide generated at the cathode 33 as shown in the following formula. Generate. The hypochlorous acid agent may be any hypochlorous acid-based substance such as sodium hypochlorite and calcium hypochlorite (Ca (ClO) 2 ).
Cl 2 + 2NaOH → NaClO + NaCl + H 2 O
NaClO + H 2 O HCl HClO + NaOH
[0024]
The hypochlorous chemical produced in this way has the effect of killing pathogenic bacteria in the treatment liquid by its oxidizing power.
The electrolysis apparatus 6 preferably maintains electrolysis efficiency by applying a reverse voltage every predetermined period in order to remove the adhering substances on the electrodes, or by stopping the treatment and washing with water or chemicals.
Further, a chloride ion detection sensor 10, a three-way valve 11 and a controller 9 connected thereto are provided on the outlet side of the advanced processing means 4, and based on the chloride ion concentration measured by the detection sensor 10, The three-way valve 11 may be controlled by the controller 9 so that the amount of treated water capable of generating the amount of hypochlorous acid-based chemical used is introduced into the electrolyzer 6. Thereby, the excess chemical | medical agent is not used for treated water, but the environmental pollution by being discharged | emitted outside with treated water can be prevented. In addition, since only the required amount of hypochlorous acid-based chemicals are generated, the power cost can be reduced.
[0025]
The hypochlorous acid-based chemical produced in this way is temporarily stored in the storage tank 7 and introduced into the disinfecting means 5 or the deodorizing means 8 for treating odor generated in the system, if necessary. Disinfection or deodorization of treated water is performed by the oxidizing power of the chemical. According to such a configuration, it is not necessary to purchase a hypochlorous acid-based drug from the outside, and it can be self-supplied within the system, and the running cost can be reduced. Furthermore, by providing such a hypochlorous acid chemical self-sufficiency facility, an effect of reducing the salt concentration in the treated water can be expected.
Moreover, in this embodiment, since the hypochlorous acid chemical | medical agent is produced | generated by electrolyzing the treated water after performing a main process, solid-liquid separation, or an advanced process, a scale is set | placed on the electrode of the electrolysis apparatus 6. It is difficult to stick and can be operated for a long time.
[0026]
FIG. 3 shows a system for treating organic waste mainly composed of septic tank sludge, which is suitable for organic waste having a very high moisture content and a low salt concentration.
In the treatment system according to the second embodiment, after organic waste is removed by the pretreatment means 1, biological treatment is performed by the main treatment means 2 to decompose the polymer organic matter and the like, and the solid-liquid separation means 3 Separated into sludge solids and supernatant. The sludge solids are dehydrated, composted, incinerated or carbonized, while the supernatant is introduced into the electrolyzer 6 after advanced treatment such as activated carbon adsorption treatment. The electrolyzer 6 is arranged in series with such a processing system. At this time, a part of the treated water after the advanced treatment may be introduced into the disinfecting means 5 by the bypass line 13 without passing through the electrolytic device 6.
[0027]
Then, the treated water is electrolyzed by the electrolyzer 6 to produce a hypochlorous acid-based chemical, and the treated water is introduced into the disinfecting means 5 together with the chemical to be sterilized and discharged.
Moreover, the hypochlorous acid chemical | medical agent containing process water produced | generated in the said electrolysis apparatus 6 can also be introduce | transduced into the deodorizing means 8 for deodorizing the odor which generate | occur | produced in the processing system, and can also be utilized for deodorization.
Since the septic tank sludge has a very high moisture content and a low salt concentration in the waste, it is possible to arrange an electrolyzer in series with the treatment system as in this embodiment. Thus, the entire system can be reduced in size by incorporating the electrolysis apparatus as a part of the processing system.
[0028]
Furthermore, in the first and second embodiments, a desalting means 12 may be disposed between the advanced processing means 4 and the electrolyzer 6 as shown in FIG. The desalting means 12 can be a reverse osmosis membrane, electrodialysis or the like.
In this embodiment, a part of the treated water after the advanced treatment is extracted and introduced into the membrane separation means 12, and the other treated water is guided to the disinfecting means 5. Then, treated water containing salts concentrated by the membrane separation means 12 is introduced into the electrolyzer 6 to produce a hypochlorous acid chemical, and the hypochlorous acid chemical is removed from the disinfecting means 5 or deodorizing means. 8 is sterilized and deodorized. At this time, when the system is located in a coastal area, seawater may be used for electrolysis in addition to treated water.
Thus, by concentrating the salts contained in the treated water, the amount of treated water to be electrolyzed can be reduced, and a hypochlorous acid-based chemical can be efficiently generated, and the power cost can be reduced. .
[0029]
【The invention's effect】
According to the invention as described above, an electrolytic device is installed in an organic waste treatment system, and the system is obtained by electrolyzing treated water after solid-liquid separation or advanced treatment to produce a hypochlorous acid-based chemical. Self-sufficiency of drugs used in the home. Since hypochlorous acid-based chemicals are expensive, this invention makes it possible to reduce running costs.
In addition, by desalting and concentrating the salt contained in the treated water, the amount of treated water to be electrolyzed can be reduced, and a hypochlorous acid-based chemical can be efficiently generated, and the power cost can be reduced. It becomes.
Furthermore, since this invention electrolyzes the treated water after performing solid-liquid separation or advanced treatment, it is difficult for scales to adhere to the electrodes, and the electrolysis efficiency can be kept high for a long time.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an organic waste treatment system according to a first embodiment of the present invention.
FIG. 2 is an explanatory view of an electrolysis apparatus applied to the present embodiment.
FIG. 3 is a schematic configuration diagram of an organic waste treatment system according to a second embodiment of the present invention.
FIG. 4 is a schematic configuration diagram of a hypochlorous acid based chemical self-sufficing facility showing another embodiment of FIG. 3;
FIG. 5 is an overall configuration diagram showing a conventional organic waste treatment system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Pretreatment means 2 Main treatment means 3 Solid-liquid separation means 4 Advanced treatment means 5 Disinfection means 6 Electrolyzer 7 Storage tank 8 Deodorization means 9 Controller 10 Chloride ion detection sensor 12 Desalination means

Claims (6)

浄化槽汚泥を主体とする有機性廃棄物に生物処理からなる主処理を施し、固液分離若しくは高度処理した後の処理水に次亜塩素酸系薬剤を添加して殺菌消毒する有機性廃棄物処理システムにおいて、
前記処理水の少なくとも一部を電気分解することにより次亜塩素酸系薬剤を生成し、該次亜塩素酸系薬剤を前記殺菌消毒に利用するとともに、前記処理水のうち、少なくとも電気分解する処理水を予め脱塩処理し、濃縮された塩化物イオン含有水を電気分解することを特徴とする有機性廃棄物処理システムにおける次亜塩素酸系薬剤の自給方法。
Organic waste treatment in which organic waste mainly composed of septic tank sludge is subjected to the main treatment consisting of biological treatment, and then sterilized by adding hypochlorous acid chemicals to the treated water after solid-liquid separation or advanced treatment In the system,
A process for producing a hypochlorous acid chemical by electrolyzing at least a part of the treated water, using the hypochlorous acid chemical for the sterilization, and at least electrolyzing the treated water. A method for self-sufficiency of hypochlorous acid-based chemicals in an organic waste treatment system, characterized in that water is desalted in advance and the concentrated chloride ion-containing water is electrolyzed.
し尿、浄化槽汚泥若しくは生ごみを含む有機性廃棄物に生物処理からなる主処理を施し、固液分離若しくは高度処理した後の処理水に次亜塩素酸系薬剤を添加して殺菌消毒する有機性廃棄物処理システムにおいて、
前記処理水の少なくとも一部を電気分解することにより次亜塩素酸系薬剤を生成し、該次亜塩素酸系薬剤を前記殺菌消毒に利用するとともに、前記電気分解により生成した次亜塩素酸系薬剤を、前記処理システム内で発生した排ガスの脱臭に利用することを特徴とする有機性廃棄物処理システムにおける次亜塩素酸系薬剤の自給方法。
Organic that disposes of organic waste containing human waste, septic tank sludge, or garbage by biotreatment and disinfects it by adding hypochlorous acid chemicals to treated water after solid-liquid separation or advanced treatment In the waste treatment system,
A hypochlorous acid chemical is produced by electrolyzing at least a part of the treated water, the hypochlorous acid chemical is used for the sterilization and disinfection, and the hypochlorous acid produced by the electrolysis is used. A hypochlorous acid chemical self-sufficiency method in an organic waste treatment system, wherein the chemical is used for deodorization of exhaust gas generated in the treatment system.
し尿、浄化槽汚泥若しくは生ごみを含む有機性廃棄物に生物処理からなる主処理を施し、固液分離若しくは高度処理した後の処理水に次亜塩素酸系薬剤を添加して殺菌消毒する有機性廃棄物処理システムにおいて、
前記処理水の少なくとも一部を電気分解することにより次亜塩素酸系薬剤を生成し、該次亜塩素酸系薬剤を前記殺菌消毒に利用するとともに、前記処理水の塩化物イオン含有量を検出し、該塩化物イオン含有量に基づき需要に応じた次亜塩素酸系薬剤量を生成するように、電気分解する処理水の量を調整することを特徴とする有機性廃棄物処理システムにおける次亜塩素酸系薬剤の自給方法。
Organic that disposes of organic waste containing human waste, septic tank sludge, or garbage by biotreatment and disinfects it by adding hypochlorous acid chemicals to treated water after solid-liquid separation or advanced treatment In the waste treatment system,
At least a part of the treated water is electrolyzed to produce a hypochlorous acid-based drug, the hypochlorous acid-based drug is used for the sterilization, and the chloride ion content of the treated water is detected. And adjusting the amount of the treated water to be electrolyzed so as to generate a hypochlorous acid chemical amount according to demand based on the chloride ion content. Self-sufficiency method for chlorite drugs.
浄化槽汚泥を主体とする有機性廃棄物に生物処理を施す主処理手段と、主処理した後の有機性廃棄物を固液分離若しくは高度処理した処理水に次亜塩素酸系薬剤を添加して殺菌消毒する手段とを備えた有機性廃棄物処理システムにおいて、
前記主処理手段の後段に、前記処理水を電気分解することにより次亜塩素酸系薬剤を生成する電解装置を設け、
前記殺菌消毒手段にて、該電解装置で生成した次亜塩素酸系薬剤を利用することを特徴とし、
更に前記電解装置の前段に脱塩手段を設け、濃縮された塩化物イオン含有水を電解装置に導入する構成としたことを特徴とする有機性廃棄物処理システムにおける次亜塩素酸系薬剤の自給設備。
Add hypochlorous acid-based chemicals to the main treatment means for biological treatment of organic waste, mainly septic tank sludge, and treated water that has been subjected to solid-liquid separation or advanced treatment of the organic waste after the main treatment An organic waste treatment system comprising means for sterilization and disinfection,
An electrolyzer that generates a hypochlorous acid chemical by electrolyzing the treated water is provided at the subsequent stage of the main treatment means,
The sterilizing and disinfecting means uses a hypochlorous acid-based chemical produced by the electrolytic device,
Further, a desalting means is provided in front of the electrolyzer so that concentrated chloride ion-containing water is introduced into the electrolyzer. Self-supplement of hypochlorous acid-based chemicals in an organic waste treatment system, Facility.
し尿若しくは生ごみを主体とする有機性廃棄物に生物処理を施す主処理手段と、主処理した後の有機性廃棄物を固液分離若しくは高度処理した処理水に次亜塩素酸系薬剤を添加して殺菌消毒する手段とを備えた有機性廃棄物処理システムにおいて、
前記処理水の少なくとも一部を導入され、該処理水を電気分解することにより次亜塩素酸系薬剤を生成する電解装置と、
該電解装置により生成し、更に前記貯留槽に貯留した次亜塩素酸系薬剤を前記処理システム内の脱臭装置に導入し、該次亜塩素酸系薬剤により臭気の脱臭を行うことを特徴とする有機性廃棄物処理システムにおける次亜塩素酸系薬剤の自給設備。
Hypochlorite chemicals are added to the main treatment means for biological treatment of organic waste, mainly human waste or garbage, and to treated water that has been subjected to solid-liquid separation or advanced treatment of the organic waste after the main treatment. In an organic waste treatment system equipped with a means for sterilization and disinfection,
An electrolysis apparatus which introduces at least a part of the treated water and electrolyzes the treated water to produce a hypochlorous acid-based agent;
A hypochlorous acid-based chemical produced by the electrolyzer and further stored in the storage tank is introduced into a deodorizing device in the treatment system, and odor is deodorized by the hypochlorous acid-based chemical. Self-sufficiency equipment for hypochlorous acid chemicals in organic waste treatment systems.
し尿若しくは生ごみを主体とする有機性廃棄物に生物処理を施す主処理手段と、主処理した後の有機性廃棄物を固液分離若しくは高度処理した処理水に次亜塩素酸系薬剤を添加して殺菌消毒する手段とを備えた有機性廃棄物処理システムにおいて、
前記処理水の少なくとも一部を導入され、該処理水を電気分解することにより次亜塩素酸系薬剤を生成する電解装置と、
該電解装置により生成し、更に前記処理水の塩化物イオン含有量を検出する手段と、該検出された値に基づき電解槽への処理水導入量を制御する手段とを設け、システム内での需要に応じた次亜塩素酸系薬剤を生成する構成としたことを特徴とする有機性廃棄物処理システムにおける次亜塩素酸系薬剤の自給設備。
Hypochlorite chemicals are added to the main treatment means for biological treatment of organic waste, mainly human waste or garbage, and to treated water that has been subjected to solid-liquid separation or advanced treatment of the organic waste after the main treatment. In an organic waste treatment system equipped with a means for sterilization and disinfection,
An electrolysis apparatus which introduces at least a part of the treated water and electrolyzes the treated water to produce a hypochlorous acid-based agent;
A means for detecting the chloride ion content of the treated water generated by the electrolyzer and a means for controlling the amount of treated water introduced into the electrolytic cell based on the detected value are provided in the system. A hypochlorous acid chemical self-sufficiency facility in an organic waste treatment system, characterized in that it produces a hypochlorous acid chemical according to demand.
JP2002350742A 2002-12-03 2002-12-03 Hypochlorous acid self-sufficiency method and equipment in organic waste treatment system Expired - Fee Related JP3978124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350742A JP3978124B2 (en) 2002-12-03 2002-12-03 Hypochlorous acid self-sufficiency method and equipment in organic waste treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002350742A JP3978124B2 (en) 2002-12-03 2002-12-03 Hypochlorous acid self-sufficiency method and equipment in organic waste treatment system

Publications (2)

Publication Number Publication Date
JP2004181339A JP2004181339A (en) 2004-07-02
JP3978124B2 true JP3978124B2 (en) 2007-09-19

Family

ID=32752859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350742A Expired - Fee Related JP3978124B2 (en) 2002-12-03 2002-12-03 Hypochlorous acid self-sufficiency method and equipment in organic waste treatment system

Country Status (1)

Country Link
JP (1) JP3978124B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4944425B2 (en) * 2004-12-16 2012-05-30 パナソニック株式会社 Garbage disposal equipment
JP4667910B2 (en) * 2005-03-04 2011-04-13 三菱重工環境・化学エンジニアリング株式会社 Waste treatment method and equipment
JP2009274028A (en) * 2008-05-15 2009-11-26 Mhi Environment Engineering Co Ltd Sea water treating apparatus and method of treating the same
JP4831782B2 (en) * 2008-07-14 2011-12-07 株式会社オメガ Wastewater treatment method and system
KR100883444B1 (en) * 2008-07-24 2009-02-17 (주) 테크윈 Apparatus and method for ballast water management
KR101122634B1 (en) 2009-05-13 2012-03-23 가천의과학대학교 산학협력단 manufactured solidity coal using livestock feces
CN102371266B (en) * 2010-08-23 2014-08-13 青岛福瑞斯生物能源科技开发有限公司 Resource utilization method of kitchen waste
JP5378332B2 (en) * 2010-09-07 2013-12-25 三菱重工環境・化学エンジニアリング株式会社 Waste treatment method and equipment
JP5567468B2 (en) * 2010-12-24 2014-08-06 水ing株式会社 Method and apparatus for treating organic wastewater
JP2014036940A (en) * 2012-08-20 2014-02-27 Omega:Kk Waste liquid treatment method
KR102040862B1 (en) * 2017-12-29 2019-11-05 서울대학교산학협력단 Development of technology for removing odor and bacteria in organic waste treatment process based on biological resources using sterilized water
JP7232158B2 (en) * 2019-09-05 2023-03-02 デノラ・ペルメレック株式会社 Apparatus for producing acidic aqueous solution and method for producing acidic aqueous solution

Also Published As

Publication number Publication date
JP2004181339A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
Martínez-Huitle et al. A critical review over the electrochemical disinfection of bacteria in synthetic and real wastewaters using a boron-doped diamond anode
US7160472B2 (en) Treatment of a waste stream through production and utilization of oxyhydrogen gas
Ghernaout et al. Electrocoagulation Process Intensification for Disinfecting Water—A Review
US7108781B2 (en) Enhanced air and water purification using continuous breakpoint halogenation with free oxygen radicals
JP3978124B2 (en) Hypochlorous acid self-sufficiency method and equipment in organic waste treatment system
JP2005000858A (en) Photocatalytic water treatment apparatus
WO2005077833A1 (en) Method of liquid detoxification and apparatus therefor
US9187347B2 (en) Treatment of a waste stream through production and utilization of oxyhydrogen gas
US5980727A (en) Method and equipment for removing organic halogen compounds from water
US9296629B2 (en) Treatment of a waste stream through production and utilization of oxyhydrogen gas
WO2014165998A1 (en) Treatment of a waste stream through production and utilization of oxyhydrogen gas
JP4667910B2 (en) Waste treatment method and equipment
JP2008264668A (en) Method and apparatus for electrolytic treatment of wastewater
JP4662327B2 (en) Wastewater treatment method and apparatus
JP4641435B2 (en) Endocrine disrupting chemical substance decomposition method and apparatus
KR100602058B1 (en) Electrolysis and electro-coagulation treatment apparatus of wastewater
KR20100019843A (en) Method and apparatus for cleaning water
WO2013075240A1 (en) Treatment of a waste stream through production and utilization of oxyhydrogen gas
JP2002119971A (en) Toilet wastewater treatment apparatus
JP2004066137A (en) Water treatment equipment
JP2008200667A (en) Method and apparatus for deodorizing, decolorizing and sterilizing water
KR20040065761A (en) Water purification and sterilization using salt water electrolysis
JP5378332B2 (en) Waste treatment method and equipment
JP4577927B2 (en) Odor gas deodorization method
JPS6345878B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 3978124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees