JP4831782B2 - Wastewater treatment method and system - Google Patents

Wastewater treatment method and system Download PDF

Info

Publication number
JP4831782B2
JP4831782B2 JP2008182498A JP2008182498A JP4831782B2 JP 4831782 B2 JP4831782 B2 JP 4831782B2 JP 2008182498 A JP2008182498 A JP 2008182498A JP 2008182498 A JP2008182498 A JP 2008182498A JP 4831782 B2 JP4831782 B2 JP 4831782B2
Authority
JP
Japan
Prior art keywords
water
treatment
treated
wastewater
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008182498A
Other languages
Japanese (ja)
Other versions
JP2010017682A (en
Inventor
信一 中村
Original Assignee
株式会社オメガ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オメガ filed Critical 株式会社オメガ
Priority to JP2008182498A priority Critical patent/JP4831782B2/en
Priority to KR1020090063500A priority patent/KR101070825B1/en
Publication of JP2010017682A publication Critical patent/JP2010017682A/en
Application granted granted Critical
Publication of JP4831782B2 publication Critical patent/JP4831782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46145Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/06Sludge reduction, e.g. by lysis

Description

この発明は、比較的に高濃度の排水に特に適する排水処理方法及びシステムに関するものである。   The present invention relates to a wastewater treatment method and system particularly suitable for wastewater having a relatively high concentration.

従来より、液晶工場の排水や厨房排水その他各種の排水があるが、これら排水は元々は清浄な水であったが使用後は有機成分その他で汚染されている。
このように色々な排水があるが、その水量や水質は日や時間帯によって変動する。例えば同じ日であっても時間帯によってCOD(化学的酸素要求量)が高いときで2,000ppm近くなり、低いときは1,000ppmを切ったりする。したがって、処理に際しては水量や水質を平均化し且つ処理可能な所定の濃度(生物処理の場合はCOD500ppm程度と言われる)まで希釈するため調整槽(特許文献1)に1日分とかを溜めていた。すなわち日々処理すべき量が1,000トンの場合、1,000トン+αの大きさの調整槽(ピット)を設けてそこに溜めておく。こうするとCODが1,000〜2,000ppmと倍半分に変動したとしても、調整槽に溜めておくうちに次第に水質が均一平均化されて翌日にはどの位置でも1,500ppm程度となる。このようにして平均化された後に処理すると、排水本来の水量や水質の経時的なアップダウンの影響を軽減して処理を安定化させることができる。
しかし、排水を溜めておくために調整槽の大きなピットが必要である上に、調整槽を使用していても日毎の変動のためか処理時の水質が変動している場合があるという問題があった。
特開平11−347596号公報
Conventionally, there are various types of wastewater such as liquid crystal factory wastewater, kitchen wastewater, etc. These wastewaters were originally clean water, but after use they are contaminated with organic components and others.
There are various types of drainage, but the amount and quality of water varies depending on the day and time. For example, even on the same day, depending on the time of day, the COD (chemical oxygen demand) is close to 2,000 ppm when it is high, and when it is low, it drops below 1,000 ppm. Therefore, during treatment, the amount of water and water quality are averaged, and in order to dilute to a predetermined concentration that can be treated (in the case of biological treatment, it is said to be about 500 ppm of COD), one day's worth of water is stored in the adjustment tank . That is, if the amount to be processed daily is 1,000 tons, an adjustment tank (pit) having a size of 1,000 tons + α is provided and stored there. In this way, even if the COD fluctuates by a factor of half from 1,000 to 2,000 ppm, the water quality is gradually and uniformly averaged as it is stored in the adjustment tank, and at the next day, it reaches about 1,500 ppm. When the treatment is performed after averaging in this way, the influence of the up-down of the original amount and quality of the wastewater can be reduced and the treatment can be stabilized.
However, there is a problem that a large pit of the adjustment tank is necessary to store the wastewater, and even if the adjustment tank is used, the water quality during processing may fluctuate due to daily fluctuations. there were.
Japanese Patent Laid-Open No. 11-347596

そこでこの発明は、調整槽は必ずしも必要なくまた水質の日々の変動を吸収することができる排水処理方法及びシステムを提供しようとするものである。   Therefore, the present invention is intended to provide a wastewater treatment method and system that do not necessarily require a regulating tank and can absorb daily fluctuations in water quality.

前記課題を解決するためこの発明では次のような技術的手段を講じている。
(1)この発明の排水処理方法は、処理前の排水にその処理後の清浄水をフィードバックし混合してこの処理方法による処理対象水を調整し、前記処理前の排水に対する処理後の清浄水の混合量は、その排水処理の態様について、処理対象水の濃度指標と流量とが処理に好適な所定の範囲となるように設定すると共に前記処理対象水の濃度指標をセンサーにより検知し、前記処理対象水の濃度指標が所定の範囲となるように処理前の排水への処理後の清浄水のフィードバック量とこの処理系からの排出量とを制御するようにしたことを特徴とする。
ここで排水の処理の態様として、生物処理、電気分解による処理、酸化剤(次亜塩素酸ソーダ等)を添加する処理などを例示することができる。前記濃度指標としてCOD(化学的酸素要求量)、BOD(生物化学的酸素要求量)、TOC、T-N、n-ヘキサンなどを例示することができる。
In order to solve the above problems, the present invention takes the following technical means.
(1) In the wastewater treatment method of the present invention, the treated clean water is fed back to and mixed with the wastewater before treatment to adjust the water to be treated by this treatment method, and the treated clean water for the wastewater before treatment is treated. The amount of the mixture is set so that the concentration index and flow rate of the water to be treated are within a predetermined range suitable for treatment, and the concentration index of the water to be treated is detected by a sensor. It is characterized in that the feedback amount of the clean water after the treatment to the waste water before the treatment and the discharge amount from this treatment system are controlled so that the concentration index of the water to be treated falls within a predetermined range.
Examples of the treatment of waste water include biological treatment, treatment by electrolysis, treatment of adding an oxidizing agent (sodium hypochlorite, etc.), and the like. Examples of the concentration index include COD (chemical oxygen demand), BOD (biochemical oxygen demand), TOC, TN, and n-hexane.

この排水処理方法によると「処理前の排水(例えばCOD 1000〜2000ppm)」にその「処理後の清浄水(例えばCOD5ppm未満)」をフィードバックし混合してこの処理方法による「処理対象水」を調整し、「処理前の排水」に対する「処理後の清浄水」の混合量は、その排水処理の態様(生物処理であるか、電気分解による処理であるかなど)について「処理対象水」の濃度指標と流量とが処理に好適な所定の範囲となるように設定すると共に、前記「処理前の排水」と「処理後の清浄水」と「処理対象水」との濃度指標をセンサー(例えばCOD計)により検知し、前記「処理対象水」の濃度指標が所定の範囲(例えば電気分解や酸化剤の添加による処理ではCOD 50〜100ppm)となるように「処理前の排水」への「処理後の清浄水」のフィードバック量とこの処理系からの排出量とを制御するようにしたので、処理後の清浄水をフィードバックして処理対象水を調整することにより、元々の排水自体の濃度等の変動による処理への影響を軽減して円滑な処理を行うことができる。また、調整に処理後の清浄水を利用しており、水資源を節約することができ環境問題に資することができる。
ここで、センサーで前記処理対象水の他に、処理前の排水と処理後の清浄水の濃度指標をも検知するようにすると、元々の排水と系から排出する清浄水との濃度指標も把握できるので実際上特に排出する清浄水について好ましい。
ところで、処理の態様が電気分解の場合は、必要に応じて排水に食塩などの電解質を溶解させて適当な導電率を付与して電流が流れるようにし、その陽極酸化や生成するOHラジカル等の酸化作用などによって排水中に含有される有機成分を酸化分解しそのCODを低減させる。処理対象水の処理時(処理中)のpHは、電気分解によって生成する次亜塩素酸等の酸化作用が強い範囲に調整する。この電気分解による処理は、生物処理と相違して瞬時に酸化分解が行われると共に汚泥がでないという利点がある。
According to this wastewater treatment method, “clean water after treatment (for example, less than COD of 5 ppm)” is fed back to “untreated wastewater (for example, COD 1000 to 2000 ppm)” and mixed to adjust “treatment water” by this treatment method. However, the amount of “clean water after treatment” with respect to “drain water before treatment” is the concentration of “water to be treated” for the type of waste water treatment (biological treatment or electrolysis treatment, etc.) The index and the flow rate are set so as to be within a predetermined range suitable for treatment, and the concentration indicators of the “drain before treatment”, “clean water after treatment”, and “treatment water” are sensors (for example, COD The “treatment water” concentration index is within a specified range (for example, COD of 50 to 100 ppm in the case of treatment by electrolysis or addition of an oxidizing agent). `` After clean water '' feedback amount and this processing Since the amount of discharge from the science system is controlled, by adjusting the water to be treated by feeding back clean water after treatment, the impact on the treatment due to fluctuations in the concentration of the original wastewater itself can be reduced. Smooth processing can be performed. In addition, clean water after treatment is used for adjustment, which can save water resources and contribute to environmental problems.
Here, if the sensor detects not only the water to be treated but also the concentration index of the waste water before the treatment and the purified water after the treatment, the concentration index of the original waste water and the clean water discharged from the system is also grasped. Since it is possible, it is preferable about clean water to be discharged in practice.
By the way, when the treatment mode is electrolysis, an electrolyte such as sodium chloride is dissolved in the waste water as necessary to give an appropriate conductivity so that a current flows, and the anodic oxidation and generated OH radicals, etc. Reduces COD by oxidizing and decomposing organic components contained in wastewater by oxidizing action. The pH during treatment (during treatment) of the water to be treated is adjusted to a range in which an oxidizing action such as hypochlorous acid generated by electrolysis is strong. Unlike the biological treatment, this electrolysis treatment has an advantage that oxidative decomposition is performed instantaneously and sludge is not generated.

(2) 電解質を含有する水を電気分解して次亜ハロゲン酸を生成させる酸化剤生成電解機構を具備し、前記酸化剤生成電解機構で生成した酸化剤含有水を前記処理対象水に及ぼしてその濃度指標の低減処理を行い、処理後の清浄水から電解質を分離したものをフィードバックして処理前の排水に混合すると共に、分離回収した電解質は酸化剤生成電解機構へ供給するようにしてもよい。
ここで、前記電解質として塩化ナトリウム(食塩)や臭化ナトリウムなどを例示することができる。前記電解質を含有する水として例えば海水を利用することができる。前記次亜ハロゲン酸として次亜塩素酸や次亜臭素酸などを例示することができる。電解質を分離する手段としてRO膜を用いたり、イオン交換樹脂を用いたり、電気透析を利用したり、イオンセパレーターを使用したりすることができる。
このように構成し、酸化剤生成電解機構で生成した酸化剤含有水を前記処理対象水に及ぼしてその濃度指標の低減処理を行い、処理後の清浄水から電解質を分離したものをフィードバックして処理前の排水に混合するようにしたので、フィードバックして処理前の排水に混合する処理後の清浄水からは電解質が分離されたものとなっており、電解質の濃度が処理時に累積的に増大していくことを回避することができる。また、分離回収した電解質は酸化剤生成電解機構へ供給するようにしたので、酸化剤含有水に含まれる電解質を酸化剤生成機構に循環してその有効利用を図ることができる。
(2) An oxidant generation electrolysis mechanism that electrolyzes water containing an electrolyte to generate hypohalous acid, and the oxidant-containing water generated by the oxidant generation electrolysis mechanism is applied to the water to be treated. The concentration index is reduced, and the electrolyte separated from the treated clean water is fed back and mixed with the wastewater before treatment, and the separated and recovered electrolyte is supplied to the oxidant-generating electrolysis mechanism. Good.
Here, examples of the electrolyte include sodium chloride (sodium chloride) and sodium bromide. For example, seawater can be used as the water containing the electrolyte. Examples of the hypohalous acid include hypochlorous acid and hypobromous acid. As a means for separating the electrolyte, an RO membrane, an ion exchange resin, electrodialysis, or an ion separator can be used.
Constructed in this way, the oxidant-containing water generated by the oxidant-generating electrolysis mechanism is applied to the water to be treated to reduce the concentration index, and the electrolyte separated from the treated clean water is fed back Since it was mixed with the wastewater before treatment, the electrolyte was separated from the clean water after treatment that was fed back and mixed with the wastewater before treatment, and the electrolyte concentration increased cumulatively during treatment. Can be avoided. In addition, since the separated and recovered electrolyte is supplied to the oxidant-generating electrolysis mechanism, the electrolyte contained in the oxidant-containing water can be circulated to the oxidant-generating mechanism and effectively used.

(3)この発明の排水処理システムは、排水を処理する処理水槽とその処理後の清浄水をフィードバックする帰還流路とを具備し、処理前の排水に処理水槽での処理後の清浄水を帰還流路を介してフィードバックし混合して処理対象水を調整し、前記処理前の排水に対する処理後の清浄水の混合量は、その排水処理の態様について、処理対象水の濃度指標と流量とが処理に好適な所定の範囲となるように設定すると共に前記処理対象水の濃度指標をセンサーにより検知し、前記処理対象水の濃度指標が所定の範囲となるように処理前の排水への処理後の清浄水のフィードバック量とこの処理系からの排出量とを制御するようにしたことを特徴とする。
この排水処理システムは前記排水処理方法と同様の作用を有する。ここで、排水を供給して処理を行う処理水槽には、処理開始時には(未だ処理後の清浄水がないので)水道水(又は前回の処理後の清浄水)を貯留しておくとよい。
(3) The wastewater treatment system of the present invention comprises a treated water tank for treating wastewater and a return flow path for feeding back the treated clean water, and the treated water in the treated water tank is treated as wastewater before treatment. The amount of water to be treated is adjusted by feeding back and mixing through the return flow path, and the amount of clean water after treatment with respect to the waste water before treatment is the concentration index and flow rate of the water to be treated for the aspect of the waste water treatment. Is set so as to be within a predetermined range suitable for treatment, and the concentration index of the water to be treated is detected by a sensor, and the waste water before treatment is treated so that the concentration index of the water to be treated falls within the predetermined range. It is characterized in that the amount of feedback of the subsequent clean water and the amount of discharge from this treatment system are controlled.
This waste water treatment system has the same action as the waste water treatment method. Here, it is preferable to store tap water (or clean water after the previous treatment) at the start of the treatment (because there is no clean water after treatment) in the treated water tank that performs the treatment by supplying wastewater.

この発明は上述のような構成であり、次の効果を有する。
処理後の清浄水をフィードバックして処理対象水を調整することにより、元々の排水自体の濃度等の変動による処理への影響を軽減して円滑な処理を行うことができるので、調整槽は必ずしも必要なくまた水質の日々の変動を吸収することができる。
The present invention is configured as described above and has the following effects.
By adjusting the water to be treated by feeding back clean water after treatment, the effect on the treatment due to fluctuations in the concentration of the original wastewater itself can be reduced and smooth treatment can be performed. It can absorb daily fluctuations in water quality without need.

排水として工場排水や厨房排水その他各種のものがあるが、その処理の態様として生物処理法、凝集沈殿法、電気分解による処理法、酸化剤(次亜塩素酸ソーダ等)を添加する処理法などがあり、また排水の汚れ具合を評価する濃度指標としてBOD(生物化学的酸素要求量)、COD(化学的酸素要求量)、TOC、T-N、n-ヘキサンなどがある。
ところで、排水は時期や時間帯によって水量や水質がけっこう変動しているものである。例えば液晶テレビの製造工場の場合、生産設備の稼動状況はボーナス商戦の準備の時期の如何などの世間の需要環境に応じて大きく異なってくるものであり、計画生産でならすようにしてはいてもフル稼働の際には大量の排水が発生する反面、その時期を過ぎると一変してほぼ休業状態に近い状況となることがある。また、人が多く水の使用量が多い時間帯と人が少ない時間帯とでも排水量はかなり異なる。そこで、敷地内に排水の貯留槽として大きなピットを掘削工事し(かなりの敷地面積を要する)、このピット内に排水を貯留してできるだけ水量・水質の平均化・均一化を図ろうとするものの、ここから出てくる処理すべき排水の水質は意外に変動している。よって実際の処理時にBOD濃度やCOD濃度が高過ぎたり低かったりして適切な処理が行えない、換言すると排水がきちんと浄化できていないケースも見られた。
このため大きなエバポレーターを複数個並設し、それぞれで排水を蒸発させて再液化せしめ(高濃度有機成分は蒸発せずに濃縮され残渣となる)、その再液化分(高濃度有機成分が減少しているのでCODもある程度は低減している)を生物処理すると共に蒸発残渣は廃棄物として処分にすることが試行されていたが、排水量が多いと多額の燃料代がかかり最善の策とは言い難いと共に、また廃棄物残渣の運搬にも多大な費用と労力とが必要とされる。
この排水処理方法及びシステムは、排水の水量・水質は変動するものであることを前提として容認しつつこの変動を如何に縮小・吸収して処理するかに着眼したものであり、以下のように構成している。
There are various types of wastewater, such as factory wastewater, kitchen wastewater, etc., but the treatment methods include biological treatment methods, coagulation sedimentation methods, treatment methods by electrolysis, treatment methods that add oxidizing agents (such as sodium hypochlorite), etc. There are also BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), TOC, TN, n-Hexane, etc. as concentration indicators for evaluating the degree of contamination of wastewater.
By the way, the amount of water and the quality of drainage vary considerably depending on the time and time zone. For example, in the case of an LCD TV manufacturing plant, the operating status of production facilities varies greatly depending on the demand environment of the world, such as the timing of the preparation for bonus sales, and even if it is designed to be planned production A large amount of wastewater is generated during full operation, but after that time it may change completely and become almost closed. Also, the amount of drainage differs considerably between the time when there are many people and the amount of water used is high and the time when there are few people. Therefore, although a large pit was excavated as a wastewater storage tank on the site (requires a considerable site area), the wastewater was stored in this pit to try to average and equalize the water volume and water quality as much as possible. The quality of the wastewater to be treated coming out of this is changing unexpectedly. Therefore, there were cases where the BOD concentration and COD concentration were too high or low during the actual treatment, so that proper treatment could not be performed. In other words, the wastewater could not be purified properly.
For this reason, a plurality of large evaporators are arranged side by side, and each waste water is evaporated and reliquefied (concentrated to a residue without concentrating high-concentration organic components), and the re-liquefied portion (high-concentration organic components are reduced). COD has also been reduced to some extent), and attempts have been made to dispose of the evaporation residue as waste, but if there is a large amount of wastewater, a large amount of fuel is required and it is said to be the best policy. It is difficult and also requires great costs and labor to transport the waste residue.
This wastewater treatment method and system is based on how to reduce and absorb this fluctuation while accepting that the quantity and quality of the wastewater is fluctuating. It is composed.

以下、この発明の実施の形態を説明する。
(実施形態1)
この排水処理方法は、処理前の排水(COD 1000〜2000ppm)1に、その処理後の清浄水(COD5ppm未満で好ましくはほぼ0ppm)2をフィードバックし混合して、この処理方法(酸化剤含有水3たる次亜塩素酸ソーダを添加して酸化分解する処理法とした)による処理対象水4を調整するようにしている。なお、この実施形態ではCOD 1000〜2000ppmの排水を処理したが、どのような濃度の排水、例えばCOD 300000ppmとかの高濃度の排水であっても適用が可能である。
一方、この排水処理システムは前記排水処理方法を装置化したものであり、排水を処理する処理水槽5とその処理後の清浄水2をフィードバックする帰還流路6とを具備し、処理前の排水1に処理水槽5における処理後の清浄水2を、帰還流路6を介してフィードバックし混合して処理対象水4を調整するようにしている。なお、処理後の清浄水2をフィードバックして処理前の排水1と混合して処理対象水4を調整するのであるが、水道水などの外部の清浄水も併せて混合するようにしてもよい(図示せず)。
前記処理前の排水1に対する処理後の清浄水2の混合量は、その排水処理の態様(酸化剤の添加法であるか、電気分解による処理法であるか、生物処理法であるかなど)について、処理対象水4の濃度指標(COD)と流量とが処理に好適な所定の範囲となるように設定すると共に、前記処理前の排水1と処理後の清浄水2と処理対象水4との濃度指標をセンサー(COD計)により検知し、前記処理対象水4の濃度指標が所定の範囲(電気分解や酸化剤の添加による処理では例えばCOD 50〜100ppmとすることができ、生物処理の場合は400〜600ppm程度が好ましい)となるように、処理前の排水1への処理後の清浄水2のフィードバック量Aとこの処理系からの排出量Bとを制御するようにしている。なお、処理前の排水1の濃度指標のセンサーをS1、処理後の清浄水2の濃度指標のセンサーをS2、処理対象水4の濃度指標のセンサーをS3で示す。
Embodiments of the present invention will be described below.
(Embodiment 1)
In this wastewater treatment method, the treated wastewater (COD 1000 to 2000 ppm) 1 is fed back to the treated clean water (COD less than 5 ppm, preferably almost 0 ppm) 2 and mixed. The water 4 to be treated is adjusted by a treatment method in which 3 sodium hypochlorite is added to oxidatively decompose. In this embodiment, wastewater having a COD of 1000 to 2000 ppm is treated. However, any concentration of wastewater, for example, wastewater having a high concentration of COD of 300,000 ppm can be applied.
On the other hand, this waste water treatment system is an apparatus of the above waste water treatment method, and includes a treated water tank 5 for treating waste water and a return flow path 6 for feeding back clean water 2 after the treatment. The treated clean water 2 in the treated water tank 5 is fed back through the return flow path 6 and mixed to adjust the treated water 4. The treated clean water 2 is fed back and mixed with the untreated waste water 1 to adjust the treatment target water 4. However, external clean water such as tap water may also be mixed. (Not shown).
The amount of clean water 2 after treatment with respect to the waste water 1 before treatment is an aspect of the waste water treatment (whether it is an oxidant addition method, an electrolysis treatment method, a biological treatment method, etc.) Is set so that the concentration index (COD) and the flow rate of the water to be treated 4 are within a predetermined range suitable for the treatment, the waste water 1 before the treatment, the clean water 2 after the treatment, and the water to be treated 4 Is detected by a sensor (COD meter), and the concentration index of the water 4 to be treated can be within a predetermined range (for example, COD of 50 to 100 ppm in the treatment by electrolysis or addition of an oxidizing agent, In this case, the feedback amount A of the clean water 2 after the treatment to the waste water 1 before the treatment and the discharge amount B from this treatment system are controlled so as to be about 400 to 600 ppm. In addition, the sensor of the density | concentration index of the waste water 1 before a process is shown by S1, the sensor of the density | concentration index of the clean water 2 after a process is shown by S2, and the sensor of the density | concentration index of the process target water 4 is shown by S3.

ところで、前記処理対象水4の濃度指標(COD)と流量とが処理に好適な所定の範囲は、その処理装置(電気分解や酸化剤添加)や処理施設(生物処理や凝集沈殿)の個々具体的な仕様などによって異なる。すなわち、電気分解や酸化剤の添加による処理ではその装置の仕様・考え方によっては、前記のCOD 50〜100ppmではなくCOD 10〜20ppmその他の範囲の方が好適なこととなる。つまり、前記処理対象水4の濃度指標の所定の範囲を低めの濃度範囲(COD 10〜20ppm)に設定した場合、排水の水質等の変動をより縮小して吸収することができるという利点がある。一方、前記処理対象水4の濃度指標の所定の範囲をCOD 50〜100ppmに設定した場合、処理後の清浄水2のフィードバック量を減らして全体的な総処理量を少なくすることができるという利点がある。とはあれ、その処理装置や処理施設の仕様や考え方に鑑みて、処理対象水4の濃度指標(COD)と流量とが処理に好適な所定の範囲は明確に存在する。   By the way, the predetermined range in which the concentration index (COD) and the flow rate of the water to be treated 4 are suitable for treatment is specific to each treatment device (electrolysis or oxidant addition) or treatment facility (biological treatment or coagulation sedimentation). It depends on the specific specifications. That is, in the treatment by electrolysis or addition of an oxidizing agent, the COD of 10 to 20 ppm or other ranges are preferable instead of the above-mentioned COD of 50 to 100 ppm depending on the specification and concept of the apparatus. That is, when the predetermined range of the concentration index of the water to be treated 4 is set to a lower concentration range (COD 10 to 20 ppm), there is an advantage that fluctuations in drainage water quality and the like can be reduced and absorbed. . On the other hand, when the predetermined range of the concentration index of the water 4 to be treated is set to COD 50-100 ppm, the total amount of treatment can be reduced by reducing the amount of feedback of the treated clean water 2. There is. Nevertheless, in view of the specifications and concepts of the treatment apparatus and treatment facility, there is clearly a predetermined range in which the concentration index (COD) and flow rate of the treatment target water 4 are suitable for treatment.

前記処理対象水4の濃度指標(COD)と流量とが処理に好適な所定の範囲がCOD 50〜100ppmの場合、基本的な設定は処理前の排水(COD 1000〜2000ppm)1の量1に対して処理後の清浄水(COD5ppm未満で好ましくはほぼ0ppm)2の量19をフィードバックして混合し処理対象水(COD 50〜100ppm)4を調整し、次亜塩素酸ソーダを添加して処理水槽5において酸化分解処理し、処理後の清浄水2の量1は処理の系外に排出するようにしているが、水質の変化に応じてフィードバック量Aと処理系からの排出量Bを可変制御している。すなわち、センサーたるCOD計により処理対象水4の濃度指標のCODが所定の濃度範囲(50〜100ppm)よりも高く検知されると、フィードバック量Aを増やして且つ処理系からの排出量Bを減らすように制御する。逆に処理対象水4の濃度指標のCODが所定の濃度範囲(50〜100)よりも低く検知されると、フィードバック量Aを減らして且つ処理系からの排出量Bを増やすように制御する。   If the concentration range (COD) and flow rate of the water 4 to be treated is a predetermined range suitable for treatment of COD of 50 to 100 ppm, the basic setting is 1 amount of waste water (COD 1000 to 2000 ppm) 1 before treatment. The amount of clean water (COD less than 5ppm, preferably less than 0ppm) 2 after treatment 19 is fed back and mixed to adjust the water to be treated (COD 50-100ppm) 4 and treated with sodium hypochlorite. The water tank 5 is oxidized and decomposed, and the amount 1 of clean water 2 after treatment is discharged out of the treatment system, but the feedback amount A and the discharge amount B from the treatment system can be changed according to changes in water quality. I have control. That is, when the COD of the concentration index of the water 4 to be treated is detected to be higher than the predetermined concentration range (50 to 100 ppm) by the sensor COD meter, the feedback amount A is increased and the discharge amount B from the processing system is decreased. To control. Conversely, when the COD of the concentration index of the water to be treated 4 is detected to be lower than the predetermined concentration range (50 to 100), control is performed to reduce the feedback amount A and increase the discharge amount B from the processing system.

また、この実施形態は既述の如く次亜塩素酸ソーダ(酸化剤)を添加する処理法としており、電解質を含有する水を電気分解して次亜ハロゲン酸を生成させる酸化剤生成電解機構7を具備する。8が電解電極である。そして、前記酸化剤生成電解機構7で生成した酸化剤含有水3を前記処理対象水4に及ぼして(この実施形態では帰還流路6に注入するようにしている)その濃度指標の低減処理を行い、電解質分離手段9において、処理後の清浄水2から電解質を分離したものをフィードバックして処理前の排水1に混合すると共に、分離回収した電解質は酸化剤生成電解機構7へ供給するようにしている。ここで、電解質として酸化剤生成電解機構7へ供給した水量分が処理後の清浄水2から減量されることとなるので、その減量分を補うべく水道水を帰還流路6に補充するようにしてもよい。
前記電解質として塩化ナトリウム(食塩)や臭化ナトリウムなどを例示することができる。前記電解質を含有する水として例えば海水を利用することができる。前記次亜ハロゲン酸として次亜塩素酸や次亜臭素酸などを例示することができる。前記電解質分離手段9としてRO膜を用いたり、イオン交換樹脂を用いたり、電気透析を利用したり、イオンセパレーターを使用したりすることができる。
なお、排水の処理を行う処理水槽5には、処理開始時には未だ処理後の清浄水2が存在しないので水道水や前回の処理後の清浄水2を貯留しておくとよい。また、排水中にss成分等が混在している場合は砂濾過装置などで事前に濾過処理をしておく。
In addition, as described above, this embodiment is a treatment method in which sodium hypochlorite (oxidant) is added, and an oxidant-generating electrolysis mechanism 7 that electrolyzes water containing an electrolyte to generate hypohalous acid. It comprises. 8 is an electrolytic electrode. And the oxidizing agent containing water 3 produced | generated by the said oxidizing agent production | generation electrolysis mechanism 7 is exerted on the said process target water 4 (it is made to inject | pour into the return flow path 6 in this embodiment), and the reduction process of the density | concentration parameter | index is performed. In the electrolyte separation means 9, the separated electrolyte from the treated clean water 2 is fed back and mixed with the wastewater 1 before treatment, and the separated and recovered electrolyte is supplied to the oxidant-generating electrolysis mechanism 7. ing. Here, since the amount of water supplied as the electrolyte to the oxidant-generating electrolysis mechanism 7 is reduced from the treated clean water 2, tap water is replenished to the return flow path 6 to compensate for the reduced amount. May be.
Examples of the electrolyte include sodium chloride (sodium chloride) and sodium bromide. For example, seawater can be used as the water containing the electrolyte. Examples of the hypohalous acid include hypochlorous acid and hypobromous acid. As the electrolyte separation means 9, an RO membrane, an ion exchange resin, electrodialysis, or an ion separator can be used.
In addition, since the treated water tank 5 that performs the wastewater treatment does not yet have the treated clean water 2 at the start of the treatment, it is preferable to store the tap water or the treated water 2 after the previous treatment. Moreover, when ss components etc. are mixed in the waste water, it is filtered in advance with a sand filter or the like.

次に、この実施形態の排水処理方法及びシステムの使用状態を説明する。
この排水処理方法及びシステムによると、処理前の排水(COD 1000〜2000ppm)1にその処理後の清浄水2(COD5ppm未満で好ましくはほぼ0ppm)をフィードバックし混合してこの処理方法(酸化剤たる次亜塩素酸ソーダを添加して酸化分解する処理法)による処理対象水4を調整し、処理前の排水1に対する処理後の清浄水2の混合量は、その排水処理の態様(酸化剤の添加法であるか、電気分解による処理法であるか、生物処理法であるかなど)について処理対象水4の濃度指標と流量とが処理に好適な所定の範囲となるように設定すると共に前記処理対象水4の濃度指標をセンサー(COD計)により検知し、前記処理対象水4の濃度指標が所定の範囲(COD 50〜100ppm)となるように処理前の排水1への処理後の清浄水2のフィードバック量Aとこの処理系からの排出量Bとを制御するようにしたので、処理後の清浄水2をフィードバックして処理対象水4を調整することにより、元々の排水自体の濃度等の変動による処理への影響を軽減して円滑な処理を行うことができると共に、調整槽は必ずしも必要なくまた水質の日々の変動を吸収することができるという利点がある。また、調整に処理後の清浄水2を利用しており、水資源を節約することができ環境問題に資することができるという利点がある。
Next, the use state of the waste water treatment method and system of this embodiment will be described.
According to this wastewater treatment method and system, the wastewater before treatment (COD 1000 to 2000 ppm) 1 is fed back to the treated clean water 2 (COD less than 5 ppm, preferably almost 0 ppm) and mixed to this treatment method (oxidizer) The amount of water 4 to be treated is adjusted by a treatment method in which sodium hypochlorite is added and oxidatively decomposed, and the amount of clean water 2 after treatment with respect to waste water 1 before treatment is determined according to the mode of wastewater treatment (of oxidant). And the concentration index and flow rate of the water to be treated 4 are set to be within a predetermined range suitable for the treatment, as to whether it is an addition method, a treatment method by electrolysis, a biological treatment method, etc. The concentration index of the treatment target water 4 is detected by a sensor (COD meter), and the treated waste water 1 is cleaned after treatment so that the concentration index of the treatment target water 4 falls within a predetermined range (COD 50-100 ppm). Water 2 feedback amount A and this Since the amount of discharge B from the system is controlled, the treated water 4 is adjusted by feeding back the treated clean water 2 so that the effect on the treatment due to fluctuations in the concentration of the original wastewater itself can be reduced. It is possible to reduce and smooth the treatment, and there is an advantage that the adjustment tank is not always necessary and can absorb the daily fluctuation of the water quality. Moreover, the clean water 2 after processing is used for adjustment, and there exists an advantage that a water resource can be saved and it can contribute to an environmental problem.

更に、酸化剤生成電解機構7で生成した酸化剤含有水3を前記処理対象水4に及ぼしてその濃度指標の低減処理を行い、電解質分離手段9において、処理後の清浄水2から電解質を分離したものをフィードバックして処理前の排水1に混合するようにしたので、フィードバックして処理前の排水1に混合する処理後の清浄水2からは電解質が分離されたものとなっており、処理対象水4の電解質の濃度が処理時に累積的に増大していくことを回避することができる。更に、分離回収した電解質は酸化剤生成電解機構7へ供給するようにしたので、酸化剤含有水3に含まれる電解質を酸化剤生成機構に循環してその有効利用を図ることができるという利点がある。
そのうえ、処理後の清浄水2は前記の如く汚れ評価指標の濃度が低減したもの(COD5ppm未満)であるので、種々の用途にリサイクル利用することができ水資源の提供を介して環境問題に資することができるという利点がある。また、処理前の排水1を調整槽などに溜め置きしておくことなく、リアルタイム且つダイレクトに処理することが可能であるという利点がある。
Further, the oxidant-containing water 3 generated by the oxidant-generating electrolysis mechanism 7 is applied to the water 4 to be treated to reduce its concentration index, and the electrolyte separation means 9 separates the electrolyte from the treated clean water 2. Since the wastewater 1 was fed back and mixed with the wastewater 1 before treatment, the electrolyte was separated from the treated clean water 2 fed back and mixed with the wastewater 1 before treatment. It can be avoided that the concentration of the electrolyte of the target water 4 increases cumulatively during the treatment. Furthermore, since the separated and recovered electrolyte is supplied to the oxidant-generating electrolysis mechanism 7, there is an advantage that the electrolyte contained in the oxidant-containing water 3 can be circulated to the oxidant-generating mechanism and effectively used. is there.
In addition, since the treated clean water 2 has a reduced concentration of the soil evaluation index as described above (less than 5 ppm COD), it can be recycled for various uses and contributes to environmental problems through provision of water resources. There is an advantage that you can. Moreover, there exists an advantage that it can process directly in real time, without storing the waste_water | drain 1 before a process in an adjustment tank etc.

(実施形態2)
この実施形態では排水の処理の態様を電気分解とし(図示せず)、排水の導電率が低い場合などの必要に応じて排水に食塩などの電解質を溶解させて適当な導電率を付与して電流が流れるようにし、その陽極酸化や生成するOHラジカル等の酸化作用などによって排水中に含有される有機成分を酸化分解しそのCODを低減させる。処理対象水の処理時(処理中)のpHは、電気分解によって生成する次亜塩素酸等の酸化作用が強い範囲に調整する。
具体的は、食塩などの電解質を添加して処理対象水の電導度につき電気分解が可能な範囲とし、処理水槽に電解電極を挿入して処理対象水を直接的に電気分解するようにしている。この電気分解による処理は、生物処理と相違して瞬時に酸化分解が行われると共に汚泥がでないという利点がある。
(Embodiment 2)
In this embodiment, the wastewater treatment mode is electrolysis (not shown), and an electrolyte such as sodium chloride is dissolved in the wastewater to give an appropriate conductivity as required when the wastewater conductivity is low. By causing an electric current to flow, the organic components contained in the wastewater are oxidatively decomposed to reduce its COD by anodic oxidation and oxidizing action such as generated OH radicals. The pH during treatment (during treatment) of the water to be treated is adjusted to a range in which an oxidizing action such as hypochlorous acid generated by electrolysis is strong.
Specifically, an electrolyte such as sodium chloride is added so that the electrolysis can be performed with respect to the conductivity of the water to be treated, and an electrolytic electrode is inserted into the treatment water tank to directly electrolyze the water to be treated. . Unlike the biological treatment, this electrolysis treatment has an advantage that oxidative decomposition is performed instantaneously and sludge is not generated.

処理後の清浄水をフィードバックして処理対象水を調整することにより、元々の排水自体の濃度等の変動による処理への影響を軽減して円滑な処理を行うことができるので、調整槽は必ずしも必要なくまた水質の日々の変動を吸収することができ、液晶工場の排水や厨房排水その他各種の排水の水処理に適用しまた応用することができる。   By adjusting the water to be treated by feeding back clean water after treatment, the effect on the treatment due to fluctuations in the concentration of the original wastewater itself can be reduced and smooth treatment can be performed. It can absorb daily fluctuations of water quality without necessity, and can be applied and applied to water treatment of liquid crystal factory wastewater, kitchen wastewater and other various wastewater.

この発明の排水処理システムの実施形態を説明する処理フロー図。The processing flowchart explaining embodiment of the waste water treatment system of this invention.

符号の説明Explanation of symbols

1 処理前の排水
2 処理後の清浄水
3 酸化剤含有水
4 処理対象水
5 処理水槽
6 帰還流路
7 酸化剤生成電解機構
1 Wastewater before treatment 2 Clean water after treatment 3 Water containing oxidant 4 Water to be treated 5 Treated water tank 6 Return flow path 7 Oxidant production electrolysis mechanism

Claims (2)

処理前の排水1にその処理後の清浄水2をフィードバックし混合してこの排水処理方法による処理対象水4を調整し、前記処理前の排水1に対する処理後の清浄水2の混合量は、その排水処理の態様について、処理対象水4の濃度指標と流量とが処理に好適な所定の範囲となるように設定すると共に前記処理対象水4の濃度指標をセンサーにより検知し、前記処理対象水4の濃度指標が所定の範囲となるように処理前の排水1への処理後の清浄水2のフィードバック量とこの処理系からの排出量とを制御するようにし、電解質を含有する水を電気分解して次亜ハロゲン酸を生成させる酸化剤生成電解機構7を具備し、前記酸化剤生成電解機構7で生成した酸化剤含有水3を前記処理対象水4に及ぼしてその濃度指標の低減処理を行い、処理後の清浄水2から電解質を分離したものをフィードバックして処理前の排水1に混合すると共に、分離回収した電解質は酸化剤生成電解機構7へ供給するようにしたことを特徴とする排水処理方法。 The treated clean water 2 is fed back and mixed with the waste water 1 before treatment to adjust the treatment target water 4 by this waste water treatment method, and the mixing amount of the treated clean water 2 with respect to the waste water 1 before treatment is: About the aspect of the wastewater treatment, the concentration index and flow rate of the treatment target water 4 are set to be within a predetermined range suitable for treatment, and the concentration index of the treatment target water 4 is detected by a sensor, and the treatment target water 4 The amount of feedback of clean water 2 after treatment to the waste water 1 before treatment and the amount discharged from this treatment system are controlled so that the concentration index of 4 falls within a predetermined range, and the water containing the electrolyte is An oxidizing agent generation electrolysis mechanism 7 that decomposes to generate hypohalous acid is provided, and the oxidizing agent-containing water 3 generated by the oxidizing agent generation electrolysis mechanism 7 is applied to the water 4 to be treated to reduce its concentration index. And after processing With mixing from the clean water 2 to wastewater 1 pretreatment by feeding back the one separating the electrolyte, the waste water treatment method is separated and recovered electrolyte characterized by being adapted to supply to the oxidant generating electrolytic mechanism 7. 排水を処理する処理水槽5とその処理後の清浄水2をフィードバックする帰還流路6とを具備し、処理前の排水1に処理水槽5での処理後の清浄水2を帰還流路6を介してフィードバックし混合して処理対象水4を調整し、前記処理前の排水1に対する処理後の清浄水2の混合量は、その排水処理の態様について、処理対象水4の濃度指標と流量とが処理に好適な所定の範囲となるように設定すると共に前記処理対象水4の濃度指標をセンサーにより検知し、前記処理対象水4の濃度指標が所定の範囲となるように処理前の排水1への処理後の清浄水2のフィードバック量とこの処理系からの排出量とを制御するようにし、電解質を含有する水を電気分解して次亜ハロゲン酸を生成させる酸化剤生成電解機構7を具備し、前記酸化剤生成電解機構7で生成した酸化剤含有水3を前記処理対象水4に及ぼしてその濃度指標の低減処理を行い、処理後の清浄水2から電解質を分離したものをフィードバックして処理前の排水1に混合すると共に、分離回収した電解質は酸化剤生成電解機構7へ供給するようにしたことを特徴とする排水処理システム。 A treated water tank 5 for treating the waste water and a return flow path 6 for feeding back the treated clean water 2 are provided, and the treated clean water 2 after treatment in the treated water tank 5 is passed through the return flow path 6 to the waste water 1 before treatment. The water to be treated 4 is mixed to adjust the treatment target water 4, and the mixed amount of the treated clean water 2 with respect to the waste water 1 before the treatment is the concentration index and flow rate of the treatment target water 4 for the aspect of the waste water treatment. Is set so as to be within a predetermined range suitable for treatment, and the concentration index of the water to be treated 4 is detected by a sensor, and the waste water 1 before treatment so that the concentration index of the water to be treated 4 falls within the predetermined range. An oxidant-generating electrolysis mechanism 7 for controlling the feedback amount of the clean water 2 after the treatment and the discharge amount from the treatment system and electrolyzing the water containing the electrolyte to produce hypohalous acid. Comprising the oxidant-generating electrolysis The oxidizing agent-containing water 3 generated in the structure 7 is applied to the water 4 to be treated to reduce its concentration index, and the electrolyte separated from the treated clean water 2 is fed back to the wastewater 1 before treatment. A wastewater treatment system characterized in that while being mixed, the separated and recovered electrolyte is supplied to an oxidant-generating electrolysis mechanism 7 .
JP2008182498A 2008-07-14 2008-07-14 Wastewater treatment method and system Active JP4831782B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008182498A JP4831782B2 (en) 2008-07-14 2008-07-14 Wastewater treatment method and system
KR1020090063500A KR101070825B1 (en) 2008-07-14 2009-07-13 Wastewater treatment method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008182498A JP4831782B2 (en) 2008-07-14 2008-07-14 Wastewater treatment method and system

Publications (2)

Publication Number Publication Date
JP2010017682A JP2010017682A (en) 2010-01-28
JP4831782B2 true JP4831782B2 (en) 2011-12-07

Family

ID=41703083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008182498A Active JP4831782B2 (en) 2008-07-14 2008-07-14 Wastewater treatment method and system

Country Status (2)

Country Link
JP (1) JP4831782B2 (en)
KR (1) KR101070825B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012139630A (en) * 2010-12-28 2012-07-26 Omega:Kk Water purifying method
KR102099701B1 (en) * 2020-02-13 2020-04-13 (주)이에스텍 re chlorine inserting system for reservoir

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319797A (en) * 1998-05-19 1999-11-24 Meidensha Corp Mixed treatment water quality controller and its control
JP3815977B2 (en) * 2001-03-19 2006-08-30 日本碍子株式会社 Treatment method for wastewater containing high concentration nitrogen
JP3978124B2 (en) * 2002-12-03 2007-09-19 三菱重工業株式会社 Hypochlorous acid self-sufficiency method and equipment in organic waste treatment system
EP1612190A1 (en) * 2004-06-28 2006-01-04 Recticel Method of purifying polluted water
JP2006035140A (en) * 2004-07-28 2006-02-09 Maywa Co Ltd Method for decomposing agricultural chemical in waste water
JP4667910B2 (en) * 2005-03-04 2011-04-13 三菱重工環境・化学エンジニアリング株式会社 Waste treatment method and equipment
JP2007253024A (en) * 2006-03-22 2007-10-04 Miura Co Ltd Filtration system and its operation method

Also Published As

Publication number Publication date
JP2010017682A (en) 2010-01-28
KR20100007811A (en) 2010-01-22
KR101070825B1 (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP4671743B2 (en) Electrolytic treatment method and apparatus for wastewater containing ammonia nitrogen
US7300592B2 (en) Water treatment device
JP4040028B2 (en) Method and system for treating water to be treated containing organic matter and nitrogen compound
CN113121058B (en) Process method for removing nitrate nitrogen in high-salinity wastewater
Tien et al. Electrooxidation of tannery wastewater with continuous flow system: Role of electrode materials
CA2159198A1 (en) Oxidative method of purifying highly contaminated waste water
Lahav et al. Potential applications of indirect electrochemical ammonia oxidation within the operation of freshwater and saline-water recirculating aquaculture systems
JP2017114705A (en) Method for producing sodium hypochlorite, and sodium hypochlorite production device
JP2018035024A (en) Method for producing sodium hypochlorite, and sodium hypochlorite production device
JP4865651B2 (en) Wastewater treatment method and apparatus
JP4831782B2 (en) Wastewater treatment method and system
Yeon et al. Integrating electrochemical processes with electrodialysis reversal and electro-oxidation to minimize COD and TN at wastewater treatment facilities of power plants
KR100670629B1 (en) Electrolysis treatment facilities and method of cpp regeneration wastewater
Kim et al. Electrolytic decomposition of ammonia to nitrogen in a multi-cell-stacked electrolyzer with a self-pH-adjustment function
Shin et al. Performance assessment of a combined system using a biological aerated filter and electro-coagulation for advanced wastewater treatment
JP4171440B2 (en) Waste water treatment apparatus and waste water treatment method using the same
JP2005296922A (en) Sterilizing system of rainwater
KR100545306B1 (en) Electrochemical process for wastewater containing nitric acid
JP6565966B2 (en) Water treatment method
US20040134862A1 (en) Device and method for tertiary treatment of wastewater and other contaminated aqueous media (CAM)
US20240092666A1 (en) Method and system for wastewater treatment by membrane filtration and electrochemical oxidation
JP2006231177A (en) Endocrine disrupting chemical substance decomposing method and apparatus
JP2005144366A (en) Waste water treatment system
KR102613581B1 (en) An apparatus and method for treating waste water containing non-de gradable organic material
JP2008200667A (en) Method and apparatus for deodorizing, decolorizing and sterilizing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110916

R150 Certificate of patent or registration of utility model

Ref document number: 4831782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250