KR20100007811A - Wastewater treatment method and system - Google Patents

Wastewater treatment method and system Download PDF

Info

Publication number
KR20100007811A
KR20100007811A KR1020090063500A KR20090063500A KR20100007811A KR 20100007811 A KR20100007811 A KR 20100007811A KR 1020090063500 A KR1020090063500 A KR 1020090063500A KR 20090063500 A KR20090063500 A KR 20090063500A KR 20100007811 A KR20100007811 A KR 20100007811A
Authority
KR
South Korea
Prior art keywords
treatment
water
treated
wastewater
amount
Prior art date
Application number
KR1020090063500A
Other languages
Korean (ko)
Other versions
KR101070825B1 (en
Inventor
신이치 나카무라
Original Assignee
가부시키가이샤 오메가
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 오메가 filed Critical 가부시키가이샤 오메가
Publication of KR20100007811A publication Critical patent/KR20100007811A/en
Application granted granted Critical
Publication of KR101070825B1 publication Critical patent/KR101070825B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46145Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/06Sludge reduction, e.g. by lysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE: A wastewater treatment method and a wastewater treatment system thereof are provided to treat change of water quality without an adjusting bath, and to process the drainage of the concentration by adjusting the water to be processed. CONSTITUTION: A wastewater treatment method includes the following steps: adjusting water(4) to be processed by mixing clean water(2) with drainage(1) which is not processed; detecting a concentration index of the water to be processed while setting up the missed amount of the clean water; and controlling the discharge amount of the clean water. The wastewater treatment method further includes a step for reducing the concentration index of the water with an oxidizer absorbed water(3), and a step for supplying an electrolyte to an oxidizer producing device(7).

Description

배수처리방법 및 시스템 {Wastewater treatment method and system}Wastewater treatment method and system

본 발명은 비교적 고농도의 배수에 특히 적합한 배수 처리 방법 및 시스템에 관한 것이다. The present invention relates to wastewater treatment methods and systems that are particularly suitable for relatively high concentrations of wastewater.

종래부터 액정공장의 배수나 주방 배수, 기타 각종 배수가 있는데, 이들 배수는 원래는 청정수였지만 사용 후에는 유기 성분 기타 다른 것으로 오염된다. Conventionally, there are drainage of a liquid crystal factory, kitchen drainage, and various other drainages. These drainages were originally clean water, but after use, they are contaminated with organic components or the like.

이와 같이 여러 가지의 배수가 있지만 그 수량이나 수질은 날이나 시간대에 따라서 변동된다. 예를 들면, 같은 날이라도 시간대에 따라서 COD(화학적 산소 요구량)가 높을 때로 2,000ppm에 가까우며 낮을 때는 1,000ppm을 넘거나 한다. 따라서 처리에 있어서는 수량(水量)이나 수질(水質)을 평균화하고 또한 처리 가능한 소정의 농도(생물처리의 경우는 COD 500ppm정도가 된다)까지 희석되므로 조정조(특허문헌1, 일본 특개평11-347596호 공보)에 하루분 정도를 저장하여 두었다. 즉 매일 처리해야 할 양이 1,000톤인 경우, 1000톤+α 크기의 조정조(피트)를 설치하여서 그곳에 담아 둔다. 이와 같이 하여 COD가 1,000~2,000ppm으로 변동되었다고 하더라도 조정조에 담아두는 동안에 점차 수질이 균일 평균화되어서 다음날에는 어느 위치에서도 1,500ppm정도가 된다. 이와 같이 하여서 평균화된 후에 처리하면, 배수 본래의 수량이나 수질의 시간 경과에 따른 업다운의 영향을 경감시켜서 처리를 안정화시킬 수 있다. Like this, there are various kinds of drainages, but the quantity and quality of water fluctuate according to the day or time. For example, on the same day, depending on the time of day, the COD (chemical oxygen demand) is high, which is close to 2,000 ppm, and when it is low, it exceeds 1,000 ppm. Therefore, in the treatment, the adjustment tank (Patent Literature 1, Japanese Patent Laid-Open No. 11-347596) can be averaged and diluted to a predetermined concentration that can be treated (in the case of biological treatment, the COD is about 500 ppm). Gazette) is stored for a day. In other words, if the amount to be treated every day 1,000 tons, 1000 to + + size adjustment tank (feet) is installed and put there. In this way, even if the COD fluctuates from 1,000 to 2,000ppm, the water quality is gradually averaged during storage in the adjusting tank, so that the next day is about 1,500ppm at any position. In this way, if the treatment is averaged and then treated, the treatment can be stabilized by reducing the influence of up-down of the wastewater original water quality and water quality over time.

그러나 배수를 담아두기 위해서 조정조가 큰 피트가 요구되며 게다가 조정조를 사용하더라도 매일 매일의 변동 때문인지 처리시의 수질이 변동되는 경우가 있다는 문제가 있었다.However, there is a problem that the adjustment tank requires a large pit in order to store the drainage, and there is a problem that even if the adjustment tank is used, the water quality at the time of treatment may fluctuate because of daily fluctuations.

여기서, 본 발명은 조정조(調整槽)는 반드시 필요로 하지 않으면서 수질의 매일 매일의 변동을 흡수할 수 있는 배수처리방법 및 시스템을 제공하고자 하는 것이다. It is an object of the present invention to provide a wastewater treatment method and system capable of absorbing daily fluctuations in water quality without necessarily requiring an adjustment tank.

상기 과제를 해결하기 위해 본 발명에서는 다음과 같은 기술적 수단을 강구하였다. In order to solve the above problems, the present invention has been made the following technical means.

(1) 본 발명의 배수처리방법은, 처리전의 배수에 그 처리후의 청정수를 피드백하여 혼합하여서 이 처리방법에 따른 처리대상수를 조정하고 상기 처리전의 배수에 대한 처리후의 청정수의 혼합량은 그 배수처리의 양태에 관해서 처리대상수의 농도지표와 유량이 처리에 적합한 소정의 범위가 되도록 설정하면서 상기 처리대상수의 농도지표를 센서로 검지하여 상기 처리대상수의 농도지표가 소정의 범위가 되도록 처리전의 배수로 처리후의 청정수의 피드백량과 이 처리계로부터의 배출량을 제어하도록 한 것을 특징으로 한다. (1) In the wastewater treatment method of the present invention, the clean water after the treatment is fed back to the wastewater before the treatment and mixed to adjust the water to be treated according to this treatment method, and the mixed amount of the clean water after the treatment to the wastewater before the treatment is the wastewater treatment. In the above aspect, while setting the concentration index and the flow rate of the water to be treated to be within a predetermined range suitable for the treatment, the concentration index of the water to be treated is detected by a sensor so that the concentration index of the water to be treated is within the predetermined range. It is characterized by controlling the amount of feedback of the clean water after the drainage treatment and the amount of discharge from the treatment system.

여기서, 배수 처리의 양태로서 생물처리, 전기분해에 의한 처리, 산화제(차아염소산소다 등)를 첨가하는 처리 등을 예시할 수 있다. 상기 농도지표로서 COD(화학적 산소 요구량), BOD(생물 화학적 산소 요구량), TOC, T-N, n-헥산 등을 예시할 수 있다. Here, as an aspect of wastewater treatment, a biological treatment, a treatment by electrolysis, a treatment of adding an oxidizing agent (sodium hypochlorite, etc.) can be exemplified. Examples of the concentration index include COD (chemical oxygen demand), BOD (biochemical oxygen demand), TOC, T-N, n-hexane, and the like.

이 배수처리방법에 따르면 「처리전의 배수(예를 들면, COD 1000~2000ppm)」에 그 「처리후의 청정수(예를 들면, COD 5ppm미만)」를 피드백하여 혼합하여서 그 처리방법에 의한 「처리대상수(處理對象水)」를 조정하고, 「처리전의 배수」에 대한 「처리후의 청정수」의 혼합량은 그 배수처리의 양태(생물처리인지, 전기분해에 의한 처리인지 등)에 관해서 「처리대상수」의 농도지표와 유량이 처리에 적합한 소정 범위가 되도록 설정하면서 상기 「처리전의 배수」와 「처리후의 청정수」와 「처리대상수」의 농도지표를 센서(예를 들면, COD계)로 검지하여, 상기 「처리대상수」의 농도지표가 소정의 지표(예를 들면, 전기분해나 산화제의 첨가에 의한 처리에서는 COD 50~100ppm)가 되도록 「처리전의 배수」로 「처리후의 청정수」의 피득백량과 이 처리계로부터의 배출량을 제어하도록 하였기 때문에, 처리후의 청정수를 피드백하여서 처리대상수를 조정함에 따라 원래의 배수 자체의 농도들의 변동에 의한 처리로의 영향을 경감시켜서 원활한 처리를 이룰 수 있다. 또한 조정에 처리후의 청정수를 이용하고 있어 수자원을 절감할 수 있으며 환경문제에 이바지할 수 있다. According to this wastewater treatment method, the "clean water after treatment" (for example, COD 1000 to 2000 ppm) is fed back and mixed with the "clean water after treatment (for example, less than 5 ppm COD)", and the "treatment target" by the treatment method is used. Water is adjusted, and the mixed amount of "clean water after treatment" with respect to "drainage before treatment" is regarded as "water to be treated with respect to the aspect of the wastewater treatment (bio treatment or treatment by electrolysis). And the concentration indicators of "drainage before treatment", "clean water after treatment" and "water to be treated" are detected by a sensor (e.g., a COD system) while setting the concentration index and the flow rate within a predetermined range suitable for the treatment. The amount of gained amount of "clean water after treatment" in the "drainage before treatment" such that the concentration index of the "water to be treated" becomes a predetermined index (for example, COD 50 to 100 ppm in the treatment by electrolysis or addition of an oxidizing agent). And this processing system Because of the control to the discharge, and thereby reduce an effect of a treatment with a variation of a multiple of the original self-concentration to achieve a seamless process as hayeoseo feeding back the clean water after the treatment process can adjust the destination. In addition, clean water after treatment is used for adjustment, which can save water resources and contribute to environmental problems.

여기서, 센서로 상기 처리대상수 이외에 처리전의 배수와 처리후의 청정수의 농도 지표도 검지하도록 하면, 원래의 배수와 처리계로부터 배출되는 청정수의 농도지표도 파악할 수 있어서 실제로 특히 배출되는 청정수에 관해서 바람직하다. In this case, when the sensor detects the concentration index of the wastewater before treatment and the clean water after the treatment in addition to the water to be treated, the concentration index of the original wastewater and the clean water discharged from the treatment system can be grasped. .

그런데, 처리의 양태가 전기분해인 경우는, 필요에 따라서 배수에 식염 등의 전해질을 용해시켜서 적당한 도전율을 부여하여 전류가 흐르도록 하고, 그 양극(陽極)산화나 생성되는 OH라디칼 등의 산화 작용 등에 따라서 배수 중에 함유되는 유 기성분을 산화 분해하여 그 COD를 저감시킨다. 처리대상수의 처리시(처리중)의 pH는 전기분해에 의해 생성되는 차아염소산 등의 산화작용이 강한 범위로 조정한다. 이 전기 분해에 따른 처리는 생물처리와 상이하여서 순식간에 산화분해가 이루어지면서 오니(슬러지)가 나오지 않는 이점이 있다. By the way, when the treatment mode is electrolysis, electrolytes such as salts are dissolved in the drainage to provide an appropriate conductivity so that the electric current flows as necessary, and the oxidation of the anodic oxidation and the generated OH radicals is performed. The COD is reduced by oxidatively decomposing the organic components contained in the drainage, for example. The pH at the time of treatment (treatment) of the water to be treated is adjusted to a range in which oxidation action such as hypochlorous acid generated by electrolysis is strong. The treatment according to this electrolysis is different from the biological treatment, so there is an advantage that sludge (sludge) does not come out while oxidative decomposition takes place in an instant.

(2) 전해질을 함유하는 물을 전기분해하여서 차아할로겐산을 생성시키는 산화제 생성 전해기구를 구비하며 상기 산화제 생성 전해기구로 생성된 산화제 함유수를 상기 처리대상수에 이르게 하여서 그 농도지표의 저감 처리를 수행하고 처리후의 청정수로부터 전해질을 분리한 것을 피드백하여서 처리전의 배수에 혼합하면서 분리 회수한 전해질은 산화제 생성 전해기구로 공급하도록 하여도 좋다. (2) an oxidizing agent generating electrolytic apparatus for generating hypohalogenic acid by electrolyzing water containing an electrolyte, and reducing the concentration index by bringing the oxidant-containing water generated by the oxidizing agent producing electrolytic apparatus to the water to be treated; The electrolyte separated from the clean water after the treatment and fed back to the wastewater before treatment may be supplied to the oxidizer generating electrolytic apparatus.

여기서, 상기 전해질로서 염화나트륨(식염)이나 브롬화나트륨 등을 예시할 수 있다. 상기 전해질을 함유하는 물로서 예를 들면 해수(海水)를 이용할 수 있다. 상기 차아할로겐산으로서 차아염소산이나 차아브롬산 등을 예시할 수 있다. 전해질을 분리하는 수단으로서 RO막을 이용하거나, 이온 교환 수지를 이용하거나, 전기투석을 이용하거나, 이온 세퍼레이터를 사용할 수 있다. Here, sodium chloride (salt), sodium bromide, etc. can be illustrated as said electrolyte. As water containing the electrolyte, for example, seawater can be used. Examples of the hypohalogen acid include hypochlorous acid and hypobromic acid. As means for separating the electrolyte, an RO membrane, an ion exchange resin, an electrodialysis, or an ion separator can be used.

이와 같이 구성하여서 산화제 생성 전해기구로 생성된 산화제 함유수를 상기 처리대상수로 미치도록 하여서 그 농도지표의 저감 처리를 수행하고, 처리후의 청정수로부터 전해질을 분리한 것을 피드백하여서 처리전의 배수에 혼합하도록 하였기 때문에, 피드백하여서 처리전의 배수에 혼합하는 처리후의 청정수로부터는 전해질이 분리된 것이 되며 전해질의 농도가 처리시에 누적되어 증대되어 가는 것을 회 피할 수 있다. 또한 분리 회수된 전해질은 산화제 생성 전해기구로 공급되도록 하였기 때문에, 산화제 함유수에 포함되는 전해질을 산화제 생성 기구로 순환시켜서 유효하게 이용할 수 있다. In this manner, the oxidant-containing electrolysed water generated by the oxidant-producing electrolyzer is passed to the water to be treated, and the concentration indicator is reduced. Then, the electrolyte is separated from the clean water after the treatment and fed back to the wastewater before treatment. As a result, the electrolyte is separated from the clean water after the treatment which is fed back into the waste water before the treatment, and the concentration of the electrolyte can be avoided from accumulating and increasing during the treatment. Since the separated and recovered electrolyte is supplied to the oxidant generating electrolyzer, the electrolyte contained in the oxidant-containing water can be circulated to the oxidant generating mechanism and used effectively.

(3) 본 발명의 배수처리시스템은, 배수를 처리하는 처리수조와 그 처리후의 청정수를 피드백하는 귀환유로를 구비하여 처리전의 배수에 처리수조에서의 처리후의 청정수를 귀환유로를 통하여 피드백하여 혼합하여서 처리대상수를 조정하고, 상기 처리전의 배수에 대한 처리후의 청정수의 혼합량은 그 배수처리의 양태에 관하여 처리대상수의 농도지표와 유량이 처리에 적합한 소정의 범위가 되도록 설정하면서 상기 처리대상수의 농도지표를 센서로 검지하고 상기 처리대상수의 농도지표가 소정의 범위가 되도록 처리전의 배수로의 처리후의 청정수의 피드백량과 이 처리계로부터의 배출량을 제어하도록 한 것을 특징으로 한다.(3) The wastewater treatment system of the present invention includes a treatment tank for treating wastewater and a return passage for feeding back clean water after the treatment, and feeds and mixes clean water after treatment in the treatment tank via the return passage to the wastewater before treatment. Adjust the number of treatment targets, and set the mixing amount of the clean water after the treatment to the wastewater before treatment so that the concentration index and the flow rate of the treatment target water are within a predetermined range suitable for the treatment with respect to the aspect of the wastewater treatment. The concentration index is detected by a sensor, and the feedback amount of the clean water after the treatment to the drainage channel before the treatment and the discharge amount from the treatment system are controlled so that the concentration index of the water to be treated is within a predetermined range.

이 배수처리 시스템은 상기 배수처리방법과 같은 작용을 갖는다. 여기서 배수를 공급하여 처리를 수행하는 처리수조에는, 처리개시시에는(아직 처리후의 청정수가 아니기 때문에) 수돗물(또는 전회의 처리후의 청정수)을 저장하여 두면 좋다. This wastewater treatment system has the same function as the wastewater treatment method. Here, in the treated water tank which supplies the waste water and performs the treatment, tap water (or clean water after the last treatment) may be stored at the start of the treatment (because it is not the clean water after the treatment).

본 발명은 상술한 바와 같은 구성으로 이루어져 다음과 같은 효과를 갖는다. The present invention consists of the configuration as described above has the following effects.

처리후의 청정수를 피드백하여서 처리대상수를 조정함으로써 원래 배수 자체의 농도들의 변동에 따른 처리로의 영향을 경감하여서 원활한 처리를 이룰 수 있기 때문에 조정조는 반드시 필요하지 않으며 또한 수질의 매일 매일의 변동을 흡수할 수 있다. Adjusting the treated water by feeding back the purified water after treatment can reduce the effect on the treatment due to the fluctuations in the concentrations of the original drainage, and thus, the adjustment tank is not necessary and also absorbs the daily fluctuations in the water quality. can do.

배수로서 공장배수나 주방배수 기타 각종 배수가 있는데, 그 처리방법으로서 생물처리법, 응집침전법, 전기분해에 의한 처리법, 산화제(차아염소산소다 등)을 첨가하는 처리법 등이 있으며, 또한 배수의 오염 정도를 평가하는 농도지표로서 BOD(생물 화학적 산소 요구량), COD(화학적 산소 요구량), TOC, T-N, n-헥산 등이 있다.There are plant drainage, kitchen drainage and other various wastewaters, and the treatment methods include biotreatment, flocculation sedimentation, electrolysis treatment, treatment with addition of an oxidizing agent (sodium hypochlorite, etc.) and the degree of contamination of the drainage. Concentration indicators for evaluating BOD (biochemical oxygen demand), COD (chemical oxygen demand), TOC, TN, n-hexane and the like.

그런데, 배수는 시기나 시간대에 따라서 수량이나 수질이 제법 변동하는 것이다. 예를 들면 액정 텔레비전의 제조공장의 경우, 생산설비의 가동상황은 세일 등 사회의 수요환경에 따라서 크게 달라지는 것으로 계획생산을 하도록 하더라도 100%가동시에는 대량의 배수가 발생되는 반면, 그 시기를 지나면 일변하여 거의 휴업상태에 가까운 상황이 되는 경우가 있다. 또한 사람이 많아서 물의 사용량이 많은 시간대와 사람이 적은 시간대에도 배수량은 상당히 다르다. 여기서, 부지 내에 배수의 저장조로서 커다란 피트를 굴착 공사하고(상당한 부지 면적이 요구된다), 이 피트내에 배수를 저장하여서 가능한 한 수량·수질의 평균화· 균일화를 도모하고자 하지만, 여기서 나오는 처리해야할 배수의 수질은 의외로 변동적이다. 따라서 실제 처리시에 BOD농도나 COD농도가 지나치게 높거나 지나치게 낮아서 적절한 처리를 수행할 수 없는, 환언하면 배수가 완전하게 정화되어 있지 않은 경우도 보였다.By the way, the amount of water and water quality fluctuate fluently depending on time and time. For example, in the case of a LCD television manufacturing plant, the operating conditions of the production facilities vary greatly depending on the demand environment of the society such as sales. Even if the planned production is performed, a large amount of drainage occurs at 100% operation. In some cases, the situation may be almost closed. In addition, the amount of drainage varies considerably even during times of high water usage and low times of water usage due to the large number of people. Here, a large pit is excavated as a storage tank for drainage (a considerable site area is required), and drainage is stored in this pit to achieve as much as possible averaging and equalizing the quantity and quality of water. Water quality is surprisingly variable. Therefore, in actual treatment, the BOD concentration or the COD concentration was too high or too low to perform proper treatment. In other words, the drainage was not completely purified.

이 때문에 커다란 에버포레이터(evaporator)를 여러 개 나란히 설치하고, 각각에서 배수를 증발시켜 다시 액화시키고(고농도 유기성분은 증발되지 않고 농축되어 찌꺼기가 된다), 그 다시 액화된 만큼(고농도 유기성분이 감소되어 있기 때문에 COD도 어느 정도는 저감되어 있다)을 생물 처리하면서 증발찌꺼기는 폐기물로서 처분하는것이 시행되고 있지만, 배수량이 많으면 연료비가 많이 들어서 최선책이라고는 하기 어렵고 또한 폐기물 찌꺼기의 운반에도 막대한 비용과 노력이 요구된다. For this reason, a large number of large evaporators are installed side by side, each of them drains again to liquefy by evaporating (high concentration organic components are concentrated rather than evaporated) and then again liquefied (high concentration organic components are reduced). While the COD is reduced to some extent, the disposal of the evaporated wastes as wastes is being carried out while the biological treatment is carried out. Is required.

이 배수처리방법 및 시스템은 배수의 수량·수질은 변동하는 것임을 전제로서 용인하면서 이 변동을 얼마나 축소·흡수하여서 처리하는가에 착안한 것으로 다음과 같이 구성하였다.This wastewater treatment method and system was conceived based on the premise that the quantity and water quality of the waste water fluctuate, and how to reduce and absorb the fluctuation.

이하, 본 발명의 실시형태를 설명한다. EMBODIMENT OF THE INVENTION Hereinafter, embodiment of this invention is described.

(실시형태1)Embodiment 1

이 배수처리방법은 처리전의 배수(COD 1000~2000ppm)(1)에 그 처리후의 청정수(COD 5ppm미만으로 바람직하게는 거의 0ppm)(2)를 피드백하여 혼합하고, 이 처리방법(산화제 함유수(3)인 차아염소산소다를 첨가하여서 산화 분해하는 처리법으로 하였다)에 의한 처리대상수(4)를 조정하도록 한다. 또한 이 실시형태에서는 COD 1000~2000ppm의 배수를 처리하였는데, 어떤 농도의 배수, 예를 들면 COD 300000ppm 같은 고농도의 배수라도 적용이 가능하다. This wastewater treatment method feeds back the mixed wastewater before treatment (COD 1000 to 2000 ppm) 1 and clean water after the treatment (less than 5 ppm COD, preferably almost 0 ppm) (2), and mixes this treatment method (oxidant-containing water ( (3) is adjusted to oxidatively decompose by adding sodium hypochlorite. Furthermore, in this embodiment, although the wastewater of 1000-2000 ppm of COD was processed, the wastewater of any density | concentration, for example, high concentration wastewater, such as COD 300000 ppm, is applicable.

한편, 이 배수처리시스템은 상기 배수처리방법을 장치화한 것이며, 배수를 처리할 처리수조(5)와 그 처리후의 청정수(2)를 피드백하는 귀환유로(6)를 구비하 고, 처리전의 배수(1)에 처리수조(5)에서의 처리후의 청정수(2)를 귀환유로(6)를 통하여 피드백하여 혼합하여서 처리대상수(4)를 조정하도록 한다. 또한 처리후의 청정수(2)를 피드백하여서 처리전의 배수(1)와 혼합하여서 처리대상수(4)를 조정하는 것이지만, 수돗물 등 외부의 청정수도 함께 혼합하도록 하여도 좋다(미도시).On the other hand, this wastewater treatment system is a device of the above-described wastewater treatment method, and includes a treatment water tank 5 to treat wastewater and a return passage 6 for feeding back clean water 2 after the treatment, and draining water before treatment. In step (1), the purified water 2 after the treatment in the treated water tank 5 is fed back through the return flow path 6 to be mixed to adjust the water to be treated 4. The purified water 2 after the treatment is fed back and mixed with the wastewater 1 before the treatment to adjust the treated water 4, but external clean water such as tap water may be mixed together (not shown).

상기 처리전의 배수(1)에 대한 처리후의 청정수(2)의 혼합량은, 그 배수처리의 양태(산화제의 첨가법이나, 전기분해에 의한 처리법이나, 생물 처리법 등)에 관하여, 처리대상수(4)의 농도지표(COD)와 유량이 처리에 적합한 소정의 범위가 되도록 설정하면서 상기 처리전의 배수(1)와 처리후의 청정수(2)와 처리대상수(4)의 농도지표를 센서(COD계)로 검지하여 상기 처리대상수(4)의 농도지표가 소정의 범위(전기분해나 산화제 첨가에 의한 처리에서는 예를 들면 COD 50~100ppm으로 할 수 있으며, 생물 처리의 경우는 400~600ppm 정도가 바람직하다)가 되도록, 처리전의 배수(1)로의 처리후 청정수(2)의 피드백량(A)과 이 처리계로부터의 배출량(B)을 제어하도록 한다. 또한 처리전의 배수(1)의 농도지표의 센서를 S1, 처리후의 청정수(2)의 농도지표의 센서를 S2, 처리대상수(4)의 농도지표의 센서를 S3으로 나타낸다. The mixed amount of the clean water 2 after the treatment with respect to the waste water 1 before the treatment is treated with water (4) with respect to the aspect of the wastewater treatment (addition of oxidizing agent, electrolytic treatment, biological treatment, etc.). The concentration index (COD) of the wastewater 1 before the treatment, the clean water 2 after the treatment, and the water to be treated 4 are set so that the concentration index (COD) and the flow rate are set to a predetermined range suitable for the treatment. The concentration index of the water to be treated (4) can be set to a predetermined range (for example, COD of 50 to 100 ppm in the treatment by electrolysis or addition of an oxidant, and in the case of biological treatment, about 400 to 600 ppm is preferable. The feedback amount A of the clean water 2 after treatment to the wastewater 1 before treatment and the discharge amount B from the treatment system are controlled. In addition, the sensor of the density | concentration indicator of the waste water 1 before processing is shown by S1, the sensor of the density | concentration indicator of the clean water 2 after processing is shown by S2, and the sensor of the density | concentration indicator of the water to be treated 4 is represented by S3.

그런데, 상기 처리대상수(4)의 농도지표(COD)와 유량이 처리에 적합한 소정의 범위는 그 처리장치(전기분해나 산화제 첨가)나 처리시설(생물처리나 응집침전) 개개의 구체적인 사양 등에 따라서 다르다. 즉 전기분해나 산화제의 첨가에 의한 처리에서는 그 장치의 사양·사고방식에 따라서는 상기의 COD 50~100ppm이 아니고 COD 10~20ppm 그 외의 범위 쪽이 적합한 것이 된다. 즉, 상기 처리대상수(4)의 농 도지표의 소정 범위를 낮은 농도범위(COD 10~20ppm)로 설정한 경우, 배수의 수질 등의 변동을 보다 축소하여 흡수할 수 있는 이점이 있다. 한편, 상기 처리대상수(4)의 농도지표의 소정의 범위를 COD 50~100ppm으로 설정한 경우, 처리후의 청정수(2)의 피드백량을 줄여서 전체적인 총처리량을 적게 할 수 있는 이점이 있다. 그렇다고 해도 그 처리장치나 처리시설의 사양이나 사고방식을 감안하여 처리대상수(4)의 농도지표(COD)와 유량이 처리에 적합한 소정의 범위는 명확하게 존재한다. By the way, the predetermined range in which the concentration index (COD) and the flow rate of the water to be treated 4 are suitable for the treatment is specified in the specific specifications of the treatment apparatus (electrolysis or oxidizing agent) or treatment facility (biotreatment or flocculation sedimentation). Therefore it is different. In other words, in the treatment by the electrolysis or the addition of the oxidizing agent, the range of COD 10-20 ppm other than the above COD is suitable, depending on the specification and the accident method of the apparatus. That is, when the predetermined range of the concentration index of the water to be treated (4) is set to a low concentration range (COD 10 to 20 ppm), there is an advantage that it is possible to further reduce and absorb variations such as water quality of the waste water. On the other hand, when the predetermined range of the concentration index of the water to be treated (4) is set to 50 to 100 ppm COD, there is an advantage that the total amount of processing can be reduced by reducing the feedback amount of the clean water (2) after treatment. Even so, there is clearly a predetermined range in which the concentration index (COD) and the flow rate of the water to be treated (4) are suitable for the treatment in consideration of the specifications or the way of thinking of the treatment apparatus or treatment facility.

상기 처리대상수(4)의 농도지표(COD)와 유량이 처리에 적합한 소정의 범위가 C0D 50~100ppm인 경우, 기본적인 설정은 처리전의 배수(1000~2000ppm)(1)의 양(量)1에 대해서 처리후의 청정수(COD 5ppm미만으로 바람직하게는 거의 0ppm)(2)의 양 19를 피드백하여 혼합하여서 처리대상수(COD50~100ppm)(4)를 조정하고, 차아염소산소다를 첨가하여 처리수조(5)에서 산화 분해 처리하고 처리후의 청정수(2)의 양1은 처리계 밖으로 배출되도록 하고 있는데, 수질의 변화에 따라서 피드백량(A)과 처리계로부터의 배출량(B)을 가변 제어한다. 즉 센서인 COD계에 의해 처리대상수(4)의 농도지표 COD가 소정의 농도범위(50~100ppm)보다도 높게 검출되면, 피드백량(A)을 늘리면서 처리계로부터의 배출량(B)을 줄이도록 제어한다. 반대로 처리대상수(4)의 농도지표 COD가 소정의 농도범위(50~100)보다도 낮게 검출되면, 피드백량(A)을 줄이면서 처리계로부터의 배출량(B)을 늘리도록 제어한다. When the concentration range (COD) of the water to be treated (4) and the predetermined range suitable for the treatment are C0D 50 to 100 ppm, the basic setting is the amount of wastewater (1000 to 2000 ppm) 1 before treatment (1). The amount of the treated water (COD50 to 100 ppm) (4) was adjusted by feeding back the amount 19 of the treated clean water (preferably less than 5 ppm of COD, preferably almost 0 ppm) (2), and adding hypochlorous acid. The amount 1 of the clean water 2 after the oxidative decomposition treatment in (5) is discharged out of the treatment system, but the feedback amount A and the discharge amount B from the treatment system are variably controlled in accordance with the change in the water quality. That is, when the concentration indicator COD of the water to be treated (4) is detected to be higher than the predetermined concentration range (50 to 100 ppm) by the COD system as a sensor, the amount of feedback (A) is increased while reducing the discharge amount (B) from the processing system. To control. On the contrary, if the concentration index COD of the water to be treated 4 is detected to be lower than the predetermined concentration range 50 to 100, the control unit is controlled to increase the discharge amount B from the processing system while reducing the feedback amount A. FIG.

또한, 이 실시형태는 기술한 바와 같이 차아염소산소다(산화제)를 첨가하는 처리법으로 하고 있으며, 전해질을 함유하는 물을 전기분해하여서 차아할로겐산을 생성시키는 산화제 생성 전해기구(7)를 구비한다. (8)이 전해전극이다. 그리고 상기 산화제 생성 전해기구(7)에서 생성한 산화제 함유수(3)를 상기 처리대상수(4)에 미치게 하여서(이 실시형태에서는 귀환유로(6)로 주입하도록 한다) 그 농도지표의 저감처리를 수행하고, 전해질 분리수단(9)에 있어서 처리후의 청정수(2)로부터 전해질을 분리한 것을 피드백하여서 처리전의 배수(1)로 혼합하면서, 분리 회수한 전해질은 산화제 생성 전해기구(7)로 공급하도록 한다. 여기서, 전해질로서 산화제 생성 전해기구(7)로 공급된 수량(水量)만큼이 처리후의 청정수(2)에서 감량되게 되므로, 그 감량분을 보충하도록 수돗물을 귀환유로(6)로 보충하도록 해도 좋다.In addition, this embodiment uses a treatment method of adding sodium hypochlorite (oxidizing agent) as described above, and includes an oxidizing agent generating electrolytic mechanism 7 which generates hypohalogenous acid by electrolyzing water containing an electrolyte. (8) is an electrolytic electrode. Then, the oxidant-containing electrolyzer 7 causes the oxidant-containing water 3 to reach the treated water 4 (in this embodiment, to be injected into the return flow path 6) to reduce the concentration index. In the electrolyte separation means 9 is fed back to the separation of the electrolyte from the clean water 2 after the treatment, and mixed with the drainage 1 before the treatment, and the separated and recovered electrolyte is supplied to the oxidant generating electrolysis apparatus 7. Do it. Since the amount of water supplied to the oxidant generating electrolytic apparatus 7 as the electrolyte is reduced in the clean water 2 after the treatment, the tap water may be replenished with the return flow path 6 so as to replenish the loss.

상기 전해질로서 염화나트륨(식염)이나 브롬화나트륨 등을 예시할 수 있다. 상기 전해질을 함유하는 물로서 예를 들면 해수를 이용할 수 있다. 상기 차아할로겐산으로서 차아염소산이나 차아브롬산 등을 예시할 수 있다. 상기 전해질 분리수단(9)으로서 RO막을 이용하거나, 이온 교환수지를 이용하거나, 전기 투석을 이용하거나 이온 세퍼레이터를 사용할 수 있다. Examples of the electrolyte include sodium chloride (salt), sodium bromide, and the like. As water containing the electrolyte, for example, seawater can be used. Examples of the hypohalogen acid include hypochlorous acid and hypobromic acid. As the electrolyte separation means 9, an RO membrane, an ion exchange resin, an electrodialysis, or an ion separator may be used.

또한 배수 처리를 수행하는 처리수조(5)에는 처리개시시에는 아직 처리후의 청정수(2)가 존재하지 않기 때문에 수돗물이나 전회의 처리후의 청정수(2)를 저장시켜 두면 좋다. 또한 배수중에 ss성분 등이 혼재되어 있는 경우는 모래 여과장치 등으로 사전에 여과처리를 해 둔다. In the treated water tank 5 which performs the drainage treatment, since the purified water 2 does not yet exist at the start of treatment, the tap water or the clean water 2 after the previous treatment may be stored. In the case where ss components and the like are mixed in the drainage, filtration is performed in advance by a sand filtration device or the like.

이어서 이 실시형태의 배수처리 방법 및 시스템의 사용상태를 설명한다. Next, the state of use of the wastewater treatment method and system of this embodiment will be described.

이 배수처리방법 및 시스템에 따르면, 처리전의 배수(COD 1000~2000ppm)(1)에 그 처리후의 청정수(2)(COD 5ppm미만으로 바람직하게는 거의 0ppm)를 피드백하여 혼합하여서 이 처리방법(산화제인 차아염소산소다를 첨가하여서 산화 분해하는 처리법)에 의한 처리대상수(4)를 조정하고, 처리전의 배수(1)에 대한 처리후의 청정수(2)의 혼합량은 그 배수처리의 양태(산화제의 첨가법이나, 전기분해에 의한 처리법이나, 생물처리법 등)에 관하여 처리대상수(4)의 농도지표와 유량이 처리에 적합한 소정의 범위가 되도록 설정하면서 상기 처리대상수(4)의 농도지표를 센서(COD계)로 검지하여 상기 처리대상수(4)의 농도지표가 소정 범위(COD 50~100ppm)가 되도록 처리전의 배수(1)로의 처리후의 청정수(2)의 피드백량(A)과 이 처리계로부터의 배출량(B)을 제어하도록 하였기 때문에 처리후의 청정수(2)를 피드백하여서 처리대상수(4)를 조정함으로써 원래의 배수 자체의 농도들의 변동에 따른 처리로의 영향을 경감시켜 원활한 처리를 수행할 수 있으면서 조정조는 반드시 필요한 것은 아니며 또한 수질의 매일 매일의 변동을 흡수할 수 있는 이점이 있다. 또한 조정에 처리후의 청정수(2)를 이용하고 있어서 수자원을 절약할 수 있으며 환경문제에 이바지할 수 있는 이점이 있다.According to this wastewater treatment method and system, the wastewater before treatment (COD 1000 to 2000 ppm) 1 is fed back and mixed with clean water 2 (after COD less than 5 ppm, preferably almost 0 ppm) after the treatment (oxidant). The water to be treated 4 is adjusted by the addition of phosphorus sodium hypochlorite and subjected to oxidative decomposition, and the mixed amount of the clean water 2 after the treatment with respect to the waste water 1 before the treatment is the aspect of the wastewater treatment (addition of oxidizing agent). Method, electrolytic treatment, biological treatment method, etc.), while setting the concentration index and the flow rate of the water to be treated within a predetermined range suitable for the treatment, the concentration index of the water to be treated 4 is measured by the sensor. Feedback amount A of clean water 2 after treatment to the wastewater 1 before treatment so that the concentration index of the water to be treated 4 is detected by (COD system) to be within a predetermined range (COD 50 to 100 ppm) and the treatment Because we let you control discharge (B) from system By adjusting the treatment target water 4 by feeding back the clean water 2 of Lihu, the adjustment tank is not necessarily necessary and the water treatment can be performed smoothly by reducing the influence of the treatment due to the variation of the concentration of the original drainage itself. It has the advantage of being able to absorb daily fluctuations. In addition, the clean water (2) after treatment is used for the adjustment, which can save water resources and contribute to environmental problems.

그리고, 산화제 생성 전해기구(7)에서 생성된 산화제 함유수(3)를 상기 처리대상수(4)에 미치도록 하여서 그 농도지표의 저감처리를 수행하고, 전해질 분리 수단(9)에서 처리후의 청정수(2)로부터 전해질을 분리한 것을 피드백하여서 처리전의 배수(1)에 혼합하도록 하였기 때문에 피드백하여서 처리전의 배수(1)에 혼합할 처 리후의 청정수(2)로부터는 전해질이 분리된 것이 되며, 처리대상수(4)의 전해질 농도가 처리시에 누적적으로 증대하여 가는 것을 회피할 수 있다. 그리고, 분리 회수된 전해질은 산화제 생성 전해기구(7)로 공급되도록 하였기 때문에 산화제 함유수(3)에 함유되는 전해질을 산화제 생성 기구로 순환시켜서 그 유효 이용을 도모할 수 있는 이점이 있다. Then, the oxidant-containing electrolyzer 7 causes the oxidant-containing water 3 to reach the water to be treated 4 to reduce the concentration index, and then clean water after treatment in the electrolyte separation means 9. Since the electrolyte was separated from (2) and fed back into the wastewater 1 before treatment, the electrolyte was separated from the clean water 2 after treatment to be fed back and mixed into the wastewater 1 before treatment. It can be avoided that the electrolyte concentration of the object water 4 increases cumulatively during the treatment. Since the separated and recovered electrolyte is supplied to the oxidizer generating electrolyzer 7, there is an advantage that the electrolyte contained in the oxidant-containing water 3 can be circulated to the oxidant generating mechanism to effectively use the oxidant.

게다가, 처리후의 청정수(2)는 상기와 같이 오염평가지표의 농도가 저감된 것(COD 5ppm)이기 때문에 여러 가지 용도로 재이용할 수 있어서 수자원의 제공을 통하여 환경문제에 이바지할 수 있는 이점이 있다. 또한 처리전의 배수(1)를 조정조 등에 모아두는 일 없이 실시간으로 직접 처리할 수 있는 이점이 있다. In addition, since the clean water 2 after treatment is reduced in the concentration of the pollution assessment index as described above (COD 5 ppm), it can be reused for various purposes, which has the advantage of contributing to environmental problems through the provision of water resources. . In addition, there is an advantage that can be directly processed in real time without collecting the waste water 1 before the treatment tank.

(실시형태2)Embodiment 2

이 실시형태에서는 배수처리의 양태를 전기분해(미도시)로 하며, 배수의 도전율이 낮은 경우 등 필요에 따라서 배수에 식염 등의 전해질을 용해시켜서 적당한 도전율을 부여하여 전류가 흐르도록 하고 그 양극 산화나 생성되는 OH라디컬 등의 산화작용 등에 따라 배수중에 함유되는 유기성분을 산화 분해하여 그 COD를 저감시킨다. 처리대상수의 처리시(처리중)의 pH는 전기분해에 의해 생성되는 차아염소산 등의 산화작용이 강한 범위로 조정한다. In this embodiment, the embodiment of the drainage treatment is electrolysis (not shown), and when necessary, such as when the conductivity of the drainage is low, the electrolyte, such as salt, is dissolved in the drainage so as to impart an appropriate conductivity so that a current flows and the anodic oxidation thereof. The organic component contained in the waste water is oxidatively decomposed according to the oxidative action of the generated OH radical or the like to reduce the COD. The pH at the time of treatment (treatment) of the water to be treated is adjusted to a range in which oxidation action such as hypochlorous acid generated by electrolysis is strong.

구체적으로는 식염 등의 전해질을 첨가하여서 처리대상수의 전해도에 관해 전기분해가 가능한 범위로 하여 처리수조에 전해 전극을 삽입하여서 처리대상수를 직접적으로 전기분해하도록 한다. 이 전기분해에 의한 처리는 생물처리와 상이하여 순간적으로 산화분해가 수행되면서 찌꺼기가 나오지 않는 이점이 있다. Specifically, an electrolytic electrode is inserted into the treatment tank so that the electrolysis can be directly electrolyzed by adding an electrolyte such as a salt to the electrolysis degree of the treatment water. The treatment by the electrolysis is different from the biological treatment, there is an advantage that the residue does not come out while oxidative decomposition is carried out instantaneously.

처리후의 청정수를 피드백하여서 처리대상수를 조정함으로써 원래의 배수 자체의 농도들의 변동에 따른 처리로의 영향을 경감시켜서 원활한 처리를 수행할 수 있기 때문에 조정조는 반드시 필요한 것은 아니며 수질의 매일 매일의 변동을 흡수할 수 있고 액정공장의 배수나 주방배수 기타 각종 배수의 물 처리에 적용하고 응용할 수 있다. The adjustment tank is not necessary because the feed water is fed back to the treated water and the treated water is adjusted to reduce the effects of the fluctuations in the concentrations of the original drainage itself. It can be absorbed and applied and applied to water treatment of liquid crystal plant drainage, kitchen drainage and other various drainages.

도1은 본 발명의 배수처리시스템의 실시형태를 설명하는 흐름도이다. 1 is a flowchart illustrating an embodiment of a wastewater treatment system of the present invention.

***도면의 주요 부분에 대한 부호의 설명****** Description of the symbols for the main parts of the drawings ***

1; 처리전의 배수One; Drain before treatment

2; 처리후의 청정수2; Clean water after treatment

3; 산화제 함유수3; Oxidant-containing water

4; 처리대상수4; Number of treatment

5; 처리수조5; Treatment tank

6; 귀환유로6; Return euro

7; 산화제 생성 전해기구7; Oxidizing agent

Claims (3)

처리전의 배수(1)에 그 처리후의 청정수(2)를 피드백하여 혼합하여서 이 배수처리방법에 따른 처리대상수(4)를 조정하고, 상기 처리전의 배수(1)에 대한 처리 후의 청정수(2)의 혼합량은 그 배수처리의 양태에 관해서 처리대상수(4)의 농도지표와 유량이 처리에 적합한 소정의 범위가 되도록 설정하면서 상기 처리대상수(4)의 농도지표를 센서로 검출하여 상기 처리대상수(4)의 농도지표가 소정의 범위가 되도록 처리전의 배수(1)로의 처리후의 청정수(2)의 피드백량과 이 처리계로부터의 배출량을 제어하도록 한 것을 특징으로 하는 배수처리방법. The purified water 2 after the treatment is fed back to the wastewater 1 before the treatment and mixed to adjust the treated water 4 according to this wastewater treatment method, and the purified water 2 after the treatment with respect to the wastewater 1 before the treatment. The mixing amount of is set so that the concentration index of the water to be treated 4 and the flow rate are in a predetermined range suitable for the treatment with respect to the aspect of the drainage treatment, and the concentration index of the water to be treated 4 is detected by the sensor. A wastewater treatment method characterized by controlling the amount of feedback of clean water (2) after treatment to wastewater (1) before treatment and the discharge amount from the treatment system so that the concentration index of water (4) falls within a predetermined range. 상기 제1항에 있어서, 전해질을 함유하는 물을 전기 분해하여서 차아할로겐산을 생성시키는 산화제 생성 전해기구(7)를 구비하여 상기 산화제 생성 전해기구(7)에서 생성된 산화제 함유수(3)를 상기 처리대상수(4)에 미치도록 하여서 그 농도지표의 저감처리를 수행하고, 처리후의 청정수(2)로부터 전해질을 분리한 것을 피드백하여서 처리전의 배수(1)에 혼합하면서 분리 회수한 전해질은 산화제 생성 전해기구(7)로 공급하도록 한 배수처리방법.The oxidant-containing water (3) produced by the oxidant generating electrolytic apparatus (7) is provided with an oxidant generating electrolytic mechanism (7) for electrolytically decomposing water containing an electrolyte to produce hypohalogenate. The electrolyte that was separated and recovered while mixing with the wastewater 1 before the treatment by feeding back the treated water to the treated water 4 and reducing the concentration index thereof, and feeding back the separation of the electrolyte from the purified water 2 after the treatment. A wastewater treatment method for supplying to a production electrolyzer (7). 배수를 처리하는 처리수조(5)와 그 처리후의 청정수(2)를 피드백하는 귀환유로(6)를 구비하고, 처리전의 배수(1)에 처리수조(5)에서의 처리후의 청정수(2)를 귀환유로(6)를 통하여 피드백하여 혼합하여서 처리대상수(4)를 조정하고, 상기 처 리전의 배수(1)에 대한 처리후의 청정수(2)의 혼합량은 그 배수 처리의 양태에 관해서 처리대상수(4)의 농도지표와 유량이 처리에 적합한 소정의 범위가 되도록 설정하면서 상기 처리대상수(4)의 농도지표를 센서로 검지하여 상기 처리대상수(4)의 농도지표가 소정의 범위가 되도록 처리전의 배수(1)로의 처리후의 청정수(2)의 피드백량과 이 처리계로부터의 배출량을 제어하도록 한 것을 특징으로 하는 배수처리시스템.And a return flow passage 6 for feeding back the treated water tank 5 for treating the waste water and the purified water 2 after the treatment, and the purified water 2 after the treatment in the treated water tank 5 is disposed in the waste water 1 before the treatment. The amount of the treated water 4 is adjusted by feeding back through the return flow path 6 to mix, and the mixed amount of the clean water 2 after the treatment with respect to the waste water 1 before the treatment is the amount of treated water with respect to the aspect of the waste water treatment. While setting the concentration index and flow rate of (4) to be within a predetermined range suitable for processing, the concentration index of the water to be treated 4 is detected by a sensor so that the concentration index of the water to be treated 4 is within a predetermined range. A wastewater treatment system characterized by controlling the amount of feedback of clean water (2) after treatment to wastewater (1) before treatment and the amount of discharge from the treatment system.
KR1020090063500A 2008-07-14 2009-07-13 Wastewater treatment method and system KR101070825B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2008-182498 2008-07-14
JP2008182498A JP4831782B2 (en) 2008-07-14 2008-07-14 Wastewater treatment method and system

Publications (2)

Publication Number Publication Date
KR20100007811A true KR20100007811A (en) 2010-01-22
KR101070825B1 KR101070825B1 (en) 2011-10-06

Family

ID=41703083

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090063500A KR101070825B1 (en) 2008-07-14 2009-07-13 Wastewater treatment method and system

Country Status (2)

Country Link
JP (1) JP4831782B2 (en)
KR (1) KR101070825B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102099701B1 (en) * 2020-02-13 2020-04-13 (주)이에스텍 re chlorine inserting system for reservoir

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012139630A (en) * 2010-12-28 2012-07-26 Omega:Kk Water purifying method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319797A (en) * 1998-05-19 1999-11-24 Meidensha Corp Mixed treatment water quality controller and its control
JP3815977B2 (en) * 2001-03-19 2006-08-30 日本碍子株式会社 Treatment method for wastewater containing high concentration nitrogen
JP3978124B2 (en) * 2002-12-03 2007-09-19 三菱重工業株式会社 Hypochlorous acid self-sufficiency method and equipment in organic waste treatment system
EP1612190A1 (en) * 2004-06-28 2006-01-04 Recticel Method of purifying polluted water
JP2006035140A (en) * 2004-07-28 2006-02-09 Maywa Co Ltd Method for decomposing agricultural chemical in waste water
JP4667910B2 (en) * 2005-03-04 2011-04-13 三菱重工環境・化学エンジニアリング株式会社 Waste treatment method and equipment
JP2007253024A (en) * 2006-03-22 2007-10-04 Miura Co Ltd Filtration system and its operation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102099701B1 (en) * 2020-02-13 2020-04-13 (주)이에스텍 re chlorine inserting system for reservoir

Also Published As

Publication number Publication date
KR101070825B1 (en) 2011-10-06
JP4831782B2 (en) 2011-12-07
JP2010017682A (en) 2010-01-28

Similar Documents

Publication Publication Date Title
Kumar et al. Composite wastewater treatment by aerated electrocoagulation and modified peroxi-coagulation processes
Sundarapandiyan et al. Electrochemical oxidation and reuse of tannery saline wastewater
Kabdaşlı et al. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes
KR100687095B1 (en) Electrodialysis reversal and electrochemical wastewater treatment process of compound containing nitrogen
KR101708702B1 (en) Apparatus and method for electrochemical treatment of wastewater
Tien et al. Electrooxidation of tannery wastewater with continuous flow system: Role of electrode materials
CA2159198A1 (en) Oxidative method of purifying highly contaminated waste water
JP2006297206A (en) Electrolytic treatment method and apparatus for ammonia nitrogen-containing waste water
JP2003225672A (en) Water treatment equipment
JP4865651B2 (en) Wastewater treatment method and apparatus
KR101070825B1 (en) Wastewater treatment method and system
Yeon et al. Integrating electrochemical processes with electrodialysis reversal and electro-oxidation to minimize COD and TN at wastewater treatment facilities of power plants
JP3917956B2 (en) Organic waste treatment system and treatment method
KR100670629B1 (en) Electrolysis treatment facilities and method of cpp regeneration wastewater
Zorpas Alternative treatment of urban wastewater using electrochemical oxidation
ELKaramany et al. Chromium and cadmium removal from synthetic wastewater by Electrocoagulation process
JP4171440B2 (en) Waste water treatment apparatus and waste water treatment method using the same
Varank et al. Energy consumption and efficiency improvement of electro-activated persulfate processes: Optimization by CCD for TOC Removal from leachate concentrate
JP2006231177A (en) Endocrine disrupting chemical substance decomposing method and apparatus
KR102613581B1 (en) An apparatus and method for treating waste water containing non-de gradable organic material
JP2005144366A (en) Waste water treatment system
US20240092666A1 (en) Method and system for wastewater treatment by membrane filtration and electrochemical oxidation
Beteta et al. Treatment of door-manufacturing factories wastewaters using CDEO and other AOPs: a comparison
KR101350789B1 (en) Electric energy reduction method by measuring residual chlorine in electrochemical treatment system for salty waste water
JP2008200667A (en) Method and apparatus for deodorizing, decolorizing and sterilizing water

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140820

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150723

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160920

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170928

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180828

Year of fee payment: 8