JP4577927B2 - Odor gas deodorization method - Google Patents

Odor gas deodorization method Download PDF

Info

Publication number
JP4577927B2
JP4577927B2 JP26888399A JP26888399A JP4577927B2 JP 4577927 B2 JP4577927 B2 JP 4577927B2 JP 26888399 A JP26888399 A JP 26888399A JP 26888399 A JP26888399 A JP 26888399A JP 4577927 B2 JP4577927 B2 JP 4577927B2
Authority
JP
Japan
Prior art keywords
water
deodorizing
electrolyzed
odor gas
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26888399A
Other languages
Japanese (ja)
Other versions
JP2001087624A (en
Inventor
拓哉 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Exeo Corp
Original Assignee
Kyowa Exeo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Exeo Corp filed Critical Kyowa Exeo Corp
Priority to JP26888399A priority Critical patent/JP4577927B2/en
Publication of JP2001087624A publication Critical patent/JP2001087624A/en
Application granted granted Critical
Publication of JP4577927B2 publication Critical patent/JP4577927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は臭気ガスの脱臭方法に関し、特に無隔膜電解水を利用した臭気ガスの脱臭方法に関する。
【0002】
【従来技術】
従来、有機性廃水処理施設等に代表される悪臭源から発生する臭気ガスの脱臭のみならず、より一般的な空気清浄のための方法として、水の電気分解によって製造したアルカリ水や酸性水を用いた脱臭方法が提案されている(例えば、特開平6−210125号公報、特開平10−128029号公報)。これらの方法は、脱臭のための薬品を使用するということのない優れた方法であるが、脱臭効果において十分満足できるというものではない上、アルカリ水や酸性水の活性が長期間持続するというものではないために、エネルギーコストも高いという欠点があった。
【0003】
即ち、上記の方法においては先ず隔膜を用いて水を電気分解し、得られたアルカリ水や酸性水中に悪臭ガスを通すものであるが、前記アルカリ水や酸性水の活性が持続する時間が短いため、ひんぱんにアルカリ水や酸性水を新しいものに交換しなければならなかった。このようなエネルギーコスト面の不利を緩和するために、電解する水として廃水処理施設で処理された処理水を使用することも行われているが、このようにしても、本質的にエネルギーコストを下げることはできないという欠点があった。
【0004】
【発明が解決しようとする課題】
本発明者等は上記の欠点を改善すべく検討するうち、隔膜を用いずに製造した電解水が、従来のアルカリ水や酸性水より著しく脱臭効果に優れる上、活性の持続時間も十分に長いということを見出し本発明に到達した。
従って本発明の目的は、薬品を全く使用しない上簡便であると共に、脱臭効果に優れた、臭気ガスの脱臭方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明の上記の目的は、隔膜を使用せずに水を電気分解して製造した、pHが7.5〜8.5であって酸化還元電位の値が650〜800mVである無隔膜電解水中に臭気ガスを通すことを特徴とする臭気ガスの脱臭方法によって達成された。
【0006】
【発明の実施の形態】
電解水とは、一般に水を電気分解したときに生成する水を意味するが、電気分解時に、隔膜を電極間に配するか否かによって電解水も異なったものとなる。通常、酸性水、アルカリ水と呼ばれる電解水は、電極間に隔膜を配して塩化ナトリウム等のアルカリ金属の塩を溶解した水を電気分解したときに、陽極側又は陰極側で得られる電解水であり、酸性水のpHは3未満であると共にORP(酸化還元電位)は1,100mVを越え、アルカリ水のpHは11を越えると共にORPは−800mV未満であることが知られている。
【0007】
これに対し、同じ水を隔膜なしに電気分解した場合には、pHが7.5〜8.5でORPが650〜800mVの電解水が得られる。この電解水が、本発明で使用する電解水である。
従来から利用されてきた脱臭方法の1つとして、薬品の中和反応を利用した脱臭法が知られていたため、pHが酸性を示す酸性水及びアルカリ性を示すアルカリ水が注目され、これらが脱臭に利用されてきた。これに対し、弱アルカリ性を示す、本発明の無隔膜電解水の場合には、酸性水やアルカリ水のような中和力がほとんど認めれなかったので脱臭には使用されてこなかったという経緯があり、本発明において、初めて無隔膜電解水の酸化反応を利用して脱臭することに成功した。
【0008】
従って、本発明における無隔膜電解水自体は公知であり、公知の方法によって適宜製造することができるが、脱臭能力は、後述する実施例、比較例によって実証されるように、中和反応を利用する酸性水やアルカリ水よりも桁違いに大きい。特に脱臭に使用したときの活性の持続性の観点から、電気分解後のpHが弱アルカリ性であることが好ましい。
【0009】
タバコの臭気等、通常の住空間における臭気を脱臭する場合には、電解水の原水として水道水等の通常の水を使用しても良いが、し尿や下水、産業廃水などの有機性廃水処理施設から排出される悪臭に対して水道水等を使用してはコスト高となるので、電解水の原水として上記施設等からの処理水を使用することが好ましい。この場合でも、脱臭に使用した後の電解水は十分に排水基準を満たすので、河川に放流することができる。
【0010】
本発明における脱臭条件は特に限定されるものではなく、電解水の温度や電解水中を通す臭気ガスの空間速度は適宜決定すれば良いが、電解水の温度は室温程度とすることが、エネルギー効率上好ましい。本発明における電解水の脱臭効果はORPによって管理することができる。従ってORPを常時測定し、この値が基準値以下となったときに、全電解水を速やかに新しい電解水と交換するようにすることができるが、連続的に、新しい電解水を脱臭装置の上流側に追加し下流側から古い電解水を排水するという方法を採ることもできる。
【0011】
本発明の方法は、脱臭を目的とする限りいかなる場所に用いても良いが、用いる場所によって、脱臭装置の構造や、システム構成が異なってくることは当然である。そこで、1例として、本発明を活性汚泥を用いた廃水処理施設に利用する場合を、図に従って説明する。
【0012】
図1は、活性汚泥を用いた廃水処理施設に本発明を利用する場合のシステム概念図である。この図からも明らかな如く、沈砂槽、原水ポンプ槽、流量調整槽、汚泥貯留槽、汚泥濃縮槽、汚泥脱水機等から排出される臭気は、本発明における無隔膜電解水を使用した脱臭装置によって全て処理することができる。この場合には、電解水の原水として処理水を使用することが好ましい。また、脱臭装置は特別な構造を必要とするものではなく、公知のものをそのまま使用しても良いが、酸性水とアルカリ水に分ける必要がないので、その分装置を小型化且つ単純化することができる。
【0013】
【発明の効果】
本発明の脱臭方法は、薬品を使用しないのでランニングコストが安いだけでなく、脱臭能力が高いので流入ガス量に変動があっても十分に追随することができる上、装置も従来より単純化され小型化されるという利点がある。更に、脱臭処理後の電解水は排水基準を十分に満たすので、河川への放流が可能である。
【0014】
【実施例】
以下、本発明を実施例によって更に詳述するが、本発明はこれによって限定されるものではない。
【0015】
実施例1.
無隔膜電気分解によって得られた、26.9℃におけるpHが8.4、ORPが715mVの電解水1リットルを入れた水槽に、硫化水素(HS)30ppm、メチルメルカプタン(MM)4ppm及びアンモニア0.6ppmを含有する悪臭空気(単にガスと略す)を、3.6リットル/分の空間速度で注入した。このときの水槽のpH、ORP及びHS除去率のガス流入量(リットル)に対する依存性を測定した。
それぞれの結果は図2〜図4に示した通りである。図3から明らかな如く、本発明の脱臭方法はORPによって十分に管理できることが実証された。
【0016】
比較例1.
電極間に間隔を設けた電気分解によって得られた酸性水又はアルカリ水1リットルを用いて実施例1と同様の悪臭除去テストを行ったところ、短時間しか効力がなかったので、悪臭空気の注入速度を0.72リットル/分と小さくして各測定を行った。結果は図5に示した通りであり、本発明に比して著しく脱臭効果に劣ることが確認された。尚、使用した酸性水の27.3℃におけるpHは2.48、ORPは1,120mVであり、アルカリ水の27.6°におけるpHは11.45、ORPは−898mVであった。
【図面の簡単な説明】
【図1】本発明の脱臭方法を汚水浄化施設に応用した場合の概念図である。
【図2】実施例1における悪臭空気の脱臭作業における、電解水のpHのガス流量依存性を示すグラフである。
【図3】実施例1における悪臭空気の脱臭作業における、電解水のORPのガス流量依存性を示すグラフである。
【図4】実施例1における悪臭空気の脱臭作業における、電解水のHSの除去率のガス流量依存性を示すグラフである。
【図5】比較例1における悪臭空気の脱臭作業における、電解水のHSの除去率のガス流量依存性を示すグラフである。
【符号の説明】
1 沈砂槽
2 原水ポンプ槽
3 流量調整槽
4 ばっ気槽
5 沈澱槽
6 汚泥貯留槽
7 汚泥濃縮槽
8 汚泥脱水機
9 脱臭装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an odor gas deodorization method, and more particularly to an odor gas deodorization method using non-membrane electrolyzed water.
[0002]
[Prior art]
Conventionally, not only deodorization of odorous gas generated from malodorous sources typified by organic wastewater treatment facilities, but also more general methods for air purification include alkaline water and acidic water produced by water electrolysis. The deodorizing method used is proposed (for example, Unexamined-Japanese-Patent No. 6-210125, Unexamined-Japanese-Patent No. 10-128029). These methods are excellent methods that do not use chemicals for deodorization, but they are not satisfactory in terms of deodorizing effect, and the activity of alkaline water or acidic water lasts for a long time. Therefore, there was a drawback that the energy cost was high.
[0003]
That is, in the above method, water is first electrolyzed using a diaphragm, and malodorous gas is passed through the obtained alkaline water or acidic water. However, the activity time of the alkaline water or acidic water is short. Therefore, it was necessary to change the alkaline water and acidic water to new ones frequently. In order to alleviate such disadvantages in terms of energy costs, treated water treated in a wastewater treatment facility is also used as water to be electrolyzed, but even in this case, energy costs are essentially reduced. There was a drawback that it could not be lowered.
[0004]
[Problems to be solved by the invention]
While the present inventors have studied to improve the above-mentioned drawbacks, the electrolyzed water produced without using a diaphragm is remarkably superior to conventional alkaline water and acidic water, and has a sufficiently long duration of activity. The present invention was found.
Accordingly, an object of the present invention is to provide a method for deodorizing odor gas which is simple and does not use any chemicals and has an excellent deodorizing effect.
[0005]
[Means for Solving the Problems]
The above object of the present invention is to produce electrolyzed diaphragm water having a pH of 7.5 to 8.5 and a redox potential value of 650 to 800 mV, which is produced by electrolyzing water without using a diaphragm. This was achieved by a method of deodorizing odor gas characterized by passing odor gas through the odor gas.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Electrolyzed water generally means water produced when water is electrolyzed, but electrolyzed water also varies depending on whether a diaphragm is disposed between the electrodes during electrolysis. Usually, electrolyzed water called acidic water or alkaline water is electrolyzed water obtained on the anode side or the cathode side when a diaphragm is disposed between the electrodes and water in which an alkali metal salt such as sodium chloride is dissolved is electrolyzed. It is known that the pH of acidic water is less than 3 and ORP (redox potential) exceeds 1,100 mV, the pH of alkaline water exceeds 11 and ORP is less than -800 mV.
[0007]
On the other hand, when the same water is electrolyzed without a diaphragm, electrolyzed water having a pH of 7.5 to 8.5 and an ORP of 650 to 800 mV is obtained. This electrolyzed water is electrolyzed water used in the present invention.
As one of the conventional deodorizing methods, a deodorizing method using a neutralization reaction of chemicals has been known. Therefore, acidic water having an acidic pH and alkaline water having an alkaline property have attracted attention. Has been used. On the other hand, in the case of the diaphragm electrolyzed water of the present invention, which shows weak alkalinity, there was a history that it was not used for deodorization because almost no neutralizing power such as acidic water or alkaline water was observed. In the present invention, for the first time, it succeeded in deodorizing utilizing the oxidation reaction of electrolyzed membrane water.
[0008]
Therefore, the diaphragm electrolyzed water per se in the present invention is known per se and can be appropriately produced by a known method. However, the deodorizing ability utilizes a neutralization reaction as demonstrated by Examples and Comparative Examples described later. It is orders of magnitude larger than acidic and alkaline water. In particular, from the viewpoint of sustaining activity when used for deodorization, the pH after electrolysis is preferably weakly alkaline.
[0009]
When deodorizing odors in normal living spaces such as odors of cigarettes, normal water such as tap water may be used as the raw water for electrolysis, but organic wastewater treatment such as human waste, sewage, and industrial wastewater Since it is expensive to use tap water or the like for bad odors emitted from the facility, it is preferable to use treated water from the facility or the like as raw water for electrolysis water. Even in this case, the electrolyzed water after being used for deodorization sufficiently satisfies the drainage standard and can be discharged into the river.
[0010]
The deodorizing conditions in the present invention are not particularly limited, and the temperature of the electrolyzed water and the space velocity of the odor gas passing through the electrolyzed water may be determined as appropriate, but the temperature of the electrolyzed water should be about room temperature. Above preferred. The deodorizing effect of the electrolyzed water in the present invention can be managed by ORP. Therefore, the ORP is constantly measured, and when this value falls below the reference value, the entire electrolyzed water can be promptly replaced with new electrolyzed water . A method of draining old electrolyzed water from the upstream side from the upstream side can also be adopted.
[0011]
The method of the present invention may be used at any place as long as the purpose is deodorization, but it is natural that the structure and system configuration of the deodorization apparatus differ depending on the place of use. Then, as an example, the case where this invention is utilized for the waste water treatment facility using activated sludge is demonstrated according to a figure.
[0012]
FIG. 1 is a conceptual diagram of a system when the present invention is used in a wastewater treatment facility using activated sludge. As is clear from this figure, the odor discharged from the sand settling tank, raw water pump tank, flow rate adjustment tank, sludge storage tank, sludge concentration tank, sludge dewatering machine, etc. is the deodorizing device using the diaphragm electrolyzed water in the present invention. Can handle all. In this case, it is preferable to use treated water as raw water for electrolysis water. In addition, the deodorizing device does not require a special structure, and a known device may be used as it is, but it is not necessary to divide into acidic water and alkaline water, so the device is reduced in size and simplified accordingly. be able to.
[0013]
【The invention's effect】
The deodorizing method of the present invention not only uses a chemical, but also has a low running cost. Since the deodorizing ability is high, the deodorizing method can sufficiently follow even if the amount of inflowing gas fluctuates, and the apparatus is simplified as compared with the conventional method. There is an advantage that it is miniaturized. Furthermore, since the electrolyzed water after the deodorizing treatment sufficiently satisfies the drainage standard, it can be discharged into a river.
[0014]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in full detail, this invention is not limited by this.
[0015]
Example 1.
In a water tank containing 1 liter of electrolyzed water having a pH of 8.4 at 26.9 ° C. and an ORP of 715 mV, obtained by electroless membrane electrolysis, 30 ppm of hydrogen sulfide (H 2 S), 4 ppm of methyl mercaptan (MM) and Odorous air (simply abbreviated as gas) containing 0.6 ppm of ammonia was injected at a space velocity of 3.6 liters / minute. At this time, the dependence of the pH, ORP and H 2 S removal rate of the water tank on the gas inflow (liter) was measured.
Each result is as having shown in FIGS. As is clear from FIG. 3, it was demonstrated that the deodorization method of the present invention can be sufficiently managed by ORP.
[0016]
Comparative Example 1
When the same malodor removal test as in Example 1 was performed using 1 liter of acidic water or alkaline water obtained by electrolysis with a gap between the electrodes, it was effective only for a short time. Each measurement was performed at a speed as low as 0.72 liter / min. The results are as shown in FIG. 5, and it was confirmed that the deodorizing effect was significantly inferior to that of the present invention. The pH of the acidic water used at 27.3 ° C. was 2.48, ORP was 1,120 mV, the pH of alkaline water at 27.6 ° was 11.45, and ORP was −898 mV.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram when the deodorizing method of the present invention is applied to a sewage purification facility.
2 is a graph showing the gas flow rate dependence of the pH of electrolyzed water in the deodorizing work of bad odor air in Example 1. FIG.
FIG. 3 is a graph showing the dependency of the ORP of electrolyzed water on the gas flow rate in the deodorizing work of bad odor air in Example 1.
4 is a graph showing the gas flow rate dependency of the H 2 S removal rate of electrolyzed water in the deodorizing work of bad odor air in Example 1. FIG.
5 is a graph showing the gas flow rate dependence of the H 2 S removal rate of electrolyzed water in the deodorizing work of malodorous air in Comparative Example 1. FIG.
[Explanation of symbols]
1 Sedimentation tank 2 Raw water pump tank 3 Flow rate adjustment tank 4 Aeration tank 5 Sedimentation tank 6 Sludge storage tank 7 Sludge concentration tank 8 Sludge dewatering machine 9 Deodorizer

Claims (4)

隔膜を使用せずに水を電気分解して製造した、pHが7.5〜8.5であって酸化還元電位の値が650〜800mVである無隔膜電解水中に臭気ガスを通すことを特徴とする臭気ガスの脱臭方法。Water without the diaphragm was produced by electrolyzing, a diaphragm-free electrolytic water value of the redox potential to a pH of 7.5 to 8.5 is a 650~800MV, the passing odorous gas Characterized odor gas deodorization method. 無隔膜電解水が有機性廃水処理施設で処理された処理水を無隔膜電解して製造した電解水である、請求項1に記載された臭気ガスの脱臭方法。  The odor gas deodorizing method according to claim 1, wherein the diaphragm electrolyzed water is electrolyzed water produced by subjecting the treated water treated in an organic wastewater treatment facility to electroless membrane electrolysis. 前記電解水の酸化還元電位の値が常時650〜800mVとなるように、新しい電解水を脱臭装置の上流側に添加し、下流側から古い電解水を排水する、請求項1又は2に記載された臭気ガスの脱臭方法。Wherein as the value of the redox electric position of the electrolytic water is always 650~800MV, adding a new electrolytic water on the upstream side of the deodorizing apparatus, draining the old electrolytic water from the downstream side, according to claim 1 or 2 Of deodorized odor gas. 有機性廃水処理施設で処理した後の処理水を無隔膜電解することにより、pHが7.5〜8.5であって酸化還元電位の値が650〜800mVである電解水を製造すると共に、前記処理施設における各処理工程で発生した臭気ガスを前記電解水中に通すことにより脱臭することを特徴とする有機性廃水処理施設用臭気ガスの脱臭方法。By electrolyzing the treated water after treatment in an organic wastewater treatment facility, electrolyzed water having a pH of 7.5 to 8.5 and a redox potential value of 650 to 800 mV is produced. A method for deodorizing an odor gas for an organic wastewater treatment facility, wherein the odor gas generated in each treatment step in the treatment facility is passed through the electrolytic water.
JP26888399A 1999-09-22 1999-09-22 Odor gas deodorization method Expired - Fee Related JP4577927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26888399A JP4577927B2 (en) 1999-09-22 1999-09-22 Odor gas deodorization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26888399A JP4577927B2 (en) 1999-09-22 1999-09-22 Odor gas deodorization method

Publications (2)

Publication Number Publication Date
JP2001087624A JP2001087624A (en) 2001-04-03
JP4577927B2 true JP4577927B2 (en) 2010-11-10

Family

ID=17464596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26888399A Expired - Fee Related JP4577927B2 (en) 1999-09-22 1999-09-22 Odor gas deodorization method

Country Status (1)

Country Link
JP (1) JP4577927B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4667910B2 (en) * 2005-03-04 2011-04-13 三菱重工環境・化学エンジニアリング株式会社 Waste treatment method and equipment
JP5378332B2 (en) * 2010-09-07 2013-12-25 三菱重工環境・化学エンジニアリング株式会社 Waste treatment method and equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06210125A (en) * 1993-01-21 1994-08-02 Kubota Corp Deodorizing method
JPH06292713A (en) * 1993-04-09 1994-10-21 T R P:Kk Cleaning method of air and device therefor
JPH07163325A (en) * 1993-12-15 1995-06-27 Miura Denshi Kk Apparatus for sterilizing food material and retaining freshness thereof and method therefor
JPH10128029A (en) * 1996-10-30 1998-05-19 Sharp Corp Air purifier
JPH11207350A (en) * 1998-01-29 1999-08-03 Trp:Kk Water purifying mechanism

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607951B2 (en) * 1981-01-14 1985-02-28 昌邦 金井 How to treat organic wastewater
JPS63305987A (en) * 1987-06-08 1988-12-13 Yoshiaki Matsuo Apparatus for producing sterillized water
GB2316090B (en) * 1996-09-26 1998-12-23 Julian Bryson Method and apparatus for producing a sterilising solution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06210125A (en) * 1993-01-21 1994-08-02 Kubota Corp Deodorizing method
JPH06292713A (en) * 1993-04-09 1994-10-21 T R P:Kk Cleaning method of air and device therefor
JPH07163325A (en) * 1993-12-15 1995-06-27 Miura Denshi Kk Apparatus for sterilizing food material and retaining freshness thereof and method therefor
JPH10128029A (en) * 1996-10-30 1998-05-19 Sharp Corp Air purifier
JPH11207350A (en) * 1998-01-29 1999-08-03 Trp:Kk Water purifying mechanism

Also Published As

Publication number Publication date
JP2001087624A (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JP2005000858A (en) Photocatalytic water treatment apparatus
JP3978124B2 (en) Hypochlorous acid self-sufficiency method and equipment in organic waste treatment system
Kishimoto et al. Effects of oxidation–reduction potential control and sequential use of biological treatment on the electrochemical Fenton-type process
JP4577927B2 (en) Odor gas deodorization method
JPH10130876A (en) Electrolytic ozonized water producing unit and its regenerating method
JP3982500B2 (en) Method and apparatus for treating wastewater containing organic compounds
JP2012024711A (en) Electrochemical accelerated oxidation treatment apparatus for generating oh radical and ozone, treatment method of the same, and liquid purification apparatus using the same
CN104787967A (en) Treatment device for slightly-polluted surface water and application thereof
JP4641435B2 (en) Endocrine disrupting chemical substance decomposition method and apparatus
JP3803590B2 (en) Hydrogen peroxide residual concentration controller
KR100602058B1 (en) Electrolysis and electro-coagulation treatment apparatus of wastewater
JP2021169071A (en) Water quality improving apparatus for superoxide ion generation and water quality improving method using the same
JP3537085B2 (en) Superoxide ion generation method
JP2000204629A (en) Self-contained flush toilet
JP2004077169A (en) Method for calculating residual substance in liquid, treatment method using the same, and medicine injection control apparatus
KR101075745B1 (en) Removing apparatus of malodorous substances from wastewater delivery facilities using electrolyzed water system
JP2015139752A (en) Method and apparatus for treating waste water
JP4073699B2 (en) Method for decomposing harmful substances present in air and apparatus therefor
JP2005118682A (en) Electrochemical treatment method of trihalomethane-containing water
JPH10314748A (en) Sterilization apparatus
JP2004097977A (en) Neutralizing treatment apparatus for strong oxidizing potential water
JP2008200667A (en) Method and apparatus for deodorizing, decolorizing and sterilizing water
KR0165581B1 (en) Method for the purification of water with activated oxygen
JP2004097949A (en) Wastewater treatment system
JP3126669B2 (en) Oxidative deodorization method for sulfur-based malodorous components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100813

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees