JPH10130876A - Electrolytic ozonized water producing unit and its regenerating method - Google Patents

Electrolytic ozonized water producing unit and its regenerating method

Info

Publication number
JPH10130876A
JPH10130876A JP8291951A JP29195196A JPH10130876A JP H10130876 A JPH10130876 A JP H10130876A JP 8291951 A JP8291951 A JP 8291951A JP 29195196 A JP29195196 A JP 29195196A JP H10130876 A JPH10130876 A JP H10130876A
Authority
JP
Japan
Prior art keywords
water
anode
cathode
electrolytic
ozone water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8291951A
Other languages
Japanese (ja)
Inventor
Takashi Tanioka
隆 谷岡
Yoshiyuki Nishimura
喜之 西村
Misato Shinagawa
三佐人 品川
Mitsuo Terada
充夫 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8291951A priority Critical patent/JPH10130876A/en
Publication of JPH10130876A publication Critical patent/JPH10130876A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for regenerating an electrolytic ozonized water producing unit when the ozone concn. is lowered and to furnish the electrolytic ozonized water producing unit capable of being appropriately regenerated. SOLUTION: Water is continuously introduced into the electrolytic cell having a high molecular electrolyte membrane 1, an anode 2 and a cathode 3, and a DC voltage is applied between the anode and cathode to produce water from the anode side. When the device is regenerated, an acidic soln. is supplied to the electrolytic cell to clean the membrane 1, anode 2 and cathode 3. Otherwise, deionized water or distilled water is supplied to the anode side, and electrolysis is conducted to regenerate the membrane 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はオゾンを溶解してい
るオゾン水を電解により直接製造する電解型オゾン水製
造装置及びその再生方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic ozone water producing apparatus for directly producing ozone water in which ozone is dissolved by electrolysis and a method for regenerating the same.

【0002】[0002]

【従来の技術】オゾンは強力な酸化力を有していること
から、殺菌,消毒,脱色,脱臭,酸化分解や酸化処理
等、様々な分野で利用されており、オゾンを溶解してい
るオゾン水は、オゾンガスに比べて安全で利用し易いと
いう理由でその需要が増加している。
2. Description of the Related Art Since ozone has a strong oxidizing power, it is used in various fields such as sterilization, disinfection, decolorization, deodorization, oxidative decomposition and oxidation treatment, and ozone dissolving ozone. The demand for water is increasing because it is safer and easier to use than ozone gas.

【0003】オゾン水を製造する方法としては、まずオ
ゾンガスを生成し水と混合させて溶解させるオゾン曝気
法が知られている。この方法を実施するには、オゾンガ
スの発生装置と、オゾンガスと水の混合装置を準備する
ことが必要であり、オゾンガスの発生方法としては、9
0%以上の高濃度酸素または空気を原料にして無声放電
によりオゾンガスを生成する方法と、純水(脱イオン
水)を電気分解することにより生成する方法などが知ら
れている。特に純水の電解法の場合には、200g/N
3 以上の高濃度オゾンガスを生成することができる。
しかしながら、オゾンガスの水への溶解効率が低いため
に、せっかく高濃度のオゾンガスを生成しても、その1
0〜20%程度しか有効に利用することができず、残り
のオゾンガスはオゾン分解触媒で無害化処理して大気中
に放出されることが一般的である。更に無声放電により
オゾンガスを生成する方法の場合には、空気ドライヤー
や酸素PSA(圧力スイング吸着装置)等といった原料
気体の生成装置を必要とするものであった。
[0003] As a method for producing ozone water, an ozone aeration method in which ozone gas is first generated, mixed with water, and dissolved is known. In order to carry out this method, it is necessary to prepare an ozone gas generation device and an ozone gas / water mixing device.
There are known a method of generating ozone gas by silent discharge using oxygen or air having a high concentration of 0% or more as a raw material, and a method of generating ozone gas by electrolyzing pure water (deionized water). In particular, in the case of pure water electrolysis, 200 g / N
High concentration ozone gas of m 3 or more can be generated.
However, even if a high concentration ozone gas is generated due to the low efficiency of dissolving ozone gas in water, the first problem is that
Only about 0 to 20% can be effectively used, and the remaining ozone gas is generally detoxified by an ozone decomposition catalyst and released into the atmosphere. Further, in the case of a method of generating ozone gas by silent discharge, a source gas generating device such as an air dryer or an oxygen PSA (pressure swing adsorption device) is required.

【0004】この様なオゾンガスを生成して水と混合さ
せて溶解させるオゾン曝気法では、得られるオゾン水濃
度は2,3ppm程度であることから、大腸菌の殺菌や
植物の活性化等には効果的であっても、他の抗生の強い
細菌の殺菌にはあまり効果がなく、また漂白や脱臭にも
大きな効果を期待することはできない。
In such an ozone aeration method in which ozone gas is generated, mixed with water and dissolved, the concentration of ozone water obtained is about 2 to 3 ppm, which is effective for sterilization of Escherichia coli and activation of plants. Even if it is a target, it is not very effective in killing bacteria that are strongly resistant to other antibiotics, and cannot be expected to have a great effect on bleaching and deodorization.

【0005】そこで、特開平8−134677号公報に
は図1に示す様に高分子電解質膜1の一面にオゾン発生
触媒機能を有した貴金属製金網よりなる陽極電極2を、
他面には金網よりなる陰極電極3を夫々圧接して高濃度
のオゾン水を製造する装置が提案されている。上記装置
によれば、オゾンガスと水の混合装置やオゾンガスの無
害化処理を必要とせず、水道水などを直接電気分解して
オゾン水を製造することが可能であり、工業的に望まれ
ている5ppm以上の高濃度オゾン水を製造することが
可能となる。但し、長時間に亘って水電解を行うと、後
述する理由によりオゾン濃度が低下するため、電解電流
を徐々に高くして電極間に印加することが必要であり、
やがては満足できる濃度のオゾン水を取り出すことがで
きなくなることが指摘されていた。
Japanese Patent Application Laid-Open No. 8-134677 discloses an anode electrode 2 made of a noble metal wire mesh having an ozone generation catalytic function on one surface of a polymer electrolyte membrane 1 as shown in FIG.
On the other side, there has been proposed an apparatus for producing high-concentration ozone water by press-contacting cathode electrodes 3 each formed of a wire mesh. According to the above apparatus, ozone water can be produced by directly electrolyzing tap water or the like without the need for an ozone gas / water mixing apparatus or a detoxification treatment of ozone gas, which is industrially desired. It is possible to produce ozone water having a high concentration of 5 ppm or more. However, if the water electrolysis is performed for a long time, the ozone concentration is reduced for the reason described later, and it is necessary to gradually increase the electrolysis current and apply the current between the electrodes.
It was pointed out that ozone water of a satisfactory concentration could not be taken out soon.

【0006】[0006]

【発明が解決しようとする課題】本発明はこうした事情
に着目してなされたものであって、従来の電解型オゾン
水製造装置においてオゾン濃度が低下した場合の再生方
法と、その再生処理に好適な電解型オゾン水製造装置を
提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and is suitable for a method for regenerating ozone concentration in a conventional electrolytic ozone water producing apparatus when the ozone concentration is reduced, and for the regenerating process. It is an object of the present invention to provide a simple electrolytic ozone water producing apparatus.

【0007】[0007]

【課題を解決するための手段】上記目的を達成した本発
明に係る電解型オゾン水製造装置の再生方法とは、高分
子電解質膜と陽極及び陰極を有する電解槽に水を連続的
に導入し陽極と陰極の間に直流電圧を印加することによ
り陽極側からオゾン水を取り出す電解型オゾン水製造装
置の再生方法であって、酸性溶液を上記電解槽に供給す
ることにより、上記高分子電解質膜と陽極及び陰極の洗
浄を行うことを要旨とするものである。尚、前記高分子
電解質膜と陽極及び陰極の洗浄に用いた酸性溶液は、電
解時に陰極側で生成されるアルカリ水溶液により中和し
て排水することが推奨される。
A method for regenerating an electrolytic ozone water producing apparatus according to the present invention, which achieves the above object, comprises the steps of continuously introducing water into an electrolytic cell having a polymer electrolyte membrane, an anode and a cathode. A method for regenerating an electrolytic ozone water producing apparatus for extracting ozone water from an anode side by applying a DC voltage between an anode and a cathode, wherein the polymer electrolyte membrane is supplied by supplying an acidic solution to the electrolytic cell. And cleaning the anode and the cathode. It is recommended that the acidic solution used for washing the polymer electrolyte membrane, the anode and the cathode be neutralized with an aqueous alkaline solution generated on the cathode side during electrolysis and then drained.

【0008】また本発明における第2の再生方法は、脱
イオン水または蒸留水を陽極側に供給して、電解を行う
ことにより上記電解質膜の再生処理を行うことを要旨と
するものであり、陽極側では上記脱イオン水または蒸留
水を封入して、陰極側では通水しながら電解を行うこと
が望ましく、電流密度は0.01〜0.2A/cm2
電解を行えば良い。また、脱イオン水または蒸留水を陽
極側及び陰極側に供給することが望ましく、陽極側には
脱イオン水または蒸留水を供給し、陰極側には、Ca2+
及びMg2+等の2価イオンが陽イオン交換により除去さ
れたイオン交換水を供給しても良い。
[0008] A second regeneration method of the present invention is characterized in that deionized water or distilled water is supplied to the anode side to perform electrolysis, thereby performing a regeneration treatment of the electrolyte membrane. It is desirable that the above-mentioned deionized water or distilled water be sealed on the anode side, and that electrolysis be performed while passing water on the cathode side, and that the electrolysis be performed at a current density of 0.01 to 0.2 A / cm 2 . Further, it is desirable to supply deionized water or distilled water to the anode side and the cathode side, to supply deionized water or distilled water to the anode side, and to supply Ca 2+ to the cathode side.
And ion-exchanged water from which divalent ions such as Mg 2+ have been removed by cation exchange.

【0009】更に前記目的を達成した本発明の電解型オ
ゾン水製造装置とは、高分子電解質膜と陽極及び陰極を
有する電解槽に水を連続的に導入し陽極と陰極の間に直
流電圧を印加することにより陽極側からオゾン水を取り
出す電解型オゾン水製造装置であって、電解槽の上流側
に洗浄液供給手段を有してなることを要旨とするもので
ある。前記洗浄液供給手段としては、洗浄液タンクと送
給ポンプを用いることができ、洗浄液としては酸性溶液
を用いれば良い。
Further, the electrolytic ozone water producing apparatus of the present invention, which achieves the above object, comprises a step of continuously introducing water into an electrolytic cell having a polymer electrolyte membrane, an anode and a cathode, and applying a DC voltage between the anode and the cathode. An electrolysis-type ozone water producing apparatus for extracting ozone water from an anode side by applying a voltage, comprising a cleaning liquid supply means upstream of an electrolytic cell. As the cleaning liquid supply means, a cleaning liquid tank and a feed pump can be used, and an acidic solution may be used as the cleaning liquid.

【0010】また本発明では、前記洗浄液供給手段に代
えて、電解槽の上流側に脱イオン水または蒸留水の供給
手段を配設しても良く、更に、電解槽への水の供給流路
に陽イオン交換槽を設けることが推奨される。
In the present invention, a supply means for deionized water or distilled water may be provided upstream of the electrolytic cell in place of the cleaning liquid supply means. It is recommended to provide a cation exchange tank in

【0011】[0011]

【発明の実施の形態】水電解法において用いられている
原料水としては、水道水の他にも、井戸水や地下水を用
いてもよく、或いは下水の高度処理水(いわゆる親水、
修景水、中水等)を用いることができる(以下、これら
を総称して水道水等ということがある)。従来の電解型
オゾン水製造装置において、前述のように長時間安定し
て高濃度のオゾン水が生成できなかった理由は、上記水
道水等がCa2+やMg2+などの所謂硬水成分イオンを含
有することに起因しており、上記硬水成分イオンが電解
質膜の陰極側に水酸化物または炭酸化物として析出し、
更には上記硬水成分イオンが陽イオン交換膜である前記
電解質膜内に蓄積することにより、陽極からの陽イオン
の移動を阻害するからである。具体的には以下の様な化
学反応が、陽極,陰極及び電解質膜中で行われている。
なお、電解質膜としては、高分子固体電解質膜が使用さ
れており、たとえばテフロン系の高分子膜にスルホ基を
付与して陽イオン交換膜としたものがある。 (1) 陽極での酸化反応: 3H2 O→O3 +6H+ +6e- (2) 陰極での還元反応: 2H+ +2e- →H Na+ + OH- → NaOH Ca2+ +2OH- → Ca(OH)2 Mg2+ +2OH- → Mg(OH)2 (3) 電解膜中における陽イオンの蓄積: R−SO3 H + Na+ → R−SO3 Na + H
+ 2R−SO3 H + Ca2+→(R−SO3)2 Ca+2
+ 2R−SO3 H + Mg2+→(R−SO3)2 Mg+2
+
DETAILED DESCRIPTION OF THE INVENTION As raw water used in the water electrolysis method, well water or groundwater may be used in addition to tap water, or highly treated sewage water (so-called hydrophilic,
(Landscape water, medium water, etc.) can be used (hereinafter, these may be collectively referred to as tap water, etc.). In the conventional electrolytic ozone water producing apparatus, as described above, the reason why high-concentration ozone water could not be generated stably for a long time was that the tap water or the like was a so-called hard water component ion such as Ca 2+ or Mg 2+. The hard water component ions are precipitated as hydroxide or carbonate on the cathode side of the electrolyte membrane,
Further, because the hard water component ions accumulate in the electrolyte membrane, which is a cation exchange membrane, the movement of cations from the anode is inhibited. Specifically, the following chemical reactions are performed in the anode, the cathode, and the electrolyte membrane.
As the electrolyte membrane, a polymer solid electrolyte membrane is used, and for example, there is a cation exchange membrane obtained by adding a sulfo group to a Teflon-based polymer membrane. (1) Oxidation reaction at the anode: 3H 2 O → O 3 + 6H + + 6e (2) Reduction reaction at the cathode: 2H + + 2e → H Na + + OH → NaOH Ca 2+ + 2OH → Ca (OH ) 2 Mg 2+ + 2OH → Mg (OH) 2 (3) Accumulation of cations in the electrolytic membrane: R—SO 3 H + Na + → R—SO 3 Na + H
+ 2R-SO 3 H + Ca 2+ → (R-SO 3 ) 2 Ca + 2
H + 2R-SO 3 H + Mg 2+ → (R-SO 3) 2 Mg + 2
H +

【0012】従って、電解型オゾン水製造装置に導入す
る水道水等は、Ca2+やMg2+などの硬水成分イオンが
除去されていることが望ましく、上記水道水等を陽イオ
ン交換体内に通過させることにより、水道水等からCa
2+やMg2+などの硬水成分イオンを除去すれば良い。但
し、水道水等からイオンをほぼすべて除去した脱イオン
水(純水),精製水,蒸留水等を用いた場合には、導電
率が10μs/cm以下と低くなることから水の電気抵
抗が大きくなり、所定の流速で電解槽の陽極に脱イオン
水を供給してオゾン水を生成する水電解法の場合には、
非常に高い電圧で電解することが要求され電極の消耗が
著しく、オゾン水の生成は短時間しか維持できなくな
る。
Therefore, it is desirable that tap water and the like introduced into the electrolytic ozone water producing apparatus have hard water component ions such as Ca 2+ and Mg 2+ removed, and the tap water and the like are introduced into a cation exchanger. By passing through, Ca from tap water etc.
Hard water component ions such as 2+ and Mg 2+ may be removed. However, when deionized water (pure water), purified water, distilled water, etc., from which almost all ions are removed from tap water or the like, is used, the electric resistance of water becomes 10 μs / cm or less. In the case of the water electrolysis method in which ozone water is generated by supplying deionized water to the anode of the electrolytic cell at a predetermined flow rate,
Electrolysis is required at a very high voltage, and the electrode is significantly consumed, so that generation of ozone water can be maintained for only a short time.

【0013】尚、Ca2+やMg2+などの硬水成分イオン
は陽イオン交換樹脂等を用いてイオン交換を行えば除去
することは可能である。しかしながら、その除去率は必
ずしも100%ではないので、ある程度の硬水成分イオ
ンは、長時間の運転を行えば電解質膜内に徐々に蓄積し
てオゾン濃度は低下してしまう。従って、電解型オゾン
水製造装置は、再生処理を行うことが必要となる。
[0013] Hard water component ions such as Ca 2+ and Mg 2+ can be removed by performing ion exchange using a cation exchange resin or the like. However, since the removal rate is not always 100%, a certain amount of hard water component ions gradually accumulates in the electrolyte membrane if the operation is performed for a long time, and the ozone concentration decreases. Therefore, it is necessary for the electrolytic ozone water producing apparatus to perform a regeneration treatment.

【0014】本発明における第1発明は、電解質膜の陰
極側に析出した上記Ca,Mgなどの水酸化物や炭酸化
物を酸性溶液により洗浄するものであり、同時に電解質
膜に蓄積した金属イオンを除去して電解型オゾン水製造
装置の再生処理を行うことができる。上記洗浄液に用い
る酸性溶液としては、塩酸等の無機酸を用いても良く、
或いは酢酸やクエン酸等の有機酸を用いても良い。
The first invention of the present invention is to wash the hydroxide or carbonate such as Ca and Mg deposited on the cathode side of the electrolyte membrane with an acidic solution, and at the same time, remove the metal ions accumulated in the electrolyte membrane. After removal, the electrolytic ozone water producing apparatus can be regenerated. As the acidic solution used for the cleaning solution, an inorganic acid such as hydrochloric acid may be used,
Alternatively, an organic acid such as acetic acid or citric acid may be used.

【0015】例えば、塩酸を用いることにより以下に示
す反応により析出物の除去及び電解質膜の洗浄を行うこ
とができる。 (i) 析出物の除去 Ca(OH)2 + 2HCl → CaCl2 + 2H
2 O Mg(OH)2 + 2HCl → MgCl2 + 2H
2 O CaCO3 + 2HCl → CaCl2 + H
2 O + CO2 MgCO3 + 2HCl → MgCl2 + H
2 O + CO2 (ii)電解質膜の洗浄 R’−SO3 Na+HCl → R’−SO3 H+
NaCl (R’−SO3)2 Ca+2HCl →2R’−SO3
+CaCl2 (R’−SO3)2 Mg+2HCl →2R’−SO3
+MgCl2 酸性溶液の濃度としては、例えば酸性溶液として塩酸を
用いる場合には、0.1〜1Nの溶液を用いれば上記再生
処理を行うことができる。
For example, by using hydrochloric acid, the precipitates can be removed and the electrolyte membrane can be washed by the following reaction. (i) Removal of precipitate Ca (OH) 2 + 2HCl → CaCl 2 + 2H
2 O Mg (OH) 2 + 2HCl → MgCl 2 + 2H
2 O CaCO 3 + 2HCl → CaCl 2 + H
2 O + CO 2 MgCO 3 + 2 HCl → MgCl 2 + H
2 O + CO 2 (ii) Cleaning of electrolyte membrane R'-SO 3 Na + HCl → R'-SO 3 H +
NaCl (R′-SO 3 ) 2 Ca + 2HCl → 2R′-SO 3 H
+ CaCl 2 (R′-SO 3 ) 2 Mg + 2HCl → 2R′-SO 3 H
As the concentration of the + MgCl 2 acidic solution, for example, when hydrochloric acid is used as the acidic solution, the above-mentioned regeneration treatment can be performed by using a 0.1 to 1N solution.

【0016】図2は本発明の再生方法の実施に好適な電
解型オゾン水製造装置の代表例を示す説明図である。図
2において、電解槽は高分子電解質膜1と、その両側に
配置された陽極2及び陰極3と、該高分子電解質膜1と
陽極2及び陰極3との間にそれぞれ形成された陽極室2
a及び陰極室3aとから構成されている。また、洗浄液
供給手段として塩酸等の洗浄液を入れた洗浄液タンク4
と洗浄液を電解槽に供給する送給ポンプ5を有してい
る。従って長時間の使用により陽極室2aから取り出さ
れるオゾン水のオゾン濃度が低下した場合には、電解槽
への水の供給流路を閉じ、上記送給ポンプ5により洗浄
液タンク4から洗浄液を陽極室2a及び陰極室3aに供
給される様に構成されている。この洗浄液の流路は、図
2において破線にて示されている様に、電解槽の洗浄を
行った後は、洗浄液タンク4に戻すことにより循環して
使用することができる。
FIG. 2 is an explanatory view showing a typical example of an electrolytic ozone water producing apparatus suitable for carrying out the regeneration method of the present invention. In FIG. 2, an electrolytic cell comprises a polymer electrolyte membrane 1, anodes 2 and cathodes 3 arranged on both sides thereof, and an anode chamber 2 formed between the polymer electrolyte membrane 1 and the anodes 2 and cathodes 3, respectively.
a and the cathode chamber 3a. A cleaning liquid tank 4 containing a cleaning liquid such as hydrochloric acid as a cleaning liquid supply means.
And a feed pump 5 for supplying a cleaning liquid to the electrolytic cell. Therefore, when the ozone concentration of the ozone water taken out of the anode chamber 2a decreases due to long-term use, the supply flow path of water to the electrolytic cell is closed, and the cleaning liquid is supplied from the cleaning liquid tank 4 by the feed pump 5 to the anode chamber. 2a and the cathode chamber 3a. As shown by the dashed line in FIG. 2, this cleaning liquid flow path can be circulated and used by returning to the cleaning liquid tank 4 after cleaning the electrolytic cell.

【0017】この様に洗浄液を循環させて再生処理を繰
り返すと酸濃度が低下して洗浄液の再生処理能力は低下
してくる。従って、洗浄液は定期的または酸濃度に応じ
て交換することが必要である。洗浄液の交換の際には、
電解によるオゾン水生成に伴って陰極側に生成するアル
カリ性溶液(NaOH)を使用して酸廃液を中和処理
し、無害化して処分することが推奨される。即ち、洗浄
液として使用済みの酸性溶液と、電解槽の陰極側から生
成されるアルカリ水溶液で中和して排水する。この様
に、中和処理を行うことによって再生処理に必要な酸性
溶液と、オゾン水製造時に副成するアルカリ性溶液を同
時に処理することが可能である。
As described above, when the regenerating process is repeated by circulating the cleaning solution, the acid concentration is reduced, and the regenerating ability of the cleaning solution is reduced. Therefore, it is necessary to change the cleaning solution periodically or according to the acid concentration. When changing the cleaning solution,
It is recommended that the acid waste liquid be neutralized using an alkaline solution (NaOH) generated on the cathode side along with the generation of ozone water by electrolysis, rendered harmless and disposed of. That is, the wastewater is neutralized with an acidic solution used as a cleaning liquid and an aqueous alkaline solution generated from the cathode side of the electrolytic cell and drained. In this way, by performing the neutralization treatment, it is possible to simultaneously treat the acidic solution required for the regeneration treatment and the alkaline solution by-produced during the production of ozone water.

【0018】図3は、図2に示す装置に加えて、上述し
た酸廃液の中和処理を行うための排水処理用の中和タン
ク7を有するオゾン水製造装置を示す説明図である。電
解時に陰極室3aから取り出されるアルカリ性溶液(p
H9以上のNaOH水溶液)により、前記電解質膜及び
電極の洗浄に用いた酸性溶液を中和して排水を行う装置
構成を示している。
FIG. 3 is an explanatory view showing an ozone water producing apparatus having a neutralization tank 7 for wastewater treatment for neutralizing the acid waste liquid in addition to the apparatus shown in FIG. The alkaline solution (p) taken out of the cathode chamber 3a during electrolysis
An apparatus configuration is shown in which the acidic solution used for washing the electrolyte membrane and the electrode is neutralized with H9 or more NaOH aqueous solution) to drain water.

【0019】図4は、2槽の電解槽を並設した場合の装
置構成を示す説明図であり、各系統ごとに酸洗浄とオゾ
ン水生成を交互に実施すれば、再生処理時であってもオ
ゾン水を取り出すことができ、オゾン水の供給を中断す
ることなく、連続的にオゾン水を生成することができ
る。
FIG. 4 is an explanatory view showing the structure of the apparatus in which two electrolytic cells are arranged in parallel. If the acid cleaning and the generation of ozone water are alternately performed for each system, it is possible to carry out the regeneration processing. Can also take out ozone water and can continuously generate ozone water without interrupting the supply of ozone water.

【0020】本発明における第2発明は、高分子電解質
膜に蓄積した陽イオンの除去を行うにあたり、脱イオン
水あるいは蒸留水の電気分解で陽極側に発生するH+
(プロトン)を用いて電解質膜の再生を行う方法であ
る。即ち、脱イオン水を陽極室に供給して電解を行うこ
とにより、H+ が電解質膜を陽極から陰極に向かって移
動する際に、下式の様に、膜のイオン交換基に結合して
いるCa2+,Mg2+やNa + などの陽イオンと置換さ
せ、蓄積していた陽イオンを陰極側に押し出す。 R’−SO3 Na + H+ → R’−SO3 H+
Na+ (R’−SO3)2 Ca+2H+ →2R’−SO3 H+
Ca2+ (R’−SO3)2 Mg+2H+ →2R’−SO3 H+
Mg2+
A second invention according to the present invention is a polymer electrolyte
When removing cations accumulated on the membrane,
H generated on the anode side by electrolysis of water or distilled water+ 
(Proton) to regenerate the electrolyte membrane
You. That is, electrolysis is performed by supplying deionized water to the anode chamber.
And by H+ Moves the electrolyte membrane from the anode to the cathode.
When it moves, it binds to the ion exchange group of the membrane as shown below.
Ca2+, Mg2+And Na + Substituted with cations such as
And push out the accumulated cations to the cathode side. R'-SOThree Na + H+ → R'-SOThree H +
Na+ (R'-SOThree)Two Ca + 2H+ → 2R'-SOThree H +
 Ca2+ (R'-SOThree)Two Mg + 2H+ → 2R'-SOThree H +
 Mg2+

【0021】陰極側には原料水を通水してあるので、陰
極側に移動してきた陽イオンはこの原料水中に溶け込み
電解槽の外へ除去され、電解質膜の洗浄を行うことがで
きるのである。
Since the raw material water is passed through the cathode side, the cations that have migrated to the cathode side are dissolved in the raw water and removed outside the electrolytic cell, so that the electrolyte membrane can be washed. .

【0022】但し、脱イオン水を用いる上記の電解法で
は、効率良くオゾン水が生成できるような電流密度条件
(例えば0.5A/cm2 以上)で電解を行うと、高電
位を電極間に印加することが必要になり電極の消耗を早
めることとなる。従って、オゾン水生成時の電流密度に
比べて、極めて微弱な電流密度で実施することが望まし
い。換言すれば、電解によりH+ を生成するのに十分な
電位(1.23V以上)が得られる電流密度(0.01
A/cm2 以上)であれば良く、その上限値は0.2A
/cm2 以下でよく、好ましくは0.1A/cm2 以下
である。
However, in the above-described electrolysis method using deionized water, if the electrolysis is performed under a current density condition (for example, 0.5 A / cm 2 or more) that can efficiently generate ozone water, a high potential is applied between the electrodes. It is necessary to apply the voltage, and the consumption of the electrode is accelerated. Therefore, it is desirable that the current density be extremely low compared to the current density at the time of ozone water generation. In other words, the current density (0.01% or more) at which a potential (1.23 V or more) sufficient to generate H + by electrolysis is obtained.
A / cm 2 or more), and the upper limit is 0.2 A
/ Cm 2 or less, and preferably 0.1 A / cm 2 or less.

【0023】Ca2+及びMg2+は水中のOH- イオンあ
るいはCO3 2- イオンと結合し、Ca(OH)2 ,Ca
CO3 等の化合物を生成する。これらの溶解度は小さ
く、特にpHが7.5を超えるアルカリサイドでは溶解
度が低くなる。従って、陰極側へ供給する原料水として
は、pHが7.5以下の水が好ましく、pHは7以下が
より好ましい。或いは、陰極側に移動した陽イオンの化
合物の溶解を促進するためにCa2+及びMg2+等のイオ
ンを含まない陽イオン交換水または脱イオン水を用いる
ことが推奨される。
Ca 2+ and Mg 2+ combine with OH ions or CO 3 2− ions in water to form Ca (OH) 2 , Ca
This produces compounds such as CO 3 . Their solubility is low, especially on the alkaline side with a pH above 7.5. Therefore, as the raw material water to be supplied to the cathode side, water having a pH of 7.5 or less is preferable, and a pH of 7 or less is more preferable. Alternatively, it is recommended to use cation-exchanged water or deionized water that does not contain ions such as Ca 2+ and Mg 2+ to promote the dissolution of the cation compound transferred to the cathode side.

【0024】図5は脱イオン水を用いて再生処理を行う
オゾン水製造装置の代表例を示す説明図であり、電解槽
の上流側には原料水の供給流路9aと脱イオン水供給流
路9bが設けられている。脱イオン水供給流路9bは、
原料水供給流路9aから分岐されたものであり、ミクロ
フィルター6により鉄分あるいはシリカ等が除かれた水
道水等が導入される。11はイオン交換槽であり、Na
+ ,Ca2+,Mg2+等の陽イオンや、Cl- やCO3 2-
等の陰イオンが除去される。得られた脱イオン水は、電
解槽の水の出口レベルより高い位置に設置された脱イオ
ン水タンク8に所定量貯留され、電解槽の再生処理が必
要となった際に、陽極質2aに供給される様に構成され
ている。
FIG. 5 is an explanatory view showing a typical example of an ozone water producing apparatus for performing a regeneration treatment using deionized water. In the upstream side of the electrolytic cell, a supply path 9a of raw water and a supply flow of deionized water are provided. A road 9b is provided. The deionized water supply channel 9b is
It is branched from the raw water supply passage 9a, and tap water or the like from which iron or silica has been removed by the microfilter 6 is introduced. Reference numeral 11 denotes an ion exchange tank,
+ , Ca 2+ , Mg 2+ and other cations, Cl and CO 3 2-
Are removed. The obtained deionized water is stored in a predetermined amount in a deionized water tank 8 installed at a position higher than the outlet level of the water in the electrolytic cell, and when the electrolytic cell needs to be regenerated, the anolyte 2a is removed. It is configured to be supplied.

【0025】図6は、脱イオン水の供給流路9bを2つ
の流路に分岐して、一方の流路を陽極側の原料水供給流
路に、他方の流路を陰極側の原料水供給流路に接続され
る様に接続し、陽極室及び陰極室のいずれにも脱イオン
水を供給する場合の例を示したものである。
FIG. 6 shows that the supply flow path 9b of the deionized water is branched into two flow paths, one flow path being a supply flow path for the raw material water on the anode side, and the other flow path being a flow path for the raw water supply on the cathode side. This is an example in which the deionized water is connected to the supply flow path and deionized water is supplied to both the anode chamber and the cathode chamber.

【0026】また脱イオン水を用いてオゾン水製造装置
の再生処理を行う場合であっても、前記酸性溶液を用い
て再生処理を行う場合と同様、電解槽を2槽以上並設
し、脱イオン水による再生が行われている間に、他の電
解槽によりオゾン水の生成を行い、再生処理によりオゾ
ン水の供給を中断することがない様に構成してもよい。
Also, in the case where the regeneration treatment of the ozone water producing apparatus is carried out using deionized water, as in the case where the regeneration treatment is carried out using the acidic solution, two or more electrolytic tanks are arranged in parallel and deionized. While the regeneration with the ionized water is being performed, the ozone water may be generated by another electrolytic cell so that the supply of the ozone water is not interrupted by the regeneration treatment.

【0027】尚、本発明においては、オゾン水濃度が低
下しても再生処理を行うことによりオゾン水製造装置の
電解特性は回復することから、水道水等を電解槽に供給
してもよいが、Ca2+やMg2+などの硬水成分イオンは
陽イオン交換樹脂を用いてイオン交換を行えばある程度
除去することは可能であり、オゾン濃度の低下速度をを
大幅に小さくすることができるので、推奨される。図
5,6における10は、陽イオン交換樹脂を内蔵して硬
水成分イオンの除去を行う陽イオン交換槽である。
In the present invention, tap water or the like may be supplied to the electrolytic cell because the electrolysis characteristics of the ozone water producing apparatus are restored by performing the regeneration process even if the ozone water concentration is reduced. Hard water component ions such as Ca 2+ and Mg 2+ can be removed to some extent by ion exchange using a cation exchange resin, and the rate of decrease in ozone concentration can be greatly reduced. Recommended. Reference numeral 10 in FIGS. 5 and 6 denotes a cation exchange tank that incorporates a cation exchange resin and removes hard water component ions.

【0028】具体的には、SO3 -基などをイオン交換基
としてもつ陽イオン交換樹脂などの陽イオン交換体を用
いれば、以下のような反応によりCa2+やMg2+などの
硬水成分イオンが、Na+ イオンとイオン交換して除去
することができる。また、陽イオン交換してもNa+
オンが水中に残存するので脱イオン水のように電解電圧
を高く設定しなくともオゾン水の生成が可能となる。 2R−SO3 Na+Ca2+→(R−SO32 Ca +
2Na+ 2R−SO3 Na+Mg2+→(R−SO32 Mg +
2Na+
Specifically, when a cation exchanger such as a cation exchange resin having an SO 3 - group or the like as an ion exchange group is used, hard water components such as Ca 2+ and Mg 2+ are reacted by the following reaction. Ions can be removed by ion exchange with Na + ions. Further, since Na + ions remain in water even after cation exchange, ozone water can be generated without setting the electrolysis voltage high as in deionized water. 2R-SO 3 Na + Ca 2+ → (R-SO 3 ) 2 Ca +
2Na + 2R-SO 3 Na + Mg 2+ → (R-SO 3) 2 Mg +
2Na +

【0029】但し、上記の様な陽イオン交換を行ったと
しても、完全にCa2+やMg2+などの硬水成分イオンを
除去することは困難なので、いずれは電解質膜内に徐々
に蓄積してオゾン濃度は低下してしまう。そこで、本発
明の再生処理方法を用いれば、高濃度のオゾン水を再び
製造することが可能となるのである。
However, even if the above-mentioned cation exchange is performed, it is difficult to completely remove hard water component ions such as Ca 2+ and Mg 2+, so that some of them gradually accumulate in the electrolyte membrane. As a result, the ozone concentration decreases. Therefore, the use of the regeneration treatment method of the present invention makes it possible to produce high-concentration ozone water again.

【0030】以下実施例について説明するが、本発明は
下記の実施例に限定されるものではなく、前・後記の趣
旨に徴して適宜変更することは本発明の技術的範囲に含
まれる。
Examples will be described below, but the present invention is not limited to the following examples, and any appropriate changes in the spirit of the foregoing and the following are included in the technical scope of the present invention.

【0031】[0031]

【実施例】実施例1 直接電解型オゾン水生成装置を用い、電解質膜に対する
電流密度を一定に制御した以下の定電流電解により、水
道水(ミクロフィルターによるろ過のみ)を用いてオゾ
ン水の生成実験を行った。 オゾン水生成量 :10リットル/min 電解電流密度 :0.8A/cm2 初期オゾン水濃度:10mg/リットル
Example 1 Ozone water was produced using tap water (only by filtration with a microfilter) by the following constant current electrolysis using a direct electrolysis type ozone water generation apparatus and controlling the current density with respect to the electrolyte membrane constant. An experiment was performed. Ozone water generation: 10 liter / min Electrolytic current density: 0.8 A / cm 2 Initial ozone water concentration: 10 mg / liter

【0032】オゾン水を生成してから10時間後の電解
性能(電解電圧及びオゾン水濃度)を測定し、本発明に
よる再生処理を以下に示す条件で行い、再生処理後の電
解性能を調べた。結果は表3に示す。 [再生処理条件] 洗浄液 :0.1 N HCl 循環量 :1リットル/min 洗浄時間:60min
The electrolysis performance (electrolysis voltage and ozone water concentration) 10 hours after the generation of the ozone water was measured, the regeneration treatment according to the present invention was performed under the following conditions, and the electrolysis performance after the regeneration treatment was examined. . The results are shown in Table 3. [Regeneration treatment conditions] Cleaning liquid: 0.1 N HCl Circulating amount: 1 liter / min Cleaning time: 60 min

【0033】[0033]

【表1】 [Table 1]

【0034】本発明方法によれば、再生処理により電解
性能は初期性能まで回復することが分かる。
According to the method of the present invention, it can be seen that the electrolytic performance is restored to the initial performance by the regeneration treatment.

【0035】実施例2 上記実施例1と同様にして、オゾン水の生成を10時間
行い、その時点での電解性能(電解槽電圧及びオゾン水
濃度)を測定した。次いで脱イオン水(イオン交換水)
により以下に示す条件で洗浄電解を行い、電解性能を調
べた。結果は表4に示す。 [洗浄電解条件] 電解電流密度:0.05A/cm2 洗浄時間 :30min
Example 2 Ozone water was generated for 10 hours in the same manner as in Example 1, and the electrolysis performance (electrolysis cell voltage and ozone water concentration) at that time was measured. Next, deionized water (ion exchange water)
, Cleaning electrolysis was performed under the following conditions, and the electrolysis performance was examined. The results are shown in Table 4. [Cleaning electrolysis conditions] Electrolysis current density: 0.05 A / cm 2 Cleaning time: 30 min

【0036】[0036]

【表2】 [Table 2]

【0037】本発明方法によれば、洗浄電解を行うこと
により電解性能は初期性能まで回復することが分かる。
According to the method of the present invention, it can be seen that the electrolysis performance is restored to the initial performance by performing the cleaning electrolysis.

【0038】[0038]

【発明の効果】本発明は以上の様に構成されているの
で、電解型オゾン水製造装置においてオゾン濃度が低下
した場合の再生方法と、その再生処理に好適な電解型オ
ゾン水製造装置が提供できることとなった。
Since the present invention is constructed as described above, the present invention provides a regeneration method when the ozone concentration is reduced in the electrolytic ozone water producing apparatus, and an electrolytic ozone water producing apparatus suitable for the regeneration treatment. It can be done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の電解型オゾン水製造装置を示す説明図で
ある。
FIG. 1 is an explanatory view showing a conventional electrolytic ozone water producing apparatus.

【図2】洗浄液供給手段を有する本発明装置の代表例を
示す概略説明図である。
FIG. 2 is a schematic explanatory view showing a typical example of the apparatus of the present invention having a cleaning liquid supply unit.

【図3】中和タンクを有する本発明装置の概略説明図で
ある。
FIG. 3 is a schematic explanatory view of the device of the present invention having a neutralization tank.

【図4】電解槽が2槽並設された本発明装置の概略説明
図である。
FIG. 4 is a schematic explanatory view of the apparatus of the present invention in which two electrolytic cells are arranged in parallel.

【図5】脱イオン水供給手段を有する本発明装置の代表
例を示す概略説明図である。
FIG. 5 is a schematic explanatory view showing a typical example of the apparatus of the present invention having deionized water supply means.

【図6】本発明装置の他の代表例を示す概略説明図であ
る。
FIG. 6 is a schematic explanatory view showing another typical example of the device of the present invention.

【符号の説明】[Explanation of symbols]

1 高分子電解質膜 2 陽極 3 陰極 4 洗浄液タンク 5 送給ポンプ 6 ミクロフィルター 7 中和タンク 8 脱イオン水タンク 9a 原料水供給流路 9b 脱イオン水供給流路 10 陽イオン交換樹脂 11 イオン交換樹脂 DESCRIPTION OF SYMBOLS 1 Polymer electrolyte membrane 2 Anode 3 Cathode 4 Cleaning liquid tank 5 Feed pump 6 Micro filter 7 Neutralization tank 8 Deionized water tank 9a Raw material water supply flow path 9b Deionized water supply flow path 10 Cation exchange resin 11 Ion exchange resin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 寺田 充夫 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mitsuo Terada 2-3-1, Shinhama, Araimachi, Takasago-shi, Hyogo Inside Kobe Steel, Ltd. Takasago Works

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 高分子電解質膜と陽極及び陰極を有する
電解槽に水を連続的に導入し陽極と陰極の間に直流電圧
を印加することにより陽極側からオゾン水を取り出す電
解型オゾン水製造装置の再生方法であって、 酸性溶液を上記電解槽に供給することにより、上記高分
子電解質膜と陽極及び陰極の洗浄を行うことを特徴とす
る電解型オゾン水製造装置の再生方法。
1. Production of electrolytic ozone water in which ozone water is taken out from the anode side by continuously introducing water into an electrolytic cell having a polymer electrolyte membrane and an anode and a cathode and applying a DC voltage between the anode and the cathode. A method for regenerating an apparatus for producing an electrolytic ozone water producing apparatus, wherein the polymer electrolyte membrane, the anode and the cathode are washed by supplying an acidic solution to the electrolytic cell.
【請求項2】 電解時に陰極側で生成されるアルカリ水
溶液により、前記高分子電解質膜と陽極及び陰極の洗浄
に用いた酸性溶液を中和して排水する請求項1に記載の
再生方法。
2. The method according to claim 1, wherein the acidic solution used for washing the polymer electrolyte membrane, the anode and the cathode is neutralized by an aqueous alkaline solution generated on the cathode side during the electrolysis and then drained.
【請求項3】 高分子電解質膜と陽極及び陰極を有する
電解槽に水を連続的に導入し陽極と陰極の間に直流電圧
を印加することにより陽極側からオゾン水を取り出す電
解型オゾン水製造装置の再生方法であって、 脱イオン水または蒸留水を陽極側に供給して、電解を行
うことにより上記電解質膜の再生処理を行うことを特徴
とする電解型オゾン水製造装置の再生方法。
3. Production of electrolytic ozone water in which ozone water is taken out from the anode side by continuously introducing water into an electrolytic cell having a polymer electrolyte membrane, an anode and a cathode and applying a DC voltage between the anode and the cathode. A method for regenerating an electrolytic ozone water producing apparatus, comprising supplying deionized water or distilled water to the anode side and performing electrolysis to regenerate the electrolyte membrane.
【請求項4】 陽極側では上記脱イオン水または蒸留水
を封入して、陰極側では通水しながら電解を行う請求項
3の再生方法。
4. The regeneration method according to claim 3, wherein the deionized water or distilled water is sealed on the anode side, and electrolysis is performed while passing water on the cathode side.
【請求項5】 電流密度0.01〜0.2A/cm2
電解を行う請求項3または4に記載の再生方法。
5. The method according to claim 3, wherein the electrolysis is performed at a current density of 0.01 to 0.2 A / cm 2 .
【請求項6】 脱イオン水または蒸留水を陽極側及び陰
極側に供給する請求項3〜5のいずれかに記載の再生方
法。
6. The regeneration method according to claim 3, wherein deionized water or distilled water is supplied to the anode side and the cathode side.
【請求項7】 陽極側には脱イオン水または蒸留水を供
給し、陰極側には、Ca2+及びMg2+等の2価イオンが
陽イオン交換により除去されたイオン交換水を供給する
請求項6に記載の再生方法。
7. An anode is supplied with deionized water or distilled water, and a cathode is supplied with ion-exchanged water from which divalent ions such as Ca 2+ and Mg 2+ have been removed by cation exchange. The reproduction method according to claim 6.
【請求項8】 高分子電解質膜と陽極及び陰極を有する
電解槽に水を連続的に導入し陽極と陰極の間に直流電圧
を印加することにより陽極側からオゾン水を取り出す電
解型オゾン水製造装置であって、 電解槽の上流側に洗浄液供給手段を有してなることを特
徴とする電解型オゾン水製造装置。
8. Production of electrolytic ozone water in which ozone water is taken out from the anode side by continuously introducing water into an electrolytic cell having a polymer electrolyte membrane, an anode and a cathode and applying a DC voltage between the anode and the cathode. An electrolytic ozone water producing apparatus, comprising: a cleaning liquid supply means upstream of an electrolytic cell.
【請求項9】 前記洗浄液供給手段が、洗浄液タンクと
送給ポンプからなる請求項8の電解型オゾン水製造装
置。
9. The electrolytic ozone water producing apparatus according to claim 8, wherein said cleaning liquid supply means comprises a cleaning liquid tank and a feed pump.
【請求項10】 前記洗浄液が酸性溶液である請求項8
または9に記載の電解型オゾン水製造装置。
10. The cleaning solution according to claim 8, wherein the cleaning solution is an acidic solution.
Or the electrolytic ozone water producing apparatus according to 9.
【請求項11】 高分子電解質膜と陽極及び陰極を有す
る電解槽に水を連続的に導入し陽極と陰極の間に直流電
圧を印加することにより陽極側からオゾン水を取り出す
電解型オゾン水製造装置であって、 電解槽の上流側に脱イオン水または蒸留水の供給手段を
有してなることを特徴とする電解型オゾン水製造装置。
11. Production of electrolytic ozone water in which ozone water is taken out from the anode side by continuously introducing water into an electrolytic cell having a polymer electrolyte membrane, an anode and a cathode and applying a DC voltage between the anode and the cathode. An apparatus for producing electrolytic ozone water, comprising: means for supplying deionized water or distilled water upstream of an electrolytic cell.
【請求項12】 電解槽への水の供給流路に陽イオン交
換槽を設けてなる請求項8〜11に記載の電解型オゾン
水製造装置。
12. The electrolytic ozone water producing apparatus according to claim 8, wherein a cation exchange tank is provided in a flow path for supplying water to the electrolytic cell.
JP8291951A 1996-11-01 1996-11-01 Electrolytic ozonized water producing unit and its regenerating method Pending JPH10130876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8291951A JPH10130876A (en) 1996-11-01 1996-11-01 Electrolytic ozonized water producing unit and its regenerating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8291951A JPH10130876A (en) 1996-11-01 1996-11-01 Electrolytic ozonized water producing unit and its regenerating method

Publications (1)

Publication Number Publication Date
JPH10130876A true JPH10130876A (en) 1998-05-19

Family

ID=17775580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8291951A Pending JPH10130876A (en) 1996-11-01 1996-11-01 Electrolytic ozonized water producing unit and its regenerating method

Country Status (1)

Country Link
JP (1) JPH10130876A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069679A (en) * 2000-08-28 2002-03-08 Hiroichi Shioda Ozonizer
JP2008000666A (en) * 2006-06-21 2008-01-10 Kobe Steel Ltd Method and apparatus for producing ozone water and detergent to be used therein
JP2010155227A (en) * 2009-01-05 2010-07-15 Nikka Micron Kk Ozonated water producing apparatus
WO2011135748A1 (en) 2010-04-30 2011-11-03 Aquaecos Ltd. Membrane-electrode assembly, electrolytic cell using the same, method and apparatus for producing ozone water, method for disinfection and method for wastewater or waste fluid treatment
WO2012132963A1 (en) * 2011-03-30 2012-10-04 クロリンエンジニアズ株式会社 Method for starting up ozone-generating electrolytic cell
WO2013035762A1 (en) 2011-09-08 2013-03-14 Aquaecos Ltd. Electrolysis system and electrolysis method for the same
JP2013255899A (en) * 2012-06-13 2013-12-26 Suisei Kogyo Kk Refreshing washing method of ozone water generator
CN105603453A (en) * 2014-11-24 2016-05-25 中国科学院大连化学物理研究所 In-situ regeneration method of solid polymer electrolyte water electrolyzer
US10053380B2 (en) 2015-07-03 2018-08-21 Aquaecos Ltd. Electrolysis device and apparatus for producing electrolyzed ozonated water
WO2020109595A1 (en) * 2018-11-30 2020-06-04 Sedo Engineering Sa Electrochemical reactor and its cleaning or regeneration
US11629418B2 (en) 2018-11-30 2023-04-18 Sedo Engineering Sa By-products (impurity) removal
US11753730B2 (en) 2018-11-30 2023-09-12 Sedo Engineering Sa Leucodye (such as leucoindigo) as dispersing aid

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069679A (en) * 2000-08-28 2002-03-08 Hiroichi Shioda Ozonizer
JP2008000666A (en) * 2006-06-21 2008-01-10 Kobe Steel Ltd Method and apparatus for producing ozone water and detergent to be used therein
JP2010155227A (en) * 2009-01-05 2010-07-15 Nikka Micron Kk Ozonated water producing apparatus
WO2011135748A1 (en) 2010-04-30 2011-11-03 Aquaecos Ltd. Membrane-electrode assembly, electrolytic cell using the same, method and apparatus for producing ozone water, method for disinfection and method for wastewater or waste fluid treatment
JPWO2012132963A1 (en) * 2011-03-30 2014-07-28 ペルメレック電極株式会社 Starting method of electrolytic cell for ozone generation
WO2012132963A1 (en) * 2011-03-30 2012-10-04 クロリンエンジニアズ株式会社 Method for starting up ozone-generating electrolytic cell
WO2013035762A1 (en) 2011-09-08 2013-03-14 Aquaecos Ltd. Electrolysis system and electrolysis method for the same
JP2013255899A (en) * 2012-06-13 2013-12-26 Suisei Kogyo Kk Refreshing washing method of ozone water generator
CN105603453A (en) * 2014-11-24 2016-05-25 中国科学院大连化学物理研究所 In-situ regeneration method of solid polymer electrolyte water electrolyzer
US10053380B2 (en) 2015-07-03 2018-08-21 Aquaecos Ltd. Electrolysis device and apparatus for producing electrolyzed ozonated water
WO2020109595A1 (en) * 2018-11-30 2020-06-04 Sedo Engineering Sa Electrochemical reactor and its cleaning or regeneration
US11629418B2 (en) 2018-11-30 2023-04-18 Sedo Engineering Sa By-products (impurity) removal
US11753730B2 (en) 2018-11-30 2023-09-12 Sedo Engineering Sa Leucodye (such as leucoindigo) as dispersing aid

Similar Documents

Publication Publication Date Title
JP4392354B2 (en) High electrolysis cell
JP2568617B2 (en) Method for decomposing organic substances and bacteria in water supply
JP3913923B2 (en) Water treatment method and water treatment apparatus
JP5124815B2 (en) Method for cleaning membranes and chemicals therefor
US8287702B2 (en) Electrolytic activation of water
JPH10130876A (en) Electrolytic ozonized water producing unit and its regenerating method
WO2019159197A1 (en) Method and apparatus for regenerating a working salt solution in salt purification
JP4865651B2 (en) Wastewater treatment method and apparatus
JP2005218983A (en) Wastewater treatment method and apparatus using electrolytic oxidation
JP4394941B2 (en) Electrolytic ozonizer
JP3984414B2 (en) NH3-containing wastewater treatment apparatus and treatment method
KR20060007369A (en) High electric field electrolysis cell
KR20070041948A (en) Method and device for regenerating of regenerative slop in ion exchange resin
JP2005013858A (en) Method and apparatus for treating wastewater using high voltage pulses
JP2005103391A (en) Wastewater treatment method and apparatus
JP3788688B2 (en) Method and apparatus for electrolytic treatment of oxidized nitrogen-containing water
JP6319719B2 (en) Waste water treatment method and waste water treatment equipment
JP4641435B2 (en) Endocrine disrupting chemical substance decomposition method and apparatus
JPH09150159A (en) Cod-related component removing method for the component containing water
KR100490561B1 (en) Water purifier having sterilizer using electrolysis
JPH0631278A (en) Ion-exchanged water preparation device
JP6319720B2 (en) Waste water treatment method and waste water treatment equipment
JP2001113290A (en) Apparatus for treating organic matter-containing water
JP2000263049A (en) Method and apparatus for cleaning barn effluent
JP3269784B2 (en) Ozone water production method and ozone water production device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030107