JP2008000666A - Method and apparatus for producing ozone water and detergent to be used therein - Google Patents

Method and apparatus for producing ozone water and detergent to be used therein Download PDF

Info

Publication number
JP2008000666A
JP2008000666A JP2006171539A JP2006171539A JP2008000666A JP 2008000666 A JP2008000666 A JP 2008000666A JP 2006171539 A JP2006171539 A JP 2006171539A JP 2006171539 A JP2006171539 A JP 2006171539A JP 2008000666 A JP2008000666 A JP 2008000666A
Authority
JP
Japan
Prior art keywords
cleaning
cleaning liquid
ozone water
cathode chamber
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006171539A
Other languages
Japanese (ja)
Inventor
Kaoru Masuda
薫 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006171539A priority Critical patent/JP2008000666A/en
Publication of JP2008000666A publication Critical patent/JP2008000666A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Detergent Compositions (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for producing ozone water, in each of which work of handling a cleaning liquid or the used cleaning liquid is facilitated, the maintenance cost and the initial cost can be reduced and ozone water is produced by an underwater electrolysis method using an immobilized electrolyte membrane and to provide a detergent to be used in the method and the apparatus for producing ozone water. <P>SOLUTION: The cleaning liquid is produced by gradually eluting the detergent which contains an organic acid and is molded into a solid shape. A cathode arranged in a cathode chamber of an electrolytic cell, which is divided into an anode chamber and the cathode chamber by the immobilized electrolyte membrane, is cleaned by the produced cleaning liquid to prevent the deposition of hardly soluble salt, so that ozone water is produced by the underwater electrolysis method. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固定電解質膜を用いる水中電解法によるオゾン水製造方法、オゾン水製造装置、およびこれらに使用される洗浄剤に関する。   The present invention relates to an ozone water production method by an underwater electrolysis method using a fixed electrolyte membrane, an ozone water production apparatus, and a cleaning agent used in these.

オゾンは、殺菌、脱臭、脱色などの効果から食品関係、下水道、し尿処理、浴室、病院、老人施設、畜産、水産関係など種々の分野で利用と効果が期待されている。従来、オゾンが溶解した水であるオゾン水を製造する方法の一つとして、固体電解質膜と電極を利用して水中において水を電気分解することによりオゾン水を直接発生させる製造装置が用いられている。この装置は、固体電解質膜で陽極室と陰極室に区画された電解槽における陽極室側から水の分解により酸素とともにオゾンが発生し、陰極室側では水素ガスの発生とともに液がアルカリ性となる。また、陰極室側には、Na+イオン、Ca2+イオン、Mg2+イオン、などの陽イオンが固体電解質膜を透過してくる。このうち、Ca2+イオン、Mg2+イオンは、アルカリ性において、OH-イオンや空気中の炭酸ガスが溶解した炭酸イオンと結合して難溶性の水酸化物や炭酸塩を生じ、電極に析出して電解性能を著しく低下させることが知られている。 Ozone is expected to be used and effective in various fields such as food-related, sewerage, human waste treatment, bathrooms, hospitals, elderly facilities, livestock, and fisheries due to effects such as sterilization, deodorization, and decolorization. Conventionally, as one method of producing ozone water, which is water in which ozone is dissolved, a production apparatus that directly generates ozone water by electrolyzing water in water using a solid electrolyte membrane and electrodes has been used. Yes. In this apparatus, ozone is generated together with oxygen from the anode chamber side in an electrolytic cell partitioned into an anode chamber and a cathode chamber with a solid electrolyte membrane, and the liquid becomes alkaline as hydrogen gas is generated on the cathode chamber side. On the cathode chamber side, cations such as Na + ions, Ca 2+ ions, and Mg 2+ ions pass through the solid electrolyte membrane. Among these, Ca 2+ ions and Mg 2+ ions are alkaline and combine with OH - ions and carbonate ions dissolved in carbon dioxide to form poorly soluble hydroxides and carbonates, which are deposited on the electrodes. Thus, it is known that the electrolytic performance is remarkably lowered.

このような問題に対し、Ca2+イオン、Mg2+イオンが酸性溶液によく溶けるという性質を利用して陰極室側に酸性洗浄液を循環させて難溶性塩の陰極電極への析出を防止する方法が知られている(例えば、非特許文献1参照)。また、Na型イオン交換樹脂を充填した軟水器をオゾン水製造装置の上流側に設け、水道水中の硬度成分であるCa2+イオン、M2g+イオンをNa+イオンにイオン交換する方法を採用しているものもある(例えば、特許文献1参照)。 In response to such problems, the acidic cleaning solution is circulated to the cathode chamber side by utilizing the property that Ca 2+ ions and Mg 2+ ions dissolve well in an acidic solution, thereby preventing the deposition of sparingly soluble salts on the cathode electrode. The method is known (for example, refer nonpatent literature 1). In addition, a water softener filled with Na-type ion exchange resin is installed on the upstream side of the ozone water production device, and the method of ion exchange of Ca 2+ ions and M 2 g + ions, which are hardness components in tap water, to Na + ions Some have been adopted (see, for example, Patent Document 1).

「取扱説明書 オゾン水洗浄機FX2000」シルバー精工株式会社"Instruction Manual Ozone Water Cleaning Machine FX2000" Silver Seiko Co., Ltd. 特許第3269784号公報Japanese Patent No. 3269784

しかしながら、非特許文献1に記載された陰極室側に洗浄液を循環させる方法は、特許文献1に記載されているような原料水の前処理を必要としない優れた方法であるが、洗浄液は、溶解度の高いクエン酸を42%という高濃度に溶解したものを採用している。オゾン水を製造する際には、Ca2+イオンやMg2+イオンを含む原料水が固体電解質膜を透過して陰極室側に移行し陰極室側の洗浄液が薄まっていくため、洗浄液は、ある時点で交換する必要がある。しかし、難溶塩の析出する洗浄液の下限濃度については明らかでなく、例えば非特許文献1のオゾン水製造装置の使用済み洗浄液は、有機酸40%以上の取り扱いの面倒な高濃度の廃液である。また、このオゾン水製造装置の洗浄液交換の目安は、約50時間稼動した時点であり、洗浄液の交換が頻繁に必要で労力とコストがかかるという問題がある。 However, the method of circulating the cleaning liquid to the cathode chamber side described in Non-Patent Document 1 is an excellent method that does not require pretreatment of raw material water as described in Patent Document 1, but the cleaning liquid is A highly soluble citric acid dissolved in a high concentration of 42% is employed. When producing ozone water, raw water containing Ca 2+ ions and Mg 2+ ions permeates the solid electrolyte membrane and moves to the cathode chamber side, and the cleaning solution on the cathode chamber side is diluted. It needs to be replaced at some point. However, it is not clear about the lower limit concentration of the cleaning liquid in which the hardly soluble salt precipitates. For example, the used cleaning liquid of the ozone water production apparatus of Non-Patent Document 1 is a waste liquid with a high concentration that is troublesome to handle with 40% or more organic acid. . Moreover, the standard of the cleaning liquid replacement of this ozone water production apparatus is the point of operation for about 50 hours, and there is a problem that replacement of the cleaning liquid is necessary frequently and requires labor and cost.

尚、洗浄液に用いる酸としては、塩酸、硝酸、硫酸なども使用できるが、これらの強酸は危険であるため、クエン酸等の有機酸が好ましい。ただし、固定電解質膜を用いる水中電解法によるオゾン水製造装置のように徐々に原料水の混入により濃度が薄まっていくような装置で、長い期間一定の洗浄液濃度を保とうとすると、クエン酸等の溶解度の高い物質からなる洗浄液を使用する場合は、希釈されてもいいような高濃度の溶液を使用するか、定期的な洗浄液供給装置を別途設けるなどの装置的な工夫が必要である。しかし、不必要に高濃度の溶液を使用すると配管やタンクの腐食の問題があり、かつ使用済みの洗浄液が高濃度の酸を含む取り扱いの面倒な廃液になる。一方、定期的な洗浄液供給装置を別途設ける装置では、タイマー等で定期的に酸溶液を注入する付属装置等により実現できるが、装置が複雑になるうえ、洗浄液の必要下限濃度が明らかでない限り、洗浄液の交換頻度が頻繁であることにかわりはない。   In addition, hydrochloric acid, nitric acid, sulfuric acid, etc. can be used as the acid used in the cleaning solution, but organic acids such as citric acid are preferred because these strong acids are dangerous. However, in an apparatus where the concentration gradually decreases due to the mixing of raw material water, such as an ozone water production apparatus using an electrolysis method using a fixed electrolyte membrane, if a constant cleaning solution concentration is maintained for a long period of time, citric acid, etc. When using a cleaning liquid composed of a substance having high solubility, it is necessary to devise a device such as using a high-concentration solution that may be diluted or separately providing a periodic cleaning liquid supply device. However, if a solution with a high concentration is used unnecessarily, there is a problem of corrosion of pipes and tanks, and the used cleaning liquid becomes a waste liquid that is troublesome to handle, including a high concentration of acid. On the other hand, in a device that separately provides a periodic cleaning liquid supply device, it can be realized by an auxiliary device that periodically injects an acid solution with a timer or the like, but the device becomes complicated, and unless the minimum required concentration of the cleaning liquid is clear, There is no substitute for frequent replacement of the cleaning liquid.

一方、特許文献1に記載された原料水の前処理をおこなうオゾン水製造装置は、Na型イオン交換樹脂を充填した軟水器等の付属装置が必要となり装置が複雑になるという問題がある。このような原料水の前処理を行わない場合は、電解槽の陰極室側に供給する原料水に直接洗浄液を供給する方法もあるが、洗浄廃液の濃度が高い場合は処理が面倒であり、また、定期的な洗浄液供給装置を別途設ける必要があり装置が複雑になる。   On the other hand, the ozone water production apparatus that performs the pretreatment of raw material water described in Patent Document 1 has a problem that an auxiliary apparatus such as a water softener filled with Na-type ion exchange resin is required, and the apparatus becomes complicated. When such pretreatment of raw material water is not performed, there is also a method of supplying the cleaning liquid directly to the raw water supplied to the cathode chamber side of the electrolytic cell, but the treatment is troublesome when the concentration of the cleaning waste liquid is high, Further, it is necessary to separately provide a regular cleaning liquid supply device, which complicates the device.

本発明は、上記実情に鑑みることにより、取り扱いが容易でかつ維持管理コストおよびイニシャルコストを削減することが可能な、固定電解質膜を用いた水中電解法による、オゾン水製造方法、オゾン水製造装置、ならびにこれらに使用される洗浄剤を提供することを目的とする。   The present invention provides an ozone water production method and an ozone water production apparatus by an underwater electrolysis method using a fixed electrolyte membrane, which is easy to handle and can reduce maintenance costs and initial costs in view of the above circumstances. And a cleaning agent used in these.

課題を解決するための手段及び効果Means and effects for solving the problems

本発明に係るオゾン水製造方法は、Ca2+イオンおよびMg2+イオンのうちの少なくともいずれかを含む水を原料水として使用し、当該原料水を電気分解することでオゾン水を製造するオゾン水製造方法に関する。そして、本発明に係るオゾン水製造方法は、上記目的を達成するために以下のようないくつかの特徴を有している。すなわち、本発明のオゾン水製造方法は、以下の特徴を単独で、若しくは、適宜組み合わせて備えている。 The ozone water production method according to the present invention uses ozone containing at least one of Ca 2+ ions and Mg 2+ ions as raw water, and produces ozone water by electrolyzing the raw water. The present invention relates to a water production method. And the ozone water manufacturing method which concerns on this invention has the following some features, in order to achieve the said objective. That is, the ozone water production method of the present invention comprises the following features alone or in combination.

上記目的を達成するための本発明に係るオゾン水製造方法における第1の特徴は、固定電解質膜で陽極室と陰極室とに区画された電解槽における当該陽極室に前記原料水を供給する原料水供給工程と、前記陰極室に洗浄液を供給して前記陰極室内に配置されている陰極電極を洗浄する洗浄工程と、有機酸を含むとともに固形状に成型された洗浄剤を徐々に溶出させることで、前記洗浄液を生成する溶出工程とを備えることである。   The first feature of the method for producing ozone water according to the present invention for achieving the above object is that the raw material water is supplied to the anode chamber in an electrolytic cell partitioned into an anode chamber and a cathode chamber by a fixed electrolyte membrane. A water supply step, a cleaning step of supplying a cleaning liquid to the cathode chamber to clean the cathode electrode disposed in the cathode chamber, and gradually eluting the cleaning agent that contains an organic acid and is molded into a solid state And an elution step for producing the cleaning liquid.

この構成によると、原料水供給工程により、陽極室内に配置されている陽極電極からH2Oの電気分解によりオゾンが発生する。溶出工程においては、固形状に成型された洗浄剤がその溶解度分だけ徐々に溶出し、ほぼ一定濃度の洗浄液を生成する。また、原料水が固体電解質膜を透過して陰極室側に移行することにより陰極室側の洗浄液が薄まったとしても、洗浄剤はその溶解度分だけ徐々に溶出していくため、ほぼ一定濃度の洗浄液となる。洗浄工程においては、陰極室に洗浄液が供給されて陰極室内が酸性状態に保たれるため、原料水に含まれるCa2+イオンやMg2+イオンは陰極電極に難溶塩として析出することなく洗浄液中に溶解している状態を維持できる。尚、発明者の鋭意研究の結果、洗浄液の酸濃度は、高濃度である必要がなく低濃度でも洗浄性能を確保することができるため、洗浄廃液の中和処理等が必要であっても、その処理は容易かつ安全に行うことが可能である。 According to this configuration, ozone is generated by electrolysis of H 2 O from the anode electrode disposed in the anode chamber in the raw water supply step. In the elution step, the cleaning agent molded into a solid form is gradually eluted by the amount of its solubility to produce a cleaning solution having a substantially constant concentration. Even if the raw material water permeates through the solid electrolyte membrane and moves to the cathode chamber side, the cleaning solution on the cathode chamber side becomes thin, so that the cleaning agent is gradually eluted by its solubility. It becomes a cleaning solution. In the cleaning process, since the cleaning liquid is supplied to the cathode chamber and the cathode chamber is kept in an acidic state, Ca 2+ ions and Mg 2+ ions contained in the raw water do not precipitate as poorly soluble salts on the cathode electrode. The state dissolved in the cleaning liquid can be maintained. As a result of the inventor's diligent research, the acid concentration of the cleaning liquid does not need to be high, and the cleaning performance can be ensured even at a low concentration. The process can be performed easily and safely.

また、本発明に係るオゾン水製造方法における第2の特徴は、前記洗浄工程では、前記洗浄液を貯留する洗浄液タンクと前記陰極室との間で循環して用いられる前記洗浄液が前記陰極室に供給されることである。   The second feature of the ozone water production method according to the present invention is that, in the cleaning step, the cleaning liquid that is circulated between the cleaning liquid tank storing the cleaning liquid and the cathode chamber is supplied to the cathode chamber. It is to be done.

この構成によると、洗浄工程において洗浄液を貯留する洗浄液タンクと陰極室との間で洗浄液を循環させて使用することができる。したがって、洗浄液を繰り返し使用することが可能となる。   According to this configuration, the cleaning liquid can be circulated between the cleaning liquid tank for storing the cleaning liquid and the cathode chamber in the cleaning process. Therefore, the cleaning liquid can be used repeatedly.

また、本発明に係るオゾン水製造方法における第3の特徴は、前記溶出工程では、前記洗浄剤を配置する前記洗浄液タンク内で、前記洗浄剤を前記洗浄液に徐々に溶出させることである。ここで、洗浄剤を配置する方法は、洗浄剤をそのまま洗浄液タンク内の底に沈めておく方法、網などで包んで洗浄液タンク内の底に沈めておく方法、吊り下げ器具をとりつけて洗浄タンク内に吊るしておく方法等が考えられる。   The third feature of the method for producing ozone water according to the present invention is that, in the elution step, the cleaning agent is gradually eluted into the cleaning solution in the cleaning solution tank in which the cleaning agent is disposed. Here, the method of arranging the cleaning agent is a method of sinking the cleaning agent as it is in the bottom of the cleaning liquid tank, a method of wrapping it in a net or the like and sinking it to the bottom of the cleaning liquid tank, a cleaning tank attached with a hanging device. A method of suspending the inside is conceivable.

この構成によると、洗浄液タンクは、洗浄液を投入する開口を有し、かつ洗浄液を貯留するある程度の容積を有するため、容易に洗浄液タンク内に洗浄剤を配置することが可能である。   According to this configuration, since the cleaning liquid tank has an opening for introducing the cleaning liquid and has a certain volume for storing the cleaning liquid, it is possible to easily dispose the cleaning agent in the cleaning liquid tank.

また、本発明に係るオゾン水製造方法における第4の特徴は、前記原料水は、前記陽極室に供給する陽極室側経路と前記陰極室に供給する陰極室側経路とに分岐する原料水供給経路を介して供給され、前記溶出工程では、前記洗浄剤を配置する前記陰極室側経路中に、前記洗浄剤を前記原料水に徐々に溶出させることである。ここで、洗浄剤を配置する方法は、前記陰極室側経路中に設置するバッファータンクの中に洗浄剤をそのまま沈めておく方法、網などで包んで沈めておく方法、吊り下げ器具をとりつけて吊るしておく方法等が考えられる。   The fourth feature of the ozone water production method according to the present invention is that the raw material water is branched into an anode chamber side path for supplying the anode chamber and a cathode chamber side path for supplying to the cathode chamber. In the elution step, the cleaning agent is gradually eluted into the raw material water in the cathode chamber side passage where the cleaning agent is disposed. Here, as for the method of arranging the cleaning agent, the cleaning agent is sunk as it is in the buffer tank installed in the cathode chamber side path, the method of wrapping it in a net or the like, and a hanging device is attached. A method of suspending is conceivable.

この構成によると、Na型イオン交換樹脂を充填した軟水器をオゾン水製造装置の上流側に設けて水道水中の硬度成分であるCa2+イオン、M2g+イオンをNa+イオンにイオン交換する等の原料水の前処理が不要となる。また、固形状の洗浄剤が原料水の中に徐々に溶出していくため、液体の洗浄液を定期的に注入する工程が不要であり、洗浄工程が簡潔、かつ維持管理が容易となる。 According to this configuration, a water softener filled with Na-type ion exchange resin is installed on the upstream side of the ozone water production system, and Ca 2+ ions and M 2 g + ions, which are hardness components in tap water, are ion-exchanged to Na + ions. Pretreatment of the raw material water, such as, is unnecessary. In addition, since the solid cleaning agent gradually elutes into the raw material water, a step of periodically injecting a liquid cleaning liquid is unnecessary, and the cleaning step is simple and easy to maintain.

また、本発明に係るオゾン水製造方法における第5の特徴は、前記洗浄剤に、水の電気伝導度を上げるための強電解質が混合されていることである。ここで、強電解質が混合されているとは、NaCl、Na2SO4、KClおよびK2SO4のうちの少なくともいずれかを含む電解質が混合されていることである。 Moreover, the 5th characteristic in the ozone water manufacturing method which concerns on this invention is that the strong electrolyte for raising the electrical conductivity of water is mixed with the said cleaning agent. Here, the phrase “a strong electrolyte is mixed” means that an electrolyte containing at least one of NaCl, Na 2 SO 4 , KCl, and K 2 SO 4 is mixed.

この構成によると、洗浄液の電気伝導度があがり電力効率を向上させることが可能となる。   According to this configuration, the electrical conductivity of the cleaning liquid is increased, and the power efficiency can be improved.

また、本発明に係るオゾン水製造方法における第6の特徴は、前記洗浄剤に、コハク酸およびフマル酸のうちの少なくともいずれかを含んでいることである。   The sixth feature of the method for producing ozone water according to the present invention is that the cleaning agent contains at least one of succinic acid and fumaric acid.

この構成によると、コハク酸およびフマル酸は、いずれも溶解度が中程度以下の酸であるため、洗浄剤に溶解速度調整剤を混合することなく、徐々に有機酸を溶解させることが可能となる。これにより、電極洗浄液の寿命を長く持続させることが可能となる。   According to this configuration, since succinic acid and fumaric acid are both acids having a moderate solubility or lower, it becomes possible to gradually dissolve the organic acid without mixing the dissolution rate adjusting agent with the cleaning agent. . As a result, the life of the electrode cleaning liquid can be maintained for a long time.

また、本発明に係るオゾン水製造装置は、Ca2+イオンおよびMg2+イオンのうちの少なくともいずれかを含む水を原料水として使用し、当該原料水を電気分解することでオゾン水を製造するオゾン水製造装置に関する。
そして、本発明に係るオゾン水製造装置は、上記目的を達成するために以下のようないくつかの特徴を有している。すなわち、本発明のオゾン水製造装置は、以下の特徴を単独で、若しくは、適宜組み合わせて備えている。
Further, the ozone water production apparatus according to the present invention uses water containing at least one of Ca 2+ ions and Mg 2+ ions as raw water, and produces ozone water by electrolyzing the raw water. The present invention relates to an ozone water production apparatus.
And the ozone water manufacturing apparatus based on this invention has the following some features, in order to achieve the said objective. That is, the ozone water production apparatus of the present invention comprises the following features alone or in combination as appropriate.

本発明に係るオゾン水製造装置における第1の特徴は、固定電解質膜で区画された陽極室と陰極室とを有し、当該陽極室に前記原料水が供給される電解槽と、前記陰極室内に洗浄液を供給して前記陰極室内に配置されている陰極電極を洗浄するための洗浄液供給手段と、有機酸を含むとともに固形状に成型された洗浄剤を徐々に溶出させることで、前記洗浄液を生成する溶出部とを備えていることである。   The first feature of the ozone water production apparatus according to the present invention is that an anode chamber and a cathode chamber partitioned by a fixed electrolyte membrane, an electrolytic cell in which the raw water is supplied to the anode chamber, and the cathode chamber A cleaning liquid supplying means for supplying a cleaning liquid to the cathode chamber and cleaning the cathode electrode disposed in the cathode chamber, and by gradually eluting the cleaning agent containing the organic acid and molded into a solid state, And an elution part to be generated.

この構成によると、電解槽の陽極室内に配置されている陽極電極からH2Oの電気分解によりオゾンが発生する。溶出部においては、固形状に成型された洗浄剤がその溶解度分だけ徐々に溶出し、ほぼ一定濃度の洗浄液を生成する。また、原料水が固体電解質膜を透過して陰極室側に移行することにより陰極室側の洗浄液が薄まったとしても、洗浄剤はその溶解度分だけ徐々に溶出していくため、ほぼ一定濃度の洗浄液となる。洗浄工程においては、陰極室に洗浄液が供給されて陰極室内が酸性状態に保たれるため、原料水に含まれるCa2+イオンやMg2+イオンは陰極電極に難溶塩として析出することなく洗浄液中に溶解している状態を維持できる。尚、発明者の鋭意研究の結果、洗浄液の酸濃度は、高濃度である必要がなく低濃度でも洗浄性能を確保することができるため、洗浄廃液の中和処理等が必要であっても、その処理は容易かつ安全に行うことが可能である。 According to this configuration, ozone is generated by electrolysis of H 2 O from the anode electrode arranged in the anode chamber of the electrolytic cell. In the elution part, the cleaning agent molded in a solid state is gradually eluted by the amount of its solubility to produce a cleaning solution having a substantially constant concentration. Even if the raw material water permeates through the solid electrolyte membrane and moves to the cathode chamber side, the cleaning solution on the cathode chamber side becomes thin, so that the cleaning agent is gradually eluted by its solubility. It becomes a cleaning solution. In the cleaning process, since the cleaning liquid is supplied to the cathode chamber and the cathode chamber is kept in an acidic state, Ca 2+ ions and Mg 2+ ions contained in the raw water do not precipitate as poorly soluble salts on the cathode electrode. The state dissolved in the cleaning liquid can be maintained. As a result of the inventor's diligent research, the acid concentration of the cleaning liquid does not need to be high, and the cleaning performance can be ensured even at a low concentration. The process can be performed easily and safely.

また、本発明に係るオゾン水製造装置における第2の特徴は、前記洗浄液を貯留する洗浄液タンクを備え、前記洗浄液供給手段は、前記洗浄液タンクと前記陰極室との間で前記洗浄液を循環させて前記陰極室に前記洗浄液を供給することである。   Further, a second feature of the ozone water producing apparatus according to the present invention includes a cleaning liquid tank that stores the cleaning liquid, and the cleaning liquid supply means circulates the cleaning liquid between the cleaning liquid tank and the cathode chamber. The cleaning liquid is supplied to the cathode chamber.

この構成によると、洗浄工程において洗浄液を貯留する洗浄液タンクと陰極室との間で洗浄液を循環させて使用することができる。したがって、洗浄液を繰り返し使用することが可能となる。   According to this configuration, the cleaning liquid can be circulated between the cleaning liquid tank for storing the cleaning liquid and the cathode chamber in the cleaning process. Therefore, the cleaning liquid can be used repeatedly.

また、本発明に係るオゾン水製造装置における第3の特徴は、前記溶出部は、前記洗浄剤を配置する前記洗浄液タンクの内部として形成されていることである。ここで、洗浄剤の配置手段は、洗浄剤をそのまま洗浄液タンク内の底に沈めておく手段、網などで包んで洗浄液タンク内の底に沈めておく手段、吊り下げ器具をとりつけて洗浄液タンク内に吊るしておく手段等が考えられる。   Moreover, the 3rd characteristic in the ozone water manufacturing apparatus which concerns on this invention is that the said elution part is formed as the inside of the said washing | cleaning liquid tank which arrange | positions the said washing | cleaning agent. Here, the means for disposing the cleaning agent includes means for sinking the cleaning agent as it is in the bottom of the cleaning liquid tank, means for wrapping it in a net or the like and sinking it to the bottom of the cleaning liquid tank, and attaching a hanging device to the cleaning liquid tank. A means for suspending it on the surface can be considered.

この構成によると、洗浄液タンクは、洗浄液を投入する開口を有し、かつ洗浄液を貯留するある程度の容積を有するため、容易に洗浄液タンク内に洗浄剤を配置することが可能である。   According to this configuration, since the cleaning liquid tank has an opening for introducing the cleaning liquid and has a certain volume for storing the cleaning liquid, it is possible to easily dispose the cleaning agent in the cleaning liquid tank.

また、本発明に係るオゾン水製造装置における第4の特徴は、前記原料水を前記陽極室に供給する陽極室側経路と前記陰極室に供給する陰極室側経路とに分岐する原料水供給経路と、前記陰極室側経路の途中に設けられ前記洗浄剤が配置されるバッファータンクとを備え、前記溶出部は、前記バッファータンクの内部として形成されていることである。ここで、洗浄剤の配置手段は、前記陰極室側経路中に設置するバッファータンクの中に洗浄剤をそのまま沈めておく手段、網などで包んで沈めておく手段、吊り下げ器具をとりつけて吊るしておく手段等が考えられる。   The fourth feature of the ozone water production apparatus according to the present invention is that the raw water supply path branches into an anode chamber side path for supplying the raw water to the anode chamber and a cathode chamber side path for supplying the cathode chamber. And a buffer tank provided in the middle of the cathode chamber side path, in which the cleaning agent is disposed, and the elution part is formed as an interior of the buffer tank. Here, the means for disposing the cleaning agent is a means for sunk the cleaning agent as it is in a buffer tank installed in the cathode chamber side passage, a means for wrapping and sunk with a net, etc. Means to keep it are considered.

この構成によると、Na型イオン交換樹脂を充填した軟水器をオゾン水製造装置の上流側に設けて水道水中の硬度成分であるCa2+イオン、M2g+イオンをNa+イオンにイオン交換する等の原料水の前処理が不要となる。また、固形状の洗浄剤が原料水の中に徐々に溶出していくため、液体の洗浄液を定期的に注入する溶出部が不要であり、溶接部を簡潔に形成でき、かつ維持管理が容易となる。 According to this configuration, a water softener filled with Na-type ion exchange resin is installed on the upstream side of the ozone water production system, and Ca 2+ ions and M 2 g + ions, which are hardness components in tap water, are ion-exchanged to Na + ions. Pretreatment of the raw material water, such as, is unnecessary. In addition, since the solid cleaning agent gradually elutes into the raw water, there is no need for an elution part that regularly injects a liquid cleaning solution, and a welded part can be formed concisely and maintenance is easy. It becomes.

また、本発明に係るオゾン水製造装置における第5の特徴は、前記洗浄剤に、水の電気伝導度を上げるための強電解質が混合されていることである。ここで、強電解質が混合されているとは、NaCl、Na2SO4、KClおよびK2SO4のうちの少なくともいずれかを含む電解質が混合されていることである。 Moreover, the 5th characteristic in the ozone water manufacturing apparatus based on this invention is that the strong electrolyte for raising the electrical conductivity of water is mixed with the said cleaning agent. Here, the phrase “a strong electrolyte is mixed” means that an electrolyte containing at least one of NaCl, Na 2 SO 4 , KCl, and K 2 SO 4 is mixed.

この構成によると、洗浄液の電気伝導度があがり電力効率を向上させることが可能となる。   According to this configuration, the electrical conductivity of the cleaning liquid is increased, and the power efficiency can be improved.

また、本発明に係るオゾン水製造装置における第6の特徴は、前記洗浄剤に、コハク酸およびフマル酸のうちの少なくともいずれかを含んでいることである。   The sixth feature of the ozone water production apparatus according to the present invention is that the cleaning agent contains at least one of succinic acid and fumaric acid.

この構成によると、コハク酸およびフマル酸は、いずれも溶解度が中程度以下の酸であるため、洗浄剤に溶解速度調整剤を混合することなく、徐々に有機酸を溶解させることが可能となる。これにより、電極洗浄液の寿命を長く持続させることが可能となる。   According to this configuration, since succinic acid and fumaric acid are both acids having a moderate solubility or lower, it becomes possible to gradually dissolve the organic acid without mixing the dissolution rate adjusting agent with the cleaning agent. . As a result, the life of the electrode cleaning liquid can be maintained for a long time.

また、本発明に係る洗浄剤は、Ca2+イオンおよびMg2+イオンのうちの少なくともいずれかを含む水を原料水として使用し、固定電解質膜で陽極室と陰極室とに区画された電解槽内で当該原料水を電気分解することによりオゾン水を製造するオゾン水製造装置において用いられる洗浄剤に関する。そして、本発明に係る洗浄剤は、上記目的を達成するために以下のような特徴を有している。 Further, the cleaning agent according to the present invention uses water containing at least one of Ca 2+ ions and Mg 2+ ions as raw water, and electrolysis partitioned into an anode chamber and a cathode chamber by a fixed electrolyte membrane. The present invention relates to a cleaning agent used in an ozone water production apparatus for producing ozone water by electrolyzing the raw material water in a tank. And the cleaning agent which concerns on this invention has the following characteristics, in order to achieve the said objective.

本発明に係る洗浄剤における特徴は、コハク酸およびフマル酸のうちの少なくともいずれかを含んでいるとともに固形状に成型され、前記陰極室に配置されている陰極電極を洗浄するように前記陰極室内に供給される洗浄液を生成するために徐々に溶出させて使用されることである。   The cleaning agent according to the present invention is characterized in that the cathode chamber contains at least one of succinic acid and fumaric acid, and is molded into a solid state and cleans the cathode electrode disposed in the cathode chamber. In order to produce a cleaning solution to be supplied to the product, it is used by being gradually eluted.

この構成によると、コハク酸およびフマル酸は、いずれも溶解度が中程度以下の酸であるため、洗浄剤に溶解速度調整剤を混合することなく、徐々に有機酸を溶解させる洗浄剤を形成することができる。これにより、電極洗浄液の寿命を長く持続させることが可能となる。   According to this configuration, since succinic acid and fumaric acid are both acids with moderate solubility, a detergent that gradually dissolves the organic acid is formed without mixing the dissolution rate modifier with the detergent. be able to. As a result, the life of the electrode cleaning liquid can be maintained for a long time.

以下、本発明を実施するための最良の形態について図面を参照しつつ説明する。尚、本発明に係るオゾン水製造装置を作動させることにより、本発明に係るオゾン水製造方法が実施されるため、本発明に係るオゾン水製造装置の実施形態の説明とともに、本発明に係るオゾン水製造方法の実施形態について説明する。また、オゾン水製造装置の実施形態の説明とともに、適宜これらオゾン水製造装置、オゾン水製造方法において用いられる洗浄剤についても説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. In addition, since the ozone water manufacturing method which concerns on this invention is enforced by operating the ozone water manufacturing apparatus which concerns on this invention, the ozone which concerns on this invention is demonstrated with description of embodiment of the ozone water manufacturing apparatus which concerns on this invention. An embodiment of the water production method will be described. Moreover, the cleaning agent used in these ozone water manufacturing apparatus and ozone water manufacturing method is also demonstrated suitably with description of embodiment of an ozone water manufacturing apparatus.

(第1実施形態)
図1は、本発明の第1実施形態のオゾン水製造装置1を示す図である。第1実施形態のオゾン水製造装置1は、固定電解質膜4で陽極室5と陰極室6とに区画された電解槽3と、洗浄液を貯留する洗浄液タンク7と、循環ポンプ8を備える装置である。図1における矢印は、Ca2+イオンおよびMg2+イオンのうちの少なくともいずれかを含む原料水(以下、原料水と記載する)、オゾン水、洗浄液の流れ方向を示す。オゾン水製造装置1は、電解槽3における陽極室5に外部から供給される原料水を電気分解することでオゾン水を製造する装置であり、製造されたオゾン水を陽極室5に接続された経路11から排出する。
(First embodiment)
FIG. 1 is a diagram showing an ozone water production apparatus 1 according to a first embodiment of the present invention. The ozone water production apparatus 1 of the first embodiment is an apparatus that includes an electrolytic cell 3 partitioned into an anode chamber 5 and a cathode chamber 6 by a fixed electrolyte membrane 4, a cleaning liquid tank 7 that stores cleaning liquid, and a circulation pump 8. is there. The arrows in FIG. 1 indicate the flow directions of raw water containing at least one of Ca 2+ ions and Mg 2+ ions (hereinafter referred to as raw water), ozone water, and cleaning liquid. The ozone water production apparatus 1 is an apparatus for producing ozone water by electrolyzing raw material water supplied from the outside to the anode chamber 5 in the electrolytic cell 3, and the produced ozone water was connected to the anode chamber 5. Discharge from the path 11.

外部からの原料水が流入する経路10は電解槽3の陽極室5に接続する経路であり、経路10を経由して陽極室5に供給された(原料水供給工程)原料水は、電解槽3の陽極室5と陰極室6に印加される直流電圧により電気分解され、陽極室5側でオゾン水が製造される。このとき、原料水に含まれるCa2+イオン、Mg2+イオンなどの陽イオンや原料水の一部が固定電解質膜4を透過して陰極室6側に移動する。陰極室6内に配置されている陰極電極を洗浄する洗浄工程では、洗浄液タンク7に投入している酸性の洗浄液を、循環ポンプ8により洗浄液タンク7と電解槽3の陰極室6との間を接続する経路12を通じて循環させる。ここで、陰極室6側では、水の電気分解によりOH-イオンが発生し、このOH-イオンと陽極室5側から移動してきたCa2+イオン、Mg2+イオンなどの陽イオンとが難溶性の塩を形成して陰極室6内に配置された陰極電極周辺に析出する可能性がある。しかし、これらの化合物は液が酸性条件化であれば析出することがないため、前記洗浄工程により難溶性の塩が析出することはない。 The path 10 through which the raw water from the outside flows is a path connected to the anode chamber 5 of the electrolytic cell 3, and the raw water supplied to the anode chamber 5 via the path 10 (raw water supply process) 3 is electrolyzed by a DC voltage applied to the anode chamber 5 and the cathode chamber 6, and ozone water is produced on the anode chamber 5 side. At this time, cations such as Ca 2+ ions and Mg 2+ ions contained in the raw water and a part of the raw water pass through the fixed electrolyte membrane 4 and move to the cathode chamber 6 side. In the cleaning step of cleaning the cathode electrode disposed in the cathode chamber 6, the acidic cleaning liquid put in the cleaning liquid tank 7 is passed between the cleaning liquid tank 7 and the cathode chamber 6 of the electrolytic cell 3 by the circulation pump 8. Circulate through the connecting path 12. Here, on the cathode chamber 6 side, OH ions are generated by electrolysis of water, and it is difficult for these OH ions and cations such as Ca 2+ ions and Mg 2+ ions that have moved from the anode chamber 5 side. There is a possibility that a soluble salt is formed and deposited around the cathode electrode disposed in the cathode chamber 6. However, since these compounds do not precipitate when the liquid is in an acidic condition, hardly soluble salts are not precipitated by the washing step.

洗浄液の酸濃度は、高濃度である必要はなく、酸としては、塩酸、硝酸、硫酸なども使用できるが、これらの強酸は危険であるため、コハク酸等の有機酸が好ましい。しかし、コハク酸だけでなく、例えば、クエン酸、グルコン酸、乳酸、フマル酸、DLリンゴ酸などの有機酸も使用できる。一方、洗浄液の濃度は、オゾン水の製造過程において原料水の一部が固定電解質膜4を透過して陰極室6側に移動することにより徐々に薄まっていく。ここで、洗浄液を生成する溶出工程では、コハク酸を固形状に成型した洗浄剤9を配置した洗浄液タンク7内で、洗浄剤9をコハク酸の溶解度分だけ洗浄液に徐々に溶出させることにより(溶出工程)、洗浄液の酸の濃度を保持している。   The acid concentration of the cleaning liquid does not need to be high, and hydrochloric acid, nitric acid, sulfuric acid and the like can be used as the acid. However, since these strong acids are dangerous, organic acids such as succinic acid are preferable. However, not only succinic acid but also organic acids such as citric acid, gluconic acid, lactic acid, fumaric acid and DL malic acid can be used. On the other hand, the concentration of the cleaning liquid gradually decreases as a part of the raw material water passes through the fixed electrolyte membrane 4 and moves to the cathode chamber 6 side in the manufacturing process of ozone water. Here, in the elution step for generating the cleaning solution, the cleaning agent 9 is gradually eluted in the cleaning solution by the solubility of the succinic acid in the cleaning solution tank 7 in which the cleaning agent 9 in which the succinic acid is molded in a solid state is arranged ( Elution step), maintaining the acid concentration of the cleaning solution.

尚、洗浄剤9は、コハク酸のみから成型されたものだけでなく、例えば、クエン酸、グルコン酸、乳酸、フマル酸、DLリンゴ酸等の有機酸も使用できる。有機酸を固形状に成型するのは、さまざまな方法で可能であり、例えば、常温において固体で加熱すると融解する有機酸では融点以上に加熱し溶融させて型に流し込み冷却する方法、加熱時に溶解度が高く冷却すると溶解度の下がる有機酸では過飽和溶液から析出させる方法、常温において固体状の有機酸では、その他に乾式で圧力をかけて成型する方法、錠剤成型機などの圧縮加工機を用いて粉体を押し固める方法がある。常温で液体状の有機酸ではシリカやアルミナあるいはゼオライトなどの固体を添加し練り合わせることにより成型する方法などがある。また、有機酸を固形状に成型する際にNaCl等の強電解質を混合して成型した洗浄剤9を洗浄液に溶出させることにより、洗浄液の電気伝導度があがり電力効率を向上させるのに好適である。ここで、強電解質はNaClに限定されず、例えば、Na2SO4、KCl、K2SO4等が挙げられる。 The cleaning agent 9 is not limited to one molded from succinic acid alone, and organic acids such as citric acid, gluconic acid, lactic acid, fumaric acid, and DL malic acid can also be used. The organic acid can be formed into a solid state by various methods. For example, in the case of an organic acid that melts when heated in a solid state at room temperature, it is heated to a temperature higher than the melting point, melted, poured into a mold, and cooled. For organic acids whose solubility decreases when cooled to a high temperature, a method of precipitating from a supersaturated solution, for organic acids that are solid at room temperature, a dry molding method using pressure, a powder using a compression processing machine such as a tablet molding machine. There is a way to compress the body. For organic acids that are liquid at room temperature, there are methods such as molding by adding and kneading solids such as silica, alumina or zeolite. Further, when the organic acid is molded into a solid state, the cleaning agent 9 mixed with a strong electrolyte such as NaCl is eluted into the cleaning liquid, which is suitable for increasing the electrical conductivity of the cleaning liquid and improving the power efficiency. is there. Here, strong electrolyte is not limited to NaCl, for example, Na 2 SO 4, KCl, K 2 SO 4 , and the like.

尚、溶解度の高い有機酸を洗浄剤9に使用する場合は、溶解速度調整剤を混合したものを固形状にして使用することにより、洗浄剤の溶解速度を減少させ、徐々に有機酸を洗浄液に溶解させることが可能である。これにより洗浄液の寿命を持続させることができる。ここで、溶解速度調整剤としては、例えば、溶解度の低い脂肪酸類、高級アルコール類等の難水溶性物質が挙げられる。洗浄剤9の形状としては、円盤状、ボール状、円柱状、立方体状、直方体状等が考えられる。洗浄剤9を洗浄液タンク7内に配置する方法としては、洗浄剤9をそのまま洗浄液タンク7内の底に沈めておく方法、網などで包んで洗浄液タンク7内の底に沈めておく方法、吊り下げ器具をとりつけて洗浄液タンク7内に吊るしておく方法等が考えられる。一方、洗浄剤9を洗浄液タンク7内に配置する方法だけでなく、洗浄液タンク7と陰極室6間を循環する経路12の中に洗浄剤9を配置する方法を用いてもよい。   When an organic acid having a high solubility is used in the cleaning agent 9, the dissolution rate of the cleaning agent is decreased by using a mixture of a dissolution rate adjusting agent in a solid form, and the organic acid is gradually removed from the cleaning solution. It can be dissolved in Thereby, the lifetime of the cleaning liquid can be maintained. Here, examples of the dissolution rate adjusting agent include poorly water-soluble substances such as fatty acids having a low solubility and higher alcohols. As the shape of the cleaning agent 9, a disc shape, a ball shape, a columnar shape, a cubic shape, a rectangular parallelepiped shape, and the like are conceivable. As a method of disposing the cleaning agent 9 in the cleaning liquid tank 7, a method of sinking the cleaning agent 9 as it is in the bottom of the cleaning liquid tank 7, a method of wrapping it in a net or the like and sinking it in the bottom of the cleaning liquid tank 7, hanging A method of attaching a lowering device and suspending it in the cleaning liquid tank 7 is conceivable. On the other hand, not only a method of disposing the cleaning agent 9 in the cleaning liquid tank 7 but also a method of disposing the cleaning agent 9 in the path 12 circulating between the cleaning liquid tank 7 and the cathode chamber 6 may be used.

第1実施形態の実施例として、コハク酸100gを200℃に加熱して溶融させ型に入れたあと冷却し円盤状の固形状に成型した洗浄剤9を用いた。あらかじめ洗浄液タンク7内にコハク酸4%の洗浄液4リットルを投入し、洗浄剤9を洗浄液タンク7内の底に配置した。オゾン水製造条件としてオゾン濃度5ppm、水量3L/minで50時間の運転をおこなった。その結果、運転終了後の洗浄液中のコハク酸濃度は約5%であり、陰極室6内に配置された陰極電極周辺への難溶塩の析出は認められなかった。   As an example of the first embodiment, 100 g of succinic acid was heated to 200 ° C., melted, put into a mold, cooled, and then the cleaning agent 9 molded into a disk-like solid was used. In advance, 4 liters of 4% succinic acid cleaning liquid was put into the cleaning liquid tank 7, and the cleaning agent 9 was placed at the bottom of the cleaning liquid tank 7. As the ozone water production conditions, an operation was performed for 50 hours at an ozone concentration of 5 ppm and a water volume of 3 L / min. As a result, the succinic acid concentration in the cleaning liquid after the operation was about 5%, and precipitation of hardly soluble salt around the cathode electrode arranged in the cathode chamber 6 was not observed.

また、コハク酸100gと塩化ナトリウム100gにポリアクリル酸10gを水20gを加えて練り合わせたあとプレス加工により固形状に成型した洗浄剤9を用いた。オゾン水製造装置1と洗浄液とオゾン水製造条件は前記と同様で、コハク酸4%の洗浄液4リットルを用い運転をおこなった。その結果、前記の塩化ナトリウムを加えていない洗浄剤9を使用した場合と比較して電流値が下がり、使用電力が低減できた。また、陰極室6内に配置された陰極電極周辺への難溶塩の析出は認められなかった。また、比較例として、洗浄剤9を使用せずクエン酸40%、塩化ナトリウム5%の洗浄液4リットルを用いオゾン水製造措置1とオゾン水製造条件は前記と同様で運転をおこなった。その結果、洗浄液中のクエン酸濃度をイオンクロマト法により分析したところクエン酸濃度は約20%に低下していた。   Further, a cleaning agent 9 was used, which was prepared by adding 10 g of polyacrylic acid to 20 g of water to 100 g of succinic acid and 100 g of sodium chloride and then forming the solid by press working. Ozone water production apparatus 1, cleaning liquid, and ozone water production conditions were the same as described above, and operation was performed using 4 liters of 4% succinic acid cleaning liquid. As a result, compared with the case where the cleaning agent 9 to which sodium chloride was not added was used, the current value was lowered and the power consumption could be reduced. Moreover, precipitation of the hardly soluble salt around the cathode electrode arranged in the cathode chamber 6 was not recognized. Further, as a comparative example, the cleaning agent 9 was not used and 4 liters of a cleaning solution of 40% citric acid and 5% sodium chloride was used, and the operation was performed in the same manner as described above for the ozone water production measure 1 and the ozone water production conditions. As a result, when the citric acid concentration in the washing solution was analyzed by ion chromatography, the citric acid concentration was reduced to about 20%.

(第2実施形態)
本発明の第2実施形態のオゾン水製造装置、オゾン水製造方法、およびこれらに用いられる洗浄剤について説明する。図2に、本発明の第2実施形態に係るオゾン水製造装置2を示す。本発明の第2実施形態のオゾン水製造装置2は、第1実施形態のオゾン水製造装置1における洗浄液タンク7、循環ポンプ8、および洗浄液タンク7と陰極室6との間を循環する経路12を有さないという点で異なる。また、第1実施形態のオゾン水製造装置1は、原料水を陽極室5のみに供給するものであるが、第2実施形態のオゾン水製造装置2は、電解槽3の上流側で原料水を供給する原料水供給経路14を2つに分岐して分岐後の一方の経路15(陽極室側経路)を陽極室5に接続し、他方の経路17(陰極室側経路1)は洗浄剤9を配置するための陰極室6側に経路18(陰極室側経路2)を介して接続するバッファータンク13に接続して原料水を陽極室5とバッファータンク13に供給するものである点で異なる。尚、第1実施形態と同一の部材には同一の符号を付記してその説明を省略する。
(Second Embodiment)
An ozone water production apparatus, an ozone water production method, and a cleaning agent used in the second embodiment of the present invention will be described. In FIG. 2, the ozone water manufacturing apparatus 2 which concerns on 2nd Embodiment of this invention is shown. The ozone water production apparatus 2 according to the second embodiment of the present invention includes a cleaning liquid tank 7, a circulation pump 8, and a path 12 that circulates between the cleaning liquid tank 7 and the cathode chamber 6 in the ozone water production apparatus 1 according to the first embodiment. It differs in that it does not have. Further, the ozone water production apparatus 1 of the first embodiment supplies raw water only to the anode chamber 5, but the ozone water production apparatus 2 of the second embodiment does not supply raw water on the upstream side of the electrolytic cell 3. The raw material water supply path 14 for supplying water is branched into two, one of the branched paths 15 (anode chamber side path) is connected to the anode chamber 5, and the other path 17 (cathode chamber side path 1) is the cleaning agent. 9 is connected to a buffer tank 13 connected via a path 18 (cathode chamber side path 2) to the cathode chamber 6 side for arranging 9 and raw water is supplied to the anode chamber 5 and the buffer tank 13. Different. In addition, the same code | symbol is attached | subjected to the member same as 1st Embodiment, and the description is abbreviate | omitted.

外部からの原料水が流入する原料水供給経路14の下流側で、経路は陽極室5に接続する経路15と陰極室6側に経路18を介して接続するバッファータンク13に接続する経路17の2つに分岐する。経路15を経由して陽極室5に供給された(原料水供給工程)原料水は、電解槽3の陽極室5と陰極室6に印加される直流電圧により電気分解され、陽極室5側でオゾン水が製造され、製造されたオゾン水は、陽極室5に接続された経路16から排出される。経路17を経由してバッファータンク13に供給された原料水は、バッファータンク13内に配置した第1実施形態で使用するものと同様の洗浄剤9に接触して、洗浄剤9が原料水に徐々に溶出する溶出工程により洗浄液が生成される。   On the downstream side of the raw material water supply path 14 into which the raw water from the outside flows, the path is a path 15 connected to the anode chamber 5 and a path 17 connected to the buffer tank 13 connected to the cathode chamber 6 side via the path 18. Branch into two. The raw material water supplied to the anode chamber 5 via the path 15 (raw water supply step) is electrolyzed by a DC voltage applied to the anode chamber 5 and the cathode chamber 6 of the electrolytic cell 3 and on the anode chamber 5 side. Ozone water is produced, and the produced ozone water is discharged from the path 16 connected to the anode chamber 5. The raw material water supplied to the buffer tank 13 via the path 17 comes into contact with the same cleaning agent 9 used in the first embodiment arranged in the buffer tank 13, and the cleaning agent 9 becomes the raw water. A washing solution is generated by an elution step that gradually elutes.

洗浄液は、バッファータンク13から経路18を経由して陰極室6に供給され、陰極室6内に配置されている陰極電極間を流れるとともに(洗浄工程)、一部は陰極電極で電気分解され、陰極室6に接続された経路19を経由して洗浄廃液として外部に排出される。このとき、第1実施形態と同様に原料水に含まれるCa2+イオン、Mg2+イオンなどの陽イオンや原料水の一部が固定電解質膜4を透過して陰極室6側に移動するが、陰極室6内は洗浄液により酸性条件下におかれるため、Ca(OH)2やMg(OH)2等の難溶性の塩は析出しない。陰極室6に供給する洗浄液の酸濃度は、低濃度で難溶性塩の析出を防止することができるため、陰極室6から経路19経由で外部に排出される洗浄廃液の酸濃度も低く抑えられ、たとえ中和処理等が必要であっても簡易、かつ容易な処理とすることが可能となる。また、バッファータンク13内に配置された固形状の洗浄剤9を原料水に徐々に溶出させるため(溶出工程)、定期的な洗浄液供給装置を別途設ける必要はなく装置が簡易になる。 The cleaning liquid is supplied from the buffer tank 13 to the cathode chamber 6 via the path 18 and flows between the cathode electrodes arranged in the cathode chamber 6 (cleaning step), and a part thereof is electrolyzed by the cathode electrode, It is discharged to the outside as cleaning waste liquid via a path 19 connected to the cathode chamber 6. At this time, as in the first embodiment, cations such as Ca 2+ ions and Mg 2+ ions contained in the raw water and a part of the raw water pass through the fixed electrolyte membrane 4 and move to the cathode chamber 6 side. However, since the inside of the cathode chamber 6 is subjected to an acidic condition by the cleaning liquid, hardly soluble salts such as Ca (OH) 2 and Mg (OH) 2 do not precipitate. The acid concentration of the cleaning liquid supplied to the cathode chamber 6 is low and can prevent precipitation of sparingly soluble salts. Therefore, the acid concentration of the cleaning waste liquid discharged from the cathode chamber 6 via the path 19 can be kept low. Even if a neutralization treatment or the like is necessary, a simple and easy treatment can be achieved. Further, since the solid cleaning agent 9 disposed in the buffer tank 13 is gradually eluted into the raw material water (elution step), it is not necessary to separately provide a regular cleaning liquid supply device, and the apparatus becomes simple.

洗浄剤9をバッファータンク13内に配置する方法としては、洗浄剤9をそのままバッファータンク13内の底に沈めておく方法、網などで包んでバッファータンク13内の底に沈めておく方法、吊り下げ器具をとりつけてバッファータンク13内に吊るしておく方法等が考えられる。洗浄剤9は、第1実施形態と同様、例えば、コハク酸、クエン酸、グルコン酸、乳酸、フマル酸、DLリンゴ酸等の有機酸を使用できる。また、有機酸を固形状に成型するのは、さまざまな方法で可能であり、例えば、常温において固体で加熱すると融解する有機酸では融点以上に加熱し溶融させて型に流し込み冷却する方法、加熱時に溶解度が高く冷却すると溶解度の下がる有機酸では過飽和溶液から析出させる方法、常温において固体状の有機酸では、その他に乾式で圧力をかけて成型する方法、錠剤成型機などの圧縮加工機を用いて粉体を押し固める方法がある。常温で液体状の有機酸ではシリカやアルミナあるいはゼオライトなどの固体を添加し練り合わせることにより成型する方法などがある。   As a method of disposing the cleaning agent 9 in the buffer tank 13, a method of sinking the cleaning agent 9 as it is in the bottom of the buffer tank 13, a method of wrapping it in a net or the like and sinking it in the bottom of the buffer tank 13, hanging A method of attaching a lowering device and suspending it in the buffer tank 13 is conceivable. As in the first embodiment, the cleaning agent 9 may be an organic acid such as succinic acid, citric acid, gluconic acid, lactic acid, fumaric acid, DL malic acid, and the like. In addition, it is possible to mold the organic acid into a solid state by various methods. For example, in the case of an organic acid that melts when heated in a solid state at room temperature, it is heated to a melting point or higher, melted, poured into a mold, and cooled. For organic acids that sometimes have high solubility and decrease in solubility when cooled, a method of precipitating from a supersaturated solution, for organic acids that are solid at room temperature, other methods such as molding by applying dry pressure, compression processing machines such as tablet molding machines are used. There is a method of pressing the powder. For organic acids that are liquid at room temperature, there are methods such as molding by adding and kneading solids such as silica, alumina or zeolite.

また、有機酸を固形状に成型する際にNaCl等の強電解質を混合して成型した洗浄剤9を洗浄液に溶出させることにより、洗浄液の電気伝導度があがり電力効率を向上させるのに好適である。ここで、強電解質はNaClに限定されず、例えば、Na2SO4、KCl、K2SO4等が挙げられる。尚、溶解度の高い有機酸を洗浄剤9に使用する場合は、溶解速度調整剤を混合したものを固形状にして使用することにより、洗浄剤の溶解速度を減少させ、徐々に有機酸を洗浄液に溶解させることが可能である。これにより洗浄液の寿命を持続させることができる。ここで、溶解速度調整剤としては、例えば、溶解度の低い脂肪酸類、高級アルコール類等の難水溶性物質が挙げられる。洗浄剤9の形状としては、円盤状、ボール状、円柱状、立方体状、直方体状等が考えられる。 Further, when the organic acid is molded into a solid state, the cleaning agent 9 mixed with a strong electrolyte such as NaCl is eluted into the cleaning liquid, which is suitable for increasing the electrical conductivity of the cleaning liquid and improving the power efficiency. is there. Here, strong electrolyte is not limited to NaCl, for example, Na 2 SO 4, KCl, K 2 SO 4 , and the like. When an organic acid having a high solubility is used in the cleaning agent 9, the dissolution rate of the cleaning agent is decreased by using a mixture of a dissolution rate adjusting agent in a solid form, and the organic acid is gradually removed from the cleaning solution. It can be dissolved in Thereby, the lifetime of the cleaning liquid can be maintained. Here, examples of the dissolution rate adjusting agent include poorly water-soluble substances such as fatty acids having a low solubility and higher alcohols. As the shape of the cleaning agent 9, a disc shape, a ball shape, a columnar shape, a cubic shape, a rectangular parallelepiped shape, and the like are conceivable.

第2実施形態の実施例として、フマル酸をボール状に成型した洗浄剤9を複数、バッファータンク13内に配置して経路17を経由する陰極側流入水がこの洗浄剤9に接触してから陰極室6に供給されるようにした。この条件でオゾン水製造装置2を作動させオゾン水を製造したあとの陰極電極に難溶性の塩の析出は認められなかった。   As an example of the second embodiment, a plurality of cleaning agents 9 in which fumaric acid is molded into a ball shape are arranged in the buffer tank 13 and the cathode-side inflowing water via the path 17 comes into contact with the cleaning agent 9. It was made to supply to the cathode chamber 6. Precipitation of hardly soluble salt was not observed on the cathode electrode after the ozone water production apparatus 2 was operated under these conditions to produce ozone water.

以上、本発明の実施形態について説明したが、本発明は上述の実施の形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々に変更して実施することができるものである。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made as long as they are described in the claims.

本発明の第1実施形態に係るオゾン水製造装置を示す図である。It is a figure which shows the ozone water manufacturing apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るオゾン水製造装置を示す図である。It is a figure which shows the ozone water manufacturing apparatus which concerns on 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 オゾン水製造装置
3 電解槽
4 固定電解質膜
5 陽極室
6 陰極室
7 洗浄液タンク
8 循環ポンプ
9 洗浄剤
13 バッファータンク
DESCRIPTION OF SYMBOLS 1 Ozone water production apparatus 3 Electrolysis tank 4 Fixed electrolyte membrane 5 Anode chamber 6 Cathode chamber 7 Cleaning liquid tank 8 Circulation pump 9 Cleaning agent 13 Buffer tank

Claims (13)

Ca2+イオンおよびMg2+イオンのうちの少なくともいずれかを含む水を原料水として使用し、当該原料水を電気分解することでオゾン水を製造するオゾン水製造方法であって、
固定電解質膜で陽極室と陰極室とに区画された電解槽における当該陽極室に前記原料水を供給する原料水供給工程と、
前記陰極室に洗浄液を供給して前記陰極室内に配置されている陰極電極を洗浄する洗浄工程と、
有機酸を含むとともに固形状に成型された洗浄剤を徐々に溶出させることで、前記洗浄液を生成する溶出工程と、
を備えていることを特徴とするオゾン水製造方法。
An ozone water production method for producing ozone water by using water containing at least one of Ca 2+ ions and Mg 2+ ions as raw water and electrolyzing the raw water,
A raw water supply step for supplying the raw water to the anode chamber in an electrolytic cell partitioned into an anode chamber and a cathode chamber by a fixed electrolyte membrane;
A cleaning step of supplying a cleaning liquid to the cathode chamber to clean the cathode electrode disposed in the cathode chamber;
An elution step for producing the cleaning liquid by gradually eluting a cleaning agent that contains an organic acid and is molded into a solid state;
A method for producing ozone water, comprising:
前記洗浄工程では、前記洗浄液を貯留する洗浄液タンクと前記陰極室との間で循環して用いられる前記洗浄液が前記陰極室に供給されることを特徴とする請求項1に記載のオゾン水製造方法。   2. The method for producing ozone water according to claim 1, wherein in the cleaning step, the cleaning liquid that is circulated between the cleaning liquid tank that stores the cleaning liquid and the cathode chamber is supplied to the cathode chamber. . 前記溶出工程では、前記洗浄剤を配置する前記洗浄液タンク内で、前記洗浄剤を前記洗浄液に徐々に溶出させることを特徴とする請求項2に記載のオゾン水製造方法。   The method for producing ozone water according to claim 2, wherein in the elution step, the cleaning agent is gradually eluted into the cleaning solution in the cleaning solution tank in which the cleaning agent is disposed. 前記原料水は、前記陽極室に供給する陽極室側経路と前記陰極室に供給する陰極室側経路とに分岐する原料水供給経路を介して供給され、
前記溶出工程では、前記洗浄剤を配置する前記陰極室側経路中に、前記洗浄剤を前記原料水に徐々に溶出させることを特徴とする請求項1に記載のオゾン水製造方法。
The raw water is supplied via a raw water supply path that branches into an anode chamber side path that supplies the anode chamber and a cathode chamber side path that supplies the cathode chamber,
2. The method for producing ozone water according to claim 1, wherein in the elution step, the cleaning agent is gradually eluted into the raw material water in the cathode chamber side path in which the cleaning agent is disposed.
前記洗浄剤に、水の電気伝導度を上げるための強電解質が混合されていることを特徴とする請求項1乃至請求項4のいずれか1項に記載のオゾン水製造方法。   The ozone water production method according to any one of claims 1 to 4, wherein a strong electrolyte for increasing the electrical conductivity of water is mixed in the cleaning agent. 前記洗浄剤に、コハク酸およびフマル酸のうちの少なくともいずれかを含んでいることを特徴とする請求項1乃至請求項5のいずれか1項に記載のオゾン水製造方法。   The method for producing ozone water according to any one of claims 1 to 5, wherein the cleaning agent contains at least one of succinic acid and fumaric acid. Ca2+イオンおよびMg2+イオンのうちの少なくともいずれかを含む水を原料水として使用し、当該原料水を電気分解することでオゾン水を製造するオゾン水製造装置であって、
固定電解質膜で区画された陽極室と陰極室とを有し、当該陽極室に前記原料水が供給される電解槽と、
前記陰極室内に洗浄液を供給して前記陰極室内に配置されている陰極電極を洗浄するための洗浄液供給手段と、
有機酸を含むとともに固形状に成型された洗浄剤を徐々に溶出させることで、前記洗浄液を生成する溶出部と、
を備えていることを特徴とするオゾン水製造装置。
An ozone water production apparatus for producing ozone water by using water containing at least one of Ca 2+ ions and Mg 2+ ions as raw material water and electrolyzing the raw material water,
An electrolytic cell having an anode chamber and a cathode chamber partitioned by a fixed electrolyte membrane, the raw material water being supplied to the anode chamber;
Cleaning liquid supply means for supplying a cleaning liquid into the cathode chamber and cleaning the cathode electrode disposed in the cathode chamber;
An elution part that generates the cleaning liquid by gradually eluting a cleaning agent that contains an organic acid and is molded into a solid state;
An ozone water production apparatus comprising:
前記洗浄液を貯留する洗浄液タンクを備え、
前記洗浄液供給手段は、前記洗浄液タンクと前記陰極室との間で前記洗浄液を循環させて前記陰極室に前記洗浄液を供給することを特徴とする請求項7に記載のオゾン水製造装置。
A cleaning liquid tank for storing the cleaning liquid;
The apparatus for producing ozone water according to claim 7, wherein the cleaning liquid supply means circulates the cleaning liquid between the cleaning liquid tank and the cathode chamber and supplies the cleaning liquid to the cathode chamber.
前記溶出部は、前記洗浄剤を配置する前記洗浄液タンクの内部として形成されていることを特徴とする請求項8に記載のオゾン水製造装置。   The ozone water production apparatus according to claim 8, wherein the elution part is formed as an inside of the cleaning liquid tank in which the cleaning agent is disposed. 前記原料水を前記陽極室に供給する陽極室側経路と前記陰極室に供給する陰極室側経路とに分岐する原料水供給経路と、
前記陰極室側経路の途中に設けられ前記洗浄剤が配置されるバッファータンクとを備え、
前記溶出部は、前記バッファータンクの内部として形成されていることを特徴とする請求項7に記載のオゾン水製造装置。
A raw water supply path that branches into an anode chamber side path for supplying the raw water to the anode chamber and a cathode chamber side path for supplying to the cathode chamber;
A buffer tank provided in the middle of the cathode chamber side path and in which the cleaning agent is disposed;
The ozone water production apparatus according to claim 7, wherein the elution part is formed as an inside of the buffer tank.
前記洗浄剤に、水の電気伝導度を上げるための強電解質が混合されていることを特徴とする請求項7乃至請求項10のいずれか1項に記載のオゾン水製造装置。   The ozone water production apparatus according to any one of claims 7 to 10, wherein a strong electrolyte for increasing the electrical conductivity of water is mixed in the cleaning agent. 前記洗浄剤に、コハク酸およびフマル酸のうちの少なくともいずれかを含んでいることを特徴とする請求項7乃至請求項11のいずれか1項に記載のオゾン水製造装置。   The ozone water production apparatus according to any one of claims 7 to 11, wherein the cleaning agent includes at least one of succinic acid and fumaric acid. Ca2+イオンおよびMg2+イオンのうちの少なくともいずれかを含む水を原料水として使用し、固定電解質膜で陽極室と陰極室とに区画された電解槽内で当該原料水を電気分解することによりオゾン水を製造するオゾン水製造装置において用いられる洗浄剤であって、
コハク酸およびフマル酸のうちの少なくともいずれかを含んでいるとともに固形状に成型され、
前記陰極室に配置されている陰極電極を洗浄するように前記陰極室内に供給される洗浄液を生成するために徐々に溶出させて使用されることを特徴とする洗浄剤。






























Water containing at least one of Ca 2+ ions and Mg 2+ ions is used as raw water, and the raw water is electrolyzed in an electrolytic cell partitioned into an anode chamber and a cathode chamber by a fixed electrolyte membrane. A cleaning agent used in an ozone water production apparatus for producing ozone water by
It contains at least one of succinic acid and fumaric acid and is molded into a solid form,
A cleaning agent characterized by being gradually eluted and used to produce a cleaning solution supplied into the cathode chamber so as to clean the cathode electrode disposed in the cathode chamber.






























JP2006171539A 2006-06-21 2006-06-21 Method and apparatus for producing ozone water and detergent to be used therein Pending JP2008000666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006171539A JP2008000666A (en) 2006-06-21 2006-06-21 Method and apparatus for producing ozone water and detergent to be used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006171539A JP2008000666A (en) 2006-06-21 2006-06-21 Method and apparatus for producing ozone water and detergent to be used therein

Publications (1)

Publication Number Publication Date
JP2008000666A true JP2008000666A (en) 2008-01-10

Family

ID=39005468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006171539A Pending JP2008000666A (en) 2006-06-21 2006-06-21 Method and apparatus for producing ozone water and detergent to be used therein

Country Status (1)

Country Link
JP (1) JP2008000666A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150630A (en) * 2008-12-26 2010-07-08 Kobe Steel Ltd Ozone water producing apparatus
KR20100120542A (en) * 2009-05-06 2010-11-16 삼성전자주식회사 Condensed water storage tank apparatus for auto cleaning device and air conditioner having the same
US9919939B2 (en) 2011-12-06 2018-03-20 Delta Faucet Company Ozone distribution in a faucet
US10640878B2 (en) 2015-11-12 2020-05-05 Delta Faucet Company Ozone generator for a faucet
US10767270B2 (en) 2015-07-13 2020-09-08 Delta Faucet Company Electrode for an ozone generator
JP2021050363A (en) * 2019-09-20 2021-04-01 高光産業株式会社 Electrolytic cell and device of producing ozone water comprising the same, and method of recovering performance of electrolytic cell
US11458214B2 (en) 2015-12-21 2022-10-04 Delta Faucet Company Fluid delivery system including a disinfectant device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126885A (en) * 1994-10-28 1996-05-21 Nippon Intec Kk Electrolytic water generator
JPH10130876A (en) * 1996-11-01 1998-05-19 Kobe Steel Ltd Electrolytic ozonized water producing unit and its regenerating method
JP2002069679A (en) * 2000-08-28 2002-03-08 Hiroichi Shioda Ozonizer
JP2003039069A (en) * 2001-07-31 2003-02-12 Matsushita Electric Works Ltd Additive for producing electrolytic water, container containing the additive, and production method of the additive
JP2005177672A (en) * 2003-12-22 2005-07-07 Ishikawajima Shibaura Mach Co Ltd Electrolysis type ozonizer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126885A (en) * 1994-10-28 1996-05-21 Nippon Intec Kk Electrolytic water generator
JPH10130876A (en) * 1996-11-01 1998-05-19 Kobe Steel Ltd Electrolytic ozonized water producing unit and its regenerating method
JP2002069679A (en) * 2000-08-28 2002-03-08 Hiroichi Shioda Ozonizer
JP2003039069A (en) * 2001-07-31 2003-02-12 Matsushita Electric Works Ltd Additive for producing electrolytic water, container containing the additive, and production method of the additive
JP2005177672A (en) * 2003-12-22 2005-07-07 Ishikawajima Shibaura Mach Co Ltd Electrolysis type ozonizer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150630A (en) * 2008-12-26 2010-07-08 Kobe Steel Ltd Ozone water producing apparatus
KR20100120542A (en) * 2009-05-06 2010-11-16 삼성전자주식회사 Condensed water storage tank apparatus for auto cleaning device and air conditioner having the same
KR101649974B1 (en) 2009-05-06 2016-08-23 삼성전자 주식회사 Condensed water storage tank apparatus for auto cleaning device and air conditioner having the same
US9919939B2 (en) 2011-12-06 2018-03-20 Delta Faucet Company Ozone distribution in a faucet
US10947138B2 (en) 2011-12-06 2021-03-16 Delta Faucet Company Ozone distribution in a faucet
US10767270B2 (en) 2015-07-13 2020-09-08 Delta Faucet Company Electrode for an ozone generator
US10640878B2 (en) 2015-11-12 2020-05-05 Delta Faucet Company Ozone generator for a faucet
US11220754B2 (en) 2015-11-12 2022-01-11 Delta Faucet Company Ozone generator for a faucet
US11634828B2 (en) 2015-11-12 2023-04-25 Delta Faucet Company Ozone generator for a faucet
US11458214B2 (en) 2015-12-21 2022-10-04 Delta Faucet Company Fluid delivery system including a disinfectant device
JP2021050363A (en) * 2019-09-20 2021-04-01 高光産業株式会社 Electrolytic cell and device of producing ozone water comprising the same, and method of recovering performance of electrolytic cell

Similar Documents

Publication Publication Date Title
JP3913923B2 (en) Water treatment method and water treatment apparatus
JP3716042B2 (en) Acid water production method and electrolytic cell
JP2008000666A (en) Method and apparatus for producing ozone water and detergent to be used therein
JP5595213B2 (en) Disinfecting water manufacturing apparatus and disinfecting water manufacturing method
KR101092818B1 (en) Chlorine dioxide generator and method the same
CA2440917C (en) Electrochemical treatment of ammonia in waste-water
JP4394942B2 (en) Electrolytic ozonizer
EP3103770B1 (en) Brine tank, method to provide brine for regenerating an ion-exchange material and water softening method
JP2007007502A (en) Manufacturing method of low sodium chloride electrolytic water and manufacturing device thereof
US6827847B1 (en) System and assembly for sanitizing swimming pool water
JP4394941B2 (en) Electrolytic ozonizer
KR20210015536A (en) Cooling pipe of titanium material equipped in electrolyzer of the Sodium Hypochlorite generation device of undivided type
JP6171047B1 (en) Electrolyzed water production apparatus and operation method thereof
US20070000790A1 (en) Method and device for electrochemical disinfection of water
JP2004298832A (en) Method and apparatus for making electrolytic water, and method and apparatus for making electrolytic hypo-water
JP6000673B2 (en) Ozone water generator refresh cleaning method
KR20170021523A (en) Method and apparatus of pipe cleaning by electrolysis
KR20130077099A (en) Apparatus for providing purified water and ionized water with the ability to sterilize tanks
KR100953180B1 (en) Device for producing pure hocl
US20080110834A1 (en) Method for Hygienic Operation of an Ion Exchanger and Ion Exchanger System
JP2009279532A (en) Method and apparatus for water treatment with chlorine dioxide
KR101367779B1 (en) Nacl supply structure of generation-system for antiseptic solution including chlorine
KR20210081199A (en) Electrolytic sterilization apparatus for cleaning seashell and electrolytic sterilization method using it
KR101070866B1 (en) Apparatus for producing naocl using electrolysis and plasma discharge
KR200333575Y1 (en) Apparatus for Water Disinfection System by Electrolytic Reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220