JP2010150630A - Ozone water producing apparatus - Google Patents

Ozone water producing apparatus Download PDF

Info

Publication number
JP2010150630A
JP2010150630A JP2008332130A JP2008332130A JP2010150630A JP 2010150630 A JP2010150630 A JP 2010150630A JP 2008332130 A JP2008332130 A JP 2008332130A JP 2008332130 A JP2008332130 A JP 2008332130A JP 2010150630 A JP2010150630 A JP 2010150630A
Authority
JP
Japan
Prior art keywords
cleaning liquid
tank
cleaning
ozone water
cleaning agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008332130A
Other languages
Japanese (ja)
Other versions
JP5295753B2 (en
Inventor
Takashi Tanioka
隆 谷岡
Noriaki Okubo
典昭 大久保
Koichi Yoshida
幸一 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008332130A priority Critical patent/JP5295753B2/en
Publication of JP2010150630A publication Critical patent/JP2010150630A/en
Application granted granted Critical
Publication of JP5295753B2 publication Critical patent/JP5295753B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ozone water producing apparatus capable of avoiding the futile use of a cleaning liquid and keeping the cleaning liquid in an appropriate conccentration. <P>SOLUTION: The ozone water producing apparatus 1 is provided with: a cleaning liquid circulation path 12 provided with a cathode chamber 6 of an electrolytic cell 3, a detergent tank 7 and a circulation pump 8 to be interposed; a dissolving part 30 forming the cleaning liquid by dissolving a cleaning agent 9; liquid level detecting means 51, 52 for detecting the liquid level in the cleaning liquid tank 7; cleaning liquid discharge means 14, 43 for discharging the cleaning liquid from the cleaning liquid tank 7; cleaning liquid supply means 13a, 13b, 42 for supplying the cleaning liquid prepared in the dissolving part 30 to the cleaning liquid tank 7; and a control means controlling the cleaning liquid discharge means 43 and the cleaning liquid supply means 42 corresponding to the liquid level detected in the liquid level detecting means 51, 52 to supply the cleaning liquid to the cleaning liquid tank 7 or to discharge the cleaning liquid from the cleaning liquid tank 7. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固体電解質膜を用いる水電解法によって水から直接オゾン水を生成するオゾン水生成装置に関する。   The present invention relates to an ozone water generator that directly generates ozone water from water by a water electrolysis method using a solid electrolyte membrane.

オゾンは、殺菌、脱臭、脱色などの効果から食品関係、下水道、し尿処理、浴室、病院、老人施設、畜産、水産関係など種々の分野で利用と効果が期待されている。従来、オゾンが溶解した水であるオゾン水を生成する装置の一つとして、固体電解質膜と電極とを利用して井水や水道水等の水を電気分解することによりオゾン水を直接発生させる生成装置が用いられている。この装置においては、固体電解質膜で陽極室と陰極室に区画された電解槽における陽極室側から水の分解により酸素とともにオゾンが発生し、陰極室側では水素ガスの発生とともに液がアルカリ性となる。また、陰極室側には、陽極室側からNaイオン、Ca2+イオン、Mg2+イオン、などの陽イオンが固体電解質膜を透過してくる。このうち、Ca2+イオン、Mg2+イオンは、アルカリ性において、OHイオンや空気中の炭酸ガスが溶解した炭酸イオンと結合して難溶性の水酸化物や炭酸塩を生じ、電極に析出して電解性能を著しく低下させることが知られている。 Ozone is expected to be used and effective in various fields such as food-related, sewerage, human waste treatment, bathrooms, hospitals, elderly facilities, livestock, and fisheries due to effects such as sterilization, deodorization, and decolorization. Conventionally, ozone water is generated directly by electrolyzing water such as well water and tap water using a solid electrolyte membrane and electrodes as one of the devices that generate ozone water, which is water in which ozone is dissolved. A generator is used. In this apparatus, ozone is generated together with oxygen from the anode chamber side in the electrolytic cell partitioned into an anode chamber and a cathode chamber by a solid electrolyte membrane, and the liquid becomes alkaline as hydrogen gas is generated on the cathode chamber side. . On the cathode chamber side, cations such as Na + ions, Ca 2+ ions, and Mg 2+ ions pass through the solid electrolyte membrane from the anode chamber side. Among these, Ca 2+ ions and Mg 2+ ions are alkaline and bind to OH ions or carbonate ions in which carbon dioxide in the air dissolves to form poorly soluble hydroxides and carbonates, which are deposited on the electrodes. It is known to significantly reduce the electrolysis performance.

このような問題に対し、Na型イオン交換樹脂を充填した軟水器をオゾン水生成装置の上流側に設け、水道水中の硬度成分であるCa2+イオン、Mg2+イオンをNaイオンにイオン交換する方法を採用したものが知られている(例えば、特許文献1参照)。 To solve this problem, a water softener filled with Na-type ion exchange resin is provided on the upstream side of the ozone water generating device, and Ca 2+ ions and Mg 2+ ions, which are hardness components in tap water, are ion-exchanged to Na + ions. A method employing this method is known (for example, see Patent Document 1).

しかしながら、特許文献1に記載された原料水の前処理をおこなうオゾン水生成装置には、Na型イオン交換樹脂を充填した軟水器等の付属装置が必要となり装置が複雑になるという問題がある。
また、電解槽の陰極室側に供給する原料水に直接、酸性の洗浄液を供給して、難溶性塩の析出を防止する方法もあるが、定期的な洗浄液の全量交換、あるいは洗浄液供給装置を別途設ける必要があり装置及びその取り扱いが複雑になる。
そこで、取り扱いが容易でかつ維持管理コストおよびイニシャルコストを削減することが可能なオゾン水生成装置、及びオゾン水生成方法が望まれていた。
However, the ozone water generating apparatus that performs the pretreatment of raw material water described in Patent Document 1 has a problem that an auxiliary apparatus such as a water softener filled with Na-type ion exchange resin is required and the apparatus becomes complicated.
In addition, there is a method to prevent the precipitation of sparingly soluble salts by supplying an acidic cleaning solution directly to the raw water supplied to the cathode chamber side of the electrolytic cell. Since it is necessary to provide it separately, the apparatus and its handling become complicated.
Therefore, an ozone water generating device and an ozone water generating method that are easy to handle and can reduce maintenance costs and initial costs have been desired.

そのようなオゾン水生成方法として、固体電解質膜で陽極室と陰極室とに区画された電解槽における当該陽極室に原料水を供給する原料水供給工程と、前記陰極室に洗浄液を供給して前記陰極室内に配置されている陰極電極を洗浄する洗浄工程と、有機酸を含むとともに固形状に成型された洗浄剤を徐々に溶解させることで、前記洗浄液を生成する溶出工程とを備えたものが知られている(例えば、特許文献2参照)。
この構成によると、原料水供給工程により、陽極室内に配置されている陽極電極からHOの電気分解によりオゾンが発生する。溶出工程においては、洗浄剤がその溶解度分だけ徐々に溶出し、ほぼ一定濃度の洗浄液を生成する。また、原料水が固体電解質膜を透過して陰極室側に移行することにより陰極室側の洗浄液が薄まったとしても、洗浄剤はその溶解度分だけ徐々に溶出していくため、ほぼ一定濃度の洗浄液となる。洗浄工程においては、陰極室に洗浄液が供給されて陰極室内が酸性状態に保たれるため、原料水に含まれるCa2+イオンやMg2+イオンは陰極電極に難溶塩として析出することなく洗浄液中に溶解している状態を維持できる。
このように特許文献2に開示のオゾン水生成方法、及び当該方法を実施するためのオゾン水生成装置は、特許文献1に開示のものの技術的な課題を解決し、取り扱いが容易でかつ維持管理コストおよびイニシャルコストを削減することが可能なものとして、非常に有用である。
As such an ozone water generating method, a raw material water supplying step of supplying raw water to the anode chamber in an electrolytic cell partitioned into an anode chamber and a cathode chamber by a solid electrolyte membrane, and supplying a cleaning liquid to the cathode chamber A cleaning process for cleaning the cathode electrode disposed in the cathode chamber, and an elution process for generating the cleaning liquid by gradually dissolving a cleaning agent containing an organic acid and molded into a solid state Is known (see, for example, Patent Document 2).
According to this configuration, ozone is generated by electrolysis of H 2 O from the anode electrode arranged in the anode chamber in the raw water supply step. In the elution step, the cleaning agent is gradually eluted by its solubility to produce a cleaning solution having a substantially constant concentration. Even if the raw material water permeates through the solid electrolyte membrane and moves to the cathode chamber side, the cleaning solution on the cathode chamber side becomes thin, so that the cleaning agent is gradually eluted by its solubility. It becomes a cleaning solution. In the cleaning process, since the cleaning liquid is supplied to the cathode chamber and the cathode chamber is kept in an acidic state, Ca 2+ ions and Mg 2+ ions contained in the raw water are not precipitated as poorly soluble salts in the cathode electrode. Can be maintained in a dissolved state.
As described above, the ozone water generating method disclosed in Patent Document 2 and the ozone water generating apparatus for carrying out the method solve the technical problems of those disclosed in Patent Document 1, are easy to handle, and are maintained and managed. It is very useful as a thing that can reduce the cost and the initial cost.

特許第3269784号公報Japanese Patent No. 3269784 特開2008−666号公報Japanese Patent Laid-Open No. 2008-666

しかしながら、特許文献2に記載のオゾン水生成方法、及びオゾン水生成装置は以下に示すような更なる技術的な課題がある。   However, the ozone water generating method and the ozone water generating device described in Patent Document 2 have further technical problems as described below.

(1)過剰に洗浄剤を消費する可能性があること。
特許文献2に記載のオゾン水生成装置は、「固体電解質膜で陽極室と陰極室とに区画された電解槽」を備えた電解方式のものであるゆえ、陽極側から陰極側への水の移動が避けられず、その水の移動に伴って洗浄液タンクの水量が増加し、洗浄水がこぼれ出ることになる。即ち、特許文献2に記載の装置では、洗浄剤が飽和濃度まで溶解してなる高濃度の洗浄水がこぼれ出てしまうことになる。この場合、洗浄剤を無駄に消費してしまう。
(2)濃度の維持が困難であること。
溶解度の大きな洗浄剤を使用した場合、過剰濃度の洗浄液を生成してしまうおそれもある。例えば、洗浄液の必要濃度は、通常は洗浄剤の溶解度(飽和溶液の濃度)以下の濃度で足りるが、その場合においても、特許文献2に記載の方法では、洗浄液の濃度は常に飽和溶液の濃度になってしまう。そのため、洗浄液の濃度を、飽和溶液の濃度よりも低い適正な濃度に維持することが不可能である。
(1) The cleaning agent may be consumed excessively.
The ozone water generation apparatus described in Patent Document 2 is an electrolysis system provided with “an electrolytic cell partitioned into an anode chamber and a cathode chamber by a solid electrolyte membrane”, so that water from the anode side to the cathode side is used. The movement is unavoidable, and as the water moves, the amount of water in the cleaning liquid tank increases and the cleaning water spills out. That is, in the apparatus described in Patent Document 2, high-concentration cleaning water in which the cleaning agent is dissolved to the saturation concentration spills out. In this case, the cleaning agent is consumed wastefully.
(2) It is difficult to maintain the concentration.
When a cleaning agent having a high solubility is used, there is a possibility that an excessively concentrated cleaning liquid may be generated. For example, the required concentration of the cleaning solution is usually sufficient to be a concentration equal to or lower than the solubility of the cleaning agent (saturated solution concentration), but even in this case, the concentration of the cleaning solution is always the concentration of the saturated solution in the method described in Patent Document 2. Become. Therefore, it is impossible to maintain the concentration of the cleaning liquid at an appropriate concentration lower than that of the saturated solution.

本発明は、上記実情に鑑みることにより、取り扱いが容易でかつ維持管理コストおよびイニシャルコストを削減することが可能な、固体電解質膜を用いた水中電解法によるオゾン水生成装置であって、(1)洗浄剤の無駄な消費を回避でき、かつ、(2)洗浄液の濃度を適正な濃度に維持可能なオゾン水生成装置を提供することを目的とする。   In view of the above circumstances, the present invention is an ozone water generation apparatus by an underwater electrolysis method using a solid electrolyte membrane, which is easy to handle and can reduce maintenance costs and initial costs. An object of the present invention is to provide an ozone water generator capable of avoiding wasteful consumption of the cleaning agent and (2) maintaining the concentration of the cleaning liquid at an appropriate concentration.

本発明に係るオゾン水生成装置は、上記目的を達成するために以下のようないくつかの特徴を有している。すなわち、本発明のオゾン水生成装置は、以下の特徴を単独で、若しくは、適宜組み合わせて備えている。   The ozone water generating apparatus according to the present invention has the following features to achieve the above object. That is, the ozone water generating apparatus of the present invention includes the following features alone or in combination as appropriate.

上記目的を達成するための本発明に係るオゾン水生成装置における第1の特徴は、原料水を電気分解することでオゾン水を生成するオゾン水生成装置であって、固体電解質膜で区画された陽極室と陰極室とを有し、当該陽極室に前記原料水が供給される電解槽と、洗浄液を貯留可能な洗浄液タンクと前記陰極室と、前記洗浄液タンクと、循環ポンプとが介設された洗浄液循環流路と、少なくとも有機酸あるいは中性塩を含む洗浄剤を溶解させることで、洗浄液を生成する溶解部と、前記洗浄液タンクの内部の液位を検知するための液位検知手段と、前記洗浄液タンクから当該洗浄液タンクの内部の洗浄液を排出する洗浄液排出手段と、前記洗浄液タンクへ前記溶解部にて生成された洗浄液を供給する洗浄液供給手段と、前記液位検知手段にて検知された液位に応じて、前記洗浄液排出手段と前記洗浄液供給手段とを制御する制御手段と、を備えたことである。   The first feature of the ozone water generating apparatus according to the present invention for achieving the above object is an ozone water generating apparatus that generates ozone water by electrolyzing raw material water, and is partitioned by a solid electrolyte membrane. An electrolytic cell having an anode chamber and a cathode chamber, in which the raw material water is supplied to the anode chamber, a cleaning liquid tank capable of storing a cleaning liquid, the cathode chamber, the cleaning liquid tank, and a circulation pump are interposed. A cleaning liquid circulation channel, a dissolving part for generating a cleaning liquid by dissolving a cleaning agent containing at least an organic acid or a neutral salt, and a liquid level detecting means for detecting a liquid level inside the cleaning liquid tank; The cleaning liquid discharging means for discharging the cleaning liquid inside the cleaning liquid tank from the cleaning liquid tank, the cleaning liquid supply means for supplying the cleaning liquid generated in the dissolving section to the cleaning liquid tank, and the liquid level detecting means. Depending on the knowledge has been liquid level, and control means for controlling said cleaning liquid supplying means and the cleaning liquid discharge means is that with the.

この構成によると、洗浄液タンクの液位(液面の高さ)に応じて、洗浄液タンクから洗浄液の排出、あるいは溶解部から洗浄液タンクへ洗浄液の供給ができる。
ここで、洗浄液タンク内の洗浄液の濃度は、溶解部における洗浄液の濃度よりも低いので、洗浄液タンクから洗浄液が排出される場合においては、溶解部から洗浄液が排出される場合に比べ、溶解した洗浄剤の排出を抑えることができる。また、予め洗浄液の排出量に相当する(排出溶液中に含まれる)洗浄剤とほぼ同じ量を洗浄液タンクに供給しておくことが可能であり、過剰な供給が不要となる。これにより、洗浄剤の無駄な消費を回避することができる。
また、洗浄液タンクの液位に応じた所定のタイミングで溶解部の洗浄液を洗浄液タンクに自動供給できるので、洗浄液タンクから陰極室に供給される洗浄液の濃度を適正な濃度に維持することができる。
これにより、安定して十分なオゾン水の生成を維持することができる。
尚、自動で洗浄液の濃度調整がなされるため、取り扱いが容易であり、管理コストを削減することができる。また、軟水器等の付属装置の設置は不要であるため、イニシャルコストを削減することができる。
According to this configuration, it is possible to discharge the cleaning liquid from the cleaning liquid tank or supply the cleaning liquid from the dissolving portion to the cleaning liquid tank according to the liquid level (level of the liquid level) of the cleaning liquid tank.
Here, since the concentration of the cleaning liquid in the cleaning liquid tank is lower than the concentration of the cleaning liquid in the dissolving part, when the cleaning liquid is discharged from the cleaning liquid tank, compared with the case where the cleaning liquid is discharged from the dissolving part, the dissolved cleaning The discharge of the agent can be suppressed. In addition, it is possible to supply the cleaning liquid tank in the same amount as the cleaning agent corresponding to the discharge amount of the cleaning liquid (contained in the discharge solution) in advance, and an excessive supply is unnecessary. Thereby, useless consumption of the cleaning agent can be avoided.
Further, since the cleaning liquid in the dissolving portion can be automatically supplied to the cleaning liquid tank at a predetermined timing according to the liquid level of the cleaning liquid tank, the concentration of the cleaning liquid supplied from the cleaning liquid tank to the cathode chamber can be maintained at an appropriate concentration.
Thereby, the production | generation of sufficient ozone water can be maintained stably.
Since the concentration of the cleaning liquid is automatically adjusted, handling is easy and the management cost can be reduced. In addition, since there is no need to install an accessory device such as a water softener, the initial cost can be reduced.

また、本発明に係るオゾン水生成装置における第2の特徴は、前記洗浄液供給手段は、前記陰極室から排出される洗浄液の少なくとも一部を前記溶解部を経て前記洗浄液タンクに供給可能に構成されてなることである。   A second feature of the ozone water generator according to the present invention is that the cleaning liquid supply means is configured to supply at least a part of the cleaning liquid discharged from the cathode chamber to the cleaning liquid tank through the dissolving portion. It is to become.

この構成によると、溶解部での洗浄液の生成に、洗浄液循環流路を通じる洗浄液を利用するため、洗浄液の循環する系の外部からの液の供給を必要としない。
また、溶解部での洗浄液の生成に、循環ポンプにて温度が上昇された洗浄液が利用されるため、格別の加熱手段を設けずとも、溶解部での洗浄剤の溶解が容易となる。
According to this configuration, since the cleaning liquid passing through the cleaning liquid circulation channel is used for the generation of the cleaning liquid in the dissolving portion, it is not necessary to supply the liquid from outside the system through which the cleaning liquid circulates.
In addition, since the cleaning liquid whose temperature has been raised by the circulation pump is used for the generation of the cleaning liquid in the dissolving part, it is easy to dissolve the cleaning agent in the dissolving part without providing any special heating means.

また、本発明に係るオゾン水生成装置における第3の特徴は、前記溶解部が、前記洗浄液タンクとは別の洗浄剤タンクに構成されてなり、前記洗浄剤タンクが、当該洗浄剤タンクの底面から略鉛直方向に立設され且つ当該洗浄剤タンクの上面とは間隙を有する仕切り板にて第1槽と第2槽とに区切られてなり、前記第1槽に前記洗浄剤が貯留され、前記第1槽の洗浄液が前記洗浄液タンクに供給される際には、当該第1槽の洗浄液が前記仕切り板を越流して前記第2槽に流れ、次いで、前記洗浄液タンクに供給されるよう構成されたことである。   Further, a third feature of the ozone water generating apparatus according to the present invention is that the dissolving portion is configured in a cleaning agent tank different from the cleaning solution tank, and the cleaning agent tank is a bottom surface of the cleaning agent tank. From the upper surface of the cleaning agent tank is partitioned into a first tank and a second tank by a partition plate having a gap, and the cleaning agent is stored in the first tank, When the cleaning liquid in the first tank is supplied to the cleaning liquid tank, the cleaning liquid in the first tank flows over the partition plate to the second tank and is then supplied to the cleaning liquid tank. It has been done.

この構成によると、第1槽で予め洗浄剤を溶解しておくことが可能となり、未溶解分についてもその未溶解分の洗浄剤(固体状の洗浄剤)を第1槽に止めておくことができる。即ち、溶解を促進できるとともに未溶解分の洗浄剤の洗浄液タンクへの流出を防ぐことができる。これにより、洗浄液循環流路を通じる洗浄液の濃度の管理が容易となる。   According to this configuration, the cleaning agent can be dissolved in the first tank in advance, and the undissolved cleaning agent (solid cleaning agent) is kept in the first tank for the undissolved portion. Can do. That is, dissolution can be promoted and undissolved cleaning agent can be prevented from flowing out into the cleaning liquid tank. This facilitates management of the concentration of the cleaning liquid through the cleaning liquid circulation channel.

また、本発明に係るオゾン水生成装置における第4の特徴は、前記溶解部が、前記洗浄液タンクに添設された洗浄剤タンクに構成されてなり、前記洗浄剤タンクと前記洗浄液タンクとが、当該洗浄剤タンクの底面から略鉛直方向に立設され且つ当該洗浄剤タンクの上面とは間隙を有する仕切り板にて区切られてなり、前記洗浄剤タンクに前記洗浄剤が貯留され、前記洗浄剤タンクの洗浄液が前記洗浄液タンクに供給される際には、当該洗浄剤タンクの洗浄液が前記仕切り板を越流して前記洗浄液タンクに供給されるよう構成されたことである。   Further, a fourth feature of the ozone water generating apparatus according to the present invention is that the dissolving part is constituted by a cleaning agent tank attached to the cleaning solution tank, and the cleaning agent tank and the cleaning solution tank are: The cleaning agent tank is erected in a substantially vertical direction from the bottom surface and is partitioned by a partition plate having a gap from the top surface of the cleaning agent tank, the cleaning agent is stored in the cleaning agent tank, and the cleaning agent When the cleaning liquid in the tank is supplied to the cleaning liquid tank, the cleaning liquid in the cleaning agent tank flows over the partition plate and is supplied to the cleaning liquid tank.

この構成によると、洗浄剤タンクで予め洗浄剤を溶解しておくことが可能となり、未溶解分についてもその未溶解分の洗浄剤(固体状の洗浄剤)を洗浄剤タンクに止めておくことができる。即ち、溶解を促進できるとともに未溶解分の洗浄剤の洗浄液タンクへの流出を防ぐことができる。これにより、洗浄液循環流路を通じる洗浄液の濃度の管理が容易となる。
また、溶解部が、洗浄液タンクに添設された洗浄剤タンクに構成されてなるので、装置全体をコンパクトにできる。
更に、洗浄剤タンクで溶解して得られた洗浄液が洗浄液タンクに供給される際には、当該洗浄剤タンクの洗浄液が仕切り板を越流して洗浄液タンクに供給されるよう構成されているので、洗浄液タンクと洗浄剤タンクとの接続配管が不要である。そのため、接続配管内での塩の析出により、接続配管が閉塞して、洗浄剤タンクから洗浄液タンクへの洗浄液の供給が妨げられることはない。
According to this configuration, it becomes possible to dissolve the cleaning agent in advance in the cleaning agent tank, and for the undissolved portion, keep the undissolved cleaning agent (solid cleaning agent) in the cleaning agent tank. Can do. That is, dissolution can be promoted and undissolved cleaning agent can be prevented from flowing out into the cleaning liquid tank. This facilitates management of the concentration of the cleaning liquid through the cleaning liquid circulation channel.
In addition, since the dissolving part is constituted by a cleaning agent tank attached to the cleaning liquid tank, the entire apparatus can be made compact.
Furthermore, when the cleaning liquid obtained by dissolving in the cleaning agent tank is supplied to the cleaning liquid tank, the cleaning liquid in the cleaning agent tank is configured to be supplied to the cleaning liquid tank over the partition plate. There is no need for connecting piping between the cleaning liquid tank and the cleaning agent tank. For this reason, the precipitation of salt in the connection pipe does not block the connection pipe and prevent the supply of the cleaning liquid from the cleaning agent tank to the cleaning liquid tank.

また、本発明に係るオゾン水生成装置における第5の特徴は、前記循環ポンプの吐出側と前記陰極室との間の流路に開閉弁が介設されており、前記循環ポンプの吐出側と前記開閉弁との間の流路から分岐して、前記溶解部に接続される戻り流路を備えることである。   The fifth feature of the ozone water generator according to the present invention is that an on-off valve is interposed in the flow path between the discharge side of the circulation pump and the cathode chamber, A return flow path is provided that branches from the flow path between the on-off valve and is connected to the melting portion.

この構成によると、オゾン水の生成が不要な場合には、開閉弁を閉じることで、循環ポンプの運転を継続しながら、洗浄液の濃度調整が可能となる。   According to this configuration, when generation of ozone water is unnecessary, the concentration of the cleaning liquid can be adjusted while the operation of the circulation pump is continued by closing the on-off valve.

また、本発明に係るオゾン水生成装置における第6の特徴は、前記洗浄液循環流路内に洗浄液の導電率を検出するための導電率計を備えてなることである。   The sixth feature of the ozone water generator according to the present invention is that a conductivity meter for detecting the conductivity of the cleaning liquid is provided in the cleaning liquid circulation channel.

この構成によると、循環する洗浄液の濃度を把握でき、導電率の低下、ひいては洗浄液の濃度の低下に応じて、洗浄剤を洗浄剤タンクから洗浄液循環流路内に供給することなどが可能となる。   According to this configuration, the concentration of the circulating cleaning liquid can be grasped, and it becomes possible to supply the cleaning agent from the cleaning agent tank into the cleaning liquid circulation channel in accordance with the decrease in the conductivity, and consequently the decrease in the concentration of the cleaning liquid. .

本発明によれば、取り扱いが容易でかつ維持管理コストおよびイニシャルコストを削減できるとともに、洗浄液の無駄な消費を回避することができ、かつ、洗浄液タンクから陰極室に供給される洗浄液の濃度を適正な濃度に維持することができる。   According to the present invention, handling is easy, maintenance costs and initial costs can be reduced, wasteful consumption of the cleaning liquid can be avoided, and the concentration of the cleaning liquid supplied from the cleaning liquid tank to the cathode chamber is set appropriately. At a high concentration.

以下、本発明を実施するための最良の形態について図面を参照しつつ説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

(第1実施形態)
図1は、本発明の第1実施形態のオゾン水生成装置1を示す図である。
第1実施形態のオゾン水生成装置1は、固体電解質膜4で陽極室5と陰極室6とに区画された電解槽3と、洗浄液を貯留可能な洗浄液タンク7と、循環ポンプ8とを備える装置である。図1における矢印は、Ca2+イオンおよびMg2+イオンのうちの少なくともいずれかを含む原料水(以下、原料水と記載する)、オゾン水、洗浄液の流れ方向を示す。オゾン水生成装置1は、電解槽3における陽極室5に外部から供給される原料水を電気分解することでオゾン水を製造する装置であり、製造されたオゾン水を陽極室5に接続された流路11から排出する。また、上述の陰極室6と、洗浄液タンク7と、循環ポンプ8とは洗浄液循環流路12に介設されている。
外部からの原料水が流入する流路10は電解槽3の陽極室5に接続する流路である。当該流路10を経由して陽極室5に供給された原料水は、電解槽3の陽極室5と陰極室6に、陽極電極5a及び陰極電極6aを介して印加される直流電圧により電気分解される。これにより、陽極室5側でオゾン水が製造される。このとき、原料水に含まれるCa2+イオン、Mg2+イオンなどの陽イオンや原料水の一部が固体電解質膜4を透過して陰極室6側に移動する。陰極室6内に配置されている陰極電極6aを洗浄する場合は、酸性の洗浄液を、循環ポンプ8により洗浄液タンク7と電解槽3の陰極室6との間を接続する洗浄液循環流路12を通じて循環させる。ここで、陰極室6側では、水の電気分解によりOHイオンが発生し、このOHイオンと陽極室5側から移動してきたCa2+イオン、Mg2+イオンなどの陽イオンとが難溶性の塩を形成して陰極室6内に配置された陰極電極周辺に析出する可能性がある。しかし、これらの化合物は液が酸性条件化であれば析出することがないため、上述のように陰極室6の介設された洗浄液循環流路12に酸性の洗浄液を循環させることにより、陰極室6に難溶性の塩が析出することを抑制している。
(First embodiment)
FIG. 1 is a diagram showing an ozone water generator 1 according to a first embodiment of the present invention.
The ozone water generating apparatus 1 of the first embodiment includes an electrolytic cell 3 partitioned into an anode chamber 5 and a cathode chamber 6 by a solid electrolyte membrane 4, a cleaning liquid tank 7 capable of storing a cleaning liquid, and a circulation pump 8. Device. The arrows in FIG. 1 indicate the flow directions of raw water (hereinafter referred to as raw water) containing at least one of Ca 2+ ions and Mg 2+ ions, ozone water, and cleaning liquid. The ozone water generator 1 is an apparatus that produces ozone water by electrolyzing raw material water supplied from the outside to the anode chamber 5 in the electrolytic cell 3. The produced ozone water is connected to the anode chamber 5. Discharge from the channel 11. The cathode chamber 6, the cleaning liquid tank 7, and the circulation pump 8 are interposed in the cleaning liquid circulation channel 12.
The flow path 10 into which the raw material water from the outside flows is a flow path connected to the anode chamber 5 of the electrolytic cell 3. The raw material water supplied to the anode chamber 5 through the flow path 10 is electrolyzed by the DC voltage applied to the anode chamber 5 and the cathode chamber 6 of the electrolytic cell 3 via the anode electrode 5a and the cathode electrode 6a. Is done. Thereby, ozone water is manufactured on the anode chamber 5 side. At this time, cations such as Ca 2+ ions and Mg 2+ ions contained in the raw water and a part of the raw water pass through the solid electrolyte membrane 4 and move to the cathode chamber 6 side. When cleaning the cathode electrode 6 a disposed in the cathode chamber 6, the acidic cleaning liquid is passed through the cleaning liquid circulation channel 12 that connects the cleaning liquid tank 7 and the cathode chamber 6 of the electrolytic cell 3 by the circulation pump 8. Circulate. Here, on the cathode chamber 6 side, OH ions are generated by electrolysis of water, and these OH ions and cations such as Ca 2+ ions and Mg 2+ ions that have moved from the anode chamber 5 side are hardly soluble. There is a possibility that salt is formed and deposited around the cathode electrode disposed in the cathode chamber 6. However, since these compounds do not precipitate when the liquid is in an acidic condition, the acidic chamber is circulated through the cleaning fluid circulation channel 12 interposed in the cathode chamber 6 as described above, whereby the cathode chamber is obtained. 6 prevents the poorly soluble salt from precipitating.

洗浄液の酸濃度は、高濃度である必要はなく、酸としては、塩酸、硝酸、硫酸などの無機酸も使用できるが、これらの強酸は危険であるため、カルシウムやマグネシウムの溶解が可能なクエン酸等の有機酸が好ましい。しかし、クエン酸だけでなく、例えば、コハク酸、グルコン酸、乳酸、フマル酸、DLリンゴ酸などの有機酸も使用できる。一方、洗浄液の濃度は、オゾン水の生成過程において原料水の一部が固体電解質膜4を透過して陰極室6側に移動することにより徐々に薄まって、Ca2+イオン等の溶解度が低下する可能性がある。そのため、オゾン水生成装置1は、洗浄液循環流路12を通じる洗浄液の濃度を維持するための以下の構成を備えている。 The acid concentration of the cleaning solution does not need to be high, and inorganic acids such as hydrochloric acid, nitric acid, and sulfuric acid can be used as the acid. Organic acids such as acids are preferred. However, not only citric acid but also organic acids such as succinic acid, gluconic acid, lactic acid, fumaric acid and DL malic acid can be used. On the other hand, the concentration of the cleaning liquid gradually decreases as a part of the raw material water passes through the solid electrolyte membrane 4 and moves to the cathode chamber 6 side in the generation process of ozone water, and the solubility of Ca 2+ ions and the like decreases. there is a possibility. Therefore, the ozone water generator 1 has the following configuration for maintaining the concentration of the cleaning liquid through the cleaning liquid circulation channel 12.

まず、オゾン水生成装置1には、クエン酸の粉末状の洗浄剤9が投入された洗浄剤タンク30(溶解部)が設けられている。粉末状の洗浄剤9は、一部溶解せずに残るように、洗浄剤タンク30に投入される。即ち、洗浄剤タンク30内の洗浄液が飽和濃度になる量よりも、多い量の粉末状の洗浄剤9が投入される。尚、洗浄剤9は、粉末状に限らず、粒状であってもよい。また、後述する洗浄液排出手段によって、洗浄液が排出されるに伴い、減少する洗浄剤の量が把握できる場合には、その量と同じ量の洗浄剤を投入してもよい。   First, the ozone water generating apparatus 1 is provided with a cleaning agent tank 30 (dissolving part) in which a cleaning agent 9 in the form of powder of citric acid is charged. The powdery cleaning agent 9 is put into the cleaning agent tank 30 so as to remain partly undissolved. That is, a larger amount of the powdery cleaning agent 9 than the amount at which the cleaning liquid in the cleaning agent tank 30 reaches a saturated concentration is charged. The cleaning agent 9 is not limited to powder and may be granular. In addition, when the amount of cleaning agent that decreases as the cleaning liquid is discharged can be grasped by the cleaning liquid discharging means described later, the same amount of cleaning agent may be added.

尚、洗浄剤9は、クエン酸、あるいはCa溶解度の大きい有機酸、たとえばフマル酸、コハク酸、グルコン酸、乳酸、リンゴ酸等も使用可能である。また、洗浄液の電解質濃度を高めて、電解反応を容易にするため、電解質としてNaCl、NaSO、KCl、KSO等を混合して使用することも可能ある。
特に、電気伝導度の低い原水を使用してオゾン水を生成する場合には、前記有機酸と前記中性塩を混合した洗浄剤を使用することによって、効率よくオゾン水を生成することが可能となる。なお、原水が純水あるいはそれに近い純度のものである場合には、前記中性塩のみで、効率よくオゾン水を生成することができる。そして、中性塩には、NaCl、NaSO、KCl、KSOなどが好適である。
The cleaning agent 9 may be citric acid or an organic acid having high Ca solubility, such as fumaric acid, succinic acid, gluconic acid, lactic acid, malic acid and the like. Further, in order to increase the electrolyte concentration of the cleaning liquid and facilitate the electrolytic reaction, it is also possible to use a mixture of NaCl, Na 2 SO 4 , KCl, K 2 SO 4 or the like as the electrolyte.
In particular, when ozone water is generated using raw water with low electrical conductivity, it is possible to efficiently generate ozone water by using a cleaning agent in which the organic acid and the neutral salt are mixed. It becomes. In addition, when raw | natural water is a pure water or the thing of the purity close to it, ozone water can be efficiently produced | generated only with the said neutral salt. As the neutral salt, NaCl, Na 2 SO 4 , KCl, K 2 SO 4 and the like are suitable.

洗浄剤タンク30は洗浄液循環流路12の陰極室6の下流で且つ洗浄液タンク7の上流の分岐箇所Aから分岐し、洗浄液タンク7に通じる分岐流路13a,13bに介設されている。また、分岐箇所Aより下流で且つ洗浄液タンク7より上流の洗浄液循環流路12には電磁弁41が介設されるとともに、分岐箇所Aと洗浄剤タンク30との間の分岐流路13aには電磁弁42が介設されている。すなわち、図示しない制御手段による電磁弁41及び電磁弁42の開閉制御によって、陰極室6から排出される洗浄液の少なくとも一部を洗浄剤タンク30を経て洗浄液タンク7に供給可能に構成されている。換言すれば、洗浄剤タンク30が介設された分岐流路13a,13b、及び分岐流路13aに設けられた電磁弁42によって、洗浄液タンク7に洗浄液を供給するための洗浄液供給手段が構成されているとも言える。   The cleaning agent tank 30 branches from a branching point A downstream of the cleaning solution circulation channel 12 downstream of the cathode chamber 6 and upstream of the cleaning solution tank 7, and is interposed in branch channels 13 a and 13 b that communicate with the cleaning solution tank 7. Further, an electromagnetic valve 41 is interposed in the cleaning liquid circulation channel 12 downstream from the branch point A and upstream from the cleaning liquid tank 7, and in the branch channel 13 a between the branch point A and the cleaning agent tank 30. An electromagnetic valve 42 is interposed. That is, at least a part of the cleaning liquid discharged from the cathode chamber 6 can be supplied to the cleaning liquid tank 7 through the cleaning agent tank 30 by opening / closing control of the electromagnetic valve 41 and the electromagnetic valve 42 by a control means (not shown). In other words, the cleaning liquid supply means for supplying the cleaning liquid to the cleaning liquid tank 7 is configured by the branch flow paths 13a and 13b provided with the cleaning agent tank 30 and the electromagnetic valve 42 provided in the branch flow path 13a. It can be said that it is.

また、洗浄液タンク7には排出流路14が接続され、その排出流路14には電磁弁43が介設されている。すなわち、図示しない制御手段による電磁弁43の開閉制御によって、洗浄液タンク7の内部の洗浄液を排出可能に構成されている。換言すれば、排出流路14、及び電磁弁43によって、洗浄液タンク7から洗浄液を排出するための洗浄液排出手段が構成されているとも言える。   Further, a discharge flow path 14 is connected to the cleaning liquid tank 7, and an electromagnetic valve 43 is interposed in the discharge flow path 14. That is, the cleaning liquid inside the cleaning liquid tank 7 can be discharged by opening / closing control of the electromagnetic valve 43 by a control means (not shown). In other words, it can be said that the discharge flow path 14 and the electromagnetic valve 43 constitute cleaning liquid discharge means for discharging the cleaning liquid from the cleaning liquid tank 7.

また洗浄液タンク7の内部の液位を検知するための液位検知手段として、液面センサー51と液面センサー52が設けられている。なお、ここでは、液面センサー51、液面センサー52ともに、各センサーの位置より液位が高くなっている際に「ON」(作動)の旨の信号を発し、それ以外の場合には「OFF」(非作動)の旨の信号を発する(「ON」(作動)の旨の信号を発しない)ものとする。また、液面センサー51は、液面センサー52よりも低い位置に設けられている。当該液面センサー51は液位の下限を検知するために設けられている。また、液面センサー52は、液位の上限を検知するために設けられている。   A liquid level sensor 51 and a liquid level sensor 52 are provided as liquid level detection means for detecting the liquid level inside the cleaning liquid tank 7. Here, both the liquid level sensor 51 and the liquid level sensor 52 issue a signal of “ON” (operation) when the liquid level is higher than the position of each sensor, and otherwise, “ It is assumed that a signal indicating "OFF" (non-operation) is issued (a signal indicating "ON" (operation) is not issued). Further, the liquid level sensor 51 is provided at a position lower than the liquid level sensor 52. The liquid level sensor 51 is provided to detect the lower limit of the liquid level. The liquid level sensor 52 is provided for detecting the upper limit of the liquid level.

<オゾン水生成装置1の駆動状態>
まず、通常の状態(以下、「通常循環状態」と記載する。)では、電磁弁41は開、電磁弁42,43は閉である。
通常循環状態においては、洗浄液タンク7の洗浄液は、洗浄液循環流路12を循環することになる。
<Driving state of ozone water generator 1>
First, in a normal state (hereinafter referred to as “normal circulation state”), the electromagnetic valve 41 is open and the electromagnetic valves 42 and 43 are closed.
In the normal circulation state, the cleaning liquid in the cleaning liquid tank 7 circulates through the cleaning liquid circulation flow path 12.

そして、陽極室5側から陰極室6側への原料水の移動により、洗浄液タンク7内の液位が上昇し、洗浄液タンク7内の液面センサー52が「ON」となると、図示しない制御手段は電磁弁43を開き、洗浄液タンク7内の洗浄液が排水される。以下、この状態を洗浄液排出状態と記載する。
尚、制御手段は、液面センサー51,52、及び電磁弁41,42,43が電気的に接続されたコンピュータやPLC(プログラマブルコントローラ)等を用いて構成することができる。
Then, when the liquid level in the cleaning liquid tank 7 rises due to the movement of the raw material water from the anode chamber 5 side to the cathode chamber 6 side and the liquid level sensor 52 in the cleaning liquid tank 7 is turned “ON”, control means (not shown). Opens the electromagnetic valve 43, and the cleaning liquid in the cleaning liquid tank 7 is drained. Hereinafter, this state is referred to as a cleaning liquid discharge state.
The control means can be configured using a computer, PLC (programmable controller), etc., to which the liquid level sensors 51, 52 and the electromagnetic valves 41, 42, 43 are electrically connected.

洗浄液排出状態を経て、液位が低下し、液面センサー51が「OFF」となると、制御手段は電磁弁43を閉じる。更に、制御手段は、電磁弁42を開く共に、電磁弁41を閉じ、洗浄液循環流路12を循環している洗浄液が、洗浄剤タンク30に流れ込む。以下、この状態を濃度調整状態と記載する。   When the liquid level drops and the liquid level sensor 51 is turned “OFF” through the cleaning liquid discharge state, the control means closes the electromagnetic valve 43. Further, the control means opens the electromagnetic valve 42 and closes the electromagnetic valve 41 so that the cleaning liquid circulating in the cleaning liquid circulation flow path 12 flows into the cleaning agent tank 30. Hereinafter, this state is referred to as a density adjustment state.

濃度調整状態においては、洗浄剤タンク30では、洗浄液の流入により、水位が上昇し、洗浄液タンク7に接続された分岐流路13bへの排出口まで達すると、当該分岐流路13bを通じて洗浄液が洗浄液タンク7に流出する。
尚、洗浄液の流入により、溶解せずに残っていた洗浄剤9が徐々に溶解して、比較的高濃度の洗浄液が生成される。そのため、濃度調整状態において、洗浄液タンク7には、比較的高濃度の洗浄液が供給されることになる。そして、洗浄液タンク7内にて希釈されて、所定の濃度になる。
この濃度調整状態は、所定時間だけ継続される。所定時間が経過後、制御手段は電磁弁41を開き、電磁弁42を閉じる。そして、上述した通常循環状態に移行する。
In the concentration adjustment state, in the cleaning agent tank 30, when the water level rises due to the inflow of the cleaning liquid and reaches the outlet to the branch flow path 13b connected to the cleaning liquid tank 7, the cleaning liquid passes through the branch flow path 13b. It flows out to the tank 7.
In addition, due to the inflow of the cleaning liquid, the cleaning agent 9 remaining without being dissolved gradually dissolves, and a cleaning liquid having a relatively high concentration is generated. Therefore, in the concentration adjustment state, a relatively high concentration of cleaning liquid is supplied to the cleaning liquid tank 7. Then, it is diluted in the cleaning liquid tank 7 to a predetermined concentration.
This density adjustment state is continued for a predetermined time. After a predetermined time has elapsed, the control means opens the electromagnetic valve 41 and closes the electromagnetic valve 42. And it transfers to the normal circulation state mentioned above.

<オゾン水生成装置1内を流れる液体について>
オゾン水生成装置1内を流れる液体に関する諸データについては以下のとおりである。
(1)オゾン水生成装置への原料水供給量:3 L/min
(2)生成されるオゾン水の濃度:10 mg/L
(3)洗浄液 の種類 :クエン酸+NaCl溶液
(4)循環する洗浄液の流量:0.7 L/min
(5)循環する洗浄液の量 :4 L
<About the liquid flowing in the ozone water generator 1>
Various data regarding the liquid flowing in the ozone water generator 1 are as follows.
(1) Raw water supply to the ozone water generator: 3 L / min
(2) Concentration of generated ozone water: 10 mg / L
(3) Type of cleaning liquid: Citric acid + NaCl solution (4) Flow rate of circulating cleaning liquid: 0.7 L / min
(5) Amount of circulating cleaning liquid: 4 L

なお、図2は、洗浄液の排水、洗浄剤の追加を定期的に実施した場合の、洗浄液量、洗浄剤の量、洗浄液の濃度の推移を模式的に示した図である。   FIG. 2 is a diagram schematically showing the transition of the amount of the cleaning liquid, the amount of the cleaning agent, and the concentration of the cleaning liquid when the drainage of the cleaning liquid and the addition of the cleaning agent are performed periodically.

<第1実施形態の効果>
以上説明したように、オゾン水生成装置1は、原料水を電気分解することでオゾン水を生成するものであって、固体電解質膜4で区画された陽極室5と陰極室6とを有し、当該陽極室5に前記原料水が供給される電解槽3と、洗浄液を貯留可能な洗浄液タンク7と、陰極室6と洗浄液タンク7と循環ポンプ8とが介設された洗浄液循環流路12と、クエン酸の粉末状の洗浄剤9を徐々に溶解させることで、洗浄液を生成する洗浄剤タンク30と、洗浄液タンク7の内部の液位を検知するための液面センサー51,52と、洗浄液タンク7から当該洗浄液タンク7の内部の洗浄液を排出する排出流路14と、当該排出流路14に設けられた電磁弁43と、洗浄液循環流路12から分岐して洗浄剤タンク30に接続するとともに当該洗浄剤タンク30にて生成された洗浄液を洗浄液タンク7へ供給する分岐流路13a,13bと、当該分岐流路13aに設けられた電磁弁42と、洗浄液循環流路12から分岐流路13aへの分岐箇所Aと洗浄液タンク7との間の洗浄液循環流路12に設けられた電磁弁41と、液面センサー51,52にて検知された液位に応じて、電磁弁41,42,43を制御し、洗浄液タンク7へ洗浄液タンク7の洗浄液を給液、もしくは洗浄液タンク7から洗浄液を排液する制御手段と、を備える。
<Effects of First Embodiment>
As described above, the ozone water generator 1 generates ozone water by electrolyzing raw water, and has an anode chamber 5 and a cathode chamber 6 partitioned by a solid electrolyte membrane 4. The electrolytic bath 3 to which the raw material water is supplied to the anode chamber 5, the cleaning liquid tank 7 capable of storing the cleaning liquid, the cleaning liquid circulation passage 12 in which the cathode chamber 6, the cleaning liquid tank 7 and the circulation pump 8 are interposed. And by gradually dissolving the powdery cleaning agent 9 of citric acid, a cleaning agent tank 30 for generating a cleaning liquid, and liquid level sensors 51 and 52 for detecting the liquid level inside the cleaning liquid tank 7, A discharge flow path 14 for discharging the cleaning liquid in the cleaning liquid tank 7 from the cleaning liquid tank 7, a solenoid valve 43 provided in the discharge flow path 14, and a branch from the cleaning liquid circulation flow path 12 are connected to the cleaning agent tank 30. And the cleaning agent tank 3 Branch flow paths 13a and 13b for supplying the cleaning liquid generated at 0 to the cleaning liquid tank 7, an electromagnetic valve 42 provided in the branch flow path 13a, and a branch point from the cleaning liquid circulation flow path 12 to the branch flow path 13a The electromagnetic valves 41, 42, 43 are controlled in accordance with the electromagnetic valve 41 provided in the cleaning liquid circulation passage 12 between the A and the cleaning liquid tank 7 and the liquid levels detected by the liquid level sensors 51, 52. And a control means for supplying the cleaning liquid in the cleaning liquid tank 7 to the cleaning liquid tank 7 or discharging the cleaning liquid from the cleaning liquid tank 7.

この構成により、洗浄液タンク7の液位(液面の高さ)に応じて、洗浄液タンク7から洗浄液の排出、あるいは洗浄剤タンク30から洗浄液タンク7へ洗浄液の供給ができる。
ここで、洗浄液タンク7内の洗浄液の濃度は、洗浄剤タンク30における洗浄液の濃度よりも低いので、洗浄液タンク7から洗浄液が排出される場合においては、洗浄剤タンク30から洗浄液が排出される場合に比べ、溶解した洗浄剤9の排出を抑えることができる。また、予め洗浄液の排出量に相応する(排出液中に含まれる)洗浄剤とほぼ同じ量を洗浄剤タンク30に供給しておくことが可能であり、過剰な供給が不要となる。これにより、洗浄剤9の無駄な消費を回避することができる。
また、洗浄液タンク7の液位に応じた所定のタイミングで洗浄剤タンク30の洗浄液を洗浄液タンク7に自動供給できるので、洗浄液タンク7から陰極室6に供給される洗浄液の濃度を適正な濃度に維持することができる。
これにより、安定して十分なオゾン水の生成を維持することができる。
尚、自動で洗浄液の濃度調整がなされるため、取り扱いが容易であり、管理コストを削減することができる。また、軟水器等の付属装置の設置は不要であるため、イニシャルコストを削減することができる。
With this configuration, it is possible to discharge the cleaning liquid from the cleaning liquid tank 7 or supply the cleaning liquid from the cleaning agent tank 30 to the cleaning liquid tank 7 according to the liquid level (level of the liquid level) of the cleaning liquid tank 7.
Here, since the concentration of the cleaning liquid in the cleaning liquid tank 7 is lower than the concentration of the cleaning liquid in the cleaning liquid tank 30, when the cleaning liquid is discharged from the cleaning liquid tank 7, the cleaning liquid is discharged from the cleaning liquid tank 30. Compared to the above, discharge of the dissolved cleaning agent 9 can be suppressed. Further, it is possible to supply the cleaning agent tank 30 with the same amount of the cleaning agent corresponding to the amount of cleaning liquid discharged (contained in the discharging liquid) in advance, and an excessive supply becomes unnecessary. Thereby, useless consumption of the cleaning agent 9 can be avoided.
In addition, since the cleaning liquid in the cleaning agent tank 30 can be automatically supplied to the cleaning liquid tank 7 at a predetermined timing according to the liquid level in the cleaning liquid tank 7, the concentration of the cleaning liquid supplied from the cleaning liquid tank 7 to the cathode chamber 6 is set to an appropriate concentration. Can be maintained.
Thereby, the production | generation of sufficient ozone water can be maintained stably.
Since the concentration of the cleaning liquid is automatically adjusted, handling is easy and the management cost can be reduced. In addition, since there is no need to install an accessory device such as a water softener, the initial cost can be reduced.

また、電磁弁42を開くことで、洗浄液循環流路12から分岐する分岐流路13a,13bを介して、陰極室6から排出される洗浄液の少なくとも一部を洗浄剤タンク30を経て洗浄液タンク7に供給可能である。   Further, by opening the electromagnetic valve 42, at least a part of the cleaning liquid discharged from the cathode chamber 6 passes through the cleaning agent tank 30 via the branch flow paths 13 a and 13 b branched from the cleaning liquid circulation flow path 12, and the cleaning liquid tank 7. Can be supplied.

この構成により、洗浄剤タンク30での洗浄液の生成に、洗浄液循環流路12を通じる洗浄液を利用するため、外部(洗浄液の循環する系の外部)からの液の供給を必要としない。
また、洗浄液循環流路12を通じる洗浄液は循環ポンプ8にてその温度が上昇されているため、格別の加熱手段を設けずとも、洗浄剤タンク30での洗浄剤9の溶解が容易となる。
With this configuration, since the cleaning liquid passing through the cleaning liquid circulation channel 12 is used for the generation of the cleaning liquid in the cleaning agent tank 30, it is not necessary to supply liquid from the outside (outside the system through which the cleaning liquid circulates).
In addition, since the temperature of the cleaning liquid flowing through the cleaning liquid circulation channel 12 is increased by the circulation pump 8, the cleaning agent 9 can be easily dissolved in the cleaning agent tank 30 without providing any special heating means.

本実施形態では、粉末状の洗浄剤9を洗浄剤タンク30に投入しているが、未溶解の洗浄剤が洗浄剤タンク30から流出することをより確実に防ぐため、粉末状あるいは粒状の洗浄剤を固形状に固めた洗浄剤を投入してもよい。   In this embodiment, the powdery cleaning agent 9 is put into the cleaning agent tank 30. However, in order to more reliably prevent the undissolved cleaning agent from flowing out of the cleaning agent tank 30, the powdery or granular cleaning agent is used. A detergent obtained by solidifying the agent may be added.

(第2実施形態)
図3は、本発明の第2実施形態のオゾン水生成装置1Aを示す図である。この第2実施形態のオゾン水生成装置1Aは、第1実施形態のオゾン水生成装置1と多くの構成を共通するが、洗浄剤タンクの構成が異なっている。具体的には、このオゾン水生成装置1Aにおける洗浄剤タンク30Aでは、その内部が第1槽31と第2槽32とに区分されて構成されている点で相違がある。尚、第1実施形態と同一部材には同一符号を付して説明を省略する。
(Second Embodiment)
FIG. 3 is a diagram showing an ozone water generator 1A according to the second embodiment of the present invention. The ozone water generator 1A of the second embodiment has many configurations in common with the ozone water generator 1 of the first embodiment, but the configuration of the cleaning agent tank is different. Specifically, the cleaning agent tank 30A in the ozone water generating apparatus 1A is different in that the inside thereof is divided into a first tank 31 and a second tank 32. The same members as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

洗浄剤タンク30A(溶解部)は洗浄液タンク7とは別に構成されている。そして洗浄剤タンク30Aは、その洗浄剤タンク30Aの底面から略鉛直方向に立設され且つその洗浄剤タンク30Aの上面とは間隙を有する仕切り板33にて第1槽31と第2槽32に区切られている。また第1槽31に洗浄剤9が貯留されている。   The cleaning agent tank 30 </ b> A (dissolving part) is configured separately from the cleaning liquid tank 7. The cleaning agent tank 30A is erected in a substantially vertical direction from the bottom surface of the cleaning agent tank 30A, and is divided into a first tank 31 and a second tank 32 by a partition plate 33 having a gap from the upper surface of the cleaning agent tank 30A. It is delimited. The cleaning agent 9 is stored in the first tank 31.

洗浄液循環流路12の分岐箇所Aから分岐した分岐流路13aは、洗浄剤タンク30Aの第1槽31に陰極室6から排出された洗浄液が供給されるように、当該洗浄剤タンク30Aに接続されている。
また、洗浄剤タンク30Aから洗浄液タンク7につながる分岐流路13bは、洗浄剤タンク30Aの第2槽32から洗浄液タンク7に延びている。
尚、当該分岐流路13bは、仕切り板33の上端よりも低い位置で第2槽32に接続されている。
The branch channel 13a branched from the branch point A of the cleaning liquid circulation channel 12 is connected to the cleaning agent tank 30A so that the cleaning liquid discharged from the cathode chamber 6 is supplied to the first tank 31 of the cleaning agent tank 30A. Has been.
Further, the branch flow path 13b connected from the cleaning agent tank 30A to the cleaning solution tank 7 extends from the second tank 32 of the cleaning agent tank 30A to the cleaning solution tank 7.
Note that the branch flow path 13 b is connected to the second tank 32 at a position lower than the upper end of the partition plate 33.

この構成によると、制御手段により電磁弁42が開かれた濃度調整状態においては、分岐流路13aから第1槽31に洗浄液が供給されることにより、第1槽31の水位が上がる。そして、第1槽31の洗浄液が仕切り板33を越流して第2槽32に流れる。これにより、第2槽32の水位が上がり、分岐流路13bに第2槽32の洗浄液が流れ、洗浄液タンク7に洗浄液が供給される。   According to this configuration, in the concentration adjustment state in which the electromagnetic valve 42 is opened by the control means, the cleaning liquid is supplied from the branch flow path 13a to the first tank 31, so that the water level of the first tank 31 is increased. Then, the cleaning liquid in the first tank 31 flows over the partition plate 33 and flows into the second tank 32. As a result, the water level in the second tank 32 rises, the cleaning liquid in the second tank 32 flows into the branch flow path 13 b, and the cleaning liquid is supplied to the cleaning liquid tank 7.

<第2実施形態の効果>
このように、第2実施形態のオゾン水生成装置1Aは、洗浄剤タンク30Aが、洗浄液タンク7とは別に構成されてなり、洗浄剤タンク30Aが、当該洗浄剤タンク30Aの底面から略鉛直方向に立設され且つ当該洗浄剤タンク30Aの上面とは間隙を有する仕切り板33にて第1槽31と第2槽32とに区切られてなる。そして、第1槽31に洗浄剤が貯留され、第1槽31の洗浄液が洗浄液タンク7に供給される際には、第1槽31の洗浄液が仕切り板33を越流して第2槽32に流れ、次いで、洗浄液タンク7に供給されるように構成されている。
<Effects of Second Embodiment>
As described above, in the ozone water generating apparatus 1A of the second embodiment, the cleaning agent tank 30A is configured separately from the cleaning solution tank 7, and the cleaning agent tank 30A is substantially vertical from the bottom surface of the cleaning agent tank 30A. The first tank 31 and the second tank 32 are partitioned by a partition plate 33 having a gap from the upper surface of the cleaning agent tank 30A. When the cleaning agent is stored in the first tank 31 and the cleaning liquid in the first tank 31 is supplied to the cleaning liquid tank 7, the cleaning liquid in the first tank 31 overflows the partition plate 33 and enters the second tank 32. The liquid is then supplied to the cleaning liquid tank 7.

この構成によると、未溶解分の洗浄剤9を第1槽31に止めておくことができる。すなわち、未溶解分の洗浄剤9の洗浄液タンク7への流出を防ぎ、洗浄液循環流路12を通じる洗浄液の濃度の管理が容易となる。   According to this configuration, the undissolved cleaning agent 9 can be stopped in the first tank 31. That is, the undissolved cleaning agent 9 is prevented from flowing out to the cleaning liquid tank 7 and the management of the concentration of the cleaning liquid through the cleaning liquid circulation passage 12 is facilitated.

また、第1槽31の洗浄液が洗浄液タンク7に供給される際には、第1槽31の洗浄液が仕切り板33を越流して第2槽32に流れる用に構成されており、非常に構成が簡単である。即ち、複数のタンクを配管で連結する構成によって洗浄剤9の流出を防ぐ場合に比べ、簡易な構成で洗浄剤の流出を防ぐことができる。   Further, when the cleaning liquid in the first tank 31 is supplied to the cleaning liquid tank 7, the cleaning liquid in the first tank 31 flows over the partition plate 33 and flows into the second tank 32, which is very configured. Is simple. That is, it is possible to prevent the outflow of the cleaning agent with a simple configuration as compared with the case where the outflow of the cleaning agent 9 is prevented by the configuration in which a plurality of tanks are connected by piping.

尚、洗浄剤タンク30A内に仕切り板33を複数設置して、洗浄剤タンク30Aを3つ以上に区分してもよい。例えば、一の洗浄剤タンクに2つの仕切り板を設置して3つの槽に区分した場合は、分岐流路13aから洗浄液が供給される第1槽に洗浄剤9を配置し、仕切り板を越流して第1槽から第2槽に供給され、同様に当該第2槽から第3槽に供給され、当該第3槽から分岐流路13bを介して洗浄液タンク7に供給されるように構成することができる。3つ以上の仕切り板を設置する場合も同様に構成できる。この場合、より確実に洗浄液タンク7に未溶解分の洗浄剤9が流出することを防止できる。   A plurality of partition plates 33 may be installed in the cleaning agent tank 30A, and the cleaning agent tank 30A may be divided into three or more. For example, when two partition plates are installed in one cleaning agent tank and divided into three tanks, the cleaning agent 9 is arranged in the first tank to which the cleaning liquid is supplied from the branch flow path 13a, and the partition plate is passed over. And is supplied from the first tank to the second tank, similarly supplied from the second tank to the third tank, and supplied from the third tank to the cleaning liquid tank 7 via the branch channel 13b. be able to. The same configuration can be made when three or more partition plates are installed. In this case, it is possible to prevent the undissolved cleaning agent 9 from flowing out into the cleaning liquid tank 7 more reliably.

(第3実施形態)
図4は、本発明の第3実施形態のオゾン水生成装置1Bを示す図である。この第3実施形態のオゾン水生成装置1Bは、第2実施形態のオゾン水生成装置1Aと多くの構成を共通するが、洗浄剤タンクの構成で相違がある。尚、第2実施形態と同一部材には同一符号を付して説明を省略する。
(Third embodiment)
FIG. 4 is a diagram showing an ozone water generator 1B according to the third embodiment of the present invention. The ozone water generator 1B of the third embodiment shares many configurations with the ozone water generator 1A of the second embodiment, but differs in the configuration of the cleaning agent tank. Note that the same members as those in the second embodiment are denoted by the same reference numerals, and description thereof is omitted.

相違部分を具体的に説明すると以下の通りである。
オゾン水生成装置1Bでは、洗浄剤タンク30B(溶解部)が、洗浄液タンク7の内部に添設されている。
また、洗浄剤タンク30Bと洗浄液タンク7とが、洗浄剤タンク30Bの底面から略鉛直方向に立設され且つその洗浄剤タンク30Bの上面とは間隙を有する仕切り板34にて区切られている。洗浄剤タンク30Bには、洗浄剤9が貯留されている。
The difference will be specifically described as follows.
In the ozone water generating apparatus 1 </ b> B, a cleaning agent tank 30 </ b> B (dissolving part) is attached inside the cleaning liquid tank 7.
Further, the cleaning agent tank 30B and the cleaning solution tank 7 are erected in a substantially vertical direction from the bottom surface of the cleaning agent tank 30B, and are separated from the upper surface of the cleaning agent tank 30B by a partition plate 34 having a gap. The cleaning agent 9 is stored in the cleaning agent tank 30B.

洗浄液循環流路12の分岐箇所Aから分岐した分岐流路13aは、洗浄剤タンク30Bに陰極室6から排出された洗浄液が供給されるように、当該洗浄液タンク7に接続されている。そして、洗浄剤タンク30Bの洗浄液が洗浄液タンク7に供給される際には、分岐流路13aを介して洗浄剤タンク30Bに供給された洗浄液が、仕切り板34を越流して洗浄液タンク7に供給される。   The branch flow path 13a branched from the branch point A of the cleaning liquid circulation flow path 12 is connected to the cleaning liquid tank 7 so that the cleaning liquid discharged from the cathode chamber 6 is supplied to the cleaning agent tank 30B. When the cleaning liquid in the cleaning agent tank 30B is supplied to the cleaning liquid tank 7, the cleaning liquid supplied to the cleaning agent tank 30B via the branch flow path 13a flows over the partition plate 34 and is supplied to the cleaning liquid tank 7. Is done.

<第3実施形態の効果>
第3実施形態のオゾン水生成装置1Bは、洗浄剤タンク30Bが洗浄液タンク7内に設けられ、かつ、当該洗浄剤タンク30Bから溢れ出た洗浄液が洗浄液タンク7に溜まるように構成されている。
<Effect of the third embodiment>
The ozone water generator 1B of the third embodiment is configured such that the cleaning agent tank 30B is provided in the cleaning solution tank 7 and the cleaning solution overflowing from the cleaning agent tank 30B is accumulated in the cleaning solution tank 7.

この構成によると、第2実施形態のオゾン水生成装置1Aと同様に、未溶解分の洗浄剤9の洗浄液タンク7への流出を防ぐことができる。   According to this configuration, the undissolved cleaning agent 9 can be prevented from flowing out into the cleaning liquid tank 7 as in the ozone water generating apparatus 1A of the second embodiment.

更に、洗浄剤タンク30Bが、洗浄液タンク7の内部に添設されているので(洗浄剤タンク30Bと洗浄液タンク7とが一体化されているので)、装置全体をコンパクトにできるだけでなく、両タンクの接続配管が不要にできるため、洗浄液の配管ライン中での析出による閉塞をなくすことができる。   Furthermore, since the cleaning agent tank 30B is attached to the inside of the cleaning solution tank 7 (because the cleaning agent tank 30B and the cleaning solution tank 7 are integrated), not only the entire apparatus can be made compact, but both tanks Therefore, it is possible to eliminate clogging due to precipitation of the cleaning liquid in the piping line.

(第4実施形態)
図5は、本発明の第4実施形態のオゾン水生成装置1Cを示す図である。この第4実施形態のオゾン水生成装置1Cは、第3実施形態のオゾン水生成装置1Bと多くの構成を共通するが、洗浄剤の溶解時に洗浄液を洗浄液タンク7に供給するための構成において、相違がある。尚、第3実施形態と同一部材には同一符号を付して説明を省略する。
(Fourth embodiment)
FIG. 5 is a diagram showing an ozone water generator 1C according to the fourth embodiment of the present invention. The ozone water generator 1C of the fourth embodiment shares many configurations with the ozone water generator 1B of the third embodiment. However, in the configuration for supplying the cleaning liquid to the cleaning liquid tank 7 when the cleaning agent is dissolved, There is a difference. Note that the same members as those in the third embodiment are denoted by the same reference numerals, and description thereof is omitted.

第4実施形態のオゾン水生成装置1Cは、陰極室6から延びる洗浄液循環流路12が直接、洗浄液タンク7に接続されている。
また、循環ポンプ8の吐出側と陰極室6との間の洗浄液循環流路12に流量調整弁44と電磁弁46が介設されている。
また、循環ポンプ8の吐出側と流量調整弁44との間の洗浄液循環流路12から分岐箇所Bにて分岐して、洗浄液タンク7の内部に設けられた洗浄剤タンク30Bに対して、循環ポンプ8から吐出された洗浄液を供給可能に接続される戻り流路35を備える。
戻り流路35には、三方電磁弁45が設けられている。
また、オゾン水生成装置1Cは、当該三方電磁弁45を介して戻り流路35から分岐して洗浄液タンク7に接続されるバイパス流路36を備えている。
In the ozone water generating apparatus 1 </ b> C of the fourth embodiment, the cleaning liquid circulation channel 12 extending from the cathode chamber 6 is directly connected to the cleaning liquid tank 7.
A flow rate adjusting valve 44 and an electromagnetic valve 46 are interposed in the cleaning liquid circulation passage 12 between the discharge side of the circulation pump 8 and the cathode chamber 6.
Further, the liquid is branched from the cleaning liquid circulation passage 12 between the discharge side of the circulation pump 8 and the flow rate adjusting valve 44 at the branch point B, and is circulated to the cleaning agent tank 30B provided in the cleaning liquid tank 7. A return flow path 35 is provided which is connected to be able to supply the cleaning liquid discharged from the pump 8.
A three-way electromagnetic valve 45 is provided in the return flow path 35.
The ozone water generating device 1 </ b> C includes a bypass flow path 36 that branches from the return flow path 35 via the three-way electromagnetic valve 45 and is connected to the cleaning liquid tank 7.

また、洗浄液タンク7には、第3実施形態と異なり、一つの液面センサー52のみ設けられている。当該液面センサー52は液位の上限を検知するために設けられている。また、洗浄液タンク7における洗浄液の排出口(排出流路14への接続部)は、正常時(洗浄液の初期充填量)の液面レベルに設けられている。   Further, unlike the third embodiment, the cleaning liquid tank 7 is provided with only one liquid level sensor 52. The liquid level sensor 52 is provided to detect the upper limit of the liquid level. Further, the cleaning liquid discharge port (connecting portion to the discharge flow path 14) in the cleaning liquid tank 7 is provided at the liquid level at the normal time (the initial filling amount of the cleaning liquid).

オゾン水生成装置1Cでは、洗浄液の循環量の調整を、流量調整弁44と三方電磁弁45とを調整して行なうよう構成されている。
通常循環状態においては、電磁弁46は開かれており、且つ、流量調整弁44は所定流量が流れるよう、所定の開度に設定された上で開かれている。このとき、三方電磁弁45は、分岐箇所Bから分岐して流路35を流れる洗浄液がバイパス流路36のみに流れるように切り換えられる。したがって、通常循環状態においては、洗浄液が洗浄液循環流路12を循環するとともに、一部の洗浄液が陰極室6を通らずに流路35及びバイパス流路36を介して循環する。
尚、分岐箇所Bから洗浄液タンク7及び洗浄剤タンク30Bへの洗浄液の通過を完全に遮断するように三方電磁弁45を制御するように構成してもよい。この場合は、通常循環状態において、洗浄液は洗浄液循環流路12のみを循環することになる。
The ozone water generating apparatus 1 </ b> C is configured to adjust the flow rate of the cleaning liquid by adjusting the flow rate adjusting valve 44 and the three-way electromagnetic valve 45.
In the normal circulation state, the electromagnetic valve 46 is opened, and the flow rate adjusting valve 44 is opened after being set to a predetermined opening so that a predetermined flow rate flows. At this time, the three-way solenoid valve 45 is switched so that the cleaning liquid branched from the branch point B and flowing through the flow path 35 flows only into the bypass flow path 36. Accordingly, in the normal circulation state, the cleaning liquid circulates through the cleaning liquid circulation flow path 12 and a part of the cleaning liquid circulates through the flow path 35 and the bypass flow path 36 without passing through the cathode chamber 6.
Note that the three-way solenoid valve 45 may be controlled so as to completely block the passage of the cleaning liquid from the branch point B to the cleaning liquid tank 7 and the cleaning agent tank 30B. In this case, the cleaning liquid circulates only through the cleaning liquid circulation channel 12 in the normal circulation state.

通常循環状態において、洗浄液タンク7の液位が上昇し、液面センサー52が「ON」となると、洗浄液排出状態に移行し、電磁弁43が開いて、洗浄液が洗浄液タンク7から排出される。
電磁弁43が開いた洗浄液排出状態は、液面センサー52が「ON」になってから、所定時間経過すると終了し、電磁弁43が閉じられる。
尚、液面センサー52が「ON」になってから所定時間経過する前に、液位が排出流路14の排出口まで低下すれば、排水は自動的に停止することになる。
In the normal circulation state, when the liquid level in the cleaning liquid tank 7 rises and the liquid level sensor 52 is turned “ON”, the cleaning liquid discharge state is entered, the electromagnetic valve 43 is opened, and the cleaning liquid is discharged from the cleaning liquid tank 7.
The cleaning liquid discharge state in which the electromagnetic valve 43 is opened ends when a predetermined time has elapsed after the liquid level sensor 52 is turned “ON”, and the electromagnetic valve 43 is closed.
If the liquid level drops to the discharge port of the discharge flow path 14 before a predetermined time has elapsed after the liquid level sensor 52 is turned “ON”, the drainage is automatically stopped.

液面センサー52が「ON」になってから所定時間経過すると、循環ポンプ8の吐出口から洗浄液タンク7への戻り流路35に設置されている三方電磁弁45が制御され、洗浄液タンク7へのバイパス流路36から、洗浄剤タンク30Bへの流路35に切り替わる。これにより、循環している洗浄液の一部により洗浄剤9の溶解が開始される。
この間においても、陰極室6側に供給された洗浄液は、洗浄液循環流路12を通って、洗浄剤タンク30Bではなく、洗浄液タンク7に戻り、循環する。
When a predetermined time elapses after the liquid level sensor 52 is turned “ON”, the three-way electromagnetic valve 45 installed in the return flow path 35 from the discharge port of the circulation pump 8 to the cleaning liquid tank 7 is controlled to the cleaning liquid tank 7. From the bypass flow path 36 to the flow path 35 to the cleaning agent tank 30B. Thereby, dissolution of the cleaning agent 9 is started by a part of the circulating cleaning liquid.
Also during this time, the cleaning liquid supplied to the cathode chamber 6 side passes through the cleaning liquid circulation channel 12 and returns to the cleaning liquid tank 7 instead of the cleaning agent tank 30B and circulates.

ここで、オゾン水生成を停止する操作がなされると、電磁弁46は完全に閉じられ、陰極室6への洗浄液供給が停止される。
この場合においても、循環ポンプ8の稼動は継続される。そして、オゾン水生成時と同様に、液面センサー52が「ON」になってから所定時間経過すると、三方電磁弁45が制御され、洗浄液タンク7へのバイパス流路36から、洗浄剤タンク30Bへの流路35に切り替わる。結果として、洗浄液は、陰極室6を通過せずに流路35及びバイパス流路36を通過して循環するとともに、所定の濃度で維持されることになる。
Here, when an operation for stopping the generation of ozone water is performed, the electromagnetic valve 46 is completely closed, and the supply of the cleaning liquid to the cathode chamber 6 is stopped.
Even in this case, the operation of the circulation pump 8 is continued. As in the case of ozone water generation, when a predetermined time has elapsed after the liquid level sensor 52 is turned “ON”, the three-way electromagnetic valve 45 is controlled, and the cleaning agent tank 30 </ b> B from the bypass flow path 36 to the cleaning liquid tank 7. It switches to the flow path 35 to. As a result, the cleaning liquid circulates through the flow path 35 and the bypass flow path 36 without passing through the cathode chamber 6, and is maintained at a predetermined concentration.

オゾン水生成を再開する操作がなされると、オゾン水生成装置1Cは、通常循環状態として駆動される。即ち、電磁弁46が開き、陰極室6側への洗浄液供給が再開される。   When the operation of restarting the generation of ozone water is performed, the ozone water generation apparatus 1C is driven in a normal circulation state. That is, the electromagnetic valve 46 is opened and the supply of the cleaning liquid to the cathode chamber 6 side is resumed.

<第4実施形態の効果>
第4実施形態のオゾン水生成装置1Cは、循環ポンプ8の吐出側と陰極室6との間の洗浄液循環流路12に流量調整弁44と電磁弁46とが介設されており、循環ポンプ8の吐出側と流量調整弁44との間の洗浄液循環流路12の分岐箇所Bから分岐して、洗浄剤タンク30Bに接続される戻り流路35を備える。
<Effects of Fourth Embodiment>
In the ozone water generating apparatus 1C of the fourth embodiment, a flow rate adjusting valve 44 and an electromagnetic valve 46 are interposed in the cleaning liquid circulation passage 12 between the discharge side of the circulation pump 8 and the cathode chamber 6, and the circulation pump 8 is provided with a return flow path 35 branched from a branch point B of the cleaning liquid circulation flow path 12 between the discharge side 8 and the flow rate adjustment valve 44 and connected to the cleaning agent tank 30B.

この構成によると、洗浄剤9の溶解中にオゾン水生成を中止した場合でも、電磁弁46を閉じることにより、循環ポンプ8の稼動が継続可能となり、洗浄剤9の溶解を継続できる。すなわち、陽極室5への原料水供給を停止した時(オゾン水の生成が不要な時)にも、所定の濃度になるまで洗浄剤9の溶解を継続させ、洗浄液の濃度調整が可能となる。   According to this configuration, even when ozone water generation is stopped during the dissolution of the cleaning agent 9, the operation of the circulation pump 8 can be continued by closing the electromagnetic valve 46, and the dissolution of the cleaning agent 9 can be continued. That is, even when the supply of the raw material water to the anode chamber 5 is stopped (when generation of ozone water is unnecessary), the cleaning agent 9 can be continuously dissolved until a predetermined concentration is reached, and the concentration of the cleaning liquid can be adjusted. .

また、洗浄液タンク7における洗浄液の排出口(排出流路14への接続部)は、正常時(洗浄液の初期充填量)の液面レベルに設けられている。   Further, the cleaning liquid discharge port (connecting portion to the discharge flow path 14) in the cleaning liquid tank 7 is provided at the liquid level at the normal time (the initial filling amount of the cleaning liquid).

この構成によると、洗浄液タンク7内の洗浄液は排出時、液面レベルが排出口まで低下すると自動的に排出が停止する。そのため、水位の下限を検出する液面センサーは不要であり、当該液面センサーの異常等による、過剰な洗浄液排出が防止できる。   According to this configuration, when the cleaning liquid in the cleaning liquid tank 7 is discharged, the discharge automatically stops when the liquid level decreases to the discharge port. Therefore, a liquid level sensor for detecting the lower limit of the water level is unnecessary, and excessive cleaning liquid discharge due to abnormality of the liquid level sensor or the like can be prevented.

(第5実施形態)
図6は、本発明の第5実施形態のオゾン水生成装置1Dを示す図である。
この第5実施形態のオゾン水生成装置1Dは、第1実施形態のオゾン水生成装置1と多くの構成を共通する。ただし、この第5実施形態のオゾン水生成装置1Dには、洗浄液タンク7の内部且つ洗浄液に侵漬(洗浄液と接触)する位置に、導電率計61が設けられているの対し、第1実施形態のオゾン水生成装置1にはそれが設けられていない点において、相違がある。
洗浄液タンク7の内部に設けられた導電率計61は、同タンク内の洗浄液の導電率を検出しており、検出された導電率は、図示しない制御手段に送信される。上述した第1実施形態のオゾン水生成装置では、濃度調整状態を所定時間だけ継続するように構成されていたが、この第5実施形態のオゾン水生成装置では、濃度調整状態を導電率計61にて検出された洗浄液の導電率に応じて継続するように構成されている。
すなわち、濃度調整状態となってから(通常は、この際には、導電率は所定値より小さくなっている)、導電率計61から送信される導電率が所定値より小さい限り、制御手段は電磁弁41を閉、電磁弁42を開としている濃度調整状態を維持する。そして、導電率計61から送信される導電率が所定値以上、ひいては洗浄剤の濃度が所定の濃度以上となると、制御手段は電磁弁41を開き、電磁弁42を閉じる。そして、通常循環状態に移行する。
また、導電率計61から送信される導電率が所定値より小さくなった場合に、制御手段は電磁弁41を閉じて、電磁弁42を開いて、濃度調整状態に移行するよう、構成しても良い。
<第5実施形態の効果>
この構成により、洗浄液の導電率に応じて、洗浄液の濃度の調整が可能となり、より正確な洗浄液の濃度管理が可能となる。なお、導電率計61は洗浄液タンク6の内部に設けられずとも良く、洗浄液循環流路12の内部のいずれかの位置に、洗浄液と接触するよう、設けられていれば良い。
(Fifth embodiment)
FIG. 6 is a diagram showing an ozone water generator 1D according to the fifth embodiment of the present invention.
The ozone water generator 1D of the fifth embodiment has many configurations in common with the ozone water generator 1 of the first embodiment. However, in the ozone water generating apparatus 1D of the fifth embodiment, the conductivity meter 61 is provided in the cleaning liquid tank 7 and at a position where it is immersed in the cleaning liquid (in contact with the cleaning liquid). The form of the ozone water generator 1 is different in that it is not provided.
A conductivity meter 61 provided in the cleaning liquid tank 7 detects the conductivity of the cleaning liquid in the tank, and the detected conductivity is transmitted to a control means (not shown). In the ozone water generation device of the first embodiment described above, the concentration adjustment state is configured to continue for a predetermined time. However, in the ozone water generation device of the fifth embodiment, the concentration adjustment state is set to the conductivity meter 61. It is comprised so that it may continue according to the electrical conductivity of the washing | cleaning liquid detected by.
That is, after the density adjustment state is reached (usually, the conductivity is smaller than a predetermined value at this time), the control means is not limited as long as the conductivity transmitted from the conductivity meter 61 is smaller than the predetermined value. The concentration adjustment state in which the electromagnetic valve 41 is closed and the electromagnetic valve 42 is opened is maintained. When the conductivity transmitted from the conductivity meter 61 is equal to or higher than a predetermined value, and the concentration of the cleaning agent is equal to or higher than the predetermined concentration, the control means opens the electromagnetic valve 41 and closes the electromagnetic valve 42. And it transfers to a normal circulation state.
Further, when the conductivity transmitted from the conductivity meter 61 becomes smaller than a predetermined value, the control means is configured to close the electromagnetic valve 41 and open the electromagnetic valve 42 to shift to the concentration adjustment state. Also good.
<Effect of Fifth Embodiment>
With this configuration, it is possible to adjust the concentration of the cleaning liquid in accordance with the conductivity of the cleaning liquid, and it is possible to more accurately manage the concentration of the cleaning liquid. The conductivity meter 61 may not be provided inside the cleaning liquid tank 6, but may be provided at any position inside the cleaning liquid circulation channel 12 so as to be in contact with the cleaning liquid.

以上、本発明の実施形態について説明したが、本発明は上述の実施の形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々に変更して実施することができるものである。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made as long as they are described in the claims.

本発明の第1実施形態に係るオゾン水生成装置を示す概略図である。It is the schematic which shows the ozone water production | generation apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るオゾン水生成装置での洗浄液量等の推移を示す図である。It is a figure which shows transition of the washing | cleaning liquid amount etc. in the ozone water generating apparatus which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係るオゾン水生成装置を示す概略図である。It is the schematic which shows the ozone water production | generation apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るオゾン水生成装置を示す概略図である。It is the schematic which shows the ozone water generating apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係るオゾン水生成装置を示す概略図である。It is the schematic which shows the ozone water generating apparatus which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係るオゾン水生成装置を示す概略図である。It is the schematic which shows the ozone water production | generation apparatus which concerns on 5th Embodiment of this invention.

符号の説明Explanation of symbols

1、1A、1B、1C、1D オゾン水生成装置
3 電解槽
4 固体電解質膜
5 陽極室
6 陰極室
7 洗浄液タンク
8 循環ポンプ
9 洗浄剤
12 洗浄液循環流路
30 洗浄剤タンク(溶解部)
51、52 液面センサー
61 導電率計
DESCRIPTION OF SYMBOLS 1, 1A, 1B, 1C, 1D Ozone water production | generation apparatus 3 Electrolyzer 4 Solid electrolyte membrane 5 Anode chamber 6 Cathode chamber 7 Cleaning liquid tank 8 Circulation pump 9 Cleaning agent 12 Cleaning liquid circulation flow path 30 Cleaning agent tank (dissolution part)
51, 52 Liquid level sensor 61 Conductivity meter

Claims (6)

原料水を電気分解することでオゾン水を生成するオゾン水生成装置であって、
固体電解質膜で区画された陽極室と陰極室とを有し、当該陽極室に前記原料水が供給される電解槽と、
洗浄液を貯留可能な洗浄液タンクと
前記陰極室と、前記洗浄液タンクと、循環ポンプとが介設された洗浄液循環流路と、
少なくとも有機酸あるいは中性塩を含む洗浄剤を溶解させることで、洗浄液を生成する溶解部と、
前記洗浄液タンクの内部の液位を検知するための液位検知手段と、
前記洗浄液タンクから当該洗浄液タンクの内部の洗浄液を排出する洗浄液排出手段と、
前記洗浄液タンクへ前記溶解部にて生成された洗浄液を供給する洗浄液供給手段と、
前記液位検知手段にて検知された液位に応じて、前記洗浄液排出手段と前記洗浄液供給手段とを制御する制御手段と、
を備えたオゾン水生成装置。
An ozone water generating device that generates ozone water by electrolyzing raw water,
An electrolytic cell having an anode chamber and a cathode chamber partitioned by a solid electrolyte membrane, the raw material water being supplied to the anode chamber;
A cleaning liquid tank capable of storing a cleaning liquid, the cathode chamber, the cleaning liquid tank, and a cleaning liquid circulation passage provided with a circulation pump;
Dissolving a cleaning agent containing at least an organic acid or a neutral salt to generate a cleaning solution;
A liquid level detection means for detecting the liquid level inside the cleaning liquid tank;
Cleaning liquid discharging means for discharging the cleaning liquid inside the cleaning liquid tank from the cleaning liquid tank;
Cleaning liquid supply means for supplying the cleaning liquid generated in the dissolving section to the cleaning liquid tank;
Control means for controlling the cleaning liquid discharge means and the cleaning liquid supply means according to the liquid level detected by the liquid level detection means;
Ozone water generator equipped with.
前記洗浄液供給手段は、前記陰極室から排出される洗浄液の少なくとも一部を前記溶解部を経て前記洗浄液タンクに供給可能に構成されてなる
請求項1に記載のオゾン水生成装置。
2. The ozone water generating apparatus according to claim 1, wherein the cleaning liquid supply unit is configured to be able to supply at least a part of the cleaning liquid discharged from the cathode chamber to the cleaning liquid tank through the dissolving portion.
前記溶解部が、前記洗浄液タンクとは別の洗浄剤タンクに構成されてなり、
前記洗浄剤タンクが、当該洗浄剤タンクの底面から略鉛直方向に立設され且つ当該洗浄剤タンクの上面とは間隙を有する仕切り板にて第1槽と第2槽とに区切られてなり、
前記第1槽に前記洗浄剤が貯留され、
前記第1槽の洗浄液が前記洗浄液タンクに供給される際には、当該第1槽の洗浄液が前記仕切り板を越流して前記第2槽に流れ、次いで、前記洗浄液タンクに供給されるよう構成された請求項1または請求項2に記載のオゾン水生成装置。
The dissolving portion is configured in a cleaning agent tank different from the cleaning liquid tank,
The cleaning agent tank is erected in a substantially vertical direction from the bottom surface of the cleaning agent tank, and is partitioned into a first tank and a second tank by a partition plate having a gap from the upper surface of the cleaning agent tank,
The cleaning agent is stored in the first tank,
When the cleaning liquid in the first tank is supplied to the cleaning liquid tank, the cleaning liquid in the first tank flows over the partition plate to the second tank and is then supplied to the cleaning liquid tank. The ozone water generating device according to claim 1 or claim 2.
前記溶解部が、前記洗浄液タンクに添設された洗浄剤タンクに構成されてなり、
前記洗浄剤タンクと前記洗浄液タンクとが、当該洗浄剤タンクの底面から略鉛直方向に立設され且つ当該洗浄剤タンクの上面とは間隙を有する仕切り板にて区切られてなり、
前記洗浄剤タンクに前記洗浄剤が貯留され、
前記洗浄剤タンクの洗浄液が前記洗浄液タンクに供給される際には、当該洗浄剤タンクの洗浄液が前記仕切り板を越流して前記洗浄液タンクに供給されるよう構成された請求項1または請求項2に記載のオゾン水生成装置。
The dissolving portion is configured in a cleaning agent tank attached to the cleaning solution tank;
The cleaning agent tank and the cleaning solution tank are erected in a substantially vertical direction from the bottom surface of the cleaning agent tank, and separated from the upper surface of the cleaning agent tank by a partition plate having a gap,
The cleaning agent is stored in the cleaning agent tank,
The cleaning liquid in the cleaning agent tank is configured to be supplied to the cleaning liquid tank over the partition plate when the cleaning liquid in the cleaning agent tank is supplied to the cleaning liquid tank. The ozone water generator described in 1.
前記循環ポンプの吐出側と前記陰極室との間の流路に開閉弁が介設されており、
前記循環ポンプの吐出側と前記開閉弁との間の流路から分岐して、前記溶解部に接続される戻り流路を備える
請求項1〜4のいずれか一項に記載のオゾン水生成装置。
An on-off valve is interposed in the flow path between the discharge side of the circulation pump and the cathode chamber,
The ozone water generating apparatus according to any one of claims 1 to 4, further comprising a return flow path that branches from a flow path between a discharge side of the circulation pump and the on-off valve and is connected to the dissolving portion. .
前記洗浄液循環流路内に洗浄液の導電率を検出するための導電率計を備えてなる請求項1〜5のいずれか一項に記載のオゾン水生成装置。   The ozone water generating apparatus according to any one of claims 1 to 5, further comprising a conductivity meter for detecting the conductivity of the cleaning liquid in the cleaning liquid circulation channel.
JP2008332130A 2008-12-26 2008-12-26 Ozone water generator Expired - Fee Related JP5295753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008332130A JP5295753B2 (en) 2008-12-26 2008-12-26 Ozone water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008332130A JP5295753B2 (en) 2008-12-26 2008-12-26 Ozone water generator

Publications (2)

Publication Number Publication Date
JP2010150630A true JP2010150630A (en) 2010-07-08
JP5295753B2 JP5295753B2 (en) 2013-09-18

Family

ID=42570023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008332130A Expired - Fee Related JP5295753B2 (en) 2008-12-26 2008-12-26 Ozone water generator

Country Status (1)

Country Link
JP (1) JP5295753B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9919939B2 (en) 2011-12-06 2018-03-20 Delta Faucet Company Ozone distribution in a faucet
JP2018154901A (en) * 2017-03-21 2018-10-04 株式会社東芝 Electrolytic apparatus for carbon dioxide and electrolysis method of carbon dioxide
CN109126906A (en) * 2018-10-24 2019-01-04 南京元亨化工科技有限公司 Efficient electric ion interchange unit
US10640878B2 (en) 2015-11-12 2020-05-05 Delta Faucet Company Ozone generator for a faucet
US10767270B2 (en) 2015-07-13 2020-09-08 Delta Faucet Company Electrode for an ozone generator
JP2021046575A (en) * 2019-09-17 2021-03-25 株式会社東芝 Carbon dioxide electrolytic device and carbon dioxide electrolytic method
JP2021050363A (en) * 2019-09-20 2021-04-01 高光産業株式会社 Electrolytic cell and device of producing ozone water comprising the same, and method of recovering performance of electrolytic cell
US11458214B2 (en) 2015-12-21 2022-10-04 Delta Faucet Company Fluid delivery system including a disinfectant device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069679A (en) * 2000-08-28 2002-03-08 Hiroichi Shioda Ozonizer
JP2006334498A (en) * 2005-06-01 2006-12-14 Fuji Electric Retail Systems Co Ltd Apparatus for supplying electrolytic solution
JP2008000666A (en) * 2006-06-21 2008-01-10 Kobe Steel Ltd Method and apparatus for producing ozone water and detergent to be used therein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002069679A (en) * 2000-08-28 2002-03-08 Hiroichi Shioda Ozonizer
JP2006334498A (en) * 2005-06-01 2006-12-14 Fuji Electric Retail Systems Co Ltd Apparatus for supplying electrolytic solution
JP2008000666A (en) * 2006-06-21 2008-01-10 Kobe Steel Ltd Method and apparatus for producing ozone water and detergent to be used therein

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9919939B2 (en) 2011-12-06 2018-03-20 Delta Faucet Company Ozone distribution in a faucet
US10947138B2 (en) 2011-12-06 2021-03-16 Delta Faucet Company Ozone distribution in a faucet
US10767270B2 (en) 2015-07-13 2020-09-08 Delta Faucet Company Electrode for an ozone generator
US11220754B2 (en) 2015-11-12 2022-01-11 Delta Faucet Company Ozone generator for a faucet
US10640878B2 (en) 2015-11-12 2020-05-05 Delta Faucet Company Ozone generator for a faucet
US11634828B2 (en) 2015-11-12 2023-04-25 Delta Faucet Company Ozone generator for a faucet
US11458214B2 (en) 2015-12-21 2022-10-04 Delta Faucet Company Fluid delivery system including a disinfectant device
CN108624905A (en) * 2017-03-21 2018-10-09 株式会社东芝 Carbon dioxide electrolysis unit and carbon dioxide electrolytic method
JP2018154901A (en) * 2017-03-21 2018-10-04 株式会社東芝 Electrolytic apparatus for carbon dioxide and electrolysis method of carbon dioxide
CN109126906A (en) * 2018-10-24 2019-01-04 南京元亨化工科技有限公司 Efficient electric ion interchange unit
JP2021046575A (en) * 2019-09-17 2021-03-25 株式会社東芝 Carbon dioxide electrolytic device and carbon dioxide electrolytic method
JP7204619B2 (en) 2019-09-17 2023-01-16 株式会社東芝 Carbon dioxide electrolysis device and carbon dioxide electrolysis method
JP2021050363A (en) * 2019-09-20 2021-04-01 高光産業株式会社 Electrolytic cell and device of producing ozone water comprising the same, and method of recovering performance of electrolytic cell

Also Published As

Publication number Publication date
JP5295753B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5295753B2 (en) Ozone water generator
KR100437308B1 (en) Water treatment apparatus
KR100462639B1 (en) Water treatment apparatus
GB2453050A (en) Method of producing electrolyzed water
TW201716337A (en) Hydrogen-rich water feeder
JP2017087110A (en) Electrolytic water generator, hydrogen water server provided therewith and method for producing water for dialysis liquid preparation
EP3103770B1 (en) Brine tank, method to provide brine for regenerating an ion-exchange material and water softening method
JP2010172806A (en) Pure water production system
JP3849644B2 (en) Electrolyzed water generator
WO2008032946A1 (en) Apparatus for producing sodium hypochlorite
JP2006255653A (en) Electrolytic treatment method of water system
JP3891120B2 (en) Electrolyzed water generator
JP7180008B2 (en) Chlorinated water generator
JP3891118B2 (en) Electrolyzed water generator
JP6098919B2 (en) Sterilization water generator
JP3891119B2 (en) Electrolyzed water generator
JP2006272031A (en) Apparatus for producing drinking water
KR102031322B1 (en) 3-room type electrolyzed water producing apparatus
KR20140121234A (en) Water treatment apparatus having ice manufacturing function and the method thereof
JP2006198583A (en) Electrolytic treatment method and apparatus for water system
JP2006272030A (en) Water supply apparatus
KR20070075624A (en) Electrolytic water generation apparatus
JP2007007657A (en) Electrolytic water producing apparatus
JP3890440B2 (en) Electrolyzed water generator
JP2014004568A (en) Water treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees