JP3984414B2 - NH3-containing wastewater treatment apparatus and treatment method - Google Patents

NH3-containing wastewater treatment apparatus and treatment method Download PDF

Info

Publication number
JP3984414B2
JP3984414B2 JP2000178481A JP2000178481A JP3984414B2 JP 3984414 B2 JP3984414 B2 JP 3984414B2 JP 2000178481 A JP2000178481 A JP 2000178481A JP 2000178481 A JP2000178481 A JP 2000178481A JP 3984414 B2 JP3984414 B2 JP 3984414B2
Authority
JP
Japan
Prior art keywords
wastewater
waste water
treatment tank
wastewater treatment
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000178481A
Other languages
Japanese (ja)
Other versions
JP2001353489A (en
Inventor
泰良 加藤
尚美 今田
成仁 高本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2000178481A priority Critical patent/JP3984414B2/en
Publication of JP2001353489A publication Critical patent/JP2001353489A/en
Application granted granted Critical
Publication of JP3984414B2 publication Critical patent/JP3984414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はNH3 含有廃水処理装置および処理方法に係り、特に発電所や工場から排出される高濃度のNH3 を含有する廃水中のNH3 またはNH4 イオンを電気分解により高効率で無害な窒素に分解するのに好適なNH3 含有廃水処理装置および処理方法に関するものである。
【0002】
【従来の技術】
近年、発電所や各種工場から排出されるNH3 や燐などによる海水の富栄養化が進み、各地で赤潮の発生が頻発するなどの問題を引き起こしている。このため、燐と同様に海水の富栄養化原因物質のひとつであるNH3 に対する規制が強化され始めており、高効率でNH3 含有廃水を処理できる方法や装置が望まれている。
廃水中のNH3 の処理方法としては、微生物を用いた分解法、排水中のNH3 を気相に追い出した後、酸化分解するストリッピング法、ハロゲン化物を添加した後に電気分解する方法などが知られている。
しかし、上記微生物による分解法は、NH3 濃度が低い場合には優れた方法であるが、NH3 濃度が高くなると、大きな装置と長い処理時間が必要になり、高濃度のNH3 により微生物が死滅するなどの問題があった。また、廃水中のNH3 をストリッピングして気相酸化する方法では、NH3 濃度が数%と高い場合には有効な手段であるが、処理後のNH3 濃度を数十ppm 以下にしようとすると装置が大型化し、運転費用が増大するなどの経済性の面で問題があった。
【0003】
また、NH3 含有廃水に海水や塩化ナトリウムなどのハロゲン化物を添加した後に電解分解する方法は、古くから知られた方法であり(特開昭56−87491号公報等)、反応が早く、電気を通じるだけで容易にNH3 が分解できるなどの利点を有するが、課題も多く、現在も様々な提案がなされている(特開平7−299465号公報、特開平10−174976号公報など)。
すなわち、上記電気分解による方法を高濃度のNH3 廃水に適用しようとすると、高濃度の塩素または次亜塩素酸が廃水に残留して問題を発生させ、またNH3 の一部がNH2 ClやNCl3 などのクロラミンに変化して高いNH3 分解率が得られないなどの問題があった。また、高濃度のNH3 含有廃水を分解するためには電極に大電流を流す必要があるが、その場合には陽極で発生した多量の塩素と陰極で発生した水素とが激しく反応して安全な運転が難しくなるという問題があった。この問題を避けるために電極間隔を大きくすると、電解に必要な電圧が増大し、電気使用量の増大を招くなどの問題を生じる。
【0004】
【発明が解決しようとする課題】
本発明の課題は、上記技術の問題点を解決し、電気分解法による各種の問題をなくし、高濃度のNH3 含有廃水を効率よく分解でき、実用性が高く、安全性に優れたNH3 含有廃水処理装置および処理方法を提供することにある。
具体的には、以下の事項を実現することにある。
▲1▼高濃度のNH3 の電気分解時に生成するクロラミン類の副生を抑え、高効率でNH3 を窒素に分解できる方法の実現。
▲2▼処理廃水中に残存する活性塩素または次亜塩素酸が少なく、常温下でそのまま河川等に放流可能な廃水処理法の実現。
▲3▼電解電圧を低くでき、大電流でも安全に運転できるコンパクトな装置の実現。
【0005】
【課題を解決するための手段】
本発明者らは、上記課題について鋭意検討した結果、陽極、陰極およびその間に存在する陰イオンの選択透過膜(陰イオン交換膜)で構成された電解槽にNH3 含有廃水を連続的に導入しながら電気分解することにより、また廃水の供給速度と略同じ速度で廃水処理槽から処理水を抜き出すことにより、さらに廃水の循環速度と廃水の供給速度の比を所定値以上とすることにより、上記課題を達成できることを見出し本発明に到達したものである。
すなわち、本願で特許請求される発明は以下のとおりである。
【0006】
(1)アンモニアまたはアンモニウムイオンを含有する廃水を処理する廃水処理槽と、該廃水処理槽に上記廃水を供給する廃水供給手段と、該廃水処理槽の廃水の一部を循環させる廃水循環手段と、該廃水循環手段の経路内に設けられた、上記廃水中のアンモニアまたはそのイオンを塩素イオンの存在下に電気分解する、陰極および陽極が陰イオン交換膜で隔てられた電解槽と、該電解槽で処理された処理水から水素を分離するための気液分離装置とを備えたことを特徴とするNH3 含有廃水処理装置。
(2)前記電解槽で処理された前記廃水処理槽内の処理水の一部を系外に抜き出す処理水抜出し手段とをさらに備えたことを特徴とする(1)に記載のNH3 含有廃水処理装置。
【0007】
(3)廃水処理槽に供給されたアンモニアまたはアンモニウムイオンを含有する廃水の一部をそのまま、または該廃水に塩化ナトリウムもしくは海水を添加して廃水循環手段により循環させ、該循環経路内に設置され、陰極と陽極が陰イオン交換膜で隔てられた電解槽に、上記循環する廃水を通過させて該廃水中のアンモニアまたはそのイオンを電気分解するとともに、該電解槽で処理された処理水の一部を系外に抜出し、水素を分離した後、廃水処理槽に循環させることを特徴とするNH3 含有廃水の処理方法。
(4)前記廃水処理槽に供給される廃水の供給速度と、該廃水処理槽から抜き出される処理水の抜出し速度が略同じであることを特徴とする(3)に記載のNH3 含有廃水の処理方法。
(5)前記廃水処理槽内の廃水の循環速度が、該廃水処理槽に供給される廃水の供給速度の10倍以上であることを特徴とする(3)、(4)に記載のNH3含有廃水の処理方法。
【0008】
【作用】
本発明における作用・効果を、図2に示す陰イオン交換膜を用いていない電解槽を用いたNH3 含有廃水処理装置の場合と比較して説明する。まず図2の装置について説明する。
図2は、電気分解法によるNH3 含有廃水の処理装置の一例を示す説明図である。
図2において、NH3 含有廃水処理装置は、アンモニアまたはアンモニウムイオンを含有する廃水を貯留する廃水処理槽5と、該廃水処理槽5に上記廃液を供給する廃水供給配管6および廃水供給ポンプ7と、該廃水処理槽5に必要に応じてNaClを供給するNaCl供給装置15と、該廃水処理槽5内の廃水の一部を循環させる廃水循環ポンプ8と、該廃水の循環経路内に設けられて上記廃水中のアンモニアまたはそのイオンを塩素イオンの存在下に電気分解する電解槽4と、該電解槽4で処理された前記廃水処理槽5内の処理水の一部を系外に抜き出す処理水抜出しポンプ12と、その後流に設置された活性炭充填槽13とを有する。上記電解槽4には陰極2および陽極1が設けられ、電源14により電気分解に必要な電流が供給され、該電解槽4内を通過する廃水中のNH3 またはそのイオンが電気分解される。
【0009】
このような構成において、NH3 含有廃水が、廃水供給配管6および廃水供給ポンプ7を介して廃水処理槽5に供給される。該廃水に塩素イオンが含まれていない場合または含有量が少ない場合にはNaCl供給装置15によりNaClが供給される。該廃水処理槽5に供給された廃水は、廃水循環ポンプ8により循環され、その循環経路内に設けられた電解槽4を通過して前記廃水処理槽5に戻される。電解槽4には電源14から電解に必要な電流が供給されており、廃水が電解槽4を通過する際に廃水中のNH3 等が電気分解される。電解処理された処理水は、廃水処理槽5に戻され、前記廃水供給ポンプ7により廃水処理槽5に供給される廃水とともに、再び循環ポンプ8により循環経路内の電解槽4に導かれて電解処理される。一方、廃水処理槽5の底部から電解槽4で電解処理された処理水が処理水抜出しポンプ12により抜き出され、その後流に設置された活性炭充填槽13により処理水中に残存する活性塩素が除去されて系外に排出される。
【0010】
上記装置において、NH3 とClイオンを含む廃水を電解すると、陽極では塩素ラジカル(活性塩素)が発生し、陰極では水素ラジカル(活性水素)が発生し、この塩素ラジカルとNH3 が下式(1) のように反応してNH3 の分解が進行する。
NH3+3・Cl* (塩素ラジカル)→ 1/2N2+3・HCl (1)
このため、塩素ラジカルと、NH3 との反応を選択的に生じさせる必要があるが、図2の装置では、陽極で発生した塩素ラジカル(活性塩素)を含む液が陰極と触れ合い、陰極で生成する活性水素と下式(2) のように爆発的に反応するため、危険であるばかりか、活性塩素が無駄に消費されて上記式(1) のNH3 の分解反応が阻害され、高い分解率がえられにくい。
Cl* + H *(活性水素)→ HCl (2)
【0011】
また図2の装置では、下記式(3) で生成する活性塩素とNH3 との反応で生成するクロラミン類 (NH3-m Clm ) を低減させることは難しい。これは陽極で生成した活性塩素が、陰極で生成した活性水素を消費してしまうため、クロラミンが活性水素で分解されにくくなるためである。
NH3 +2m・Cl* → NH3-mClm + m・HCl (3)
(但し、m は1 〜3 の正数)
クロラミンは活性炭により分解されにくいため、そのまま河川や海水中に放流すると二次公害の原因を引き起こす問題があり、またクロラミンが分解するとNH3 が再生成されるため、実質的なNH3 の分解率が低下する。
【0012】
これに対し、本発明によれば、電解槽の陰極と陽極が陰イオン交換膜で区切られており、陽極で生成する塩素ラジカルと、陰極で生成する水素ラジカル(活性水素)とが接触することがないため、塩素ラジカルによるNH3 分解反応が効率よく進行し、高い分解率が得られると同時に、高濃度のNH3 を処理するために高電流密度で電解を行った場合でも爆発的な反応が防止でき、安全な運転をすることができる。
さらに、本発明では、電解槽において、生成したクロラミンを含む廃水が、イオン交換膜で陽極室と分離された陰極室を循環する構造になっているため、クロラミンの分解が陰極で生成した活性水素により下記式(4) のように選択的に進行する。
NH3-m Cl m+2m・ H* → m・HCl + NH3 (4)
【0013】
その結果、有害なクロラミンの副生を大幅に低減することができ、かつこれらの河川等への排出が防止されるだけではなく、高いNH3 分解率を達成することができる。
さらに、クロラミンの副生が少ないため、処理後の廃水は活性炭槽を通すことにより、容易に残留活性塩素濃度を下げることができ、そのまま河川や海に放流できるようになる。
【0014】
【発明の実施の形態】
以下に本発明を図面によりさらに詳しく説明する。
図1において、NH3 含有廃水は、廃水供給配管6から廃水処理槽5に所定速度で供給され、この廃水が塩素イオンを含有する場合にはそのまま、塩素イオンを含有しない場合には塩化ナトリウムや海水などが添加されてClイオン濃度を高められる。その後、廃水循環ポンプ8により循環ラインに送られる。廃水の一部は循環ラインに設けられた電解槽4の陽極室9に、残りの廃水は陰極室10に導かれる。電解槽4の陽極1と陰極には、電源14から電流が供給され、陽極室9において式(1) のNH3 分解反応によりNH3 が分解され、これと同時に式(3) の反応によりクロラミンを副生する。このようにしてNH3 が分解されたクロラミンをわずかに含む廃水は、廃水処理槽5に戻される。一方、電解槽4の陰極室10では、廃水中のクロラミンが活性水素により式(4) の反応により分解され、余剰な活性水素は水素ガスを生成する。水素ガスを含む廃水は、気液分離装置11に導かれて水素ガスが分離された後、廃水処理槽5に返される。また電解槽4で処理された廃水処理槽5の処理水の一部は、廃水供給配管6から供給される廃水の供給速度と同じ速度で抜き出された後、活性炭充填槽13を通過して系外に排出される。
【0015】
本発明において、電解槽でアンモニア等の電気分解を行う際の塩素イオン濃度には特に制限はないが、NH3 濃度が高い場合には塩素イオン濃度が高いほうが電解の効率が向上する傾向にあり、通常は1,000ppm 以上、高濃度のNH3 を含む場合には10,000ppm 以上にするのが好ましい。
電解槽の電極には、チタン板に白金をメッキした通常の電気分解用電極が使用可能である。また陰イオン交換膜にも海水の電気分解や電気透析に用いられる通常のイオン交換樹脂膜が使用できる。
【0016】
また本発明において、廃水処理槽内の廃水の循環速度が廃水の供給速度より大きいほど、処理後のNH3 濃度を低く抑えることができる。従って、廃水の循環速度を大きくした方がよいが、あまり大きいと循環のための動力費がかさむため、廃水の循環速度と供給速度の比(循環速度/供給速度)は10〜100の間で適宜選定するのが好ましい。
また処理後の廃水を河川や海水中に放流した場合の生物への悪影響をなくするため、廃水の排出ラインに活性炭を充填した活性炭充填槽13を設け、これを通過させて処理水に残留する活性塩素を塩素イオンに分解するのが好ましいが、放流する量や条件によっては省略することが可能である。
さらに廃水のNH3 分解が進行するに従って処理水のpHが低下する場合や、供給する廃水のpHが著しく高く、NH3 臭を発するような場合には、必要に応じて酸またはアルカリをpH調整剤添加用ポンプ16により添加して廃水のpHを調整することが好ましい。
【0017】
【実施例】
以下、本発明を実施例により詳細に説明するが、本発明はこれらに限定されるものではない。
なお、例中のNH3 濃度は、通常のNH3 イオン電極法により測定し、また残留する活性塩素量は、ヨウ化カリウムを添加して生成するヨウ素をチオ硫酸ナトリウムで滴定するヨードメトリ法により測定した。
【0018】
実施例1
図1に示すNH3 含有廃水処理装置を、表1に示す条件で運転し、NH3 を10,000ppm 含有する廃水の処理試験を行い、処理水の抜出し口での処理水中のNH3 濃度と残留活性塩素濃度を測定し、その結果を表2に示した。なお、このときの廃水の循環速度/供給速度は100とした。
【0019】
実施例2および3
実施例1において、廃水の循環速度をそれぞれ1/2、1/10に低下させて循環速度/供給速度をそれぞれ50、10に低下させた以外は実施例1と同様にして処理試験を行い、その結果を表2に示した。
比較例1〜3
実施例1〜3において、電解槽として陰イオン交換膜を使用しない図2に示すNH3 含有廃水処理装置を用いた以外は、実施例1〜3と同様にしてNH3 含有廃水の処理を行い、その結果を表2に示した。
【0020】
【表1】

Figure 0003984414
【0021】
【表2】
Figure 0003984414
【0022】
表2から明らかなように、実施例1〜3のいずれの場合にも、高いNH3 分解率と低い残留活性塩素濃度が得られた。一方、比較例1では、式(3) の反応により廃水温度の上昇が見られ、比較例2および3では激しい反応のため、廃水が沸騰したような状態になり試験の継続ができなかった。また、試験のできた比較例1でも、実施例1と比較するとNH3 分解率は大幅に低く、残留活性塩素濃度が高い。このことから本発明の方法が、実用性の高いNH3 分解法であることは明らかであり、有効な処理法が少ない廃水中のNH3 の処理を簡便な装置で実施することが可能になる。
【0023】
【発明の効果】
請求項記載の本発明によれば、電気分解という簡便な手段で廃水に含まれる高濃度のNH3 を効率よく分解することができ、これにより、閉鎖海域のNH3 による富栄養化の防止を安価に実施することが可能になる。また、処理水に残留する活性塩素も少なく、そのまま河川や海に放流することができるため、経済的にも優れる。
【図面の簡単な説明】
【図1】本発明の一実施例を示すNH3 含有廃水処理装置の説明図。
【図2】比較例1〜3で用いたNH3 含有廃水処理装置の説明図。
【符号の説明】
1…陽極、2…陰極、3…陰イオン交換膜、4…電解槽、5…廃水処理槽、6…廃水供給配管、7…廃水供給ポンプ、8…廃水循環ポンプ、9…陽極室、10…陰極室、11…気液分離器、12…処理水抜出しポンプ、13…活性炭充填槽、14…電源、15…NaCl供給装置、16…pH調整剤添加用ポンプ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an NH 3 -containing wastewater treatment apparatus and treatment method, and in particular, NH 3 or NH 4 ions in waste water containing a high concentration of NH 3 discharged from a power plant or factory are highly efficient and harmless by electrolysis. The present invention relates to an NH 3 -containing wastewater treatment apparatus and treatment method suitable for decomposition into nitrogen.
[0002]
[Prior art]
In recent years, eutrophication of seawater by NH 3 and phosphorus discharged from power plants and various factories has progressed, causing problems such as frequent occurrence of red tides in various places. For this reason, regulations on NH 3, which is one of the eutrophication-causing substances of seawater, as with phosphorus, are beginning to be strengthened, and a method and apparatus capable of treating NH 3 -containing wastewater with high efficiency is desired.
As a method for treating NH 3 in wastewater, there are a decomposition method using microorganisms, a stripping method in which NH 3 in waste water is expelled to the gas phase, and then oxidatively decomposed, and a method in which electrolysis is performed after adding a halide. Are known.
However, decomposition by the microorganisms is an excellent method in the case NH 3 concentration is low, the NH 3 concentration is high, requires a large apparatus and a long processing time, microbes by the high concentration of NH 3 There were problems such as death. In addition, the method of stripping NH 3 in wastewater and performing vapor phase oxidation is effective when the NH 3 concentration is as high as several percent, but the NH 3 concentration after treatment should be several tens of ppm or less. Then, there was a problem in terms of economy, such as an increase in the size of the device and an increase in operating costs.
[0003]
Further, the method of electrolytic decomposition after adding halide such as seawater or sodium chloride to NH 3 -containing wastewater is a method that has been known for a long time (Japanese Patent Laid-Open No. 56-87491, etc.), and the reaction is fast, has advantages such readily decomposed NH 3 only leads to. However, as many still various proposals have been made (JP-a-7-299465, JP-Patent Laid-Open No. 10-174976 Publication, etc.).
That is, if the above electrolysis method is applied to high concentration NH 3 wastewater, high concentration chlorine or hypochlorous acid remains in the wastewater, causing a problem, and a part of NH 3 is NH 2 Cl. There is a problem that a high NH 3 decomposition rate cannot be obtained by changing to chloramine such as NCl 3 or NCl 3 . In addition, in order to decompose wastewater containing NH 3 with high concentration, it is necessary to pass a large current through the electrode. In this case, a large amount of chlorine generated at the anode and hydrogen generated at the cathode react violently and are safe. There was a problem that difficult driving became difficult. Increasing the electrode spacing to avoid this problem increases the voltage required for electrolysis and causes problems such as increasing the amount of electricity used.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to solve the problems of the above techniques, eliminate various problems due to electrolysis, the high concentration NH 3 containing waste water can be efficiently decomposed, practicality is high, NH 3 with excellent safety An object of the present invention is to provide a contained wastewater treatment apparatus and a treatment method.
Specifically, it is to realize the following matters.
(1) Realization of a method capable of efficiently decomposing NH 3 into nitrogen by suppressing the by-production of chloramines generated during electrolysis of high concentration NH 3 .
(2) Realization of a wastewater treatment method in which the amount of active chlorine or hypochlorous acid remaining in the treated wastewater is low and can be discharged directly into rivers at room temperature.
(3) Realization of a compact device that can lower the electrolysis voltage and can be safely operated even with a large current.
[0005]
[Means for Solving the Problems]
As a result of intensive studies on the above problems, the present inventors have continuously introduced NH 3 -containing wastewater into an electrolytic cell composed of an anode, a cathode, and an anion selective permeation membrane (anion exchange membrane) between them. By electrolyzing while extracting the treated water from the wastewater treatment tank at a rate substantially the same as the wastewater supply rate, and by further increasing the ratio of the wastewater circulation rate and the wastewater supply rate to a predetermined value or more, The inventors have found that the above-described problems can be achieved and have reached the present invention.
That is, the invention claimed in the present application is as follows.
[0006]
(1) A wastewater treatment tank for treating wastewater containing ammonia or ammonium ions, a wastewater supply means for supplying the wastewater to the wastewater treatment tank, and a wastewater circulation means for circulating a part of the wastewater in the wastewater treatment tank; An electrolytic cell provided in the path of the wastewater circulation means for electrolyzing ammonia or its ions in the wastewater in the presence of chlorine ions, the cathode and the anode separated by an anion exchange membrane, and the electrolysis An NH 3 -containing wastewater treatment apparatus comprising: a gas-liquid separation device for separating hydrogen from treated water treated in a tank.
(2) The NH 3 -containing wastewater according to (1), further comprising treated water extraction means for extracting a part of the treated water in the wastewater treatment tank treated in the electrolytic tank to the outside of the system. Processing equipment.
[0007]
(3) A part of the wastewater containing ammonia or ammonium ions supplied to the wastewater treatment tank is circulated by the wastewater circulation means as it is or after adding sodium chloride or seawater to the wastewater and installed in the circulation path. , a cathode and an anode in the electrolytic cell separated by anion-exchange membrane, together with electrolysis of ammonia or ions thereof waste water is passed through the waste water to the circulating, the treatment water treated in the electrolytic bath and withdrawing a portion out of the system, after separation of hydrogen, the process method of the NH 3 containing waste water, characterized in that to circulate the waste water treatment tank.
(4) The NH 3 -containing wastewater according to (3), wherein the supply rate of the wastewater supplied to the wastewater treatment tank and the extraction rate of the treated water drawn from the wastewater treatment tank are substantially the same. Processing method.
(5) The NH 3 according to (3) or (4), wherein a circulation rate of waste water in the waste water treatment tank is 10 times or more of a supply rate of waste water supplied to the waste water treatment tank. Treatment method of contained wastewater.
[0008]
[Action]
The operation and effect of the present invention will be described in comparison with the case of the NH 3 -containing wastewater treatment apparatus using the electrolytic cell not using the anion exchange membrane shown in FIG. First, the apparatus of FIG. 2 will be described.
FIG. 2 is an explanatory view showing an example of a treatment apparatus for NH 3 -containing wastewater by electrolysis.
In FIG. 2, the NH 3 -containing wastewater treatment apparatus includes a wastewater treatment tank 5 for storing wastewater containing ammonia or ammonium ions, a wastewater supply pipe 6 and a wastewater supply pump 7 for supplying the wastewater to the wastewater treatment tank 5. A NaCl supply device 15 for supplying NaCl to the wastewater treatment tank 5 as necessary, a wastewater circulation pump 8 for circulating a part of the wastewater in the wastewater treatment tank 5, and a circulation path for the wastewater. Electrolysis tank 4 for electrolyzing ammonia or its ions in the waste water in the presence of chlorine ions, and a process for extracting a part of the treated water in the waste water treatment tank 5 treated in the electrolytic tank 4 from the system It has the water extraction pump 12 and the activated carbon filling tank 13 installed in the downstream. The electrolytic cell 4 is provided with a cathode 2 and an anode 1. A current necessary for electrolysis is supplied from a power source 14, and NH 3 or ions thereof in waste water passing through the electrolytic cell 4 are electrolyzed.
[0009]
In such a configuration, the NH 3 -containing wastewater is supplied to the wastewater treatment tank 5 via the wastewater supply pipe 6 and the wastewater supply pump 7. When the waste water does not contain chlorine ions or has a low content, NaCl is supplied by the NaCl supply device 15. The wastewater supplied to the wastewater treatment tank 5 is circulated by the wastewater circulation pump 8, passes through the electrolytic tank 4 provided in the circulation path, and is returned to the wastewater treatment tank 5. A current necessary for electrolysis is supplied to the electrolytic cell 4 from the power source 14, and NH 3 or the like in the waste water is electrolyzed when the waste water passes through the electrolytic cell 4. The electrolyzed treated water is returned to the wastewater treatment tank 5, and the wastewater supplied to the wastewater treatment tank 5 by the wastewater supply pump 7 is guided again to the electrolytic tank 4 in the circulation path by the circulation pump 8 and electrolyzed. It is processed. On the other hand, the treated water electrolyzed in the electrolytic tank 4 is extracted from the bottom of the wastewater treatment tank 5 by the treated water extraction pump 12, and the active chlorine remaining in the treated water is removed by the activated carbon filling tank 13 installed downstream thereof. And discharged outside the system.
[0010]
In the above apparatus, the electrolyzed wastewater containing NH 3 and Cl ions, chlorine radicals (active chlorine) is generated at the anode, the cathode generates hydrogen radicals (active hydrogen), the chlorine radical and NH 3 following formula ( The reaction proceeds as in 1) and NH 3 decomposition proceeds.
NH 3 + 3 · Cl * (chlorine radical) → 1 / 2N 2 + 3 · HCl (1)
For this reason, it is necessary to selectively cause a reaction between chlorine radicals and NH 3 , but in the apparatus of FIG. 2, a liquid containing chlorine radicals (active chlorine) generated at the anode comes into contact with the cathode and is generated at the cathode. It reacts explosively with active hydrogen as shown in the following formula (2), which is not only dangerous, but wastes active chlorine and inhibits the decomposition reaction of NH 3 in the above formula (1), resulting in high decomposition. The rate is difficult to get.
Cl * + H * (active hydrogen) → HCl (2)
[0011]
In the apparatus of FIG. 2, it is difficult to reduce chloramines (NH 3−m Cl m ) generated by the reaction of active chlorine generated by the following formula (3) and NH 3 . This is because the active chlorine generated at the anode consumes the active hydrogen generated at the cathode, so that chloramine is not easily decomposed by the active hydrogen.
NH 3 + 2m · Cl * → NH 3-m Cl m + m · HCl (3)
(Where m is a positive number between 1 and 3)
Since chloramine is difficult to be decomposed by activated carbon, if it is released into rivers and seawater as it is, there is a problem of causing secondary pollution, and when chloramine is decomposed, NH 3 is regenerated, so the substantial NH 3 decomposition rate Decreases.
[0012]
On the other hand, according to the present invention, the cathode and anode of the electrolytic cell are separated by an anion exchange membrane, and chlorine radicals generated at the anode and hydrogen radicals (active hydrogen) generated at the cathode come into contact with each other. Therefore, the NH 3 decomposition reaction by chlorine radicals proceeds efficiently and a high decomposition rate can be obtained. At the same time, even when electrolysis is performed at a high current density to treat high concentration of NH 3 , the reaction is explosive. Can be prevented and safe operation can be achieved.
Further, in the present invention, the waste water containing the generated chloramine is circulated through the cathode chamber separated from the anode chamber by the ion exchange membrane in the electrolytic cell, so that active hydrogen generated by the decomposition of chloramine at the cathode is obtained. The process proceeds selectively as shown in the following formula (4).
NH 3-m Cl m + 2m · H * → m · HCl + NH 3 (4)
[0013]
As a result, harmful by-products of chloramine can be greatly reduced, and not only discharge into these rivers can be prevented, but also a high NH 3 decomposition rate can be achieved.
Furthermore, since there is little by-product of chloramine, the wastewater after treatment can be easily reduced by passing the activated carbon tank and the residual active chlorine concentration can be discharged into the river or the sea as it is.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings.
In FIG. 1, NH 3 -containing wastewater is supplied from a wastewater supply pipe 6 to a wastewater treatment tank 5 at a predetermined rate. If this wastewater contains chlorine ions, it is left as it is. Sea water is added to increase the Cl ion concentration. Then, it is sent to the circulation line by the wastewater circulation pump 8. A part of the waste water is led to the anode chamber 9 of the electrolytic cell 4 provided in the circulation line, and the remaining waste water is led to the cathode chamber 10. Current is supplied from the power source 14 to the anode 1 and the cathode of the electrolytic cell 4, and NH 3 is decomposed in the anode chamber 9 by the NH 3 decomposition reaction of the formula (1). As a by-product. The waste water containing a slight amount of chloramine in which NH 3 is decomposed in this way is returned to the waste water treatment tank 5. On the other hand, in the cathode chamber 10 of the electrolytic cell 4, chloramine in the wastewater is decomposed by the reaction of the formula (4) with active hydrogen, and surplus active hydrogen generates hydrogen gas. Waste water containing hydrogen gas is guided to the gas-liquid separator 11 and separated into hydrogen water, and then returned to the waste water treatment tank 5. A part of the treated water in the wastewater treatment tank 5 treated in the electrolytic tank 4 is extracted at the same speed as the wastewater supply speed supplied from the wastewater supply pipe 6 and then passes through the activated carbon filling tank 13. It is discharged out of the system.
[0015]
In the present invention, there is no particular limitation on the chlorine ion concentration when electrolyzing ammonia or the like in an electrolytic cell, but when the NH 3 concentration is high, the higher the chlorine ion concentration, the more the electrolysis efficiency tends to improve. In general, it is preferably 1,000 ppm or more, and preferably 10,000 ppm or more when high concentration NH 3 is contained.
As the electrode of the electrolytic cell, a normal electrode for electrolysis in which platinum is plated on a titanium plate can be used. In addition, a normal ion exchange resin membrane used for seawater electrolysis and electrodialysis can also be used for the anion exchange membrane.
[0016]
In the present invention, as the circulation rate of the waste water of the waste water treatment tank is greater than the feed rate of the waste water, it is possible to reduce the NH 3 concentration after treatment. Therefore, it is better to increase the circulation rate of the wastewater, but if it is too large, the power cost for circulation increases, so the ratio of the circulation rate of the wastewater to the supply rate (circulation rate / supply rate) is between 10-100. It is preferable to select appropriately.
In addition, in order to eliminate the adverse effects on living organisms when the treated wastewater is discharged into rivers and seawater, an activated carbon filling tank 13 filled with activated carbon is provided in the wastewater discharge line, and this is passed through and remains in the treated water. Although it is preferable to decompose active chlorine into chlorine ions, it can be omitted depending on the amount and conditions of discharge.
Furthermore, if the pH of the treated water decreases as the NH 3 decomposition proceeds, or if the pH of the waste water to be supplied is extremely high and emits an NH 3 odor, the pH of the acid or alkali is adjusted as necessary. It is preferable to adjust the pH of the wastewater by adding with the agent addition pump 16.
[0017]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.
The NH 3 concentration in the examples is measured by a normal NH 3 ion electrode method, and the amount of remaining active chlorine is measured by an iodometry method in which iodine formed by adding potassium iodide is titrated with sodium thiosulfate. did.
[0018]
Example 1
The NH 3 -containing wastewater treatment device shown in FIG. 1 is operated under the conditions shown in Table 1, and a treatment test for wastewater containing 10,000 ppm of NH 3 is conducted. The NH 3 concentration in the treated water at the treated water outlet is The residual active chlorine concentration was measured, and the results are shown in Table 2. In addition, the circulation rate / supply rate of the wastewater at this time was set to 100.
[0019]
Examples 2 and 3
In Example 1, the treatment test was performed in the same manner as in Example 1 except that the circulation rate of the wastewater was reduced to 1/2 and 1/10, respectively, and the circulation rate / supply rate was reduced to 50 and 10, respectively. The results are shown in Table 2.
Comparative Examples 1-3
In Examples 1-3, except for using the NH 3 containing waste water treatment apparatus shown in FIG. 2 not using the anion-exchange membrane as an electrolyte bath, a process of the NH 3 containing waste water in the same manner as in Examples 1 to 3 The results are shown in Table 2.
[0020]
[Table 1]
Figure 0003984414
[0021]
[Table 2]
Figure 0003984414
[0022]
As is clear from Table 2, in any of Examples 1 to 3, a high NH 3 decomposition rate and a low residual active chlorine concentration were obtained. On the other hand, in Comparative Example 1, the temperature of the wastewater increased due to the reaction of formula (3), and in Comparative Examples 2 and 3, the wastewater was in a boiling state and the test could not be continued. Further, even in Comparative Example 1 where the test was completed, the NH 3 decomposition rate was significantly lower than that in Example 1, and the residual active chlorine concentration was high. From this, it is clear that the method of the present invention is a highly practical NH 3 decomposition method, and it becomes possible to carry out the treatment of NH 3 in wastewater with a few effective treatment methods with a simple apparatus. .
[0023]
【The invention's effect】
According to the present invention, the high concentration NH 3 contained in the wastewater can be efficiently decomposed by a simple means of electrolysis, thereby preventing eutrophication by NH 3 in a closed sea area. It becomes possible to implement at low cost. In addition, the amount of active chlorine remaining in the treated water is small, and it can be discharged as it is into a river or the sea, so that it is economically superior.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an NH 3 -containing wastewater treatment apparatus showing an embodiment of the present invention.
FIG. 2 is an explanatory diagram of an NH 3 -containing wastewater treatment apparatus used in Comparative Examples 1 to 3 .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Anode, 2 ... Cathode, 3 ... Anion exchange membrane, 4 ... Electrolysis tank, 5 ... Waste water treatment tank, 6 ... Waste water supply piping, 7 ... Waste water supply pump, 8 ... Waste water circulation pump, 9 ... Anode chamber, 10 DESCRIPTION OF SYMBOLS ... Cathode chamber, 11 ... Gas-liquid separator, 12 ... Treated water extraction pump, 13 ... Activated carbon filling tank, 14 ... Power supply, 15 ... NaCl supply device, 16 ... Pump for pH adjuster addition.

Claims (5)

アンモニアまたはアンモニウムイオンを含有する廃水を処理する廃水処理槽と、該廃水処理槽に上記廃水を供給する廃水供給手段と、該廃水処理槽の廃水の一部を循環させる廃水循環手段と、該廃水循環手段の経路内に設けられた、上記廃水中のアンモニアまたはそのイオンを塩素イオンの存在下に電気分解する、陰極および陽極が陰イオン交換膜で隔てられた電解槽と、該電解槽で処理された処理水から水素を分離するための気液分離装置とを備えたことを特徴とするNH3 含有廃水処理装置。A wastewater treatment tank for treating wastewater containing ammonia or ammonium ions, a wastewater supply means for supplying the wastewater to the wastewater treatment tank, a wastewater circulation means for circulating part of the wastewater in the wastewater treatment tank, and the wastewater An electrolytic cell provided in the path of the circulation means for electrolyzing ammonia or its ions in the waste water in the presence of chlorine ions, a cathode and an anode separated by an anion exchange membrane, and a treatment in the electrolytic cell An NH 3 -containing wastewater treatment apparatus, comprising: a gas-liquid separation device for separating hydrogen from the treated water . 前記電解槽で処理された前記廃水処理槽内の処理水の一部を系外に抜き出す処理水抜出し手段とをさらに備えたことを特徴とする請求項1に記載のNH3 含有廃水処理装置。 2. The NH 3 -containing wastewater treatment apparatus according to claim 1, further comprising treated water extraction means for extracting a part of the treated water in the wastewater treatment tank treated in the electrolytic tank to the outside of the system. 廃水処理槽に供給されたアンモニアまたはアンモニウムイオンを含有する廃水の一部をそのまま、または該廃水に塩化ナトリウムもしくは海水を添加して廃水循環手段により循環させ、該循環経路内に設置され、陰極と陽極が陰イオン交換膜で隔てられた電解槽に、上記循環する廃水を通過させて該廃水中のアンモニアまたはそのイオンを電気分解するとともに、該電解槽で処理された処理水の一部を系外に抜出し、水素を分離した後、廃水処理槽に循環させることを特徴とするNH3 含有廃水の処理方法。A part of the waste water containing ammonia or ammonium ions supplied to the waste water treatment tank is circulated by waste water circulation means as it is, or sodium chloride or sea water is added to the waste water, installed in the circulation path, the electrolytic cell separated anode anion exchange membrane, together with electrolysis of ammonia or ions thereof waste water is passed through the waste water to the circulating part of the treatment water treated in the electrolytic bath after then withdrawing from the system, to separate the hydrogen, NH 3 treatment method of containing wastewater, characterized in that to circulate the waste water treatment tank. 前記廃水処理槽に供給される廃水の供給速度と、該廃水処理槽から抜き出される処理水の抜出し速度が略同じであることを特徴とする請求項3に記載のNH3 含有廃水の処理方法。The NH 3 -containing wastewater treatment method according to claim 3, wherein a supply rate of wastewater supplied to the wastewater treatment tank is substantially the same as a removal rate of treated water drawn from the wastewater treatment tank. . 前記廃水処理槽内の廃水の循環速度が、該廃水処理槽に供給される廃水の供給速度の10倍以上であることを特徴とする請求項3または4に記載のNH3 含有廃水の処理方法。The method for treating NH 3 -containing wastewater according to claim 3 or 4, wherein a circulation rate of wastewater in the wastewater treatment tank is 10 times or more a supply rate of wastewater supplied to the wastewater treatment tank. .
JP2000178481A 2000-06-14 2000-06-14 NH3-containing wastewater treatment apparatus and treatment method Expired - Fee Related JP3984414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000178481A JP3984414B2 (en) 2000-06-14 2000-06-14 NH3-containing wastewater treatment apparatus and treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000178481A JP3984414B2 (en) 2000-06-14 2000-06-14 NH3-containing wastewater treatment apparatus and treatment method

Publications (2)

Publication Number Publication Date
JP2001353489A JP2001353489A (en) 2001-12-25
JP3984414B2 true JP3984414B2 (en) 2007-10-03

Family

ID=18679900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000178481A Expired - Fee Related JP3984414B2 (en) 2000-06-14 2000-06-14 NH3-containing wastewater treatment apparatus and treatment method

Country Status (1)

Country Link
JP (1) JP3984414B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531106A (en) * 2011-12-16 2012-07-04 深圳市祐林环保有限公司 Device for removing ammonia nitrogen in waste liquor and extracting high-purity copper and method therefor
CN102618882A (en) * 2012-04-12 2012-08-01 无锡中天固废处置有限公司 Electrolysis recovery method of nickel in waste water

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030061229A (en) * 2002-01-11 2003-07-18 김병화 Method for treating wastewater contained high concentration nitrogen
JP4518826B2 (en) * 2004-03-31 2010-08-04 中国電力株式会社 Electrolytic wastewater treatment system, electrolysis control device, electrolytic wastewater treatment method, program, and storage medium
DK2902368T3 (en) 2010-11-17 2016-10-03 Technion Res & Dev Foundation PHYSICAL AND CHEMICAL PROCEDURE FOR THE REMOVAL OF NITROGENIC COMPOUNDS FROM RECYCLED AQUACULTURE SYSTEMS
JP2012239927A (en) * 2011-05-16 2012-12-10 Omega:Kk Method for treating wastewater
CN102515317A (en) * 2012-01-10 2012-06-27 刘景亮 Method and device for producing acid and ammonia water by using ammonia-nitrogen waste water
JP5917430B2 (en) * 2013-03-15 2016-05-11 東京瓦斯株式会社 Organic waste liquid treatment method and treatment apparatus
CA3016844C (en) 2016-03-08 2023-09-26 Technion Research & Development Foundation Limited Disinfection and removal of nitrogen species from saline aquaculture systems
JP6300253B1 (en) * 2017-10-20 2018-03-28 株式会社日立パワーソリューションズ Water treatment system, electrode cleaning method and electrode cleaning apparatus
US20210169053A1 (en) * 2019-10-02 2021-06-10 Hydrenesis, Inc. Method for Neutralizing and Removing Ammonia from an Aqueous Solution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531106A (en) * 2011-12-16 2012-07-04 深圳市祐林环保有限公司 Device for removing ammonia nitrogen in waste liquor and extracting high-purity copper and method therefor
CN102618882A (en) * 2012-04-12 2012-08-01 无锡中天固废处置有限公司 Electrolysis recovery method of nickel in waste water
CN102618882B (en) * 2012-04-12 2014-11-05 无锡中天固废处置有限公司 Electrolysis recovery method of nickel in waste water

Also Published As

Publication number Publication date
JP2001353489A (en) 2001-12-25

Similar Documents

Publication Publication Date Title
KR102122384B1 (en) Treatment ystem of wastewater and method using the same
JP4671743B2 (en) Electrolytic treatment method and apparatus for wastewater containing ammonia nitrogen
CN103304018B (en) Method and device for enhanced ozone oxidation wastewater treatment of ozone tail gas
JP3984414B2 (en) NH3-containing wastewater treatment apparatus and treatment method
JP2007098272A (en) Ammonia-containing water treatment method and apparatus
KR101269948B1 (en) Apparatus and method for nitrogen wastewater treatment
KR20170099616A (en) Electrodialysis coupled with electrochemical nitrogen removal Process for contaminated groundwater treatment, and Apparatus therefor
JP5122074B2 (en) Water treatment method and system
JPH10130876A (en) Electrolytic ozonized water producing unit and its regenerating method
JPH07100466A (en) Method for treating waste water
JP3982500B2 (en) Method and apparatus for treating wastewater containing organic compounds
KR100670629B1 (en) Electrolysis treatment facilities and method of cpp regeneration wastewater
KR20200030238A (en) Method and system for ordor treatment using adsorption tower and electrolytic oxidation apparatus
JP3788688B2 (en) Method and apparatus for electrolytic treatment of oxidized nitrogen-containing water
JP2005103391A (en) Wastewater treatment method and apparatus
KR20170099615A (en) Electrochemical Process for high concentration of nitrate containing wastewater treatment, and Apparatus therefor
KR100545306B1 (en) Electrochemical process for wastewater containing nitric acid
JPH08141582A (en) Method and apparatus for treating industrial waste water
JPH051078B2 (en)
JPH0839095A (en) Water treatment apparatus
JP2003200171A (en) Treatment method for organic waste liquid
JP2003326264A (en) Method for concentrating and decomposing harmful substance
US20210169053A1 (en) Method for Neutralizing and Removing Ammonia from an Aqueous Solution
JP4011197B2 (en) Method for treating ethanolamine-containing water
KR102433006B1 (en) Method for manufacturing of sodium hypochlorite and apparaus for manufacturing of sodium hypochlorite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees