JPS6345878B2 - - Google Patents

Info

Publication number
JPS6345878B2
JPS6345878B2 JP14082980A JP14082980A JPS6345878B2 JP S6345878 B2 JPS6345878 B2 JP S6345878B2 JP 14082980 A JP14082980 A JP 14082980A JP 14082980 A JP14082980 A JP 14082980A JP S6345878 B2 JPS6345878 B2 JP S6345878B2
Authority
JP
Japan
Prior art keywords
excrement
tank
liquid
oxidation
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14082980A
Other languages
Japanese (ja)
Other versions
JPS5765399A (en
Inventor
Tamikuni Komatsu
Hirokazu Fukumi
Hiroshi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP14082980A priority Critical patent/JPS5765399A/en
Publication of JPS5765399A publication Critical patent/JPS5765399A/en
Publication of JPS6345878B2 publication Critical patent/JPS6345878B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、人若しくはその他の動物の排泄物を
処理する方法及び装置に関するものであり、船
舶、電車、航空機、離れ小島、沿岸地域等に適し
た排泄物を迅速に高効率で無公害処理するコンパ
クトで簡易な排泄物の自動化学処理方法及び装置
を提供するものである。 本発明で云う排泄物とは、いわゆる糞尿のこと
である。これにはアンモニア、尿素等の水溶性窒
素化合物と遊離脂肪酸、水溶性蛋白等を含んだ
BOD,COD物質、浮遊物質、セルロース等の固
形物、大腸菌、胆汁色素等の色素、スカトール、
メルカプタン等の臭物質等が含まれる。 従来、陸上での排泄物の処理には、主として活
性汚泥を使う生物処理法が用いられている。これ
は、汚泥床に繁殖する水中微生物が好気的ある
いは嫌気的に排泄物を代謝分解するいわゆる生物
化学的作用に基づく方法であり、従つてこの方法
では専ら微生物作用を効率的に機能させるための
改良に力が注がれている。しかし、この方法は、
次のような良く知られた欠点をもつている。すな
わち、微生物代謝分解速度はおそいので、汚泥
床面積が大きくなり、微生物の種類とその繁殖は
水質の微妙な変化に大きく依存するので、水質管
理の自動化がむずかしいなどの欠点である。これ
らの欠点は未だに未解決であり例えば、排泄物
100を処理するのに約50m3の設置容積と1日の
処理時間を必要とするなど広汎な地域を有し、長
時間処理が許される場合のみ使用可能である。従
つて、船舶、電車、航空機等においては、未処理
の排泄物を溜めて陸上の処理施設まで輸送した
り、或は海上投棄を行なつていのが現状であり、
当業界では、衛生的でコンパクトな処理装置でそ
の場で常時できる排泄物の無公害化処理法の確立
が強く望まれている。 本発明者等は、以上の現状に鑑し、排泄物の処
理方法並びに装置について鋭意研究を行なつた結
果、排泄物を次亜塩素酸ソーダとともに循環しな
がら酸化処理するとおどろくほど速く分解できる
ことを発見し、酸化処理するためのコンパクトな
酸化処理手段と、酸化処理液に残存する酸化剤を
還元剤で無害化処理する手段を組合わせることに
より、コンパクトな装置で無公害化処理し得る方
法を見出し、本発明を成すに至つた。 即ち本発明は、排泄物に塩化ナトリウムを加
え、この添加液の循環系路を形成せしめ、該循環
系路中に電気分解部を設けて次亜塩素酸ソーダを
生成せしめて排泄物を酸化処理し、次いで該酸化
処理された液に残存する次亜塩素酸ソーダを還元
剤で無害化処理して排水することを特徴とする排
泄物の処理方法に関するものである。 本発明は又、排泄物導入部と処理液排出部とを
有する排泄物酸化槽、該酸化槽を含む循環系路、
該循環系路内に設けられた食塩の導入手段とその
電解手段、及び該酸化槽内液中に残存する次亜塩
素酸ソーダの還元による無害化処理手段からなる
ことを特徴とする排泄物の処理装置に関するもの
である。 本発明の好ましい実施態様では、船舶等に設け
た排泄物の溜めタンク(排泄物槽)に酸化処理手
段を設け、これに無害化処理手段を連結させる。
これにより、排泄物の処理を迅速化、コンパクト
化、無公害化、自動化することが可能である。ま
た、排泄物は、酸化処理に先だつて浮遊懸濁物、
固形物を除去することが望ましい。除去は通常、
過器で行ない、過液はポンプ等で排泄物槽の
排泄物導入部に送り込む。排泄物槽と過器との
間で循環過しても良い。次いで排泄物を次亜塩
素酸ソーダで酸化処理する。次亜塩素酸ソーダ
は、酸化剤の中で、酸化力、コスト、実用性の点
で最も好ましい。本発明では、排泄物に塩化ナト
リウム分を加え、その塩化ナトリウム含有液を電
気分解して自給したことと、該酸化剤とともに排
泄物を循環しながら酸化処理することが重要な点
である。塩化ナトリウム分の供給は、固形塩化ナ
トリウムをそのまま供給したり、海水を供給した
りして行なう。次亜塩素酸ソーダは、タンクに貯
めたものを用いる方法もあるが、電解手段により
自給する方法は、小型の電解槽と直流電流供給装
置から成り、設置容積、設備重量が小さくてす
み、取扱いが簡単で安全である。電解手段による
処理は、くみ上げ海水を排泄物槽に加え、(以下
この排泄物槽を酸化槽という)。酸化槽と電解槽
を還連結して循環酸化処理する方法と、両者を直
線連結して処理する方法がある。循環酸化処理
は、使用する塩化ナトリウム、又は海水が少なく
て済むので有利である。海水電解手段による循環
酸化処理は、特に航海日数の長い船舶用には好ま
しい。以下、海水電解手段を中心に説明するが、
固形塩化ナトリリウムを供給する方法について
も、条件等は海水電解手段に準じて行なえば良
い。海水は、排泄物の1.4倍以上供給すれば電気
分解を効率よく行なうことができる。4〜6倍程
度が好ましい。しかし、大量に用いることは排泄
物槽が大きくなるので好ましくない。酸化剤は、
排泄物の酸化当量の0.8〜1.5倍供給すれば、排水
基準内の水質を維持できる。好ましくは1.0〜1.2
倍供給する。循環酸化処理は、液の循環により、
酸化剤濃度が高まり液の撹拌効果が高まるので、
酸化反応が十分に進行し好ましい。循環回数は酸
化槽の液の全量が1時間当り0.5〜50回の範囲で
循環すれば十分その目的を達することができる。
酸化槽での酸化剤の濃度は数10〜10000ppmであ
れば高い電流効率が得られるので望ましい。循環
酸化処理は通常数時間かけて行なう。また反応の
際、発熱するので必要に応じて冷却することもあ
る。電解槽の極板としては、電解の際に溶出しな
い材料が好ましい。例えば、陽極に白金、チタン
に白金層を重ねたもの、陰極にはチタン、ステン
レス鋼、鉄等を用いれば良い。海水電解装置は、
一般の市販品を用いることができ、本発明の主旨
を達する限り特に限定しない。酸化処理に伴いチ
ツ素ガス、炭酸ガスが生成し、電解槽では水素ガ
スが発生する。これら混合ガスの排気をブロワー
等で空気送風したり、又は、気体吸引したりして
行なうのは良い。また、海水中のMg2+、Ca2+
のフロツク形成金属イオンが、電気分解の際に水
溶性有機物を幾分とり込んでいわゆるスケールと
称される沈澱物として析出するのでフイルター等
のスケール除去手段を循環酸化処理系路に設ける
ことが望ましい。フイルターには、耐酸化性の素
材からつくらた不織布、ネツト等を通常用いる。
スケールの析出と特に酸化反応で生ずる炭酸ガス
の溶解、有機酸の生成等により、長時間反応を続
けると、処理液のPHが低下し、酸化反応に支障を
きたすことがあるので、必要に応じてPH調節のた
めのアルカリ性物質の供給手段を酸化槽に設け
る。アルカリ性物質としては、水酸化ナトリウ
ム、水酸化カルシウム等を水溶液として貯槽して
ポンプで供給したり、固体のまま投入したり、マ
グネシア、水酸化マグネシウム等を塔に詰めて、
処理液を通過させたり網状の袋に詰めて酸化槽に
入れたりして用いる。アルカリ性物質の供給量
は、基本的には溶存する炭酸ガス、有機酸、及び
スケールのアルカリ当量に比例させれば良いので
あるが、一種の緩衝材である海水の量にも依存す
る。実験的に求めた結果では、海水が多い時には
必要ないが、少ない時には、水酸化ナトリウム換
算で排泄液1に対し毎時1.0〜100gほど供給す
れば所定のPH範囲に維持できる。また、酸化槽の
液面を調節することは排泄液と海水の割合を管理
し、ポンプ、電解槽の作動状態を自動的に管理し
て反応を好ましい条件で行なわせること以外に、
酸化処理液のオーバーフローを防止したり、ポン
プ等の空運転を防止したりすることができるので
望ましい。液面調節手段は、例えば水位検知器と
リレー装置からなり、信号をポンプ、電磁弁に送
るしくみの装置が用いられ、一般の市販品を用い
ることができる。このようにして酸化処理した液
には、排泄物が70〜95%処理されているが、毒性
の高い酸化剤が多量に残つているので次いで無害
処理を行なう。無害処理は、残存する酸化剤を還
元剤で還元して行なう。還元剤は、実質的に無害
の物質なら如何なる還元剤を使用しても良いが、
常温の範囲内で迅速かつ定量的に酸化剤と反応す
る水溶性の還元剤であることが好ましい。好適例
としてはチオ硫酸塩があげられるが、他に過酸化
水素も使うことができる。還元剤の量は、還元す
べき酸化剤の当量の1〜3倍当量とすれば良い
が、大過剰の還元剤の添加は無駄であるからさけ
るべきである。そして無害化処理された液は系外
に排水される。以上の各手段は、コンパクトに組
まれ、電源パネルスイツチで自動運転される。第
1図は、本発明の基本的結合配置態様を示す。 第1図Aは酸化槽1に塩化ナトリウム貯槽5を
設けており、第1図Bは、海水5をくみ上げてい
る。還元剤6は、第1図Aのように酸化槽1の液
排出部からの配管途中に供給することができるし
第1図Bのように酸化槽1に直接供給することも
できる。3は電解槽、4は直流電源である。 第2図は、本発明の各手段に付属装置を設けて
成る具体的1例を示す。酸化槽1に溜まつた排泄
物は、過器2、ポンプP1により循環過され
る。海水は、ポンプP2により酸化槽に定量ほど
供給される。酸化槽における水位は、検知器7、
リレー8から信号が各ポンプに送られることによ
り制御される。酸化槽の排泄物を含む海水5は、
フイルター9、ポンプP3を通して電解槽3に送
られ整流器4からの直流電流で電気分解され、次
亜塩素酸ソーダを生成し酸化槽1に供給される。
そして、酸化槽と電解槽とでつくる循環系路で、
酸化剤は循環され、排泄物は数時間循環酸化処理
される。酸化反応のPHを必要に応じて調節するた
めに、アルカリ性物質をアルカリ性物質貯槽10
からポンプP5により酸化槽に供給される。発生
する気体は、ブロワー11により排気される。ス
ケールはフイルター9により除去される。ポンプ
P4を通して排出される酸化処理された液に還元
剤貯槽6から還元剤がポンプP6で供給され、無
害化処理されて排出される。 次の実施例では第2図の装置を用い、水質の析
は以下の方法で行なつた。
The present invention relates to a method and apparatus for treating human or other animal excrement, and is suitable for quickly, highly efficiently, and pollution-free treating excreta suitable for ships, trains, aircraft, remote islands, coastal areas, etc. The present invention provides a compact and simple automatic chemical treatment method and device for excrement. The excrement referred to in the present invention refers to so-called excrement and urine. This includes water-soluble nitrogen compounds such as ammonia and urea, free fatty acids, and water-soluble proteins.
BOD, COD substances, suspended solids, solids such as cellulose, E. coli, pigments such as bile pigments, skatole,
Contains odorous substances such as mercaptans. Conventionally, biological treatment methods that mainly use activated sludge have been used to treat excrement on land. This is a method based on the so-called biochemical action in which aquatic microorganisms that grow in the sludge bed metabolize and decompose excreta in an aerobic or anaerobic manner. Therefore, this method focuses exclusively on making the microorganisms function efficiently. Efforts are being made to improve. However, this method
It has the following well-known drawbacks: In other words, the decomposition rate of microorganisms is slow, resulting in a large sludge floor area, and the types of microorganisms and their propagation are highly dependent on subtle changes in water quality, making it difficult to automate water quality management. These drawbacks are still unresolved, and for example, excrement
It requires an installation volume of approximately 50m 3 and a processing time of 1 day to process 100 ml of water, so it can be used only in cases where long-term processing is permitted. Therefore, in ships, trains, aircraft, etc., untreated excrement is currently collected and transported to treatment facilities on land or dumped at sea.
In this industry, there is a strong desire to establish a pollution-free treatment method for excrement that can be carried out on-site at any time using sanitary and compact treatment equipment. In view of the above-mentioned current situation, the inventors of the present invention have conducted intensive research on methods and devices for treating excrement, and have discovered that oxidation treatment of excrement while circulating it with sodium hypochlorite can decompose it surprisingly quickly. By combining a compact oxidation treatment method for discovering and oxidizing treatment and a means for detoxifying the oxidizing agent remaining in the oxidation treatment solution using a reducing agent, we have developed a method that can perform pollution-free treatment using compact equipment. This finding led to the present invention. That is, in the present invention, sodium chloride is added to excrement, a circulation path is formed for the added liquid, and an electrolysis section is provided in the circulation path to generate sodium hypochlorite and oxidize the excrement. The present invention relates to a method for treating excrement, which is characterized in that the sodium hypochlorite remaining in the oxidized liquid is then rendered harmless with a reducing agent and then drained. The present invention also provides an excrement oxidation tank having an excrement introduction part and a treatment liquid discharge part, a circulation path including the oxidation tank,
A means for introducing salt into the circulation system, a means for electrolyzing the salt, and a means for detoxifying sodium hypochlorite remaining in the oxidizing tank by reducing it. It relates to a processing device. In a preferred embodiment of the present invention, an oxidation treatment means is provided in an excrement storage tank (excrement tank) provided on a ship, etc., and a detoxification treatment means is connected to the oxidation treatment means.
This makes it possible to speed up, make compact, pollution-free, and automate the disposal of excrement. In addition, the excreta is treated with suspended solids,
It is desirable to remove solids. Removal is usually
This is done using a filter, and the excess liquid is sent to the excrement inlet of the excrement tank using a pump, etc. It may be circulated between the excrement tank and the waste container. The excrement is then oxidized with sodium hypochlorite. Sodium hypochlorite is the most preferred among oxidizing agents in terms of oxidizing power, cost, and practicality. In the present invention, the important points are that sodium chloride is added to the excrement, and the sodium chloride-containing liquid is self-supplied by electrolysis, and that the excrement is circulated together with the oxidizing agent for oxidation treatment. The sodium chloride component is supplied by supplying solid sodium chloride as it is or by supplying seawater. There is a method of using sodium hypochlorite stored in a tank, but the method of self-supplying by electrolytic means consists of a small electrolytic tank and a DC current supply device, which requires less installation volume and equipment weight, and is easy to handle. is easy and safe. Treatment by electrolytic means involves adding pumped seawater to an excrement tank (hereinafter this excrement tank will be referred to as an oxidation tank). There is a method in which an oxidation tank and an electrolytic tank are connected in a cyclical oxidation process, and a method in which the two are connected in a straight line. Cyclic oxidation treatment is advantageous because less sodium chloride or seawater is used. Circulating oxidation treatment using seawater electrolysis is particularly preferable for ships with long voyages. Below, we will mainly explain the seawater electrolysis method.
Regarding the method of supplying solid sodium chloride, the conditions may be similar to those for seawater electrolysis. Electrolysis can be carried out efficiently if seawater is supplied at least 1.4 times the amount of excrement. About 4 to 6 times is preferable. However, using a large amount is not preferable because it increases the size of the excrement tank. The oxidizing agent is
Water quality can be maintained within wastewater standards by supplying 0.8 to 1.5 times the oxidation equivalent of excrement. Preferably 1.0-1.2
Supply twice. Circulating oxidation treatment uses liquid circulation to
As the oxidant concentration increases and the liquid stirring effect increases,
This is preferable because the oxidation reaction proceeds sufficiently. The purpose can be sufficiently achieved if the total amount of liquid in the oxidation tank is circulated within the range of 0.5 to 50 times per hour.
It is preferable that the concentration of the oxidizing agent in the oxidizing tank is several tens to 10,000 ppm since high current efficiency can be obtained. The cyclic oxidation treatment usually takes several hours. Furthermore, since heat is generated during the reaction, cooling may be required if necessary. As the electrode plate of the electrolytic cell, it is preferable to use a material that does not dissolve during electrolysis. For example, the anode may be made of platinum, titanium with a platinum layer stacked on top, and the cathode may be made of titanium, stainless steel, iron, or the like. The seawater electrolyzer is
General commercially available products can be used, and there are no particular limitations as long as the gist of the present invention is achieved. Nitrogen gas and carbon dioxide gas are generated during the oxidation process, and hydrogen gas is generated in the electrolytic cell. It is preferable to exhaust these mixed gases by blowing air with a blower or the like, or by suctioning the gas. In addition, floc-forming metal ions such as Mg 2+ and Ca 2+ in seawater take in some water-soluble organic matter during electrolysis and precipitate as a precipitate called scale. Preferably, a removal means is provided in the circulating oxidation treatment line. The filter is usually made of non-woven fabric, net, etc. made from oxidation-resistant material.
If the reaction continues for a long time due to scale precipitation, dissolution of carbon dioxide gas generated in the oxidation reaction, generation of organic acids, etc., the pH of the processing solution may decrease and the oxidation reaction may be hindered. The oxidation tank is equipped with a means for supplying an alkaline substance to adjust the pH. As alkaline substances, sodium hydroxide, calcium hydroxide, etc. can be stored as an aqueous solution in a tank and supplied with a pump, or fed as a solid, or magnesia, magnesium hydroxide, etc. can be packed in a tower.
It is used by passing the processing liquid through it or by packing it into a mesh bag and placing it in an oxidation tank. The amount of alkaline material supplied can basically be made proportional to the alkali equivalents of dissolved carbon dioxide, organic acids, and scale, but it also depends on the amount of seawater, which is a kind of buffer material. According to experimental results, it is not necessary when there is a lot of seawater, but when it is small, it is possible to maintain the PH within a predetermined pH range by supplying 1.0 to 100 g of sodium hydroxide per hour per hour of excreted fluid. In addition, adjusting the liquid level in the oxidation tank involves controlling the ratio of excreta to seawater and automatically controlling the operating status of the pump and electrolyzer to ensure that reactions occur under favorable conditions.
This is desirable because it can prevent overflow of the oxidation treatment liquid and prevent dry operation of pumps and the like. The liquid level adjusting means includes, for example, a water level detector and a relay device, and a device that sends a signal to a pump and a solenoid valve is used, and a general commercial product can be used. Although 70 to 95% of the excrement has been treated in the oxidized liquid, a large amount of highly toxic oxidizing agent remains, so a harmless treatment is then performed. The harmless treatment is performed by reducing the remaining oxidizing agent with a reducing agent. Any reducing agent may be used as long as it is a substantially harmless substance, but
Preferably, the reducing agent is a water-soluble reducing agent that reacts quickly and quantitatively with the oxidizing agent within a room temperature range. A suitable example is thiosulfate, but hydrogen peroxide can also be used. The amount of reducing agent may be 1 to 3 times the equivalent of the oxidizing agent to be reduced, but addition of a large excess of reducing agent is wasteful and should be avoided. The rendered harmless liquid is then drained out of the system. Each of the above means is compactly assembled and automatically operated by a power panel switch. FIG. 1 shows the basic coupling arrangement of the invention. In FIG. 1A, a sodium chloride storage tank 5 is provided in the oxidation tank 1, and in FIG. 1B, seawater 5 is pumped up. The reducing agent 6 can be supplied in the middle of the pipe from the liquid discharge part of the oxidizing tank 1 as shown in FIG. 1A, or can be directly supplied to the oxidizing tank 1 as shown in FIG. 1B. 3 is an electrolytic cell, and 4 is a DC power source. FIG. 2 shows a specific example in which each means of the present invention is provided with ancillary devices. The excrement accumulated in the oxidation tank 1 is circulated through the filtration vessel 2 and the pump P1 . A fixed amount of seawater is supplied to the oxidation tank by pump P2 . The water level in the oxidation tank is measured by a detector 7,
It is controlled by sending a signal from relay 8 to each pump. Seawater 5 containing excrement from the oxidation tank is
It is sent to the electrolytic cell 3 through a filter 9 and a pump P3 , and is electrolyzed with a direct current from a rectifier 4 to produce sodium hypochlorite, which is then supplied to the oxidation cell 1.
Then, in the circulation system created by the oxidation tank and the electrolytic tank,
The oxidizing agent is circulated, and the excreta is subjected to cyclic oxidation treatment for several hours. In order to adjust the pH of the oxidation reaction as necessary, an alkaline substance is stored in an alkaline substance storage tank 10.
to the oxidation tank by pump P 5 . The generated gas is exhausted by a blower 11. The scale is removed by a filter 9. pump
A reducing agent is supplied from a reducing agent storage tank 6 to the oxidized liquid discharged through P 4 by a pump P 6 , and the liquid is detoxified and discharged. In the next example, the apparatus shown in FIG. 2 was used, and the water quality was analyzed by the following method.

【表】 また処理水の色、臭は、視覚、嗅覚で行ない毒
性は、イワシを用いた生物検定で調べた。 実施例 1 排泄物(アンモニア3000ppm、尿素2%、
COD5000ppm、BOD400ppm)を、第2図の装置
を用いて操作し、1カ月連続処理した。酸化剤の
供給量は実施例1―(1),(2),(3),(4)において、そ
れぞれ排泄物の酸化当量の0.7,0.8,1.0,1.5倍
を供給した。機器は酸化槽1(容積1m3)、スト
レーナ2(容積50)、電解槽3(容積100)、
整流機4、200メツシユのネツトフイルター9
(容積50)、ブロワー11(容積50)、フロー
ト式スイツチ7、リレー装置8、40重量%水酸化
ナトリウム貯槽10(容積100)、40重量%チオ
硫酸ソーダ貯槽6(容積500)、各ポンプP1
P6を用いた。実験条件及び結果を以下の第1表
に示した。
[Table] The color and odor of the treated water was determined visually and olfactory, and toxicity was determined using a bioassay using sardines. Example 1 Excretion (ammonia 3000ppm, urea 2%,
COD 5000ppm, BOD 400ppm) was operated using the apparatus shown in Fig. 2 and was continuously treated for one month. In Example 1-(1), (2), (3), and (4), the amount of the oxidizing agent supplied was 0.7, 0.8, 1.0, and 1.5 times the oxidation equivalent of the excrement, respectively. The equipment includes oxidation tank 1 (volume 1m3 ), strainer 2 (volume 50), electrolytic tank 3 (volume 100),
Rectifier 4, 200 mesh net filter 9
(volume 50), blower 11 (volume 50), float type switch 7, relay device 8, 40 wt% sodium hydroxide storage tank 10 (volume 100), 40 wt% sodium thiosulfate storage tank 6 (volume 500), each pump P 1 ~
P6 was used. The experimental conditions and results are shown in Table 1 below.

【表】 なお、実施例1―(2)〜1―(4)における無害化処
理後の排水は大腸菌0で無色無臭であり、実施例
1―(3)〜1―(4)は、イワシを使つた生物検定では
無害であつた。 実施例 2 第2図の装置における海水供給の代わりに、固
形塩化ナトリウムを酸化槽に供給して実施例1と
同様の実験を行なつた。実施例1と同様の結果を
得た。
[Table] In addition, the wastewater after detoxification treatment in Examples 1-(2) to 1-(4) was colorless and odorless with zero Escherichia coli, and in Examples 1-(3) to 1-(4), sardines It was found to be harmless in a bioassay using . Example 2 An experiment similar to Example 1 was conducted by supplying solid sodium chloride to the oxidation tank instead of supplying seawater in the apparatus shown in FIG. The same results as in Example 1 were obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A,Bは本発明装置の各要素の配置例を
示す。第2図は本発明を実施する為の具体的装置
例を示す。図において、 1…排泄物酸化槽、2…過槽、3…電解槽、
4…直流電源、5…塩化ナトリウム供給手段、6
…還元剤供給手段。
FIGS. 1A and 1B show an example of the arrangement of each element of the device of the present invention. FIG. 2 shows a specific example of an apparatus for carrying out the present invention. In the figure, 1...excrement oxidation tank, 2...excess tank, 3...electrolytic tank,
4... DC power supply, 5... Sodium chloride supply means, 6
...Reducing agent supply means.

Claims (1)

【特許請求の範囲】 1 排泄物に塩化ナトリウムを加え、この添加液
の循環系路を形成せしめ、該循環系路中に電気分
解部を設けて次亜塩素酸ソーダを生成せしめて排
泄物を酸化処理し、次いで該酸化処理された液に
残存する次亜塩素酸ソーダを還元剤で無害化処理
して排水することを特徴とする排泄物の処理方
法。 2 塩化ナトリウムの添加を海水の添加で行なう
特許請求の範囲第1項記載の排泄物の処理方法。 3 排泄物導入部と処理液排出部とを有する排泄
物酸化槽、該酸化槽を含む循環系路、該循環系路
内に設けられた食塩の導入手段とその電解手段、
及び該酸化槽内液中に残存する次亜塩素酸ソーダ
の還元による無害化処理手段からなることを特徴
とする排泄物の処理装置。 4 食塩の導入が海水の導入である特許請求の範
囲第3項記載の排泄物の処理装置。
[Claims] 1. Sodium chloride is added to the excrement, a circulation path is formed for the added liquid, and an electrolysis section is provided in the circulation path to generate sodium hypochlorite to remove the excrement. A method for treating excrement, which comprises oxidizing the liquid, and then detoxifying the sodium hypochlorite remaining in the oxidized liquid using a reducing agent before discharging it. 2. The method for treating excrement according to claim 1, wherein the addition of sodium chloride is carried out by adding seawater. 3. An excrement oxidation tank having an excrement introduction part and a treatment liquid discharge part, a circulation path including the oxidation tank, a means for introducing common salt provided in the circulation path, and a means for electrolyzing the salt,
and a detoxification treatment means by reducing sodium hypochlorite remaining in the liquid in the oxidation tank. 4. The excrement treatment device according to claim 3, wherein the introduction of common salt is the introduction of seawater.
JP14082980A 1980-10-08 1980-10-08 Method and apparatus for treatment of excretion Granted JPS5765399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14082980A JPS5765399A (en) 1980-10-08 1980-10-08 Method and apparatus for treatment of excretion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14082980A JPS5765399A (en) 1980-10-08 1980-10-08 Method and apparatus for treatment of excretion

Publications (2)

Publication Number Publication Date
JPS5765399A JPS5765399A (en) 1982-04-20
JPS6345878B2 true JPS6345878B2 (en) 1988-09-12

Family

ID=15277682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14082980A Granted JPS5765399A (en) 1980-10-08 1980-10-08 Method and apparatus for treatment of excretion

Country Status (1)

Country Link
JP (1) JPS5765399A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083378A1 (en) * 2000-04-27 2001-11-08 Nippon Oil Corporation Method and apparatus for clarification treatment of water
JP5281693B2 (en) * 2008-11-19 2013-09-04 セバーン トレント デ ノラ,エルエルシー Marine sewage treatment
WO2011000079A1 (en) 2009-06-29 2011-01-06 Proterrgo Inc. Apparatus and method for electrochemical treatment of wastewater
JP2014144429A (en) * 2013-01-29 2014-08-14 Kurita Water Ind Ltd Electroosmotic dewatering method and electroosmotic dewatering apparatus

Also Published As

Publication number Publication date
JPS5765399A (en) 1982-04-20

Similar Documents

Publication Publication Date Title
US3926771A (en) Apparatus for electrosanitizing waste water
US5245111A (en) Method and apparatus for treatment of liquid photographic processing wastes
JP3978124B2 (en) Hypochlorous acid self-sufficiency method and equipment in organic waste treatment system
JP3674939B2 (en) Deodorizing method and deodorizing agent for dehydrated cake
CA1063062A (en) Method and apparatus for electrosanitizing waste water
JPS6345878B2 (en)
JP4667910B2 (en) Waste treatment method and equipment
JP3605821B2 (en) Deodorizer and method for deodorizing cake
JP3074266B2 (en) Deodorizing purification and water catalyst treatment equipment using functional ceramics
JP2991001B2 (en) Deodorizing method of dewatered sludge cake
KR100602058B1 (en) Electrolysis and electro-coagulation treatment apparatus of wastewater
KR100579254B1 (en) Electrolytic treatment of wastewater
JP2000263049A (en) Method and apparatus for cleaning barn effluent
JPH08294691A (en) Waste water circulating and purifying apparatus
CN104891717A (en) Method and apparatus for removing ammonia nitrogen in water by utilizing photoelectrochemical technology
JP2001017995A (en) Treatment of volatile organochlorine compound and device therefor
JP6220809B2 (en) Sludge volume reduction method and equipment by swirling electrolytic treatment
JP2002119971A (en) Toilet wastewater treatment apparatus
JP2006247571A (en) Treatment method and treatment equipment for jellyfish
JPH09239371A (en) Treatment of ethanolamine-containing waste dilute hydrochloric acid
JP2008200667A (en) Method and apparatus for deodorizing, decolorizing and sterilizing water
JP2002068827A (en) Functional ceramic for treating gas and liquid and deodorizing/purifying device, water catalyst treating device and liquid waste treating device using the same
JP2623874B2 (en) Treatment of organic acid cleaning wastewater
JP2003300073A (en) Method for treating waste water
JP3944909B2 (en) Deodorant and deodorizing method for concentrated sludge slurry