JP2003300073A - Method for treating waste water - Google Patents

Method for treating waste water

Info

Publication number
JP2003300073A
JP2003300073A JP2002103473A JP2002103473A JP2003300073A JP 2003300073 A JP2003300073 A JP 2003300073A JP 2002103473 A JP2002103473 A JP 2002103473A JP 2002103473 A JP2002103473 A JP 2002103473A JP 2003300073 A JP2003300073 A JP 2003300073A
Authority
JP
Japan
Prior art keywords
dmso
treatment
conductive diamond
waste water
dmi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002103473A
Other languages
Japanese (ja)
Inventor
Isao Joko
勲 上甲
Norito Ikemiya
範人 池宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002103473A priority Critical patent/JP2003300073A/en
Publication of JP2003300073A publication Critical patent/JP2003300073A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating waste water capable of decomposing the waste water containing at least either of a DMI (1,3-dimethyl-2- imidazolidinone) and DMSO (dimethylsulfoxide) to inorganic compounds, such as gaseous nitrogen, gaseous carbon dioxide, water and sulfuric acid, and of reducing a COD as well without generating by-products which are harmful and emit malodors. <P>SOLUTION: The waste water containing at least either of the DMI and the DMSO is electrolytically decomposed by using a conductive diamond electrode. The current density of the conductive diamond electrode surface is regulated to 10 to 100,000 A/m<SP>2</SP>and the linear velocity of passing liquid of the waste water to 10 to 1,000 m/hr. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、有機窒素化合物と
して1,3−ジメチル−2−イミダゾリジノン(DM
I)、有機硫黄化合物としてジメチルスルホキシド(D
MSO)の少なくとも一方を含む排水の処理方法に関
し、特にこれらの化合物を、有害で悪臭を放つ副生物を
発生させることなく、窒素ガス、炭酸ガス、水、硫酸等
の無機化合物にまで分解でき、しかも化学的酸素消費量
(COD)を低減することができる排水の処理方法に関
する。
TECHNICAL FIELD The present invention relates to 1,3-dimethyl-2-imidazolidinone (DM) as an organic nitrogen compound.
I), dimethyl sulfoxide (D) as an organic sulfur compound
MSO), at least one of these compounds can be decomposed into inorganic compounds such as nitrogen gas, carbon dioxide gas, water, sulfuric acid, etc. without generating harmful and malodorous by-products. Moreover, the present invention relates to a wastewater treatment method capable of reducing chemical oxygen consumption (COD).

【0002】[0002]

【技術背景】有機窒素化合物は、水中へ放出されると富
栄養化の原因となり、大気中に放出されると、それ自体
有害であるばかりか、光化学反応に関与して二次的複合
汚染現象の一因となる。有機窒素化合物の排出源には、
例えば、家畜、家禽、魚類等の飼料製造業、あるいはヒ
トの食料品製造業における原料として使用するタンパク
質等に由来するものがある。特に、有機窒素化合物は、
CODが大きい場合が多い。従って、有機窒素化合物含
有排水の処理に際しては、有機窒素化合物の分解と同時
に、CODをも低減させる必要がある。
[Technical background] Organic nitrogen compounds cause eutrophication when released into water, and when released into the atmosphere, they are not only harmful per se, but also participate in photochemical reactions and cause secondary complex pollution phenomenon. Contribute to. Emission sources of organic nitrogen compounds include
For example, there are those derived from proteins and the like used as raw materials in the feed manufacturing industry for livestock, poultry, fish and the like, or in the human food manufacturing industry. In particular, the organic nitrogen compound is
COD is often large. Therefore, when treating the organic nitrogen compound-containing wastewater, it is necessary to reduce the COD as well as the decomposition of the organic nitrogen compound.

【0003】有機窒素化合物の代表的な処理方法として
は、生物処理法や活性炭処理法等が知られている。しか
し、生物処理法は、反応時間が遅いため、分解に要する
時間が長く、大容量の生物反応槽が必要となるばかり
か、大量の余剰汚泥が発生すると言う問題がある。一
方、活性炭処理法は、吸着平衡に達したときに活性炭を
再生する必要がある。この再生の際に、高濃度に濃縮さ
れた再生排液が発生するため、更にその処理が必要にな
ると言う問題がある。これらの問題を解消するために、
本願出願人は既に、有機窒素化合物を電気分解処理する
方法を提案している(特開平10−174976号公
報)。この方法によれば、窒素化合物を分解して全窒素
(T−N)とCODを同時に除去することができる。
As a typical treatment method of organic nitrogen compounds, a biological treatment method, an activated carbon treatment method and the like are known. However, the biological treatment method has a problem that since the reaction time is slow, the time required for decomposition is long, a large-capacity biological reaction tank is required, and a large amount of excess sludge is generated. On the other hand, the activated carbon treatment method requires regeneration of the activated carbon when the adsorption equilibrium is reached. At the time of this regeneration, there is a problem that a high-concentration regenerated drainage liquid is generated, and therefore the treatment is further required. To eliminate these problems,
The applicant of the present application has already proposed a method of electrolyzing an organic nitrogen compound (Japanese Patent Laid-Open No. 10-174976). According to this method, nitrogen compounds can be decomposed to remove all nitrogen (TN) and COD at the same time.

【0004】また、有機硫黄化合物のうちのDMSO
は、半導体製造工場や液晶パネルの製造工場で多用され
ており、排水中に含まれるDMSOの効率的な除去が重
要な課題となっている。しかも、これらの製造工場で
は、イソプロピルアルコールや界面活性剤等の共存有機
化合物を含んだ有機系洗浄剤が使用されており、この洗
浄剤を使用した洗浄排水の処理も必要である。
DMSO among organic sulfur compounds
Is frequently used in semiconductor manufacturing plants and liquid crystal panel manufacturing plants, and efficient removal of DMSO contained in wastewater is an important issue. Moreover, these manufacturing plants use organic cleaning agents containing coexisting organic compounds such as isopropyl alcohol and surfactants, and it is also necessary to treat cleaning waste water using these cleaning agents.

【0005】DMSO含有排水の処理法として、生物
処理法の他に、オゾン酸化法、過酸化水素酸化法、U
V酸化法等を単独で、あるいは適宜の組み合わせで用い
た物理化学的な分解処理法等が知られている。しかし、
の生物処理法は、反応槽内を好気性条件に保つことが
困難であり、DMSOが嫌気性条件下で分解された場
合、悪臭を放つメチルメルカプタンや硫化水素等の毒性
物質が排水から発生し、大気中に拡散して環境を悪化さ
せると言う問題がある。の分解処理法では、難分解性
のDMSOが炭酸ガス、水、及び硫酸等の無機物にまで
完全分解されず、ジメチルスルホン(DMSO)やメ
タンスルホン(MSA)に変換されるのみで、これ以上
の酸化分解反応は進行しない。
As a method for treating DMSO-containing wastewater, in addition to the biological treatment method, ozone oxidation method, hydrogen peroxide oxidation method, U
A physicochemical decomposition treatment method using the V oxidation method or the like alone or in an appropriate combination is known. But,
In the biological treatment method, it is difficult to maintain the inside of the reaction vessel under aerobic conditions, and when DMSO is decomposed under anaerobic conditions, toxic substances such as methyl mercaptan and hydrogen sulfide, which emit a foul odor, are generated from the wastewater. However, there is a problem that it diffuses into the atmosphere and deteriorates the environment. In the decomposition treatment method of No. 3, the hardly-decomposable DMSO is not completely decomposed into carbon dioxide, water, and inorganic substances such as sulfuric acid, but only converted into dimethyl sulfone (DMSO 2 ) or methane sulfone (MSA). The oxidative decomposition reaction of does not proceed.

【0006】このため、の分解処理法との生物処理
法とを組み合わせてDMSOを処理する方法(特開平
12−263069号公報、同13−212597号公
報)が開発されている。また、この組み合わせ法であっ
ても、酸化剤が共存有機化合物の酸化のみに消費され
て、DMSOからDMSOへの分解効率が著しく低く
なるため、共存有機化合物を除去する前処理を行う等の
工夫が必要である。このような事情から、通常、DMS
O含有排水の多くは産業廃棄物として処理されている。
Therefore, a method for treating DMSO 2 by combining the decomposition treatment method and the biological treatment method has been developed (Japanese Patent Laid-Open Nos. 12-263069 and 13-212597). Further, even in this combination method, the oxidizing agent is consumed only for the oxidation of the coexisting organic compound, and the decomposition efficiency of DMSO to DMSO 2 is remarkably lowered, so that the pretreatment for removing the coexisting organic compound is performed. Ingenuity is needed. Under these circumstances, DMS is usually used.
Most of the O-containing wastewater is treated as industrial waste.

【0007】[0007]

【発明の目的】本発明は、前記した有機窒素化合物のう
ちのDMIと、有機硫黄化合物のうちのDMSOの少な
くとも一方を含む排水を、従来の電気分解処理法による
よりも高い効率で除去すると共に、従来の電気分解処理
法における酸化剤の使用を不要とし、また共存有機化合
物が含まれる場合であっても、該有機化合物除去のため
の前処理をも不要とする排水の処理方法を提供すること
を目的とする。
It is an object of the present invention to remove wastewater containing at least one of DMI of the above organic nitrogen compounds and DMSO of the above organic sulfur compounds with higher efficiency than that obtained by the conventional electrolysis treatment method. Provided is a wastewater treatment method which eliminates the use of an oxidizing agent in a conventional electrolysis treatment method and eliminates a pretreatment for removing the organic compound even when a coexisting organic compound is contained. The purpose is to

【0008】[0008]

【発明の概要】本発明者らは、上記目的を達成するため
に検討を重ねた結果、導電性ダイヤモンド電極を用いる
と、水の電気分解による水素発生や酸素発生を抑制しつ
つ、DMIやDMSOのみを効率的に酸化分解できるこ
とを見い出した。
SUMMARY OF THE INVENTION The inventors of the present invention have conducted extensive studies to achieve the above object. As a result, when a conductive diamond electrode is used, hydrogen generation and oxygen generation due to electrolysis of water are suppressed, while DMI and DMSO are suppressed. It was found that only oxidative decomposition can be carried out efficiently.

【0009】本発明の排水の処理方法は、上記の知見に
基づくもので、DMI、DMSOの少なくとも一方を含
む排水を、導電性ダイヤモンド電極を用いて電気分解処
理することを特徴とする。このとき、導電性ダイヤモン
ド電極表面の電流密度を10〜100,000A/m
とし、排水の通液線速度を10〜1,000m/hrと
することが好ましい。
The wastewater treatment method of the present invention is based on the above findings and is characterized in that wastewater containing at least one of DMI and DMSO is electrolyzed using a conductive diamond electrode. At this time, the current density on the surface of the conductive diamond electrode is 10 to 100,000 A / m 2
It is preferable that the liquid passing linear velocity of the drainage is 10 to 1,000 m / hr.

【0010】本発明における処理対象は、DMIとDM
SOのうちの少なくとも一方を含む排水であって、前記
したように、家畜、家禽、魚類等の飼料製造工場やヒト
の食料品製造工場等からの各種排水、あるいは半導体製
造工場や液晶パネル製造工場等からの各種排水の他、一
般の産業排水、生活排水、その他の雑排水等種々の排水
が挙げられ、特に、前記の共存有機化合物や、アンモニ
ア、ヒドラジン、各種金属イオン等を含むDMIやDM
SO含有排水に適して、著しい効果を得ることができ
る。
Objects to be processed in the present invention are DMI and DM.
Wastewater containing at least one of SO, and as described above, various wastewater from a feed manufacturing factory for livestock, poultry, fish and the like, a human food manufacturing factory, or a semiconductor manufacturing factory or a liquid crystal panel manufacturing factory. In addition to various kinds of wastewater such as general industrial wastewater, domestic wastewater, and miscellaneous wastewater, DMI and DM containing the coexisting organic compounds, ammonia, hydrazine, various metal ions, etc.
It is suitable for SO-containing wastewater and can obtain a remarkable effect.

【0011】本発明で使用する導電性ダイヤモンド電極
は、Ni,Ta,Ti,Mo,W,Zr等の導電性金属
材料を基板とし、これら基板の表面に導電性ダイヤモン
ド薄膜を析出させたものや、シリコンウエハ等の半導体
材料を基板とし、このウエハ表面に導電性ダイヤモンド
薄膜を合成させたもの、あるいは基板を用いない条件で
板状に析出合成した導電性多結晶ダイヤモンド素材を挙
げることができる。なお、導電性(多結晶)ダイヤモン
ド薄膜は、ダイヤモンド薄膜の調製の際にボロン又は窒
素の所定量をドープして導電性を付与したものであり、
ボロンをドープしたものが一般的である。これらのドー
プ量は、少なすぎればドープする技術的意義が発現せ
ず、多すぎてもドープ効果は飽和するため、ダイヤモン
ド薄膜素材の炭素量に対し50〜10,000ppmの
範囲内のものが適している。
The conductive diamond electrode used in the present invention uses a conductive metal material such as Ni, Ta, Ti, Mo, W or Zr as a substrate, and a conductive diamond thin film is deposited on the surface of these substrates. Examples thereof include a semiconductor material such as a silicon wafer used as a substrate, and a conductive diamond thin film synthesized on the surface of the wafer, or a conductive polycrystalline diamond material deposited and synthesized in a plate-like condition without using the substrate. Incidentally, the conductive (polycrystalline) diamond thin film is one in which conductivity is imparted by doping a predetermined amount of boron or nitrogen when the diamond thin film is prepared,
It is generally doped with boron. If the doping amount is too small, the technical significance of doping will not be expressed, and if the doping amount is too large, the doping effect will be saturated. Therefore, it is suitable that the doping amount is within the range of 50 to 10,000 ppm with respect to the carbon amount of the diamond thin film material. ing.

【0012】本発明において、導電性ダイヤモンド電極
は、一般には板状のものを使用するが、網目構造物を板
状にしたもの等をも使用することができる。
In the present invention, the conductive diamond electrode is generally a plate-shaped one, but a plate-shaped mesh structure or the like can also be used.

【0013】本発明で用いる導電性ダイヤモンド電極
は、従来の白金等の金属電極に比べると、電位窓が極め
て広く、水の電気分解による水素発生や酸素発生を抑制
しながら、本発明で電気分解の対象とするDMIやDM
SOのみを効率的に酸化分解することができる。
The conductive diamond electrode used in the present invention has an extremely wide potential window as compared with a conventional metal electrode such as platinum, and suppresses hydrogen generation and oxygen generation due to electrolysis of water, while performing electrolysis in the present invention. Target DMI and DM
Only SO can be efficiently oxidatively decomposed.

【0014】本発明の処理方法は、一般には、上記の導
電性ダイヤモンド電極の複数枚を、数mm〜数cm(具
体的には2mm〜2cm程度)間隔で配置した電解反応
槽を用い、この反応槽の電極間に上記の排水を通液させ
て、導電性ダイヤモンド電極の表面で、DMIやDMS
Oを、無害な窒素ガス、炭酸ガス、水、硫酸等の無機化
合物にまで電気分解するものである。このとき、導電性
ダイヤモンド電極表面の電流密度は、10〜100,0
00A/mとし、上記電解反応槽への排水の通液線速
度は、10〜1,000m/hrとすることが重要であ
る。
The treatment method of the present invention generally uses an electrolytic reaction tank in which a plurality of the above-mentioned conductive diamond electrodes are arranged at intervals of several mm to several cm (specifically about 2 mm to 2 cm). The above waste water is passed between the electrodes of the reaction tank, and DMI or DMS is applied on the surface of the conductive diamond electrode.
O is electrolyzed into harmless inorganic compounds such as nitrogen gas, carbon dioxide gas, water and sulfuric acid. At this time, the current density on the surface of the conductive diamond electrode is 10 to 100,0.
It is important that the flow rate of the drainage to the electrolytic reaction tank is 10 A / m 2 and the linear flow velocity of the drainage is 10 to 1,000 m / hr.

【0015】電流密度が上記未満であると、導電性ダイ
ヤモンド電極の電流効率は良好であるとは言え、排水中
のDMIやDMSOの十分な電気分解処理を行うために
は、ある程度大きな電極面積を必要とし、本発明の処理
方法に適用する電解反応槽を大容量にしなければなら
ず、装置コストやランニングコストが膨大となる。逆
に、上記を超えると、極間抵抗が増大し、熱エネルギー
に消費されてしまうため、不経済となる。
If the current density is less than the above value, the current efficiency of the conductive diamond electrode is good, but in order to perform sufficient electrolysis treatment of DMI and DMSO in wastewater, a certain large electrode area is required. It is necessary, and the electrolytic reaction tank applied to the treatment method of the present invention must have a large capacity, resulting in enormous equipment cost and running cost. On the other hand, if the above value is exceeded, the inter-electrode resistance increases and the heat energy is consumed, which is uneconomical.

【0016】また、排水の通液速度を線速度(LV)で
10〜1,000m/hrとするのは、これより速すぎ
ると、排水と電極表面との接触時間を十分に取ることが
できず、DMIやDMSOの電気分解を十分に進行させ
ることができなくなり、これより遅すぎると、十分な効
果が発揮できず、排水の処理効率が極端に低下してしま
う。
Further, if the drainage passage speed is set to be 10 to 1,000 m / hr in terms of linear velocity (LV), if it is too fast, the contact time between the drainage and the electrode surface will be sufficient. As a result, the electrolysis of DMI and DMSO cannot be progressed sufficiently, and if it is too slow, the sufficient effect cannot be exhibited and the treatment efficiency of waste water is extremely reduced.

【0017】なお、電解反応槽内における液温度は、特
に限定しないが、低温すぎると、DMIやDMSOの電
気分解が良好に進行せず、逆に高温すぎると、排水と電
極表面との接触を阻害するガス成分の生成が多くなるた
め、本発明では、10〜95℃程度とすることが望まし
い。
The liquid temperature in the electrolytic reaction tank is not particularly limited, but if the temperature is too low, the electrolysis of DMI and DMSO does not proceed well, and if the temperature is too high, the drainage and the electrode surface may come into contact with each other. In the present invention, it is desirable to set the temperature to about 10 to 95 ° C., because the generation of the gas component that inhibits increases.

【0018】本発明の処理方法では、DMIやDMSO
を含む排水を、例えば上記のような導電性ダイヤモンド
電極を用いた電解反応槽に通液させて電気分解処理する
ものであるが、このとき、導電性ダイヤモンド電極に所
定の電流を通電するだけでよく、従来の有機窒素化合物
や有機硫黄化合物の電気分解処理に必要とする過酸化水
素や次亜塩素酸ナトリウム等のような酸化剤の添加は不
要である。従って、従来の電気分解処理で要する酸化剤
の添加量の制御はもとより、過剰な酸化剤を処理するた
めの還元剤の添加、該還元剤の添加量の制御等の煩雑な
制御や操作は一切不要となる。
In the processing method of the present invention, DMI and DMSO are used.
The wastewater containing is to be electrolyzed by passing through an electrolytic reaction tank using a conductive diamond electrode as described above, for example, at this time, simply by applying a predetermined current to the conductive diamond electrode. Often, it is not necessary to add an oxidizing agent such as hydrogen peroxide or sodium hypochlorite which is required for the conventional electrolysis treatment of organic nitrogen compounds and organic sulfur compounds. Therefore, not only the control of the addition amount of the oxidizing agent required in the conventional electrolysis treatment, but also the addition of a reducing agent for treating the excess oxidizing agent, the complicated control such as the control of the addition amount of the reducing agent is not performed at all. It becomes unnecessary.

【0019】また、本発明の処理方法では、電解質物質
の添加は特に必要ではなく、DMIやDMSOを含む排
水中に含まれる電解質物質、例えば、KCl、KCl
O、NaCl、NaClO、HSO、NaSO
等がそのまま電解質物質の作用をなす。排水中のこれら
電解質物質の濃度は、特に制限されるものではなく、従
来の電解処理に必要な50〜50,000mg/リット
ル(以下、リットルを「L」、ミリリットルを「mL」
と記す)程度であってもよいし、従来の電解処理では効
率が極めて悪くなる6,000mg/L未満であって
も、電流効率の高い導電性ダイヤモンド電極を使用する
ため、効率よく処理することができる。
In the treatment method of the present invention, it is not particularly necessary to add an electrolyte substance, and an electrolyte substance contained in wastewater containing DMI or DMSO, such as KCl or KCl.
O, NaCl, NaClO, H 2 SO 4 , Na 2 SO 4
Etc. directly act as an electrolyte substance. The concentration of these electrolyte substances in the waste water is not particularly limited, and is 50 to 50,000 mg / liter (hereinafter, liter is “L”, milliliter is “mL”) required for conventional electrolytic treatment.
However, even if it is less than 6,000 mg / L, the efficiency of conventional electrolytic treatment is extremely poor, the conductive diamond electrode having high current efficiency is used, so that the treatment should be performed efficiently. You can

【0020】本発明で使用する導電性ダイヤモンド電極
は、その結晶が極めて緻密で安定した構造となっている
ため、高い電流密度で通電しても、変質したり、消耗す
る等の虞れがない。従って、高い電流密度で使用するこ
とができ、本発明の処理方法では、導電性ダイヤモンド
電極の接液面積を、従来の電気分解で使用している白金
系電極等の接液面積に比べて小さくすることができる。
この結果、本発明の処理方法を実施する場合の電解反応
槽をコンパクト化することができる。
Since the crystal of the conductive diamond electrode used in the present invention is extremely dense and stable, there is no fear of deterioration or wear even if it is energized at a high current density. . Therefore, it can be used at a high current density, and in the treatment method of the present invention, the wetted area of the conductive diamond electrode is smaller than the wetted area of the platinum-based electrode or the like used in conventional electrolysis. can do.
As a result, the electrolytic reaction tank for carrying out the treatment method of the present invention can be made compact.

【0021】また、導電性ダイヤモンド電極は、ダイヤ
モンドの均一結晶構造に由来して、炭酸カルシウム等の
他の結晶粒子が析出する現象を抑制することができるこ
とに加えて、化学的安定性にも優れ、通常の酸、アルカ
リによる浸食がない。従って、導電性ダイヤモンド電極
は、腐食や、陰極表面へのスケールの付着がなく、長期
間に渡って安定した処理性能を維持することができ、電
極の取り替えや、電極表面洗浄等が不要になる。
Further, the conductive diamond electrode is excellent in chemical stability in addition to suppressing the phenomenon that other crystal grains such as calcium carbonate are deposited due to the uniform crystal structure of diamond. No erosion by normal acid or alkali. Therefore, the conductive diamond electrode can maintain stable treatment performance for a long period of time without corrosion or adhesion of scale to the cathode surface, and replacement of the electrode or cleaning of the electrode surface becomes unnecessary. .

【0022】このような導電性ダイヤモンド電極を使用
する本発明の処理方法によれば、DMIやDMSOを、
有害で悪臭を放つ副生物を発生させることなく、窒素ガ
ス、炭酸ガス、水、硫酸等の無機化合物にまで、良好に
電気分解することができるばかりか、CODをも低減す
ることができる。なお、本発明においては、DMIやD
MSOを含む水を予め活性炭等による吸着処理や生物処
理等に付して、DMIやDMSOを低減させておき、そ
の後、導電性ダイヤモンド電極を用いた電気分解処理に
付すようにすることもできる。
According to the treatment method of the present invention using such a conductive diamond electrode, DMI and DMSO are
It is possible not only to satisfactorily electrolyze inorganic compounds such as nitrogen gas, carbon dioxide gas, water and sulfuric acid, but also to reduce COD, without generating harmful and foul-smelling by-products. In the present invention, DMI and D
It is also possible to subject water containing MSO to adsorption treatment with activated carbon or biological treatment in advance to reduce DMI and DMSO, and then subject it to electrolysis treatment using a conductive diamond electrode.

【0023】[0023]

【実施例】実施例1 ボロンドープ法を用いて気相析出合成した積層状多結晶
導電性ダイヤモンド電極板(5×5×0.05cm)2
枚を電極として用い、極間距離1cmに設定して電解反
応槽を構成した。DMIを1,000mg/L含む排水
(全窒素《T−N》:246mg/L、全有機炭素化合
物《TOC》:526mg/L、100℃における過酸
化マンガン酸カリウムによる酸素消費量《COD》:9
50mg/L、塩化ナトリウム:10,000mg/
L、pH:9.7)1,000mLを電解貯槽に入れ、
スターラーで攪拌しつつ、送液ポンプで上記の電解反応
槽に110mL/分の流速で送液し、該電解反応槽のオ
ーバーフロー液を再び電解貯槽に戻す操作を行って、循
環処理した。電解反応槽の投入電気量は、電流密度0.
1A/cm(1000A/m)となるように設定し
た。
EXAMPLES Example 1 A laminated polycrystalline conductive diamond electrode plate (5 × 5 × 0.05 cm) 2 vapor-deposited and synthesized using a boron doping method 2
Using one plate as an electrode, the distance between the electrodes was set to 1 cm to form an electrolytic reaction tank. Waste water containing 1,000 mg / L of DMI (total nitrogen << TN >>: 246 mg / L, total organic carbon compound << TOC >>: 526 mg / L, oxygen consumption due to potassium permanganate peroxide at 100 [deg.] COD: 9
50 mg / L, sodium chloride: 10,000 mg /
L, pH: 9.7) Put 1,000 mL in the electrolytic storage tank,
While stirring with a stirrer, the solution was pumped into the electrolytic reaction tank at a flow rate of 110 mL / min, and the overflow solution in the electrolytic reaction tank was returned to the electrolytic storage tank again for circulation treatment. The amount of electricity input to the electrolytic reaction tank was 0.
It was set to be 1 A / cm 2 (1000 A / m 2 ).

【0024】電解処理開始後、2,4,6時間経過した
時点の電解反応槽出口部の水を採取し、水質分析を行っ
た。この結果を表1に示す。表1から明らかなように、
T−N、TOC、CODの何れもが効率良く除去できる
ことが確認された。
Water was collected from the outlet of the electrolytic reaction tank at a time point 2 or 4 or 6 hours after the start of the electrolytic treatment, and the water quality was analyzed. The results are shown in Table 1. As is clear from Table 1,
It was confirmed that any of TN, TOC, and COD can be efficiently removed.

【0025】[0025]

【表1】 [Table 1]

【0026】比較例1 実施例1で用いた導電性ダイヤモンド電極板に代えて白
金メッキしたチタン板(5×5×0.3cm)2枚を電
極として用いる以外は、実施例1と同様にして循環処理
による電気分解処理を行った。電気分解処理は、10時
間まで行った。この結果を表2に示す。表2と表1を比
較すれば明らかなように、実施例1に比べて反応速度が
遅く、10時間経過後も実施例1の6時間経過後の水質
よりも劣悪な水質であることが確認された。
Comparative Example 1 In the same manner as in Example 1 except that the conductive diamond electrode plate used in Example 1 was replaced with two platinum-plated titanium plates (5 × 5 × 0.3 cm). Electrolysis treatment by circulation treatment was performed. The electrolysis treatment was performed for up to 10 hours. The results are shown in Table 2. As is clear from the comparison between Table 2 and Table 1, it was confirmed that the reaction rate was slower than that of Example 1 and that the water quality after 10 hours was inferior to that after Example 6 after 6 hours. Was done.

【0027】[0027]

【表2】 [Table 2]

【0028】実施例2 実施例1と同じでサイズのみが小さい導電性ダイヤモン
ド電極板(2×2×0.05cm)2枚を電極として用
い、極間距離0.5cmに設定して電解反応槽を構成し
た。電解反応槽の投入電気量は、電流密度0.625A
/cm(6250A/m )となるように設定した。
これら以外は、実施例1と同様にして循環処理による電
気分解処理を行った。この結果を表3に示す。表3と表
1を比較すれば明らかなように、実施例1に比べて、電
極表面の電流密度を6.25倍、電解反応槽の通液線速
度を5倍にして、実施例1の結果よりもかなり高効率で
電気分解が進行することが確認された。
Example 2 The same conductive diamond as in Example 1 except for the size.
Two electrode plates (2 x 2 x 0.05 cm) are used as electrodes
And set the distance between the electrodes to 0.5 cm to configure the electrolytic reaction tank.
It was The amount of electricity input to the electrolytic reaction tank is a current density of 0.625A.
/ CmTwo(6250A / m Two).
Except for these, the electric power generated by the circulation treatment was the same as in Example 1.
A gasolysis treatment was performed. The results are shown in Table 3. Table 3 and table
As is clear from comparison of Example 1, as compared with Example 1,
6.25 times the current density on the pole surface, the linear velocity of liquid passing through the electrolytic reaction tank
5 times higher than the result of Example 1 with much higher efficiency
It was confirmed that electrolysis proceeded.

【0029】[0029]

【表3】 [Table 3]

【0030】比較例2 実施例2で用いた導電性ダイヤモンド電極板に代えて比
較例1で用いた白金系電極板2枚を電極とし、極間距離
0.5cmに設定して電解反応槽を構成した以外は、実
施例2と同様にして循環処理による電気分解処理を行っ
た。この結果を表4に示す。表3と表4を比較すれば明
らかなように、実施例2に比べて反応速度が遅く、水質
も劣悪であることが確認された。これは、白金系の電極
では、高い電流密度の条件での電気分解処理には適さな
いことを意味している。
Comparative Example 2 Instead of the conductive diamond electrode plate used in Example 2, two platinum-based electrode plates used in Comparative Example 1 were used as electrodes, and the distance between the electrodes was set to 0.5 cm to form an electrolytic reaction tank. An electrolysis treatment by a circulation treatment was performed in the same manner as in Example 2 except that the constitution was adopted. The results are shown in Table 4. As is clear from the comparison between Table 3 and Table 4, it was confirmed that the reaction rate was slower than in Example 2 and the water quality was poor. This means that the platinum-based electrode is not suitable for the electrolysis treatment under the condition of high current density.

【0031】[0031]

【表4】 [Table 4]

【0032】実施例3 実施例1と同じ電解反応槽を構成し、DMSOを250
mg/L含む排水(TOC:75mg/L)1,000
mLを電解貯槽に入れ、スターラーで攪拌しつつ、送液
ポンプで上記の電解反応槽に150mL/分の流速で送
液する以外は、実施例1と同様にして循環処理による電
気分解処理を行った。
Example 3 The same electrolytic reaction vessel as in Example 1 was constructed, and DMSO was added to 250
Wastewater containing mg / L (TOC: 75 mg / L) 1,000
Electrolysis treatment by circulation treatment was carried out in the same manner as in Example 1 except that mL was placed in an electrolytic storage tank and stirred with a stirrer, and liquid was sent to the above electrolytic reaction tank with a liquid feed pump at a flow rate of 150 mL / min. It was

【0033】電解処理開始後、3,6時間経過した時点
の電解反応槽出口部の水を採取し、水質分析を行った。
この結果を表5に示す。表5から明らかなように、TO
Cが効率良く除去できることが確認された。
Water at the outlet of the electrolytic reaction tank was sampled 3 and 6 hours after the start of electrolytic treatment, and the water quality was analyzed.
The results are shown in Table 5. As is clear from Table 5, TO
It was confirmed that C can be efficiently removed.

【0034】[0034]

【表5】 [Table 5]

【0035】比較例3 実施例3で用いた導電性ダイヤモンド電極板に代えて比
較例1で用いた白金系電極板2枚を電極とする以外は、
実施例3と同様にして循環処理による電気分解処理を行
った。この結果を表6に示す。表6から明らかなよう
に、TOCの低減効果がないことが判る。これは、処理
水の分析結果から、DMSOがDMSOにまで酸化さ
れるのみで、それ以上の酸化分解反応が進行しないこと
によるものであることが確認された。
Comparative Example 3 The conductive diamond electrode plate used in Example 3 was replaced with two platinum-based electrode plates used in Comparative Example 1 as electrodes.
Electrolysis treatment by circulation treatment was performed in the same manner as in Example 3. The results are shown in Table 6. As is clear from Table 6, it is understood that there is no TOC reducing effect. From the analysis result of the treated water, it was confirmed that this was because DMSO was only oxidized to DMSO 2 and the further oxidative decomposition reaction did not proceed.

【0036】[0036]

【表6】 [Table 6]

【0037】比較例4 比較例3で用いた白金系電極板2枚を電極とし、酸化剤
として次亜塩素酸ナトリウムをDMSO濃度の1.2倍
(300mg/L)となるように添加する以外は、実施
例3と同様にして循環処理による電気分解処理を行っ
た。この結果を表7に示す。表7,表6から明らかなよ
うに、TOCの低減効果は比較例3よりはあるものの、
著しく低いことが判る。また、酸化剤を添加したにも拘
らず、DMSOの殆どはDMSOとMSAにまでしか
酸化されず、それ以上の酸化分解反応が進行しないこと
が確認された。
Comparative Example 4 Except that two platinum-based electrode plates used in Comparative Example 3 were used as electrodes and sodium hypochlorite was added as an oxidant so as to be 1.2 times (300 mg / L) DMSO concentration. In the same manner as in Example 3, electrolysis treatment by circulation treatment was performed. The results are shown in Table 7. As is clear from Tables 7 and 6, although the TOC reduction effect is higher than that of Comparative Example 3,
It turns out that it is extremely low. It was also confirmed that, despite the addition of the oxidizing agent, most of DMSO was oxidized only to DMSO 2 and MSA, and further oxidative decomposition reaction did not proceed.

【0038】[0038]

【表7】 [Table 7]

【0039】実施例4 実施例2と同じ電解反応槽を構成し、実施例2と同じ投
入電気量とする以外は、実施例3と同様にして循環処理
による電気分解処理を行った。この結果を表8に示す。
表8と表5を比較すれば明らかなように、実施例3に比
べて、電極表面の電流密度を6.25倍、電解反応槽の
通液線速度を5倍にして、実施例3の結果よりもかなり
高効率で電気分解が進行することが確認された。
Example 4 An electrolysis treatment by circulation treatment was carried out in the same manner as in Example 3 except that the same electrolytic reaction tank as in Example 2 was constructed and the same amount of electricity as in Example 2 was used. The results are shown in Table 8.
As is clear from comparison between Table 8 and Table 5, compared with Example 3, the current density on the electrode surface was 6.25 times and the liquid passing linear velocity of the electrolytic reaction tank was 5 times that of Example 3. It was confirmed that the electrolysis proceeded with much higher efficiency than the results.

【0040】[0040]

【表8】 [Table 8]

【0041】実施例5 DMSOを250mg/Lと、イソプロピルアルコール
を25mg/Lと、界面活性剤を2mg/L含む排水
(TOC:90mg/L)1,000mLを用いる以外
は、実施例3と同様にして循環処理による電気分解処理
を行った。この結果を表9に示す。表9から明らかなよ
うに、イソプロピルアルコールや界面活性剤等の有機化
合物を含んでいても、実施例3の場合と同様にTOCが
効率良く除去できることが確認された。
Example 5 The same as Example 3 except that DMSO of 250 mg / L, isopropyl alcohol of 25 mg / L, and a surfactant of 2 mg / L of waste water (TOC: 90 mg / L) of 1,000 mL were used. Then, electrolysis treatment by circulation treatment was performed. The results are shown in Table 9. As is clear from Table 9, it was confirmed that TOC could be efficiently removed as in the case of Example 3 even when the organic compound such as isopropyl alcohol and surfactant was contained.

【0042】[0042]

【表9】 [Table 9]

【0043】実施例7 実施例1の処理対象排水500mLと実施例6の処理対
象排水500mLとの混合排水1,000mLを処理対
象排水とする以外は、実施例1と同様にして循環処理に
よる電気分解処理を行った。この結果を表10に示す。
表10から明らかなように、DMIとDMSOの両方を
含み、更に共存有機化合物を含んでいても、T−N、T
OC、COD共に効率良く除去でき、しかも共存有機化
合物も効率良く除去できることが確認された。
Example 7 Electricity by circulating treatment was carried out in the same manner as in Example 1 except that the mixed wastewater of 500 mL of Example 1 and the mixed wastewater of 500 mL of Example 6 were mixed wastewater of 1,000 mL. A decomposition process was performed. The results are shown in Table 10.
As is clear from Table 10, even if both DMI and DMSO are contained and the coexisting organic compound is also contained, T-N, T
It was confirmed that both OC and COD could be efficiently removed, and coexisting organic compounds could also be efficiently removed.

【0044】[0044]

【表10】 [Table 10]

【0045】[0045]

【発明の効果】以上のように、本発明の処理方法によれ
ば、有機窒素化合物としてDMIを、有機硫黄化合物と
してDMSOを含む排水を、有害で悪臭を放つ副生物を
発生させることなく、窒素ガス、炭酸ガス、水、硫酸等
の無機化合物にまで分解することができるばかりでな
く、CODをも大幅に低減することができる。
As described above, according to the treatment method of the present invention, wastewater containing DMI as an organic nitrogen compound and DMSO as an organic sulfur compound can be treated with nitrogen without generating harmful and foul-smelling by-products. Not only can it be decomposed into inorganic compounds such as gas, carbon dioxide, water and sulfuric acid, but also COD can be greatly reduced.

【0046】また、本発明の処理方法によれば、次のよ
うな効果を得ることができる。 (1)従来の生物処理法で、DMI含有排水を処理する
場合や、DMSO含有排水を処理する場合のように、分
解に長時間を要したり、大量の余剰汚泥を後処理した
り、煩雑な操作条件を維持したり、また悪臭を放つ副生
物の生成と言った問題は一切ない。 (2)従来の活性炭処理法で、DMI含有排水を処理す
る場合や、DMSO含有排水を処理する場合のように、
処理性能に限界があったり、性能劣化した活性炭の再生
や取り替えたり、あるいは活性炭再生の際に発生する高
濃度に濃縮された再生排液の処理と言った問題も一切な
い。 (3)難分解性のDMSOを含む排水を従来の白金系電
極を用いて電気分解する場合のように、DMSOやM
SAの生成がないのみならず、共存有機化合物が含まれ
る場合の酸化剤が共存有機化合物の酸化のみに消費され
てDMSOからDMSOへの分解効率が著しく低くな
ると言った問題も一切ない。
According to the processing method of the present invention, the following effects can be obtained. (1) As in the case of treating wastewater containing DMI or wastewater containing DMSO by a conventional biological treatment method, it takes a long time to decompose, aftertreatment of a large amount of excess sludge, and complicated. There are no problems such as maintaining stable operating conditions and the generation of offensive odor by-products. (2) As in the case of treating wastewater containing DMI or treating wastewater containing DMSO by the conventional activated carbon treatment method,
There are no problems such as limited treatment performance, regeneration or replacement of activated carbon whose performance has deteriorated, or treatment of highly concentrated regenerated effluent generated during activated carbon regeneration. (3) As in the case of electrolyzing wastewater containing persistent DMSO using a conventional platinum-based electrode, DMSO 2 or M
There is no problem that not only SA is not generated, but also the oxidizing agent in the case where the coexisting organic compound is contained is consumed only for the oxidation of the coexisting organic compound and the decomposition efficiency of DMSO to DMSO 2 is remarkably lowered.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D061 DA08 DB19 DC08 EA03 EB01 EB04 EB31 EB37 EB39 GA02 GA11 GC02 GC12    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4D061 DA08 DB19 DC08 EA03 EB01                       EB04 EB31 EB37 EB39 GA02                       GA11 GC02 GC12

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 1,3−ジメチル−2−イミダゾリジノ
ン、ジメチルスルホキシドの少なくとも一方を含む排水
を、導電性ダイヤモンド電極を用いて電気分解処理する
ことを特徴とする排水の処理方法。
1. A method for treating wastewater, which comprises subjecting wastewater containing at least one of 1,3-dimethyl-2-imidazolidinone and dimethyl sulfoxide to electrolysis treatment using a conductive diamond electrode.
【請求項2】 導電性ダイヤモンド電極表面の電流密度
を10〜100,000A/mとし、排水の通液線速
度を10〜1,000m/hrとすることを特徴とする
請求項1記載の排水の処理方法。
2. A conductive diamond electrode surface having a current density of 10 to 100,000 A / m 2 and a drainage liquid flow velocity of 10 to 1,000 m / hr. Wastewater treatment method.
JP2002103473A 2002-04-05 2002-04-05 Method for treating waste water Pending JP2003300073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002103473A JP2003300073A (en) 2002-04-05 2002-04-05 Method for treating waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002103473A JP2003300073A (en) 2002-04-05 2002-04-05 Method for treating waste water

Publications (1)

Publication Number Publication Date
JP2003300073A true JP2003300073A (en) 2003-10-21

Family

ID=29389281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002103473A Pending JP2003300073A (en) 2002-04-05 2002-04-05 Method for treating waste water

Country Status (1)

Country Link
JP (1) JP2003300073A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109179814A (en) * 2018-11-26 2019-01-11 南京紫江工程科技有限公司 A method of combination advanced oxidation handles sewage
CN112275254A (en) * 2020-10-14 2021-01-29 四川长晏科技有限公司 Wastewater treatment agent and preparation method and application thereof
CN113582465A (en) * 2021-08-18 2021-11-02 桂林南药股份有限公司 System and method for treating high ammonia nitrogen wastewater by using diamond film electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109179814A (en) * 2018-11-26 2019-01-11 南京紫江工程科技有限公司 A method of combination advanced oxidation handles sewage
CN112275254A (en) * 2020-10-14 2021-01-29 四川长晏科技有限公司 Wastewater treatment agent and preparation method and application thereof
CN113582465A (en) * 2021-08-18 2021-11-02 桂林南药股份有限公司 System and method for treating high ammonia nitrogen wastewater by using diamond film electrode

Similar Documents

Publication Publication Date Title
JP4671743B2 (en) Electrolytic treatment method and apparatus for wastewater containing ammonia nitrogen
US6984326B2 (en) Nitrogen treating method and nitrogen treating system
CN105858818A (en) Method for effectively removing nitrate in underground water by using Zn/Cu/Ti multi-metal nanoelectrode
JP2007105673A (en) Treating method and treating apparatus of waste water containing nitrate nitrogen and electrolytic cell for treating waste water
JP2004202283A (en) Method and apparatus for treating organic compound-containing water
JP3982500B2 (en) Method and apparatus for treating wastewater containing organic compounds
US3582485A (en) Water purification
JP2003300073A (en) Method for treating waste water
JP3825021B2 (en) Organic wastewater treatment apparatus and organic wastewater treatment method
JP2008264668A (en) Method and apparatus for electrolytic treatment of wastewater
JPH08155463A (en) Method and apparatus for decomposing ammoniacal nitrogen nitric-nitrogen and/or nitrous-nitrogen
JP2005021744A (en) Method and apparatus for electrolyzing emulsion
JP2005013858A (en) Method and apparatus for treating wastewater using high voltage pulses
JP3788688B2 (en) Method and apparatus for electrolytic treatment of oxidized nitrogen-containing water
JP2002079252A (en) Method and apparatus for treating seawater type ammonia-containing wastewater or ammonia-containing exhaust gas
JPH1110160A (en) Method for treating water by electrolytic oxidation
RU2471718C1 (en) Method of removing nitrite ions from water solutions
JP4062690B2 (en) Organic wastewater treatment method
JPH11221570A (en) Decomposition electrode for organic polluted water, decomposing method of organic polluted water using same and decomposing device of organic polluted water using same
JPH09239371A (en) Treatment of ethanolamine-containing waste dilute hydrochloric acid
JP2006231177A (en) Endocrine disrupting chemical substance decomposing method and apparatus
Ochoa-Chavez et al. Advanced oxidation processes for removal of pharmaceuticals and personal care products
JP2015139752A (en) Method and apparatus for treating waste water
JP2003251357A (en) Method for treating oxidizable material-containing water
JP6319720B2 (en) Waste water treatment method and waste water treatment equipment