JP2005021744A - Method and apparatus for electrolyzing emulsion - Google Patents

Method and apparatus for electrolyzing emulsion Download PDF

Info

Publication number
JP2005021744A
JP2005021744A JP2003187292A JP2003187292A JP2005021744A JP 2005021744 A JP2005021744 A JP 2005021744A JP 2003187292 A JP2003187292 A JP 2003187292A JP 2003187292 A JP2003187292 A JP 2003187292A JP 2005021744 A JP2005021744 A JP 2005021744A
Authority
JP
Japan
Prior art keywords
emulsion
electrolytic
hydrophobic organic
water
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003187292A
Other languages
Japanese (ja)
Inventor
Taeko Chiba
妙子 千葉
Norito Ikemiya
範人 池宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2003187292A priority Critical patent/JP2005021744A/en
Publication of JP2005021744A publication Critical patent/JP2005021744A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently electrolyze water containing a hydrophobic organic compound or oil matter. <P>SOLUTION: The subject electrolysis apparatus is provided with an emulsifying means 21 for emulsifying water containing the hydrophobic organic compound, or the like, a storage tank 20 for storing the emulsion, an anode 41 and a cathode 42 to electrolyze the emulsion, an electrolysis reaction vessel 40 having a diamond electrode at least as the anode and a circulation passage 30 for circulating the emulsion between the storage tank and the electrolysis reaction vessel. The emulsion in which the hydrophobic organic compound is dispersed in water is electrolyzed using the diamond electrode at least as the anode. As a result, the hydrophobic organic compound, or the like, is effectively electrolyzed to be efficiently removed from the emulsion. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は疎水性有機物又は油含有水の電解処理方法及び電解処理装置に関する。さらに詳しくは、本発明は疎水性有機物又は油含有水を常温・常圧で有害な副生成物を発生することなく二酸化炭素、水などの無機化合物まで完全に分解処理できる電解処理方法および処理装置に関する。
【0002】
【従来の技術】
産業排水中には汚染物質として様々な有機化合物が含まれており、これらを排出が許されるレベルまで低減する必要がある。電気化学的な処理方法は活性汚泥法などの生物分解処理やオゾン酸化法と比較して操作が容易であり装置をコンパクトにできるという利点がある。
【0003】
ところで、海水中に含まれ、タンカーなどから流出した重油などの油状物質は、海洋中に生息している生物を死滅させるなど甚大な被害を与える。この油状物質を含有する海洋汚染水は、生物処理や物理化学的な水処理を適用することが困難であり、膜などを利用して海水から分離することが可能であっても、産業廃棄物を生じるという問題があった。また、タンカーから排出されるバラスト水についても、産業廃棄物として処理する以外は適切な処理方法がないという問題があった。
【0004】
前記した電気化学的な処理方法は、汚泥などの産業廃棄物を生成することなく、排水中のCOD源を低減することができる。しかしながら、白金や酸化鉛といった従来の陽極材料では、排水中に溶存している有機物を分解することはできるが、油分などの疎水性の有機物を分解することは困難であるという問題があった。このため、疎水性有機物を電気化学的に分解する電極として、疎水性電極を利用して効果的な処理を行う方法が提案されている(特許文献1、2参照)。
【0005】
【特許文献1】
特開平6−93483号公報
【特許文献2】
特開2000−254651号公報
【0006】
【発明が解決しようとする課題】
しかし、上記した疎水性電極は耐久性には問題があり、0.1A/cm程度の電流密度では安定に電解処理を行えるが、0.2A/cm以上の電流密度では大幅に劣化が進行して寿命が短くなるという問題があり、実用化は困難であった。特に海水のように大量に処理を要する場合には使用に耐えないものであった。
ところで、ダイヤモンドは化学的安定性が高く、ホウ素や窒素をドープすることによって導電性を示すことから排水処理のための電極材料として期待されている。藤嶋らの論文(Electrochemistry,Vol.67(1999)389)ではホウ素をドープしたダイヤモンド電極は電位窓が極めて広く腐食性の強い水溶液中においても安定に動作する事が報告されている。また、イーストマンコダック社による特許文献(特開平7−299467号公報及び米国特許明細書間第5399247号)にはホウ素をドープしたダイヤモンドを陽極に用いて有機化合物を酸化分解できることが示唆されている。
【0007】
本発明は、上記事情を背景としてなされたものであり、電解処理において有機物分解に関してエネルギー効率および処理コストの観点から改良が望まれる課題を解決し、疎水性有機物または油を含有する水に含まれる有機物等を効率良く二酸化炭素や水になど無機物まで完全に分解・無害化できる新規な電解処理方法および装置を提供することを目的としてなされたものである。
【0008】
【課題を解決するための手段】
本発明者らは上記の課題を解決すべく鋭意研究を重ねた結果、疎水性有機物または油が分散したエマルションに対し、ダイヤモンド電極を陽極として用いた電気分解により水中に含まれる有機物、油を選択的に分解できることを見出した。
この知見に基づいて本発明を完成させるに至った。
【0009】
すなわち、本発明のエマルションの電解処理方法のうち、請求項1記載の発明は、疎水性有機化合物または油滴が水に分散したエマルションを、少なくとも陽極がダイヤモンド電極である電極を用いて電解することを特徴とする。
【0010】
請求項2記載のエマルションの電解処理方法の発明は、請求項1記載の発明において、疎水性有機化合物または油分を含む水に乳化処理を施して安定したエマルションとした後、前記電解を行うことを特徴とする。
【0011】
請求項3記載のエマルションの電解処理方法の発明は、請求項1または2に記載の発明において、前記エマルションを循環させつつ循環途中で前記電解を行うことを特徴とする。
【0012】
請求項4記載のエマルションの電解処理方法の発明は、請求項1〜3のいずれかに記載の発明において、前記エマルションに電解質を添加して前記電解を行うことを特徴とする。
【0013】
請求項5記載のエマルションの電解処理装置は、疎水性有機化合物または油分を含む水に必要に応じて乳化処理を行う乳化手段と、乳化されたエマルションを貯水する貯槽と、前記エマルションを電解するために陽極と陰極とを備え、少なくとも前記陽極がダイヤモンド電極からなる電解反応槽と、前記貯槽と電解反応槽との間で前記エマルションを循環させる循環路とを備えることを特徴とする。
【0014】
本発明によれば、エマルション中に分散している疎水性有機化合物または油滴がダイヤモンド電極からなる陽極と陰極との間で高効率で電気分解され、有害な副生成物を発生することなく二酸化炭素、水などの無機化合物までに分解処理して除去することができる。例えば油状物質を含む海水の処理に際しては、海から海水を導入し、処理を終えた海水を海に戻す(循環処理を含むものであってもよい)ことで大量の海水を効果的に処理することができる。
本発明によれば、従来の白金電極を用いた電解処理と比較して電解効率が良く、特に必要電極面積が少なくて済み電解反応装置が小型化できる技術的特徴がある。また、導電性ダイヤモンドは化学的安定性に優れ、通常の酸やアルカリによる腐食の心配が無く、酸条件からアルカリ条件の幅広いpH範囲を有する水処理に適用できて、かつ長期間に渡って安定した電解参加処理効果が持続する。
【0015】
本発明では、疎水性有機化合物または油分を含む水が処理対象となる。本発明としては疎水性有機化合物の種別が特に限定されるものではなく、例えばトリクロロエチレンやバークロロエチレンなどの有機塩素化合物や内分泌攪乱性物質などが挙げられる。また、油分としては、ポンプ油、切削油、重油等が挙げられるが、これらに限定されるものでもない。すなわち、本発明では、水に不溶または難溶の疎水性有機化合物または油分が可溶化、又は分散している水の処理に特に適している。
【0016】
なお本発明では、エマルション状態の原水はそのまま電解処理に供することができるが、エマルション状態にない原水や安定化させたいエマルションでは、乳化処理を行う。本発明としては乳化処理の方法は、特に限定されるものではなく、乳化剤(界面活性剤)の添加などによって行うことができる。また、海水を処理して海に戻す際に乳化剤の混入を避けたい場合には、乳化剤を用いない機械的な方法などによって乳化を行うようにしてもよい。
電解処理においては、エマルションを循環しつつその中途で電解を行うようにしてもよく、これにより、効果的な分解処理が可能になる。この循環処理に際し、乳化処理を付加してもよい。
【0017】
またエマルションに対し、電解反応を促進するために電解質を添加してもよい。電解質としては、特に指定がなく、塩化物イオン、硫酸イオンなどを添加でき、無機塩類でも添加できる。電解質の濃度については、特に指定はないが、極端に希薄になると極間電圧が高くなりすぎ、エネルギー効率的に実用的ではない。
排水中に全く電解質成分が存在しない場合は、0.1M前後の電解質の添加が望ましい。なお、上記循環処理においては添加した電解質の作用を繰り返し得ることができ、効率的に利用できる。
本発明において、エマルションに含まれる無機塩は水に溶解して例えば塩化物イオン、硫酸イオンなどを生成し、陽極での電解反応によって、次亜塩素酸イオン、過硫酸イオンとなり、有機物の分解を促進する。さらには、水電解により生成するオゾンやヒドロキシラジカルなどは、強力な酸化剤となって、有機物の分解に寄与する。
【0018】
なお、本発明で少なくとも陽極で使用する導電性ダイヤモンド電極は、Nb、Ta、Ti、Mo、W、Zr等の導電性金属材料を基盤とし、これらの基盤の表面に導電性ダイヤモンド薄膜を析出させたものや、シリコンウエハ等の半導体材料を基盤とし、このウエハ表面に導電性ダイヤモンド薄膜を合成させたもの、さらに、基盤を用いない条件で板状に結晶粒を析出合成した導電性多結晶ダイヤモンドや単結晶種として成長させた単結晶ダイヤモンドを挙げることができる。
また、導電性ダイヤモンド薄膜は、ダイヤモンド薄膜の合成の際にボロンまたは窒素などの所定量をドープして導電性を付与したものであり、通常はボロンをドープしたものが一般的である。これらのドープ量は、少なすぎると技術的意義が発生せず、多すぎてもドープ効果が飽和するため、ダイヤモンド薄膜の炭素量に対して、50〜20,000ppmの範囲のものが適している。
【0019】
本発明において導電性ダイヤモンド電極は通常は板状のものを使用するが、網目状構造を板状にしたものも使用できる。また、炭素粉末などにダイヤモンドをコーティングした粉末を電解液によって流動させて流動床を構成することも出来る。さらに、三次元構造の基質にダイヤモンド粉末を担持させ、高表面積を有する固定床を構成し、反応速度を高めることも出来る。また、導電性ダイヤモンドは、結晶質である必要はなく、非晶質のダイヤモンドライクカーボンであってもかまわない。
【0020】
導電性ダイヤモンド電極は従来の白金等の金属電極と比較して電位窓が極めて広く水の電気分解による水素や酸素の発生を抑えながら目的の有機物のみを効率的に酸化分解できる。この導電性ダイヤモンド電極を用いて行う電解処理は、導電性ダイヤモンド電極表面の電流密度を10〜100,000A/cmとし、有機物含有水をダイヤモンド電極面と平行に通液線速度を10〜10,000m/hで接触させる事が好ましい。反応槽内の液温は通常10〜95℃で処理する事が望ましい。
【0021】
【発明の実施の形態】
次に、本発明の一実施形態を図1に基づいて説明する。
本発明の一実施形態であるエマルション電解処理装置は、電解貯槽20と、電解反応槽40と、電解貯槽20と電解反応槽40間でエマルションを循環させる循環路30および送液ポンプ31を有している。
【0022】
電解貯槽20には、開閉弁11を有する原水供給ライン10が接続され、電解貯槽20内には、攪拌装置21が設けられている。また、電解貯槽20には、電解貯槽20内の処理水に、乳化手段として界面活性剤を供給する界面活性剤供給手段22と、電解質を供給する電解質供給手段23が備えられている。また、電解貯槽20には、電解貯槽20からエマルションを送液するために前記循環路30の往路が接続されており、該循環路30の往路の他端は、送液ポンプ31を介して前記電解反応槽40に接続されている。また、電解貯槽3には、電解反応槽40で処理された処理水が戻る循環路30の復路(後述する)が接続されている。
【0023】
電解反応槽40は、循環路30から送液されるエマルションを電解処理する装置であり、所定の距離を隔て配置された、導電性ダイヤモンド電極41(陽極)、ダイヤモンド電極42(陰極)を備えている。該導電性ダイヤモンド電極40、41には、図示しない電源に接続されている。 また、電解反応槽40の排液側には、循環路30の復路が接続されており、該循環路30の復路は、三方弁32を介して前記したように電解貯槽30に接続されている。また、三方弁32の他ポートには排水路50が接続されている。
【0024】
次に、上記エマルション電解処理装置の動作について以下に説明する。
まず、原水供給ライン10に備わる開閉弁11を開き、疎水性有機化合物又は油分(以下疎水性有機化合物等という)を含む原水を電解貯槽20に導入する。
電解貯槽20では、界面活性剤供給手段22より所定の界面活性剤を所定量供給して原水を乳化処理してエマルションとする。なお、原水が原水供給ライン10から供給する際に既にエマルション状態にあり、乳化を必要としない場合には界面活性剤供給手段22から界面活性剤を供給することは要しない。また、界面活性剤を用いることなく機械的方法などにより行う乳化を行う乳化装置を備えるものであってもよい。また、電解貯槽20では、所望により、電解質供給手段23から硫酸ナトリウムなどの電解質を添加してもよい。この電解質の添加によって、電導度の低い疎水性有機化合物等を含有する水を処理する場合でも、効率のよい電気分解を可能にする。なお、電解貯槽20では、攪拌装置21によって攪拌処理がなされる。電解貯槽20中のエマルションは、送液ポンプ31により、循環路30の往路、電解反応槽40、循環路30の復路を経て電解貯槽20に還流されるように圧送する。
【0025】
送液ポンプ31により電解反応槽40に圧送された疎水性有機化合物等含有水は、図示しない電源により給電される導電性ダイヤモンド電極41、42により電解処理される。電解反応槽40で電解処理された処理水は、循環路30の復路を介して前記電解貯槽20に返送される。上記動作を繰り返し行うことにより疎水性有機化合物等を含むエマルションを循環させつつ継続して電解処理することができる。循環処理は、疎水性有機化合物等の量が許容されるレベルに低減するまで継続され、疎水性有機化合物等の量が許容レベルに達した後に、三方弁32を切り替えて排水路50より処理水が系外に放出される。この排水路50は、そのまま処理水を排水するようにしてもよく、油状物質を含む海水を原水として処理した場合には、処理水を排水路50を介して海に放出することもできる。
【0026】
なお、この実施形態では、原水に電解貯槽で界面活性剤を添加できるようにしたが、電解貯槽に供給する以前に系外で界面活性剤の添加などによって乳化処理してエマルションを電解貯槽に供給するようにしてもよい。また、この実施形態では、電解反応槽の陽極および陰極ともにダイヤモンド電極で構成したが、本発明としては、少なくとも陽極がダイヤモンド電極で構成されていればよく、陰極を白金等によって構成することもできる。なお、より効果的な処理を行い、より優れた電極耐久性を得るためには陽極、陰極ともにダイヤモンド電極で構成するのが望ましい。なお、本発明は、本発明の範囲を逸脱しない範囲において上記実施形態に限定されるものではなく、さらに変更した構成とすることが可能である。
【0027】
【実施例】
以下に本発明の実施例を比較例と対比しつつ説明する。
実施例1
電解反応槽としては、内容積50mlのガラス製容器にボロンドープ法を用いて気相析出合成した積層状多結晶導電性ダイヤモンド板(2cm×2cm×0.05cm)2枚を電極に用い、電極間距離1cmとなるように設置し、両電極を電源部に接続してそれぞれ陽極、陰極とした。シリコンオイル含有水(界面活性剤ポリオキシエチレンアルキルエーテル2mol/lを含み、CODCr値が2030mg/l)を母液としてこの10倍希釈溶液に電解質として硫酸ナトリウムを0.1mol/l添加して電解貯槽に入れた。電解貯槽内をスターラー(攪拌装置)で攪拌しながら電解処理した。電解反応槽の電流密度は初期において0.2A/cmとなるように設定した。電解処理を3時間継続して試料水を採取し全有機炭素(TOC)の分析を行ったところ表1の結果を得た。その結果、本発明実施例によって疎水性有機化合物を含むエマルションが効果的に電解処理され、TOCが効率よく除去できることが確認できた。
【0028】
【表1】

Figure 2005021744
【0029】
比較例1
実施例で行った電解処理の代わりに、陰極及び陽極に白金電極を用いた電解反応槽で電解処理を行った。試料水、電解条件などは実施例と同じ条件で電解処理を行ったところ、表2の結果を得た。3時間の電解処理によってもTOCの除去は不十分であった。
【0030】
【表2】
Figure 2005021744
【0031】
実施例2
ボロンドープ法を用いて気相析出合成した積層状多結晶導電性ダイヤモンド板(5cm×5cm×0.05cm)2枚を電極に用い、極間距離0.5cmに設定して電解反応槽とした。油状物質を含んだ海水(COD10,000,l1)を電解貯槽に入れた。電解貯槽内をスターラーで攪拌しながら送液ポンプを用いて、電解反応槽に5l/minの流速で循環処理した。電解反応槽の投入電気量は電流密度が0.4A/cm(4000A/m)となるように設定した。電解処理を5時間継続して、電解反応槽出口水の水を採取してCODの分析を行ったところ表3の結果を得た。本発明の電解処理方法によって、CODが効率良く除去できることが確認できた。また、処理水は再び海洋に返還することができる。
【0032】
【表3】
Figure 2005021744
【0033】
比較例2−1
実施例1で用いた導電性ダイヤモンド電極の代わりに、白金メッキしたチタン板(5cm×5cm)を用いた以外は、実施例1と同じ条件で電解処理を行った。電解は実施例1と同様に5時間継続したが、表4の分析結果に示すように、CODの低減効果は著しく悪くなるとともに電極への油状物質の付着が激しく、電極の交換が必要であった。
【0034】
【表4】
Figure 2005021744
【0035】
比較例2−2
実施例1で用いた導電性ダイヤモンド電極の代わりに、疎水性電極である、チタン板(5cm×5cm×0.2cm)にポリテトラフルオロエチレンと白金からなる複合メッキ層を形成させた電極を用いた以外は、実施例1と同じ条件で電解処理を行った。電解は実施例1と同様に5時間継続したが、表5の分析結果に示すように、CODの低減効果は実施例1に比べて悪く、電極の磨耗が認められ、電極の交換が必要であった。
【0036】
【表5】
Figure 2005021744
【0037】
【発明の効果】
以上説明したように、本発明のエマルションの電解処理方法によれば、疎水性有機化合物または油滴が水に分散したエマルションを、少なくとも陽極がダイヤモンド電極である電極を用いて電解するので、疎水性有機化合物等が効果的に電解処理され、有害な副生成物を発生することなくエマルションから疎水性有機化合物等を効率よく除去できる。
また、本発明の電解処理装置によれば、上記処理方法を容易かつ確実に実行して上記効果を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態における処理装置の概略を示す図である。
【符号の説明】
10 原水供給ライン
20 電解貯槽
21 界面活性剤供給手段
22 電解質供給手段
30 循環路
40 電解反応槽
41 ダイヤモンド電極(陽極)
42 ダイヤモンド電極(陰極)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolytic treatment method and an electrolytic treatment apparatus for hydrophobic organic substances or oil-containing water. More specifically, the present invention relates to an electrolytic treatment method and treatment apparatus capable of completely decomposing hydrophobic organic substances or oil-containing water to inorganic compounds such as carbon dioxide and water without generating harmful by-products at room temperature and normal pressure. About.
[0002]
[Prior art]
Industrial wastewater contains various organic compounds as pollutants, and it is necessary to reduce these to a level that permits discharge. The electrochemical treatment method has advantages in that the operation is easy and the apparatus can be made compact compared to biodegradation treatment such as activated sludge method and ozone oxidation method.
[0003]
By the way, oily substances such as heavy oil contained in seawater and flowing out from a tanker or the like cause enormous damage such as killing living creatures inhabiting the ocean. Marine contaminated water containing this oily substance is difficult to apply biological treatment or physicochemical water treatment, and even if it can be separated from seawater using membranes, There was a problem that caused. In addition, ballast water discharged from the tanker also has a problem that there is no appropriate treatment method other than treatment as industrial waste.
[0004]
The above-described electrochemical treatment method can reduce the COD source in the wastewater without generating industrial waste such as sludge. However, conventional anode materials such as platinum and lead oxide can decompose organic substances dissolved in waste water, but there is a problem that it is difficult to decompose hydrophobic organic substances such as oil. For this reason, as an electrode for electrochemically decomposing a hydrophobic organic substance, a method of performing an effective treatment using a hydrophobic electrode has been proposed (see Patent Documents 1 and 2).
[0005]
[Patent Document 1]
JP-A-6-93483 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2000-254651
[Problems to be solved by the invention]
However, the above-mentioned hydrophobic electrode has a problem in durability, and although it can be stably subjected to electrolytic treatment at a current density of about 0.1 A / cm 2, it deteriorates significantly at a current density of 0.2 A / cm 2 or more. There was a problem that the lifetime was shortened as it progressed, and practical application was difficult. In particular, when a large amount of treatment is required, such as seawater, it cannot be used.
By the way, diamond is expected as an electrode material for waste water treatment because it has high chemical stability and exhibits conductivity by doping with boron or nitrogen. Fujishima et al. (Electrochemistry, Vol. 67 (1999) 389) report that a boron-doped diamond electrode operates stably even in an aqueous solution having a very wide potential window and strong corrosivity. In addition, Eastman Kodak's patent document (Japanese Patent Laid-Open No. 7-299467 and US Pat. No. 5,399,247) suggests that an organic compound can be oxidatively decomposed using boron-doped diamond as an anode. .
[0007]
The present invention has been made against the background of the above circumstances, and solves the problems that are desired to be improved from the viewpoint of energy efficiency and processing cost regarding the decomposition of organic matter in electrolytic treatment, and is included in water containing hydrophobic organic matter or oil. It is an object of the present invention to provide a novel electrolytic treatment method and apparatus capable of completely decomposing and detoxifying organic matter and the like up to inorganic matter such as carbon dioxide and water.
[0008]
[Means for Solving the Problems]
As a result of intensive research to solve the above problems, the present inventors have selected organic substances and oils contained in water by electrolysis using a diamond electrode as an anode for emulsions in which hydrophobic organic substances or oils are dispersed. It was found that it can be decomposed automatically.
The present invention has been completed based on this finding.
[0009]
That is, among the electrolytic treatment methods for an emulsion of the present invention, the invention according to claim 1 is to electrolyze an emulsion in which a hydrophobic organic compound or oil droplets are dispersed in water using an electrode having at least a diamond electrode as an anode. It is characterized by.
[0010]
The invention of the electrolytic treatment method for an emulsion according to claim 2 is characterized in that, in the invention according to claim 1, the electrolysis is performed after emulsifying the water containing the hydrophobic organic compound or oil to obtain a stable emulsion. Features.
[0011]
An invention of an electrolytic treatment method for an emulsion according to claim 3 is characterized in that, in the invention according to claim 1 or 2, the electrolysis is performed during circulation while circulating the emulsion.
[0012]
An invention of an electrolytic treatment method for an emulsion according to a fourth aspect is characterized in that, in the invention according to any one of the first to third aspects, the electrolysis is performed by adding an electrolyte to the emulsion.
[0013]
The electrolytic treatment apparatus for an emulsion according to claim 5 is an emulsifying means for performing an emulsification treatment on water containing a hydrophobic organic compound or an oil as necessary, a storage tank for storing the emulsified emulsion, and an electrolysis of the emulsion. And an anode and a cathode, and at least the anode comprises an electrolytic reaction tank comprising a diamond electrode, and a circulation path for circulating the emulsion between the storage tank and the electrolytic reaction tank.
[0014]
According to the present invention, hydrophobic organic compounds or oil droplets dispersed in an emulsion are electrolyzed with high efficiency between an anode and a cathode made of diamond electrodes, and without generating harmful by-products. It can be decomposed and removed to inorganic compounds such as carbon and water. For example, when processing seawater containing oily substances, a large amount of seawater is effectively treated by introducing seawater from the sea and returning the seawater that has been treated to the sea (which may include a circulation process). be able to.
According to the present invention, there is a technical feature that the electrolysis efficiency is better than that of the conventional electrolysis treatment using a platinum electrode, and in particular, the required electrode area is small and the electrolysis reactor can be miniaturized. Conductive diamond has excellent chemical stability, there is no risk of corrosion due to ordinary acids and alkalis, it can be applied to water treatment with a wide pH range from acid conditions to alkaline conditions, and is stable over a long period of time. The effect of electrolytic participation treatment lasts.
[0015]
In the present invention, water containing a hydrophobic organic compound or oil is a treatment target. In the present invention, the type of the hydrophobic organic compound is not particularly limited, and examples thereof include organic chlorine compounds such as trichlorethylene and barchloroethylene, and endocrine disrupting substances. Further, examples of the oil component include pump oil, cutting oil, heavy oil, and the like, but are not limited thereto. That is, the present invention is particularly suitable for the treatment of water in which a hydrophobic organic compound or oil that is insoluble or hardly soluble in water is solubilized or dispersed.
[0016]
In the present invention, the raw water in the emulsion state can be directly subjected to the electrolytic treatment, but the raw water not in the emulsion state or the emulsion to be stabilized is subjected to an emulsification treatment. In the present invention, the method of the emulsification treatment is not particularly limited and can be performed by adding an emulsifier (surfactant). Further, when it is desired to avoid mixing of the emulsifier when the seawater is treated and returned to the sea, emulsification may be performed by a mechanical method that does not use the emulsifier.
In the electrolytic treatment, electrolysis may be performed in the middle of circulating the emulsion, thereby enabling an effective decomposition treatment. In the circulation process, an emulsification process may be added.
[0017]
An electrolyte may be added to the emulsion in order to promote the electrolytic reaction. The electrolyte is not particularly specified, and chloride ions, sulfate ions, etc. can be added, and inorganic salts can also be added. The concentration of the electrolyte is not particularly specified, but when it is extremely diluted, the voltage between the electrodes becomes too high, and it is not practical in terms of energy efficiency.
When there is no electrolyte component in the waste water, it is desirable to add an electrolyte of about 0.1M. In addition, in the said circulation process, the effect | action of the added electrolyte can be obtained repeatedly and it can utilize efficiently.
In the present invention, the inorganic salt contained in the emulsion dissolves in water to produce, for example, chloride ions, sulfate ions, etc., and is converted into hypochlorite ions and persulfate ions by electrolytic reaction at the anode, thereby decomposing organic substances. Facilitate. Furthermore, ozone, hydroxy radicals, and the like generated by water electrolysis become powerful oxidizing agents and contribute to the decomposition of organic substances.
[0018]
The conductive diamond electrode used at least as an anode in the present invention is based on a conductive metal material such as Nb, Ta, Ti, Mo, W, or Zr, and a conductive diamond thin film is deposited on the surface of these bases. , Silicon wafers and other materials based on a conductive diamond thin film synthesized on the wafer surface, and conductive polycrystalline diamond in which crystal grains are deposited and synthesized in a plate-like condition without using the substrate And single crystal diamond grown as a single crystal seed.
Further, the conductive diamond thin film is obtained by doping a diamond thin film with a predetermined amount of boron or nitrogen and imparting conductivity, and generally boron doped. If the doping amount is too small, technical significance does not occur. If the doping amount is too large, the doping effect is saturated. Therefore, a doping amount in the range of 50 to 20,000 ppm is suitable for the carbon amount of the diamond thin film. .
[0019]
In the present invention, a conductive diamond electrode is usually a plate-like one, but a network structure having a plate-like shape can also be used. Further, a fluidized bed can be formed by flowing a powder obtained by coating diamond on carbon powder or the like with an electrolytic solution. Furthermore, diamond powder can be supported on a three-dimensional structure substrate to constitute a fixed bed having a high surface area, and the reaction rate can be increased. Further, the conductive diamond need not be crystalline, and may be amorphous diamond-like carbon.
[0020]
The conductive diamond electrode has an extremely large potential window as compared with a conventional metal electrode such as platinum, and can efficiently oxidize and decompose only a target organic substance while suppressing generation of hydrogen and oxygen due to electrolysis of water. In the electrolytic treatment performed using this conductive diamond electrode, the current density on the surface of the conductive diamond electrode is set to 10 to 100,000 A / cm 2 , and the organic material-containing water is set to 10 to 10 in parallel with the diamond electrode surface. It is preferable to make contact at 1,000,000 m / h. It is desirable that the liquid temperature in the reaction vessel is usually 10 to 95 ° C.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described with reference to FIG.
The emulsion electrolytic treatment apparatus according to an embodiment of the present invention includes an electrolytic storage tank 20, an electrolytic reaction tank 40, a circulation path 30 for circulating the emulsion between the electrolytic storage tank 20 and the electrolytic reaction tank 40, and a liquid feed pump 31. ing.
[0022]
A raw water supply line 10 having an on-off valve 11 is connected to the electrolytic storage tank 20, and a stirring device 21 is provided in the electrolytic storage tank 20. Further, the electrolytic storage tank 20 is provided with a surfactant supply means 22 for supplying a surfactant as the emulsifying means to the treated water in the electrolytic storage tank 20 and an electrolyte supply means 23 for supplying an electrolyte. The electrolytic storage tank 20 is connected to the forward path of the circulation path 30 for feeding the emulsion from the electrolytic storage tank 20, and the other end of the forward path of the circulation path 30 is connected via the liquid feed pump 31. It is connected to the electrolytic reaction tank 40. The electrolytic storage tank 3 is connected to a return path (described later) of the circulation path 30 to which treated water treated in the electrolytic reaction tank 40 returns.
[0023]
The electrolytic reaction tank 40 is an apparatus for electrolytically processing the emulsion fed from the circulation path 30 and includes a conductive diamond electrode 41 (anode) and a diamond electrode 42 (cathode) disposed at a predetermined distance. Yes. The conductive diamond electrodes 40 and 41 are connected to a power source (not shown). The return path of the circulation path 30 is connected to the drain side of the electrolytic reaction tank 40, and the return path of the circulation path 30 is connected to the electrolytic storage tank 30 through the three-way valve 32 as described above. . A drainage channel 50 is connected to the other port of the three-way valve 32.
[0024]
Next, operation | movement of the said emulsion electrolysis processing apparatus is demonstrated below.
First, the on-off valve 11 provided in the raw water supply line 10 is opened, and raw water containing a hydrophobic organic compound or oil (hereinafter referred to as a hydrophobic organic compound or the like) is introduced into the electrolytic storage tank 20.
In the electrolytic storage tank 20, a predetermined amount of a predetermined surfactant is supplied from the surfactant supply means 22, and the raw water is emulsified to form an emulsion. When raw water is supplied from the raw water supply line 10 and already in an emulsion state, it is not necessary to supply the surfactant from the surfactant supply means 22 when emulsification is not required. Moreover, you may provide the emulsification apparatus which performs the emulsification performed by a mechanical method etc., without using surfactant. In the electrolytic storage tank 20, an electrolyte such as sodium sulfate may be added from the electrolyte supply means 23 as desired. The addition of the electrolyte enables efficient electrolysis even when treating water containing a hydrophobic organic compound or the like having low conductivity. In the electrolytic storage tank 20, a stirring process is performed by the stirring device 21. The emulsion in the electrolytic storage tank 20 is pressure-fed by the liquid feed pump 31 so as to be refluxed to the electrolytic storage tank 20 through the forward path of the circulation path 30, the electrolytic reaction tank 40, and the return path of the circulation path 30.
[0025]
Hydrophobic organic compound-containing water pumped to the electrolytic reaction tank 40 by the liquid feed pump 31 is electrolyzed by the conductive diamond electrodes 41 and 42 that are fed by a power source (not shown). The treated water electrolyzed in the electrolytic reaction tank 40 is returned to the electrolytic storage tank 20 through the return path of the circulation path 30. By repeating the above operation, electrolytic treatment can be continuously performed while circulating an emulsion containing a hydrophobic organic compound or the like. The circulation treatment is continued until the amount of the hydrophobic organic compound or the like is reduced to an allowable level. After the amount of the hydrophobic organic compound or the like reaches the allowable level, the three-way valve 32 is switched to treat the treated water from the drainage channel 50. Is released out of the system. The drainage channel 50 may drain the treated water as it is. When seawater containing an oily substance is treated as raw water, the treated water can be discharged to the sea via the drainage channel 50.
[0026]
In this embodiment, the surfactant can be added to the raw water in the electrolytic storage tank, but before being supplied to the electrolytic storage tank, the emulsion is supplied to the electrolytic storage tank by emulsification by adding a surfactant outside the system. You may make it do. In this embodiment, both the anode and cathode of the electrolytic reaction tank are composed of diamond electrodes. However, in the present invention, at least the anode may be composed of diamond electrodes, and the cathode can be composed of platinum or the like. . In order to perform a more effective treatment and obtain better electrode durability, it is desirable that both the anode and the cathode are composed of diamond electrodes. It should be noted that the present invention is not limited to the above-described embodiment without departing from the scope of the present invention, and can be modified further.
[0027]
【Example】
Examples of the present invention will be described below in comparison with comparative examples.
Example 1
As an electrolytic reaction tank, two laminated polycrystalline conductive diamond plates (2 cm × 2 cm × 0.05 cm) obtained by vapor phase deposition synthesis using a boron doping method in a glass container having an internal volume of 50 ml are used as electrodes. The electrodes were installed at a distance of 1 cm, and both electrodes were connected to a power supply unit to form an anode and a cathode, respectively. Silicon oil-containing water (containing surfactant polyoxyethylene alkyl ether 2 mol / l, COD Cr value of 2030 mg / l) as a mother liquor was added to this 10-fold diluted solution as an electrolyte by adding 0.1 mol / l sodium sulfate as an electrolyte. I put it in the storage tank. The electrolytic storage tank was subjected to electrolytic treatment while stirring with a stirrer (stirring device). The current density of the electrolytic reaction tank was set to 0.2 A / cm 2 in the initial stage. The electrolytic treatment was continued for 3 hours, and sample water was collected and analyzed for total organic carbon (TOC). The results shown in Table 1 were obtained. As a result, it was confirmed that the emulsion containing the hydrophobic organic compound was effectively subjected to electrolytic treatment by the examples of the present invention, and the TOC could be removed efficiently.
[0028]
[Table 1]
Figure 2005021744
[0029]
Comparative Example 1
Instead of the electrolytic treatment performed in the examples, the electrolytic treatment was performed in an electrolytic reaction tank using platinum electrodes for the cathode and the anode. Sample water, electrolysis conditions, etc. were subjected to electrolysis under the same conditions as in the example, and the results shown in Table 2 were obtained. Even after 3 hours of electrolytic treatment, the removal of TOC was insufficient.
[0030]
[Table 2]
Figure 2005021744
[0031]
Example 2
Two laminated polycrystalline conductive diamond plates (5 cm × 5 cm × 0.05 cm) synthesized by vapor deposition using a boron dope method were used as electrodes, and the distance between the electrodes was set to 0.5 cm to form an electrolytic reaction tank. Seawater containing oil (COD 10,000, 11) was placed in an electrolytic storage tank. The electrolytic storage tank was circulated in the electrolytic reaction tank at a flow rate of 5 l / min using a liquid feed pump while stirring with a stirrer. The amount of electricity charged in the electrolytic reaction tank was set so that the current density was 0.4 A / cm 2 (4000 A / m 2 ). The electrolytic treatment was continued for 5 hours, and the water at the outlet of the electrolytic reaction tank was collected and COD analysis was performed. The results shown in Table 3 were obtained. It was confirmed that COD can be efficiently removed by the electrolytic treatment method of the present invention. The treated water can be returned to the ocean again.
[0032]
[Table 3]
Figure 2005021744
[0033]
Comparative Example 2-1
The electrolytic treatment was performed under the same conditions as in Example 1 except that a platinum-plated titanium plate (5 cm × 5 cm) was used instead of the conductive diamond electrode used in Example 1. The electrolysis was continued for 5 hours in the same manner as in Example 1. However, as shown in the analysis results in Table 4, the COD reduction effect was remarkably deteriorated and the oily substance adhered to the electrode, and the electrode had to be replaced. It was.
[0034]
[Table 4]
Figure 2005021744
[0035]
Comparative Example 2-2
Instead of the conductive diamond electrode used in Example 1, a hydrophobic electrode, a titanium plate (5 cm × 5 cm × 0.2 cm) formed with a composite plating layer made of polytetrafluoroethylene and platinum, is used. The electrolytic treatment was performed under the same conditions as in Example 1 except that. The electrolysis continued for 5 hours as in Example 1, but as shown in the analysis results in Table 5, the COD reduction effect was worse than that in Example 1, electrode wear was observed, and electrode replacement was necessary. there were.
[0036]
[Table 5]
Figure 2005021744
[0037]
【The invention's effect】
As described above, according to the electrolytic treatment method for an emulsion of the present invention, an emulsion in which a hydrophobic organic compound or oil droplets are dispersed in water is electrolyzed using at least an electrode whose anode is a diamond electrode. The organic compound and the like are effectively electrolytically treated, and the hydrophobic organic compound and the like can be efficiently removed from the emulsion without generating harmful byproducts.
Moreover, according to the electrolytic treatment apparatus of the present invention, the above-described effects can be obtained by easily and reliably executing the treatment method.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a processing apparatus according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Raw water supply line 20 Electrolytic storage tank 21 Surfactant supply means 22 Electrolyte supply means 30 Circulation path 40 Electrolysis reaction tank 41 Diamond electrode (anode)
42 Diamond electrode (cathode)

Claims (5)

疎水性有機化合物または油滴が水に分散したエマルションを、少なくとも陽極がダイヤモンド電極である電極を用いて電解することを特徴とするエマルションの電解処理方法。A method for electrolytically treating an emulsion, comprising electrolyzing an emulsion in which hydrophobic organic compounds or oil droplets are dispersed in water using an electrode having at least a diamond electrode as an anode. 疎水性有機化合物または油分を含む水に乳化処理を施して安定したエマルションとした後、前記電解を行うことを特徴とする請求項1記載のエマルションの電解処理方法。2. The method of electrolytic treatment of an emulsion according to claim 1, wherein the electrolysis is performed after emulsifying water containing a hydrophobic organic compound or oil to obtain a stable emulsion. 前記エマルションを循環させつつ循環途中で前記電解を行うことを特徴とする請求項1または2に記載のエマルションの電解方法。The method of electrolyzing an emulsion according to claim 1 or 2, wherein the electrolysis is performed in the middle of circulation while circulating the emulsion. 前記エマルションに電解質を添加して前記電解を行うことを特徴とする請求項1〜3のいずれかに記載のエマルションの電解処理方法。The electrolytic treatment method for an emulsion according to any one of claims 1 to 3, wherein the electrolysis is performed by adding an electrolyte to the emulsion. 疎水性有機化合物または油分を含む水に必要に応じて乳化処理を行う乳化手段と、乳化されたエマルションを貯水する貯槽と、前記エマルションを電解するために陽極と陰極とを備え、少なくとも前記陽極がダイヤモンド電極からなる電解反応槽と、前記貯槽と電解反応槽との間で前記エマルションを循環させる循環路とを備えることを特徴とするエマルションの電解処理装置。Emulsifying means for emulsifying treatment as necessary in water containing a hydrophobic organic compound or oil, a storage tank for storing the emulsified emulsion, an anode and a cathode for electrolyzing the emulsion, and at least the anode An electrolysis apparatus for an emulsion, comprising: an electrolytic reaction tank comprising a diamond electrode; and a circulation path for circulating the emulsion between the storage tank and the electrolytic reaction tank.
JP2003187292A 2003-06-30 2003-06-30 Method and apparatus for electrolyzing emulsion Pending JP2005021744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003187292A JP2005021744A (en) 2003-06-30 2003-06-30 Method and apparatus for electrolyzing emulsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003187292A JP2005021744A (en) 2003-06-30 2003-06-30 Method and apparatus for electrolyzing emulsion

Publications (1)

Publication Number Publication Date
JP2005021744A true JP2005021744A (en) 2005-01-27

Family

ID=34186191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003187292A Pending JP2005021744A (en) 2003-06-30 2003-06-30 Method and apparatus for electrolyzing emulsion

Country Status (1)

Country Link
JP (1) JP2005021744A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095628A1 (en) * 2005-03-08 2006-09-14 Comet Co., Ltd. Liquid chromatographic analyzer and liquid chromatography analysis
GB2444925A (en) * 2006-12-21 2008-06-25 Windsor Scient Ltd Decomposing an organic liquid
CN101811756A (en) * 2010-04-21 2010-08-25 杭州师范大学 Method for treating waste emulsion through indirect electrochemical oxidation
JP2014025810A (en) * 2012-07-26 2014-02-06 Ebara Kogyo Senjo Kk Method and apparatus for processing mineral oil in radiation controlled area
JP2015040790A (en) * 2013-08-22 2015-03-02 荏原工業洗浄株式会社 Treating method and device of oil in radiation controlled area
JP2015160080A (en) * 2014-02-28 2015-09-07 荏原工業洗浄株式会社 Method and apparatus for dehalogenating organic halogen compound using conductive diamond electrode
JP2016150298A (en) * 2015-02-17 2016-08-22 三菱重工環境・化学エンジニアリング株式会社 Electrolysis system
KR101772182B1 (en) 2009-04-09 2017-08-28 주식회사 에이씨티알엔디 Colloid decomposition method and apparatus for electrochemically resolving emulsions

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7779677B2 (en) 2005-03-08 2010-08-24 Comet Co., Ltd. Liquid chromatographic analyzer and liquid chromatography analysis
WO2006095628A1 (en) * 2005-03-08 2006-09-14 Comet Co., Ltd. Liquid chromatographic analyzer and liquid chromatography analysis
GB2444925A (en) * 2006-12-21 2008-06-25 Windsor Scient Ltd Decomposing an organic liquid
WO2008078273A1 (en) * 2006-12-21 2008-07-03 Windsor Scientific Limited A method for decomposing oil and other organic insoluble and semi-soluble liquids in an aqueous medium
GB2444925B (en) * 2006-12-21 2011-01-12 Windsor Scient Ltd A method for decomposing oil and other organic insoluble and semi-soluble liquids in an aqueous medium
KR101772182B1 (en) 2009-04-09 2017-08-28 주식회사 에이씨티알엔디 Colloid decomposition method and apparatus for electrochemically resolving emulsions
CN101811756A (en) * 2010-04-21 2010-08-25 杭州师范大学 Method for treating waste emulsion through indirect electrochemical oxidation
JP2014025810A (en) * 2012-07-26 2014-02-06 Ebara Kogyo Senjo Kk Method and apparatus for processing mineral oil in radiation controlled area
JP2015040790A (en) * 2013-08-22 2015-03-02 荏原工業洗浄株式会社 Treating method and device of oil in radiation controlled area
JP2015160080A (en) * 2014-02-28 2015-09-07 荏原工業洗浄株式会社 Method and apparatus for dehalogenating organic halogen compound using conductive diamond electrode
JP2016150298A (en) * 2015-02-17 2016-08-22 三菱重工環境・化学エンジニアリング株式会社 Electrolysis system
CN106061904A (en) * 2015-02-17 2016-10-26 三菱重工环境·化学工程株式会社 Electrolysis system
KR101910262B1 (en) * 2015-02-17 2018-10-19 미츠비시 쥬코 칸쿄 카가쿠 엔지니어링 가부시키가이샤 Electrolysis system
CN106061904B (en) * 2015-02-17 2020-03-17 三菱重工环境·化学工程株式会社 Electrolysis system

Similar Documents

Publication Publication Date Title
JP3913923B2 (en) Water treatment method and water treatment apparatus
JP4671743B2 (en) Electrolytic treatment method and apparatus for wastewater containing ammonia nitrogen
JP2002317287A (en) Electrolytic cell for preparation of hydrogen peroxide and method for producing hydrogen peroxide
JP4040028B2 (en) Method and system for treating water to be treated containing organic matter and nitrogen compound
JP2005021744A (en) Method and apparatus for electrolyzing emulsion
JP2004181329A (en) Wastewater treatment method and apparatus therefor
JP2004202283A (en) Method and apparatus for treating organic compound-containing water
JP2003126860A (en) Method and apparatus for treatment of waste liquid or waste water
JP4394941B2 (en) Electrolytic ozonizer
KR100664683B1 (en) Apparatus and method for treating reproduction wastewater of condensate polisher
KR102013864B1 (en) Method for high level oxidation of organic materials using electrolyzed water and uv treatment
JP3982500B2 (en) Method and apparatus for treating wastewater containing organic compounds
KR100670629B1 (en) Electrolysis treatment facilities and method of cpp regeneration wastewater
JP2000126773A (en) Apparatus for producing hypochlorite solution and water treatment apparatus
JP2002346566A (en) Apparatus and method for water treatment
EP2089326B1 (en) Treatment system of ships ballast water, offshore petroleum platforms and vessels, in general, through a process in an electrochemical reactor
JP4616594B2 (en) Water treatment method and water treatment apparatus
JP2005058976A (en) Reduction system of waste sludge by electrolytic treatment
RU2157793C1 (en) Method of preparing disinfecting neutral anolite solution neutral anolite
JPH09150159A (en) Cod-related component removing method for the component containing water
JP2004237207A (en) Method and apparatus for treating organic compound-containing water
JP2008114209A (en) Method for treating sludge
JP2006231177A (en) Endocrine disrupting chemical substance decomposing method and apparatus
JP2004237165A (en) Method and apparatus for treating organic compound-containing water
JP2004195391A (en) Method and apparatuf for treating water containing organic compound including nonionic surfactant