JP2004181329A - Wastewater treatment method and apparatus therefor - Google Patents

Wastewater treatment method and apparatus therefor Download PDF

Info

Publication number
JP2004181329A
JP2004181329A JP2002350319A JP2002350319A JP2004181329A JP 2004181329 A JP2004181329 A JP 2004181329A JP 2002350319 A JP2002350319 A JP 2002350319A JP 2002350319 A JP2002350319 A JP 2002350319A JP 2004181329 A JP2004181329 A JP 2004181329A
Authority
JP
Japan
Prior art keywords
treatment
fenton
wastewater
reaction tank
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002350319A
Other languages
Japanese (ja)
Inventor
Shusuke Hamabe
辺 秀 典 浜
Chie Ueno
野 智 恵 上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002350319A priority Critical patent/JP2004181329A/en
Publication of JP2004181329A publication Critical patent/JP2004181329A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently treating organic wastewater by a reduced amount of an iron compound by enabling the circulating use of the iron compound in a method for the Fenton treatment of wastewater containing organic matter, and a wastewater treatment apparatus therefor. <P>SOLUTION: Electrodes are provided in a reaction tank for performing Fenton treatment while reducing Fe<SP>3+</SP>electrochemically. Alternatively, a plurality of reaction tanks for performing the Fenton treatment are arranged in series and electrodes are provided in at least one of the reaction tanks to perform the Fenton treatment while reducing Fe<SP>3+</SP>electrochemically. At least a part of sludge containing Fe<SP>3+</SP>obtained by solid-liquid separation after the Fenton treatment is returned to the reaction tank provided with the electrodes. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、有機物を含む排水(以降「有機性排水」と記す)の処理、さらに詳細には食品工場、化学工場、石油プラント、製紙工場、半導体工場、産業廃棄物貯留場など各種工場から排出される有機性排水の酸化分解による排水処理方法および排水処理装置に関するものである。
【0002】
【従来の技術】
水中の有機物の分解処理方法として、生物学的な活性汚泥法が一般に広く行われているが、有機化学物質を多く含む場合には微生物分解では多くの時間を要し、また発生した余剰汚泥の処理に困ることが多くある。そこで有機物を予め物理・化学的な処理法で部分的に分解して微生物分解の負荷を軽くすることが行われる。このような物理・化学的な処理法として、オゾン酸化、過酸化水素酸化、フェントン酸化などの酸化分解があり、フェントン酸化は有機物の分解効率の良さと、大きな設備を要さない点で優れている。
【0003】
フェントン酸化方法は、過酸化水素(H)が第一鉄イオン〔Fe2+〕などの金属イオンによってヒドロキシラジカル(HO・)とヒドロキシイオン(HO)に分解するフェントン反応を利用するもので、ここに生じたヒドロキシラジカル(HO・)により有機物を酸化させる方法である。〔例えば、特許文献1、特許文献2参照〕
【0004】
具体的には、有機物を含む水に第一鉄化合物〔Fe2+〕と過酸化水素を加えると、下式の反応によりヒドロキシラジカル(HO・)が発生し、このヒドロキシラジカルにより水中の有機物を酸化分解させる。
【化1】

Figure 2004181329
【0005】
フェントン反応では、上式のように、過酸化水素とFe3+が作用するので、それぞれの効率的な運用方法が検討され、過酸化水素では過酸化水素の自己分解を最小限にするために多段注入による方法〔例えば、特許文献3参照〕が提案された。一方、Fe2+はFe3+となるとフェントン反応に実質関与しないので、被処理水中の有機物が酸化されるに見合うFe2+の添加が必要であり、生成したFe3+は廃棄することになるため、鉄化合物から見れば非常に効率が悪い。
【0006】
この改善として、フェントン処理工程の後に固液分離して、分離したFe3+を含む汚泥の一部を、金属鉄、金属亜鉛、金属錫、塩化第一錫、アスコルビン酸、亜硫酸塩、亜硫酸水素塩などの還元剤で還元してFe2+とし、フェントン処理工程に戻す方法〔特許文献4参照〕が提案された。図1にその概略フローを説明した。この方法は、鉄化合物の使用効率を上げることができるが、還元反応を行わせるための別途装置が必要であり、その運転管理まで含めて考えると必ずしも運転効率を上げるに至っていなかった。
【0007】
【特許文献1】
特公昭59−1120号公報
【特許文献2】
特開平10−277568号公報
【特許文献3】
特開平3−52692号公報
【特許文献4】
特許第2506032号公報
【0008】
【発明が解決しようとする課題】
本発明はかかる有機性排水のフェントン処理における問題点に鑑み、鉄化合物の循環使用を可能にして、少ない鉄化合物で効率よく有機性排水を処理できる方法およびその排水処理装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記問題点を解決すべく、請求項1の発明は排水処理方法であり、有機物を含む排水を鉄塩と過酸化水素を用いてフェントン処理する方法において、フェントン処理を行う反応槽内に電極を設けて、Fe3+を電気化学的に還元しつつフェントン処理を行うことからなっている。
【0010】
請求項2の発明は排水処理方法であり、有機物を含む排水を鉄塩と過酸化水素を用いてフェントン処理する方法において、フェントン処理を行う反応槽を直列に複数個並べ、その少なくとも一つは反応槽内に電極を設けて、Fe3+を電気化学的に還元しつつフェントン処理を行うことからなっている。
【0011】
請求項3の発明は請求項1または2記載の排水処理方法であり、前記フェントン処理した後に固液分離したFe3+を含む汚泥の少なくとも一部を、電極を設けた反応槽に戻すことからなっている。
【0012】
請求項4の発明は請求項1ないし3のいずれか1項記載の排水処理方法であり、前記フェントン処理に使用する過酸化水素は、2〜10の多段に分割して前記反応槽に加えることからなっている。
【0013】
請求項5の発明は請求項2ないし4のいずれか1項記載の排水処理方法であり、各フェントン処理を行う複数個の反応槽それぞれに分割して加えることからなっている。
【0014】
請求項6の発明は請求項1ないし5のいずれか1項記載の排水処理方法であり、前記電極を設けた反応槽は、隔膜によって陽極室と陰極室に分離されていることからなっている。
【0015】
請求項7の発明は請求項6記載の排水処理方法であり、前記陽極室に有機物を含む排水、返送汚泥、及び酸を入れて、前記返送された汚泥を前記排水中に溶解せしめ、これを陰極室に移送して陰極室においてFe3+を電気化学的に還元しつつフェントン処理を行うことからなっている。
【0016】
請求項8の発明は請求項1ないし7のいずれか1項記載の排水処理方法であり、陰極は、銅あるいは銅を含む合金からなっている。
【0017】
請求項9の発明は請求項1ないし8いずれか1項記載の排水処理方法であり、前記電気化学的還元は、電流密度0.1〜100mA/cmで行うことからなっている。
【0018】
請求項10の発明は請求項1ないし9のいずれか1項記載の排水処理方法であり、前記有機物を含む排水のフェントン処理および前記電気化学的還元は、pHが1.5〜5.0にて行うことからなっている。
【0019】
請求項11の発明は排水処理装置であり、有機物を含む排水を供給する供給ラインと、前記供給ラインに連通し、かつ内部に電極を備えた反応槽とを有し、前記反応槽内に鉄塩及び過酸化水素を供給して前記有機物を含む排水をフェントン処理することからなっている。
【0020】
【発明の実施の形態】
本発明は、有機性排水をフェントン処理する方法であって、有機性排水のフェントン処理と、これによって生成したFe3+の電気化学的還元を同時に行うことにその特徴がある。
【0021】
さらに、フェントン処理工程の後段で沈降分離された汚泥は、水酸化第二鉄を含んでいるので、この汚泥の少なくとも一部を返送汚泥として反応槽に戻し再生利用することを本発明のさらなる特徴としている。
【0022】
図2は、本発明の実施の形態を示す返送汚泥を反応槽に加えて有機性排水処理を行う場合の系統図である。有機性排水、返送汚泥、過酸化水素、Fe2+化合物、酸はそれぞれ反応槽に直接加えてもよく、あるいは有機性排水のラインに加えられ一緒に反応槽に入れてもよい。図2では、pH調整槽、溶解槽、および反応槽を一つにまとめて描いてあるが、これらは別々でもよい。また、後述するように反応槽は、複数を多段に設けてもよい。返送汚泥は水酸化第二鉄を含む水酸化鉄混合物であり、溶解槽を別に設けて酸性の水に溶解させる、あるいは酸性にされた有機性排水と混合して反応槽中で溶解させる。
【0023】
反応槽は、本発明の有機性排水の処理における核心部分であり、フェントン反応による水中有機物の分解と同時に、反応槽内に設置した電極間に電圧を印加することにより返送汚泥中のFe3+をFe2+に電気化学的に還元している。
【0024】
反応槽の好ましい形態は、反応槽内で電極反応を行わせる形態であればよく、図3では、中央に陽極を、その周囲に陰極を置いた形態を示した。Fe3+からFe2+への還元は、陰極面で行われるので、このように広い陰極面は有利である。
【0025】
また、図4のように陰極と陽極の間に隔膜をおき、陰極室と陽極室を分けて行うこともできる。隔膜は、Fe2+を透過しない陰イオン交換膜であればよく、例えば、均質膜、不均質膜、グラフト膜などがあり、旭硝子(株)から「セレミオン(商品名)」として市販されているものを使用することができる。このとき、陰極室をフェントン処理およびFe3+の電気化学的還元反応を行わせる実質的な反応槽となる。陽極室には任意の電解質水溶液が用いられ、例えば硫酸ナトリウム、塩化ナトリウムなどの水溶液とし、電気分解の進行に伴って酸性になるので適宜中和して行う。しかし、陽極室に被処理水である有機性排水を酸性にして受け、同時に返送汚泥を受けて返送汚泥の溶解槽を兼ねることもでき、実用上は好ましい形態の一つである。図4の場合には、陽極室で有機性排水と返送汚泥を受け、別途酸を加えて、返送汚泥を溶解し、次いで溶解液の一部をラインから陰極室に流し、ラインの途中あるいは別途陰極室に過酸化水素を加え、陰極室内でフェントン反応と電気化学的還元を進行させている。
【0026】
フェントン法による有機物の分解は、有機物を含む水に過酸化水素とFe2+化合物を加えて行う酸化分解方法の一つであり公知の方法である。過酸化水素の量は、水中有機物の種類、濃度、処理水のpH、反応時間などに依り異なるが、代表的には被処理水中の有機物COD濃度に対し0.1〜10当量倍である。Fe2+化合物は、硫酸第一鉄、塩化第一鉄、硝酸第一鉄などであり、活性度、価格などを考慮すると硫酸第一鉄が最も好ましく選ばれる。加えるFe2+化合物の量は、有機物COD濃度の0.01〜2当量倍である。
【0027】
本発明の反応槽には陰極と陽極を設け、両電極間に電圧をかけることによりFe3+をFe2+に電気化学的に還元する。陰極は、Fe3+の還元電極であり、その材料は標準電極電位がFeより「貴」な材料から選ぶのが好ましく、具体的には銅、錫、亜鉛あるいはこれらを含む合金であり、最も好ましくは銅あるいは銅を含む合金が選ばれる。陽極の材料は、白金、チタンなどであり、DAS(ダイヤモンド)電極を用いることもできる。電極の大きさ(面積)は、大きいほどFe3+の還元には有利であり、反応槽の大きさや電極形状に応じて適宜設定することができる。電極間距離は、代表的には5〜500mmである。この電気化学的反応は、電流密度を0.1〜100mA/cmとし、電極間電位を前述した電極間距離と処理対象となる排水の電気伝導度に応じて設定して行えばよい。電流密度は高い程還元する能力は増すが、陰極表面でpHが上昇し、フェントン反応にとって不利となる。実行上は電極形状、電極面積、フェントン処理速度などを考慮して決められる。
【0028】
本発明においては、反応槽ではフェントン法による有機物の分解と電気化学的方法によるFe3+のFe2+への還元とを同時に行わせる。従って、被処理水は上記二つの反応が適切に進行する状態に維持することが必要であり、具体的には、常温でpHを1.5〜5.0、好ましくは2.0〜4.0にする。pH調製には、塩酸、硫酸など任意の酸が加えられる。このpH領域は、返送汚泥を溶解させるにも都合のよい条件である。
【0029】
発生した汚泥が全て戻される場合には、鉄化合物に関して理論的に完全循環が可能であるが、電極の大きさ、効率などの制約により完全循環ができないことがあり、固液分離した汚泥の一部を反応槽に戻し、Fe2+化合物の不足分のみ新しく加えるのがよい。返送汚泥の量、新しく加えるFe2+化合物の量は、処理水中に残る被酸化物の量、必要度を鑑み決定される。
【0030】
このようにして、有機性排水中の有機物がフェントン反応により酸化分解され、同時にフェントン反応により生成したFe3+が反応槽内でFe2+へ還元されてフェントン反応に再利用されるので、新たに加えるFe2+の量を少なくしても目的が達せられる。一方、電気化学的に還元する能力が充分大きければ、反応槽にはFe2+化合物に代えてFe3+化合物を加えても目的が達成できる。
【0031】
反応槽中での滞留時間は、被処理水の量、被処理水中の有機物量とフェントン法の処理能力などにより異なるが、代表的には1〜60分、特に5〜30分程度である。フェントン処理は、一つの反応槽で行ってもよく、あるいは複数の槽を直列で並べて行ってもよい。
【0032】
反応槽を一つで行う場合には、その反応槽で目的とする有機性排水が所定の有機物(COD)レベル迄になるよう充分な滞留時間をとることが要請され、従って、有機性排水を連続して流しつつ処理を行う場合には、反応槽に対し流量を充分少なくし、過酸化水素、Fe2+化またはFe3+の鉄化合物、および/または返送汚泥は、有機性排水の流量に合わせて連続的に反応槽に加えていく。また有機性排水をバッチ方式で反応槽内に充分な時間滞留させる場合には、Fe2+化またはFe3+の鉄化合物、および/または返送汚泥は、反応の始めに全量加えるが、過酸化水素は始めに一部を加え、残りは時間をずらして多段に加えるのが好ましい。過酸化水素を加える回数、およびそれぞれの回に加える量は、水中のCOD濃度、Fe2+の量、装置形状、フェントン処理速度などを考慮して決められ、通常2〜10回に分けて行う。
【0033】
複数の槽を直列で並べて行う場合には、各槽での処理は上記と同じように連続的に実施することもでき、あるいはバッチ方式で各反応槽内に任意の時間滞留させて実施することもできる。このとき、フェントン処理と電気化学的還元を同時に行う反応槽ばかりでなく、フェントン処理のみを行う反応槽を適宜組合せることができる。すなわち、第一の反応槽がフェントン処理のみ行う場合には、第一の反応槽には有機性排水とともに過酸化水素、Fe2+化合物が加えられ、二段目以降の反応槽で電気化学的還元を行いつつフェントン処理を行うようにする。返送汚泥を加えるのは、電気化学的還元を行う反応槽であることはいうまでもない。第一の反応槽がフェントン処理と電気化学的還元を同時に行う反応槽である場合には、有機性排水とともに、Fe2+化またはFe3+の鉄化合物、および/または返送汚泥は第一反応槽に加えられる。いずれの場合においても後段にある反応槽では、その直前の反応槽から出る水中にFe2+が充分量あるときは、フェントン処理のみを行うことでもよい。しかし、過酸化水素に関しては、各段でそれぞれ加えるのが好ましい。各段で加えられる過酸化水素の量は、処理水のCOD値を測定して決めるべきである。
【0034】
反応槽でフェントン処理された処理水は、その後段で水酸化ナトリウムなどアルカリを加えてpHを7以上にして鉄塩を水酸化鉄として析出させ、沈降分離する。沈降分離は、固液を分離させるという目的が達っせられればよくその方法は限定するものではないが、通常凝集沈降法、遠心分離法、膜分離法などが任意に用いられる。沈降分離した水は処理水として排出し、さらに微生物処理などの処理を行う工程、あるいはそのまま廃棄される。通常、フェントン処理後の処理を考慮して処理水中のCOD値を一定水準以下にするように条件設定される。
【0035】
【実施例】
〔実施例1〕
自動車工場排水〔CODCr:1,440mg/L〕を用いてフェントン処理を行った。
a)Fe2+を用いた従来のフェントン処理(比較例)
Figure 2004181329
【0036】
b)Fe3+を用い、電気化学的反応を伴いながらのフェントン処理(実施例)
Figure 2004181329
この結果から、反応槽で電気化学的方法を並行させることにより、少ない鉄塩で、しかもFe3+を用いてもフェントン反応を実施できることが認められた。
【0037】
〔実施例2〕
自動車工場排水〔CODCr:1,280mg/L〕を用いてフェントン処理を行った。
a)Fe2+を用いた従来のフェントン処理(比較例)
FeSO・7HO :11,000mg/L
〔活性分として〕:2,700mg/L
pH :2.5
反応温度 :25℃
【0038】
b)Fe3+を用い、電気化学的反応を伴い、過酸化水素を多段で加えてのフェントン処理(実施例)
Figure 2004181329
処理水中の残留CODCr値〔水中のHを除いた後〕及び残留H量の推移を表1に示した。
【0039】
【表1】
Figure 2004181329
この結果から、反応槽で電気化学的方法を並行させることにより、少ない鉄塩で、しかもFe3+を用いてもフェントン反応を実施できることがわかるとともに、Hを多段に分けて加えることにより、さらに効率よくフェントン反応を実施できることがわかる。
【0040】
〔実施例3〕
化学工場排水〔CODCr:220mg/L〕を用いてフェントン処理を行った。
a)Fe2+を用いた従来のフェントン処理(比較例)
Figure 2004181329
【0041】
b)Fe3+を用い、電気化学的反応を伴いながらのフェントン処理(実施例)
Figure 2004181329
この結果から、反応槽で電気化学的方法を並行させることにより、Fe3+からフェントン反応を実施できることが認められた。
【0042】
〔実施例4〕
ごみ処理施設の浸出排水〔CODCr:690mg/L〕を用いてフェントン処理を行った。
a)Fe2+を用いた従来のフェントン処理(比較例)
Figure 2004181329
【0043】
b)Fe3+を用い、電気化学的反応を伴いながらのフェントン処理(実施例)
Figure 2004181329
この結果から、反応槽で電気化学的方法を並行させることにより、Fe3+からフェントン反応を実施できることが認められた。
【0044】
【発明の効果】
本発明により、フェントン処理における触媒として作用する鉄化合物を循環使用することが可能になり、少ない鉄化合物で、かつ反応効率を上げて有機性排水を処理できる。これは、有機性排水のCOD値を減らす手段として有用である。
【図面の簡単な説明】
【図1】特許文献4記載の方法によるフェントン処理工程概略フローである。
【図2】返送汚泥を反応槽に加えて有機性排水処理を行う本発明の実施の形態を示す系統図である。
【図3】本発明実施の形態の例であり、中央に陽極を、その周囲に陰極を置いた反応槽を説明する模式図である。
【図4】本発明実施の形態の例であり、陰極と陽極の間に隔膜をおき、陰極室と陽極室を分けて行う溶解〜反応槽を説明する模式図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention treats wastewater containing organic matter (hereinafter referred to as "organic wastewater"), and more specifically, discharges from various factories such as food factories, chemical factories, petroleum plants, paper mills, semiconductor factories, and industrial waste storage sites. The present invention relates to a wastewater treatment method and wastewater treatment apparatus by oxidative decomposition of organic wastewater to be treated.
[0002]
[Prior art]
As a method for decomposing organic substances in water, a biological activated sludge method is generally widely used.However, when a large amount of organic chemical substances are contained, microbial decomposition requires a lot of time, and excess sludge generated is generated. There are many problems with processing. Therefore, organic substances are partially decomposed in advance by physical or chemical treatment to reduce the load of microbial decomposition. Such physical and chemical treatment methods include oxidative decomposition such as ozone oxidation, hydrogen peroxide oxidation, and Fenton oxidation, and Fenton oxidation is excellent in that it has high efficiency in decomposing organic substances and does not require large equipment. I have.
[0003]
The Fenton oxidation method utilizes a Fenton reaction in which hydrogen peroxide (H 2 O 2 ) is decomposed into a hydroxyl radical (HO.) And a hydroxy ion (HO ) by a metal ion such as ferrous ion [Fe 2+ ]. In this method, an organic substance is oxidized by the generated hydroxy radical (HO.). [For example, see Patent Documents 1 and 2]
[0004]
Specifically, when a ferrous compound [Fe 2+ ] and hydrogen peroxide are added to water containing an organic substance, a hydroxyl radical (HO.) Is generated by the following reaction, and the hydroxyl radical oxidizes the organic substance in the water. Let it break down.
Embedded image
Figure 2004181329
[0005]
In the Fenton reaction, as shown in the above equation, hydrogen peroxide and Fe 3+ act. Therefore, efficient operation methods for each are studied. In hydrogen peroxide, multiple steps are taken to minimize the self-decomposition of hydrogen peroxide. A method by injection (for example, see Patent Document 3) has been proposed. On the other hand, since Fe 2+ does not substantially participate in the Fenton reaction when it becomes Fe 3+ , it is necessary to add Fe 2+ corresponding to the oxidation of the organic matter in the water to be treated, and the generated Fe 3+ is discarded. Very inefficient from a compound standpoint.
[0006]
As an improvement, a part of the sludge containing Fe 3+ separated by solid-liquid separation after the Fenton treatment step is converted into metallic iron, metallic zinc, metallic tin, stannous chloride, ascorbic acid, sulfite, bisulfite. For example, a method has been proposed in which Fe 2+ is reduced by a reducing agent, such as Fe 2+, and the process returns to the Fenton treatment step (see Patent Document 4). FIG. 1 illustrates the schematic flow. This method can increase the use efficiency of the iron compound, but requires a separate apparatus for performing the reduction reaction, and does not necessarily increase the operation efficiency in consideration of its operation management.
[0007]
[Patent Document 1]
JP-B-59-1120 [Patent Document 2]
JP-A-10-277568 [Patent Document 3]
JP-A-3-52692 [Patent Document 4]
Japanese Patent No. 2506032 [0008]
[Problems to be solved by the invention]
In view of the problems in the Fenton treatment of organic wastewater, an object of the present invention is to provide a method capable of efficiently recycling organic wastewater with a small amount of an iron compound by enabling recycling of an iron compound, and an object of the present invention. And
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the invention of claim 1 is a wastewater treatment method, wherein in a method of treating wastewater containing organic matter with Fenton using iron salt and hydrogen peroxide, an electrode is provided in a reaction tank for performing Fenton treatment. And performing Fenton treatment while electrochemically reducing Fe 3+ .
[0010]
The invention according to claim 2 is a wastewater treatment method, wherein in a method of treating wastewater containing organic matter with Fenton using iron salts and hydrogen peroxide, a plurality of reaction tanks for performing Fenton treatment are arranged in series, and at least one of the reaction tanks is arranged. An electrode is provided in the reaction tank, and Fenton treatment is performed while Fe 3+ is electrochemically reduced.
[0011]
A third aspect of the present invention is the wastewater treatment method according to the first or second aspect, wherein at least a part of the sludge containing Fe 3+ that has been subjected to the Fenton treatment and solid-liquid separated is returned to a reaction tank provided with an electrode. ing.
[0012]
The invention of claim 4 is the wastewater treatment method according to any one of claims 1 to 3, wherein the hydrogen peroxide used for the Fenton treatment is divided into 2 to 10 stages and added to the reaction tank. Consists of
[0013]
A fifth aspect of the present invention is the wastewater treatment method according to any one of the second to fourth aspects, wherein the wastewater treatment method is divided into a plurality of reaction tanks for performing each Fenton treatment.
[0014]
The invention according to claim 6 is the wastewater treatment method according to any one of claims 1 to 5, wherein the reaction tank provided with the electrodes is separated into an anode chamber and a cathode chamber by a diaphragm. .
[0015]
The invention of claim 7 is the wastewater treatment method according to claim 6, wherein wastewater containing organic matter, return sludge, and acid are put into the anode chamber, and the returned sludge is dissolved in the wastewater. The Fenton treatment is performed while transferring to the cathode chamber and electrochemically reducing Fe 3+ in the cathode chamber.
[0016]
The invention of claim 8 is the wastewater treatment method according to any one of claims 1 to 7, wherein the cathode is made of copper or an alloy containing copper.
[0017]
The invention of claim 9 is the wastewater treatment method according to any one of claims 1 to 8, wherein the electrochemical reduction is performed at a current density of 0.1 to 100 mA / cm 2 .
[0018]
A tenth aspect of the present invention is the wastewater treatment method according to any one of the first to ninth aspects, wherein the Fenton treatment of the wastewater containing organic matter and the electrochemical reduction have a pH of 1.5 to 5.0. It consists of doing.
[0019]
The invention according to claim 11 is a wastewater treatment apparatus, comprising: a supply line for supplying wastewater containing organic matter; and a reaction tank connected to the supply line and having an electrode therein, wherein iron is contained in the reaction tank. The wastewater containing the organic matter is subjected to Fenton treatment by supplying salt and hydrogen peroxide.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to a method of treating organic wastewater with Fenton, which is characterized in that the organic wastewater is subjected to Fenton treatment and the electrochemical reduction of Fe 3+ generated thereby at the same time.
[0021]
Furthermore, since the sludge separated and settled in the latter stage of the Fenton treatment step contains ferric hydroxide, at least a part of the sludge is returned to the reaction tank as return sludge and is reused. And
[0022]
FIG. 2 is a system diagram showing an embodiment of the present invention in which return sludge is added to a reaction tank to perform organic wastewater treatment. The organic wastewater, returned sludge, hydrogen peroxide, Fe 2+ compound, and acid may each be added directly to the reaction vessel, or may be added to the organic wastewater line and put into the reaction vessel together. In FIG. 2, the pH adjusting tank, the dissolving tank, and the reaction tank are collectively drawn, but these may be separate. As described later, a plurality of reaction vessels may be provided in multiple stages. The returned sludge is a mixture of iron hydroxide containing ferric hydroxide, and is separately provided with a dissolution tank and dissolved in acidic water, or mixed with acidified organic wastewater and dissolved in the reaction tank.
[0023]
The reaction tank is a core part in the treatment of the organic wastewater of the present invention. At the same time as the decomposition of the organic matter in water by the Fenton reaction, Fe 3+ in the returned sludge is applied by applying a voltage between the electrodes installed in the reaction tank. It is electrochemically reduced to Fe 2+ .
[0024]
The preferred form of the reaction vessel is a form in which an electrode reaction is performed in the reaction vessel. FIG. 3 shows a form in which an anode is placed at the center and a cathode is placed around the center. Such a wide cathode surface is advantageous because the reduction of Fe 3+ to Fe 2+ takes place on the cathode surface.
[0025]
Also, as shown in FIG. 4, a diaphragm may be provided between the cathode and the anode, and the cathode chamber and the anode chamber may be separated. The diaphragm may be any anion exchange membrane that does not allow Fe 2+ to permeate, and includes, for example, a homogeneous membrane, a heterogeneous membrane, and a graft membrane, which are commercially available from Asahi Glass Co., Ltd. as “Selemion (trade name)”. Can be used. At this time, the cathode chamber becomes a substantial reaction tank for performing the Fenton treatment and the electrochemical reduction reaction of Fe 3+ . An arbitrary electrolyte aqueous solution is used in the anode chamber. For example, an aqueous solution of sodium sulfate, sodium chloride, or the like is used, and the solution is acidified with the progress of electrolysis. However, it is possible to acidify and receive the organic wastewater, which is the water to be treated, in the anode chamber, and at the same time, to receive the returned sludge and also serve as a dissolving tank for the returned sludge, which is one of practically preferable embodiments. In the case of FIG. 4, organic wastewater and return sludge are received in the anode chamber, an acid is separately added to dissolve the return sludge, and then a part of the solution is flowed from the line to the cathode chamber, and then in the middle of the line or separately. Hydrogen peroxide is added to the cathode chamber, and the Fenton reaction and electrochemical reduction proceed in the cathode chamber.
[0026]
Decomposition of an organic substance by the Fenton method is one of known oxidative decomposition methods performed by adding hydrogen peroxide and a Fe 2+ compound to water containing an organic substance. The amount of hydrogen peroxide varies depending on the type and concentration of the organic matter in the water, the pH of the treated water, the reaction time, and the like, but is typically 0.1 to 10 equivalents of the COD concentration of the organic matter in the water to be treated. The Fe 2+ compound is, for example, ferrous sulfate, ferrous chloride, or ferrous nitrate. Ferrous sulfate is most preferably selected in consideration of the activity, the price, and the like. The amount of the Fe 2+ compound to be added is 0.01 to 2 equivalent times of the organic COD concentration.
[0027]
The reaction vessel of the present invention is provided with a cathode and an anode, and a voltage is applied between the two electrodes to electrochemically reduce Fe 3+ to Fe 2+ . The cathode is an Fe 3+ reduction electrode, and the material is preferably selected from materials having a standard electrode potential “noble” than Fe, specifically, copper, tin, zinc or an alloy containing these, most preferably. Is copper or an alloy containing copper. The material of the anode is platinum, titanium, or the like, and a DAS (diamond) electrode can also be used. The larger the size (area) of the electrode is, the more advantageous it is for reducing Fe 3+ , and it can be appropriately set according to the size of the reaction tank and the shape of the electrode. The distance between the electrodes is typically 5 to 500 mm. This electrochemical reaction may be performed by setting the current density to 0.1 to 100 mA / cm 2 and setting the inter-electrode potential according to the above-described inter-electrode distance and the electric conductivity of the wastewater to be treated. The higher the current density, the greater the ability to reduce, but the higher the pH at the cathode surface, which is disadvantageous for the Fenton reaction. In practice, it is determined in consideration of the electrode shape, electrode area, Fenton processing speed, and the like.
[0028]
In the present invention, decomposition of organic substances by the Fenton method and reduction of Fe 3+ to Fe 2+ by an electrochemical method are simultaneously performed in the reaction tank. Therefore, the water to be treated needs to be maintained in a state where the above two reactions proceed appropriately. Specifically, the pH at normal temperature is 1.5 to 5.0, preferably 2.0 to 4.0. Set to 0. For pH adjustment, an optional acid such as hydrochloric acid or sulfuric acid is added. This pH range is a favorable condition for dissolving the returned sludge.
[0029]
When all generated sludge is returned, theoretically complete circulation of iron compounds is possible, but complete circulation may not be possible due to restrictions on the size and efficiency of the electrode, etc. It is advisable to return the part to the reaction tank and to newly add only the shortage of the Fe 2+ compound. The amount of returned sludge and the amount of newly added Fe 2+ compound are determined in consideration of the amount of oxide remaining in the treated water and the necessity.
[0030]
In this way, the organic matter in the organic wastewater is oxidatively decomposed by the Fenton reaction, and at the same time, Fe 3+ generated by the Fenton reaction is reduced to Fe 2+ in the reaction tank and reused in the Fenton reaction, so that it is newly added. The purpose can be achieved even if the amount of Fe 2+ is reduced. On the other hand, if the ability to electrochemically reduce is sufficiently large, the object can be achieved even if an Fe 3+ compound is added to the reaction tank instead of the Fe 2+ compound.
[0031]
The residence time in the reaction tank varies depending on the amount of water to be treated, the amount of organic matter in the water to be treated, the treatment capacity of the Fenton method, and the like, but is typically 1 to 60 minutes, particularly about 5 to 30 minutes. The Fenton treatment may be performed in one reaction vessel, or a plurality of vessels may be arranged in series.
[0032]
When a single reaction tank is used, it is required that the organic wastewater in the reaction tank has a sufficient residence time to reach a predetermined organic matter (COD) level. When the treatment is performed while flowing continuously, the flow rate is sufficiently reduced with respect to the reaction tank, and hydrogen peroxide, Fe 2+ -formed or Fe 3+ iron compound, and / or returned sludge are adjusted to the flow rate of the organic wastewater. To the reactor continuously. When the organic wastewater is retained in the reaction tank in a batch mode for a sufficient time, the iron compound of Fe 2+ or Fe 3+ and / or the return sludge are all added at the beginning of the reaction, but hydrogen peroxide is added. It is preferable to add a part at the beginning and add the rest in multiple stages with a time delay. The number of times hydrogen peroxide is added and the amount added in each time are determined in consideration of the COD concentration in water, the amount of Fe 2+ , the device shape, the Fenton treatment speed, and the like, and are usually divided into 2 to 10 times.
[0033]
When a plurality of tanks are arranged in series, the treatment in each tank can be performed continuously in the same manner as described above, or the processing can be carried out in a batch manner for a desired time in each reaction tank. You can also. At this time, not only a reaction tank that simultaneously performs the Fenton treatment and the electrochemical reduction, but also a reaction tank that performs only the Fenton treatment can be appropriately combined. That is, when only the Fenton treatment is performed in the first reaction tank, hydrogen peroxide and an Fe 2+ compound are added to the first reaction tank together with the organic wastewater, and electrochemical reduction is performed in the second and subsequent reaction tanks. To perform the Fenton treatment. It goes without saying that the sludge to be returned is added to the reaction tank that performs the electrochemical reduction. In the case where the first reaction tank is a reaction tank that simultaneously performs the Fenton treatment and the electrochemical reduction, the Fe2 + -formed or Fe3 + iron compound, and / or the returned sludge are sent to the first reaction tank together with the organic wastewater. Added. In any case, in the subsequent reaction tank, if there is a sufficient amount of Fe 2+ in the water discharged from the immediately preceding reaction tank, only the Fenton treatment may be performed. However, it is preferable to add hydrogen peroxide at each stage. The amount of hydrogen peroxide added at each stage should be determined by measuring the COD value of the treated water.
[0034]
The treated water subjected to the Fenton treatment in the reaction tank is adjusted to pH 7 or more by adding an alkali such as sodium hydroxide at the subsequent stage to precipitate an iron salt as iron hydroxide and sedimentation-separated. The method of sedimentation separation is not limited as long as the purpose of separating solid and liquid can be achieved, and a coagulation sedimentation method, a centrifugal separation method, a membrane separation method and the like are usually used arbitrarily. The sedimented and separated water is discharged as treated water, and is further discarded in a step of performing treatment such as microbial treatment or the like. Normally, conditions are set so that the COD value in the treated water is kept below a certain level in consideration of the treatment after the Fenton treatment.
[0035]
【Example】
[Example 1]
Fenton treatment was performed using wastewater from an automobile factory [COD Cr : 1,440 mg / L].
a) Conventional Fenton treatment using Fe 2+ (comparative example)
Figure 2004181329
[0036]
b) Fenton treatment with electrochemical reaction using Fe 3+ (Example)
Figure 2004181329
From this result, it was confirmed that the Fenton reaction can be performed with a small amount of iron salt and using Fe 3+ by performing the electrochemical method in the reaction tank in parallel.
[0037]
[Example 2]
Fenton treatment was performed using automobile factory wastewater [COD Cr : 1,280 mg / L].
a) Conventional Fenton treatment using Fe 2+ (comparative example)
FeSO 4 · 7H 2 O: 11,000mg / L
H 2 O 2 [as active component]: 2,700 mg / L
pH: 2.5
Reaction temperature: 25 ° C
[0038]
b) Fenton treatment using Fe 3+ , involving electrochemical reaction and adding hydrogen peroxide in multiple stages (Example)
Figure 2004181329
Table 1 shows changes in the residual COD Cr value in the treated water (after removing H 2 O 2 in the water) and the amount of residual H 2 O 2 .
[0039]
[Table 1]
Figure 2004181329
From these results, it can be seen that the Fenton reaction can be carried out with a small amount of iron salt and using Fe 3+ by paralleling the electrochemical methods in the reaction tank, and by adding H 2 O 2 in multiple stages. It can be seen that the Fenton reaction can be performed more efficiently.
[0040]
[Example 3]
Fenton treatment was performed using chemical factory wastewater [COD Cr : 220 mg / L].
a) Conventional Fenton treatment using Fe 2+ (comparative example)
Figure 2004181329
[0041]
b) Fenton treatment with electrochemical reaction using Fe 3+ (Example)
Figure 2004181329
From this result, it was recognized that the Fenton reaction can be performed from Fe 3+ by performing the electrochemical method in the reaction tank in parallel.
[0042]
[Example 4]
Fenton treatment was performed using leachate wastewater from a waste treatment facility [COD Cr : 690 mg / L].
a) Conventional Fenton treatment using Fe 2+ (comparative example)
Figure 2004181329
[0043]
b) Fenton treatment with electrochemical reaction using Fe 3+ (Example)
Figure 2004181329
From this result, it was recognized that the Fenton reaction can be performed from Fe 3+ by performing the electrochemical method in the reaction tank in parallel.
[0044]
【The invention's effect】
ADVANTAGE OF THE INVENTION By this invention, it becomes possible to recycle | circulate and use the iron compound which acts as a catalyst in Fenton treatment, and can process organic waste water with little iron compound and raising reaction efficiency. This is useful as a means for reducing the COD value of organic wastewater.
[Brief description of the drawings]
FIG. 1 is a schematic flow chart of a Fenton treatment process according to the method described in Patent Document 4.
FIG. 2 is a system diagram showing an embodiment of the present invention in which return sludge is added to a reaction tank to perform organic wastewater treatment.
FIG. 3 is a schematic diagram illustrating an example of an embodiment of the present invention and illustrating a reaction tank having an anode at the center and a cathode around the anode.
FIG. 4 is an example of an embodiment of the present invention, and is a schematic diagram illustrating a dissolution-reaction tank in which a diaphragm is provided between a cathode and an anode, and a cathode chamber and an anode chamber are separated.

Claims (11)

有機物を含む排水を鉄塩と過酸化水素を用いてフェントン処理する方法において、フェントン処理を行う反応槽内に電極を設けて、Fe3+を電気化学的に還元しつつフェントン処理を行うことを特徴とする排水処理方法。A method for treating effluent containing organic matter with Fenton using an iron salt and hydrogen peroxide, characterized in that an electrode is provided in a reaction tank for performing Fenton treatment, and Fenton treatment is performed while Fe 3+ is electrochemically reduced. And wastewater treatment method. 有機物を含む排水を鉄塩と過酸化水素を用いてフェントン処理する方法において、フェントン処理を行う反応槽を直列に複数個並べ、その少なくとも一つは反応槽内に電極を設けて、Fe3+を電気化学的に還元しつつフェントン処理を行うことを特徴とする排水処理方法。In a method of treating Fenton-treated wastewater containing organic matter with iron salt and hydrogen peroxide, a plurality of reaction tanks for performing Fenton treatment are arranged in series, at least one of which is provided with an electrode in the reaction tank, and Fe 3+ is added . A wastewater treatment method comprising performing Fenton treatment while reducing electrochemically. 前記フェントン処理した後に固液分離したFe3+を含む汚泥の少なくとも一部を、電極を設けた反応槽に戻してなることを特徴とする請求項1または2記載の排水処理方法。3. The wastewater treatment method according to claim 1, wherein at least a part of the sludge containing Fe 3+ that has been subjected to solid-liquid separation after the Fenton treatment is returned to a reaction tank provided with an electrode. 4. 前記フェントン処理に使用する過酸化水素は、2〜10の多段に分割して前記反応槽に加えることを特徴とする請求項1ないし3のいずれか1項記載の排水の処理方法。The method according to any one of claims 1 to 3, wherein the hydrogen peroxide used for the Fenton treatment is divided into two to ten stages and added to the reaction tank. 前記フェントン処理に使用する過酸化水素は、各フェントン処理を行う複数個の反応槽それぞれに分割して加えることを特徴とする請求項2ないし4のいずれか1項記載の排水の処理方法。The method according to any one of claims 2 to 4, wherein the hydrogen peroxide used for the Fenton treatment is divided and added to each of a plurality of reaction tanks for performing each Fenton treatment. 前記電極を設けた反応槽は、隔膜によって陽極室と陰極室に分離されていることを特徴とする請求項1ないし5のいずれか1項記載の排水の処理方法。The wastewater treatment method according to any one of claims 1 to 5, wherein the reaction tank provided with the electrodes is separated into an anode chamber and a cathode chamber by a diaphragm. 前記陽極室に有機物を含む排水、返送汚泥、及び酸を入れて、前記返送された汚泥を前記排水中に溶解せしめ、これを陰極室に移送して陰極室においてFe3+を電気化学的に還元しつつフェントン処理を行うことを特徴とする請求項6記載の排水の処理方法。The wastewater containing organic matter, return sludge, and acid are put into the anode chamber to dissolve the returned sludge into the wastewater, and the sludge is transferred to the cathode chamber to electrochemically reduce Fe 3+ in the cathode chamber. The wastewater treatment method according to claim 6, wherein the Fenton treatment is performed while performing the treatment. 陰極は、銅あるいは銅を含む合金からなることを特徴とする請求項1ないし7のいずれか1項記載の排水の処理方法。The method for treating wastewater according to any one of claims 1 to 7, wherein the cathode is made of copper or an alloy containing copper. 前記電気化学的還元は、電流密度0.1〜100mA/cmで行うことを特徴とする請求項1ないし8のいずれか1項記載の排水の処理方法。The electrochemical reduction method for treating waste water according to any one of claims 1 to 8, characterized in that a current density 0.1~100mA / cm 2. 前記有機物を含む排水のフェントン処理および前記電気化学的還元は、pHが1.5〜5.0にて行うことをことを特徴とする請求項1ないし9のいずれか1項記載の排水の処理方法。The wastewater treatment according to any one of claims 1 to 9, wherein the Fenton treatment and the electrochemical reduction of the wastewater containing the organic matter are performed at a pH of 1.5 to 5.0. Method. 有機物を含む排水を供給する供給ラインと、前記供給ラインに連通し、かつ内部に電極を備えた反応槽とを有し、前記反応槽内に鉄塩及び過酸化水素を供給して前記有機物を含む排水をフェントン処理することを特徴とする排水処理装置。A supply line that supplies wastewater containing organic matter, and a reaction tank that communicates with the supply line and has an electrode therein, and supplies an iron salt and hydrogen peroxide into the reaction tank to remove the organic matter. A wastewater treatment device characterized by treating wastewater containing Fenton.
JP2002350319A 2002-12-02 2002-12-02 Wastewater treatment method and apparatus therefor Pending JP2004181329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350319A JP2004181329A (en) 2002-12-02 2002-12-02 Wastewater treatment method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002350319A JP2004181329A (en) 2002-12-02 2002-12-02 Wastewater treatment method and apparatus therefor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003116298A Division JP2004181446A (en) 2003-04-21 2003-04-21 Wastewater treatment method

Publications (1)

Publication Number Publication Date
JP2004181329A true JP2004181329A (en) 2004-07-02

Family

ID=32752578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350319A Pending JP2004181329A (en) 2002-12-02 2002-12-02 Wastewater treatment method and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2004181329A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102992453A (en) * 2012-10-09 2013-03-27 南京中衡元环保设备有限公司 Two-phase circulating catalytic oxidation device
CN103145277A (en) * 2013-03-27 2013-06-12 中北大学 Device and process for mass transfer process for treating wastewater through supergravity enhanced electric Fenton method
JP2013252484A (en) * 2012-06-07 2013-12-19 Hazama Ando Corp Purification method of mercury-laced water and purification device used therefor
CN103613169A (en) * 2013-03-27 2014-03-05 中北大学 Device and technology for processing degradation-resistant waste water through hypergravity multistage sacrificial anode electro-Fenton method
CN104310665A (en) * 2014-10-08 2015-01-28 浙江卓锦工程技术有限公司 Pretreatment method of nonionic surfactant wastewater
CN104773808A (en) * 2015-04-14 2015-07-15 河海大学 Magnetic-Fenton method for treating nondegradable organic wastewater
CN105129925A (en) * 2015-09-29 2015-12-09 深圳市三禾环保技术有限公司 Device for treating restaurant waste water by means of oxygen cathode electro-Fenton method and electrode making method
CN107324457A (en) * 2017-08-17 2017-11-07 广东益康生环保科技有限公司 A kind of electric Fenton equipment and sewage water treatment method
CN107572691A (en) * 2017-08-31 2018-01-12 新奥环保技术有限公司 A kind of method of Fenton oxidation processing unit and the high COD waste liquids of processing
CN110668620A (en) * 2019-11-07 2020-01-10 沈阳工业大学 Jet fluidized bed type electro-Fenton treatment system
CN111925069A (en) * 2020-08-21 2020-11-13 京博农化科技有限公司 Nicosulfuron wastewater treatment method
CN112110522A (en) * 2020-09-09 2020-12-22 清华大学 Electrochemical Fenton device and electrochemical Fenton method for treating pollutants
CN114014431A (en) * 2021-10-28 2022-02-08 武汉工程大学 Fenton catalyst regeneration recycling method
CN114906905A (en) * 2022-05-10 2022-08-16 青岛理工大学 electro-Fenton-flocculation process integrated reaction device based on acid-base self-regulation

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013252484A (en) * 2012-06-07 2013-12-19 Hazama Ando Corp Purification method of mercury-laced water and purification device used therefor
CN102992453A (en) * 2012-10-09 2013-03-27 南京中衡元环保设备有限公司 Two-phase circulating catalytic oxidation device
CN103145277A (en) * 2013-03-27 2013-06-12 中北大学 Device and process for mass transfer process for treating wastewater through supergravity enhanced electric Fenton method
CN103613169A (en) * 2013-03-27 2014-03-05 中北大学 Device and technology for processing degradation-resistant waste water through hypergravity multistage sacrificial anode electro-Fenton method
CN103613169B (en) * 2013-03-27 2015-08-19 中北大学 The device of supergravity multistage sacrificial anode Electro-Fenton process process used water difficult to degradate and technique
CN104310665A (en) * 2014-10-08 2015-01-28 浙江卓锦工程技术有限公司 Pretreatment method of nonionic surfactant wastewater
CN104773808A (en) * 2015-04-14 2015-07-15 河海大学 Magnetic-Fenton method for treating nondegradable organic wastewater
CN105129925A (en) * 2015-09-29 2015-12-09 深圳市三禾环保技术有限公司 Device for treating restaurant waste water by means of oxygen cathode electro-Fenton method and electrode making method
CN107324457A (en) * 2017-08-17 2017-11-07 广东益康生环保科技有限公司 A kind of electric Fenton equipment and sewage water treatment method
CN107572691A (en) * 2017-08-31 2018-01-12 新奥环保技术有限公司 A kind of method of Fenton oxidation processing unit and the high COD waste liquids of processing
CN110668620A (en) * 2019-11-07 2020-01-10 沈阳工业大学 Jet fluidized bed type electro-Fenton treatment system
CN111925069A (en) * 2020-08-21 2020-11-13 京博农化科技有限公司 Nicosulfuron wastewater treatment method
CN112110522A (en) * 2020-09-09 2020-12-22 清华大学 Electrochemical Fenton device and electrochemical Fenton method for treating pollutants
CN114014431A (en) * 2021-10-28 2022-02-08 武汉工程大学 Fenton catalyst regeneration recycling method
CN114906905A (en) * 2022-05-10 2022-08-16 青岛理工大学 electro-Fenton-flocculation process integrated reaction device based on acid-base self-regulation
CN114906905B (en) * 2022-05-10 2023-09-08 青岛理工大学 electro-Fenton-flocculation process integrated reaction device based on acid-base self-regulation and control

Similar Documents

Publication Publication Date Title
Deng et al. Electrochemical oxidation for landfill leachate treatment
JP4040028B2 (en) Method and system for treating water to be treated containing organic matter and nitrogen compound
JP2004181329A (en) Wastewater treatment method and apparatus therefor
CN105084648A (en) Treatment method for hardly biodegraded sewage
JP2004181446A (en) Wastewater treatment method
JP2003126861A (en) Method and apparatus for water treatment
JP3982500B2 (en) Method and apparatus for treating wastewater containing organic compounds
JP2003145161A (en) Water treatment apparatus and water treatment method
JP3400627B2 (en) Method for removing COD from water containing COD
JP2008264668A (en) Method and apparatus for electrolytic treatment of wastewater
US4145268A (en) Method of conducting an electrolysis
JP2004202484A (en) System and method for treating organic waste
JPH10290987A (en) Treatment of liquid residue resulting from photographic processing
JPH1085752A (en) Wastewater treatment method
CN113479976A (en) Integrated wastewater treatment device and application thereof
JP2008114209A (en) Method for treating sludge
JP2000263049A (en) Method and apparatus for cleaning barn effluent
JPH11347558A (en) Method and apparatus for electrolytic treatment of nitrogen oxide-containing water
JP3470997B2 (en) Organic wastewater treatment method and apparatus
JP2005111351A (en) Method and apparatus for treating nitrogen-containing organic waste liquid
JP3792857B2 (en) Electrochemical processing equipment
JP6166963B2 (en) Non-membrane electrolysis pretreatment method, water treatment system, and water treatment method
JP2005144366A (en) Waste water treatment system
JP3921612B2 (en) Co-electrolytic treatment of COD components in wastewater
JPH09103787A (en) Treatment of waste liquid containing organic materials