JP2008114209A - Method for treating sludge - Google Patents

Method for treating sludge Download PDF

Info

Publication number
JP2008114209A
JP2008114209A JP2006302497A JP2006302497A JP2008114209A JP 2008114209 A JP2008114209 A JP 2008114209A JP 2006302497 A JP2006302497 A JP 2006302497A JP 2006302497 A JP2006302497 A JP 2006302497A JP 2008114209 A JP2008114209 A JP 2008114209A
Authority
JP
Japan
Prior art keywords
sludge
treatment
platinum
electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006302497A
Other languages
Japanese (ja)
Inventor
Sachiko Kitasaki
祥子 北▲さき▼
Yoshio Nakayama
善雄 中山
Teruhisa Yoshida
輝久 吉田
Original Assignee
Hitachi Plant Technologies Ltd
株式会社日立プラントテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd, 株式会社日立プラントテクノロジー filed Critical Hitachi Plant Technologies Ltd
Priority to JP2006302497A priority Critical patent/JP2008114209A/en
Publication of JP2008114209A publication Critical patent/JP2008114209A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating sludge, in which the efficiency when effective chlorine is produced is made higher than the case of using a carbon electrode as both of a cathode and an anode to increase a sterilization rate of sludge, scale is removed by a pole change to allow stable electrolyzation and the cost of the electrodes can be reduced compared with the case of using a platinum-based metal electrode as both of the cathode and the anode. <P>SOLUTION: The method for treating sludge comprises the steps of: electrolyzing the waste sludge generated by subjecting organic sewage to activated sludge treatment; and returning the electrolyzed sludge to a bioreaction tank to treat the returned sludge biologically. A plurality of the platinum-based metal electrodes being the anodes and a plurality of the carbon electrodes being the cathodes are arranged alternately in parallel and the waste sludge is electrolyzed in current density of about 1-50 mA/cm<SP>2</SP>and the pole change for removing scale is performed for time of ≤1/3 of usual electrolyzation time. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、下水等の有機性汚水を活性汚泥により生物処理する施設で発生する余剰汚泥に対し、その量を電解処理により低減するようにした汚泥の処理方法に関するものである。   The present invention relates to a sludge treatment method in which the amount of surplus sludge generated in a facility for biologically treating organic sewage such as sewage with activated sludge is reduced by electrolytic treatment.
従来、下水処理場等の汚水処理施設に流入する有機性汚水を処理するために、生物反応槽に汚水を流入し、これを曝気、攪拌して生物処理を行う活性汚泥法が用いられている。
この下水処理場等で発生する余剰汚泥は、通常、脱水を行った後、埋立処分されているが、処分地が次第になくなりつつある。
また、汚泥処分費の高騰等の理由から、余剰汚泥に対しオゾンや高熱性細菌等を添加して汚泥を可溶化し、系内で生物処理することにより、余剰汚泥量を低減する方法が試みられており、特に、電解処理を用いる方法は、処理コストが安価な方法として注目されている。
Conventionally, in order to treat organic sewage flowing into a sewage treatment facility such as a sewage treatment plant, an activated sludge method is used in which sewage is introduced into a biological reaction tank and aerated and agitated to perform biological treatment. .
The excess sludge generated at this sewage treatment plant is usually landfilled after dehydration, but the disposal site is gradually disappearing.
In addition, due to soaring sludge disposal costs, a method to reduce the amount of excess sludge by adding ozone, thermophilic bacteria, etc. to the excess sludge and solubilizing the sludge and biologically treating it in the system is attempted. In particular, a method using electrolytic treatment is attracting attention as a method with low processing costs.
この電解処理を用いる方法は、通常、汚泥中に塩化ナトリウム等の塩化物と少量の酸を添加し、電気分解を行うことにより、陽極側で生成する次亜塩素酸によって汚泥を殺菌する。
さらに、殺菌された汚泥を生物反応槽に戻し、酸化分解することにより余剰汚泥量を低減するものである。
In the method using this electrolytic treatment, usually, chloride such as sodium chloride and a small amount of acid are added to the sludge and electrolysis is performed to sterilize the sludge with hypochlorous acid generated on the anode side.
Furthermore, the amount of excess sludge is reduced by returning the sterilized sludge to the biological reaction tank and oxidative decomposition.
ここで、汚泥中にはカルシウムやマグネシウム等が含まれ、電解処理を行った場合、陰極側にスケールとしてこれらが析出し、電解効率を低下させる。
その解決法として、極変換を行い、陰極側に析出していたスケールを電気的に除去するという方法がある。
極変換可能な電極としては、安価なカーボン電極や高価な白金系金属電極が使用されている。
Here, the sludge contains calcium, magnesium, and the like, and when electrolytic treatment is performed, these precipitate as scales on the cathode side, thereby reducing the electrolytic efficiency.
As a solution for this, there is a method of performing polar conversion and electrically removing the scale deposited on the cathode side.
As an electrode capable of pole conversion, an inexpensive carbon electrode or an expensive platinum-based metal electrode is used.
汚泥を電解処理する場合には、通常、陰陽両極に安価なカーボン電極が用いられているが、カーボン電極の特性として、有効塩素の発生量が少なく、また、陰極でのスケール除去の目的で極の変換を行い陽極とした場合、カーボン電極は酸化され、白金系金属電極と比較すると溶出傾向が強いため、電極寿命が極端に短くなるといった問題点があった。
また、陰陽両極に白金及びイリジウムをコーティングした極変換可能な白金系金属電極を用いた場合、有効塩素の発生量は陰陽両極に安価なカーボン電極を用いた場合と比較して増加するが、電極のコストが2〜5倍となる。
When sludge is electrolyzed, inexpensive carbon electrodes are usually used for both the positive and negative electrodes. However, as a characteristic of the carbon electrode, the amount of effective chlorine generated is small, and for the purpose of scale removal at the cathode, When the anode was converted into an anode, the carbon electrode was oxidized, and the elution tendency was stronger than that of the platinum-based metal electrode, so that there was a problem that the electrode life was extremely shortened.
In addition, when using a platinum-based metal electrode that can be converted into a polar electrode with platinum and iridium coated on both the positive and negative electrodes, the amount of effective chlorine generated increases compared to the case where an inexpensive carbon electrode is used for the positive and negative electrodes. Costs 2 to 5 times.
本発明は、上記従来の汚泥の処理方法が有する問題点に鑑み、陰陽両極共にカーボン電極を用いた場合と比較し、有効塩素発生効率を上げることで汚泥の殺菌率を高め、また、極変換によるスケール除去を行うことにより安定した電解処理を可能とし、さらに、陰陽両極を白金系金属電極とした場合と比較し、電極のコストを低減することができる汚泥の処理方法を提供することを目的とする。   In view of the problems of the conventional sludge treatment method described above, the present invention increases the sterilization rate of sludge by increasing the effective chlorine generation efficiency compared to the case where carbon electrodes are used for both positive and negative electrodes, The purpose of the present invention is to provide a sludge treatment method that enables stable electrolytic treatment by removing the scale, and that can reduce the cost of the electrode as compared to the case where the negative and positive electrodes are platinum metal electrodes. And
上記目的を達成するため、本発明の汚泥の処理方法は、有機性汚水の活性汚泥処理に伴って発生した余剰汚泥を電解処理し、該電解処理汚泥を生物反応槽に返送して生物処理する汚泥の処理方法において、陽極を白金系金属電極、陰極をカーボン電極として交互に並列して複数枚配設し、1〜50mA/cm程度の電流密度で電解処理を行うとともに、通常の電解処理時間に対して1/3以下の時間、スケール除去のための極変換を行うことを特徴とする。 In order to achieve the above object, the sludge treatment method of the present invention electrolyzes excess sludge generated with the activated sludge treatment of organic sewage, and returns the electrolyzed sludge to a biological reaction tank for biological treatment. In the sludge treatment method, a plurality of anodes are arranged alternately in parallel with a platinum metal electrode and a cathode as a carbon electrode, and an electrolytic treatment is performed at a current density of about 1 to 50 mA / cm 2. Polar conversion for removing the scale is performed for a time of 1/3 or less of the time.
この場合において、チタン等の金属基材に、白金とイリジウムの重量比が1:0.2〜1:2となるよう調製した混合物をコーティングして電極を形成し、該電極を白金系金属電極として使用することができる。   In this case, a metal base material such as titanium is coated with a mixture prepared such that the weight ratio of platinum and iridium is 1: 0.2 to 1: 2, and an electrode is formed. Can be used as
本発明の汚泥の処理方法によれば、有機性汚水の活性汚泥処理に伴って発生した余剰汚泥を電解処理し、該電解処理汚泥を生物反応槽に返送して生物処理する汚泥の処理方法において、陽極を白金系金属電極、陰極をカーボン電極として交互に並列して複数枚配設し、1〜50mA/cm程度の電流密度で電解処理を行うとともに、通常の電解処理時間に対して1/3以下の時間、スケール除去のための極変換を行うことから、通常の電解処理では、有効塩素発生効率が両極をカーボン電極とした場合と比較して1.5〜3倍程度高くなり、これにより、汚泥殺菌率を高めて、余剰汚泥発生量を両極をカーボン電極とした場合と比較して10〜40%さらに低減することができる。
また、スケールを除去する際には、短時間、陽極がカーボン電極、陰極が白金系金属電極となるよう極変換を行うことにより、スケール析出による電解効率の低下を防ぎ、安定した電解処理を行うことができる。
そして、白金系金属電極とカーボン電極を組み合わせることにより、両極を白金系金属電極とした場合と比較し、電極コストを1/2〜1/5程度に大幅に低減できるという効果を有する。
According to the sludge treatment method of the present invention, in the sludge treatment method of electrolytically treating surplus sludge generated with the activated sludge treatment of organic sludge, returning the electrolytic treatment sludge to a biological reaction tank and biologically treating it. In addition, a plurality of plates are alternately arranged in parallel with the anode as a platinum-based metal electrode and the cathode as a carbon electrode, and the electrolytic treatment is performed at a current density of about 1 to 50 mA / cm 2. / 3 or less, since the pole conversion for removing the scale is performed, in the usual electrolytic treatment, the effective chlorine generation efficiency is about 1.5 to 3 times higher than the case where both electrodes are carbon electrodes, Thereby, a sludge sterilization rate can be raised and the amount of surplus sludge generation | occurrence | production can further be reduced 10 to 40% compared with the case where both electrodes are made into a carbon electrode.
In addition, when removing the scale, by performing polar conversion so that the anode becomes a carbon electrode and the cathode becomes a platinum-based metal electrode for a short time, a decrease in electrolytic efficiency due to scale deposition is prevented and stable electrolytic treatment is performed. be able to.
Then, by combining the platinum-based metal electrode and the carbon electrode, the electrode cost can be significantly reduced to about 1/2 to 1/5 compared with the case where both electrodes are made of the platinum-based metal electrode.
この場合、チタン等の金属基材に、白金とイリジウムの重量比が1:0.2〜1:2となるよう調製した混合物をコーティングして電極を形成し、該電極を白金系金属電極として使用することにより、白金系金属電極の耐久性と電解処理性能を向上させることができる。   In this case, a metal base material such as titanium is coated with a mixture prepared so that the weight ratio of platinum and iridium is 1: 0.2 to 1: 2, and an electrode is formed. The electrode is used as a platinum-based metal electrode. By using it, durability and electrolytic treatment performance of the platinum-based metal electrode can be improved.
以下、本発明の汚泥の処理方法の実施の形態を、図面に基づいて説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment of a sludge treatment method of the present invention will be described based on the drawings.
図1〜図2に、本発明の汚泥の処理方法の一実施例を示す。
この汚泥の処理方法は、有機性汚水の活性汚泥処理に伴って発生した余剰汚泥を電解処理し、該電解処理汚泥を生物反応槽に返送して生物処理する汚泥の処理方法において、陽極を白金系金属電極、陰極をカーボン電極として交互に並列して複数枚配設し、1〜50mA/cm程度の電流密度で電解処理を行うとともに、通常の電解処理時間に対して1/3以下の時間、スケール除去のための極変換を行うものである。
1 to 2 show an embodiment of the sludge treatment method of the present invention.
This sludge treatment method is a sludge treatment method in which surplus sludge generated during the activated sludge treatment of organic sewage is electrolytically treated, and the electrolytically treated sludge is returned to the biological reaction tank for biological treatment. A plurality of system metal electrodes and cathodes are alternately arranged in parallel as carbon electrodes, and the electrolytic treatment is performed at a current density of about 1 to 50 mA / cm 2, which is 1/3 or less of the normal electrolytic treatment time. Polar conversion for time and scale removal is performed.
下水処理場等の汚水処理施設に流入した汚水Aは、通常、生物反応槽Iで活性汚泥によって生物処理され、汚泥と処理液との混合液Bとなって最終沈殿池IIに流入し、固液分離された後、処理水Cが放流される。
一方、固液分離された汚泥の大部分は、返送汚泥Dとして生物反応槽Iに返送され、再び生物処理されるが、通常は、一部の汚泥は余剰汚泥Eとして、さらに濃縮を行った後、濃縮汚泥の形でバキューム排出したり、濃縮汚泥を脱水して脱水ケーキの状態で搬出しなければならない。
Sewage A that has flowed into a sewage treatment facility such as a sewage treatment plant is normally biologically treated with activated sludge in a biological reaction tank I, becomes a mixed solution B of sludge and treatment liquid, flows into the final sedimentation basin II, and is solidified. After liquid separation, treated water C is discharged.
On the other hand, most of the sludge separated into solid and liquid is returned to the biological reaction tank I as return sludge D and biologically treated again. Usually, some of the sludge is further concentrated as surplus sludge E. Thereafter, the vacuum must be discharged in the form of concentrated sludge, or the concentrated sludge must be dehydrated and transported in the form of a dehydrated cake.
そのため、多量の汚泥を最終処分しなければならないことから、本実施例においては、余剰汚泥Eを汚泥供給ポンプ1により、電解処理装置IIIへと導く。なお、電解処理装置IIIへと導く汚泥は、余剰汚泥Eや返送汚泥D、汚泥濃縮槽にて濃縮した汚泥を用いることも可能である。
また、このとき途中の配管において、電解処理に必要な塩化ナトリウム等の塩化物と少量の酸を含む電解液Gを電解液供給ポンプ2により供給するが、ラインミキサーや攪拌水槽を設けて余剰汚泥Eと電解液Gを混合してもよい。
Therefore, since a large amount of sludge must be finally disposed of, surplus sludge E is guided to the electrolytic treatment apparatus III by the sludge supply pump 1 in this embodiment. In addition, the sludge guide | induced to the electrolytic treatment apparatus III can also use the sludge concentrated in the excess sludge E, the return sludge D, and the sludge concentration tank.
At this time, an electrolytic solution G containing chlorides such as sodium chloride and a small amount of acid necessary for the electrolytic treatment is supplied by an electrolytic solution supply pump 2 in the middle of the piping, but an excess sludge is provided by providing a line mixer and a stirring water tank. E and electrolyte G may be mixed.
図2に示すように、電解処理装置IIIは、電解処理槽IV及び脱泡槽Vから構成される。
電解処理槽IVの内部には、複数枚の白金系金属電極11及びカーボン電極12を交互に並列に配設し、直流電源13に接続する。
直流電源13からは、通常の電解処理時は白金系金属電極11を陽極、カーボン電極12を陰極として電流を供給するが、陰極のスケール除去時には極変換を行い、カーボン電極12を陽極、白金系金属電極11を陰極とすることが可能な極変換装置を設け、タイマー等を付属する。
As shown in FIG. 2, the electrolytic treatment apparatus III includes an electrolytic treatment tank IV and a defoaming tank V.
Inside the electrolytic treatment tank IV, a plurality of platinum-based metal electrodes 11 and carbon electrodes 12 are alternately arranged in parallel and connected to a DC power source 13.
The DC power supply 13 supplies current with the platinum metal electrode 11 as an anode and the carbon electrode 12 as a cathode during normal electrolytic treatment, but polar conversion is performed when the scale of the cathode is removed, and the carbon electrode 12 is used as an anode and a platinum system. A polar conversion device capable of using the metal electrode 11 as a cathode is provided, and a timer or the like is attached.
電解処理槽IVの端部の堰からオーバーフローした汚泥は、隣の脱泡槽Vへと流入するが、脱泡槽Vには表面攪拌機14が設けられ、水面においてインペラの回転により汚泥スカムの破砕を行う。
また、脱泡処理した汚泥を底部から引抜いて、汚泥返送ポンプ3により、電解処理槽IVへと返送する配管が設けられている。
脱泡槽Vからオーバーフローした電解処理汚泥Fは、水処理設備の生物反応槽Iへと返送される。
この電解処理汚泥Fは、電解処理によって微生物が死滅し、微生物を構成する細胞壁や細胞膜の一部が破損して細胞内の細胞質が溶出しているため、生物反応槽Iの汚泥微生物によって徐々に低分子化され、最終的には水と炭酸ガスに分解される。
The sludge overflowed from the weir at the end of the electrolytic treatment tank IV flows into the adjacent defoaming tank V. The defoaming tank V is provided with a surface agitator 14, and the sludge scum is crushed by the rotation of the impeller on the water surface. I do.
Further, a pipe is provided for extracting the sludge subjected to the defoaming treatment from the bottom and returning the sludge to the electrolytic treatment tank IV by the sludge return pump 3.
The electrolytically treated sludge F overflowed from the defoaming tank V is returned to the biological reaction tank I of the water treatment facility.
The electrolytically treated sludge F is gradually killed by the sludge microorganisms in the biological reaction tank I because the microorganisms are killed by the electrolytic treatment and the cell walls and cell membranes constituting the microorganisms are broken and the cytoplasm in the cells is eluted. It is reduced in molecular weight and finally decomposed into water and carbon dioxide.
次に、本実施例の汚泥の処理方法の作用について説明する。
余剰汚泥Eには、電解処理に必要な塩素イオンを補充する目的で、電解液供給ポンプ2により、塩化ナトリウム等の塩化物と少量の酸を含む電解液Gが供給される。
そして、余剰汚泥Eは、電解処理槽IVに流入し、白金系金属電極11及びカーボン電極12の間を通過する。
このとき、汚泥に含まれる塩素イオンが電解作用により有効塩素に転換され、次亜塩素酸の強力な酸化力によって汚泥中の微生物が殺菌される。有効塩素の形態としてpHは4〜6程度で最も強い殺菌効果を示す次亜塩素酸が製成されるため、少量の酸を添加し、pH調整するのが望ましい。
塩素イオンは塩化ナトリウムとして汚泥重量の0.2〜1%程度を添加する必要がある。添加する塩素イオンは塩化ナトリウムに限定されるものではなく、塩化カリウム等、比較的安価で水に溶解する塩化物を利用することができる。
Next, the effect | action of the processing method of the sludge of a present Example is demonstrated.
The surplus sludge E is supplied with an electrolytic solution G containing a chloride such as sodium chloride and a small amount of acid by the electrolytic solution supply pump 2 for the purpose of supplementing chlorine ions necessary for the electrolytic treatment.
The surplus sludge E flows into the electrolytic treatment tank IV and passes between the platinum metal electrode 11 and the carbon electrode 12.
At this time, chlorine ions contained in the sludge are converted into effective chlorine by electrolysis, and microorganisms in the sludge are sterilized by the strong oxidizing power of hypochlorous acid. Since hypochlorous acid having the strongest bactericidal effect is produced at a pH of about 4 to 6 as the form of effective chlorine, it is desirable to adjust the pH by adding a small amount of acid.
It is necessary to add about 0.2 to 1% of the sludge weight as chloride ions as sodium chloride. Chlorine ions to be added are not limited to sodium chloride, and chlorides such as potassium chloride that dissolve in water at a relatively low cost can be used.
通常の電解処理時は、陽極に白金系金属電極11、陰極にカーボン電極12を用いる。
その際の電解処理条件を、電流密度を1〜50mA/cm程度、好ましくは5〜40mA/cm程度とし、これにより、有効塩素発生効率(単位電力・単位電解面積当たりの塩素発生量)が両極をカーボン電極とした場合と比較して、1.5〜3倍程度高くなる。
有効塩素発生効率が、両極をカーボン電極とした場合と比較して1.5〜3倍程度高くなることにより、汚泥殺菌率を高め、余剰汚泥発生量を両極をカーボン電極とした場合と比較して10〜40%低減するという効果を有する。
なお、白金系金属電極11は、チタン等を基材として、白金のコーティング重量と、イリジウムのコーティング重量比を1:0.2〜1:2とし、白金及びイリジウムを電気メッキもしくは熱処理等によりコーティングした白金系金属電極の使用が望ましい。
During normal electrolytic treatment, a platinum-based metal electrode 11 is used for the anode and a carbon electrode 12 is used for the cathode.
The electrolytic treatment conditions during the current density 1~50mA / cm 2, preferably about a 5 to 40 mA / cm 2 or so, thereby, the effective chlorine evolution efficiency (chlorine evolution amount per unit power-unit electrolytic area) However, it is about 1.5 to 3 times higher than when both electrodes are carbon electrodes.
Effective chlorine generation efficiency is about 1.5 to 3 times higher than when both electrodes are carbon electrodes, so that the sludge sterilization rate is increased, and the amount of excess sludge generated is compared to when both electrodes are carbon electrodes. 10 to 40%.
The platinum-based metal electrode 11 is made of titanium or the like as a base material, the coating weight ratio of platinum to the coating weight of iridium is 1: 0.2 to 1: 2, and platinum and iridium are coated by electroplating or heat treatment. The use of a platinum-based metal electrode is desirable.
余剰汚泥Eにはカルシウムやマグネシウムが含まれているが、電解処理の際、このカルシウムやマグネシウムが陰極側に引き寄せられ、電子をもらって水酸化物等のスケールとなって陰極表面に析出し、次第に蓄積していき、電解効率を低下させる。
そこで、スケールを除去する際には、陽極がカーボン電極12、陰極が白金系金属電極11となるよう極変換を行い、スケールを除去する。
このとき、陽極でのカーボン電極は、酸化され、白金系金属電極と比較すると溶出傾向が強いため、スケールを除去の目的で、ごく短時間の極変換を行う。
極変換を行ってスケール除去を行う時間は、スケール成分の濃度によって異なるが、通常の電解処理(陽極に白金系金属電極11、陰極にカーボン電極12)の1/3以下の時間にすると、炭素電極の溶出量を大幅に減少させることが可能である。例えば、カルシウム濃度1%程度の汚泥を電解処理する場合、通常の電解処理(陽極に白金系金属電極11、陰極にカーボン電極12)の時間を1時間に設定したとき、スケール除去(陽極にカーボン電極12、陰極に白金系金属電極11)の時間は、20分程度以下、好ましくは、20〜0.5分程度、より好ましくは、10〜1分程度に設定する。
また、白金系金属電極とカーボン電極を組み合わせることにより、白金系金属電極のみの場合と比較し、電極のコストを1/2〜1/5と大幅に低減することが可能となる。
The excess sludge E contains calcium and magnesium, but during the electrolytic treatment, the calcium and magnesium are attracted to the cathode side, get electrons and become scales such as hydroxide and deposit on the cathode surface, and gradually. Accumulate and reduce electrolysis efficiency.
Therefore, when removing the scale, polar conversion is performed so that the anode becomes the carbon electrode 12 and the cathode becomes the platinum-based metal electrode 11 to remove the scale.
At this time, since the carbon electrode at the anode is oxidized and has a strong elution tendency as compared with the platinum-based metal electrode, polar conversion is performed for a very short time for the purpose of removing the scale.
The time for removing the scale by performing polar conversion varies depending on the concentration of the scale component. However, if the time is 1/3 or less of the usual electrolytic treatment (platinum metal electrode 11 for the anode and carbon electrode 12 for the cathode), carbon It is possible to greatly reduce the amount of electrode elution. For example, when electrolytic treatment is performed on sludge having a calcium concentration of about 1%, the scale removal (carbon on the anode is performed when the time of normal electrolytic treatment (platinum metal electrode 11 on the anode and carbon electrode 12 on the cathode) is set to 1 hour). The time for the electrode 12 and the platinum-based metal electrode 11) to the cathode is set to about 20 minutes or less, preferably about 20 to 0.5 minutes, and more preferably about 10 to 1 minutes.
Further, by combining the platinum-based metal electrode and the carbon electrode, the cost of the electrode can be significantly reduced to 1/2 to 1/5 compared to the case of using only the platinum-based metal electrode.
以上、本発明の汚泥の処理方法について、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、実施例に記載した構成を適宜組み合わせるなど、その趣旨を逸脱しない範囲において適宜その構成を変更することができる。   As mentioned above, although the processing method of the sludge of the present invention was explained based on the example, the present invention is not limited to the composition described in the above-mentioned example, suitably combining the composition described in the example, The configuration can be changed as appropriate without departing from the spirit of the invention.
本発明の汚泥の処理方法は、陰陽両極共にカーボン電極を用いた場合と比較し、有効塩素発生効率を上げることで汚泥の殺菌率を高め、また、極変換によるスケール除去を行うことにより安定した電解処理を可能とし、さらに、陰陽両極を白金系金属電極とした場合と比較し、電極のコストを低減するという特性を有していることから、汚泥の電解処理の用途に広く好適に用いることができる。   The sludge treatment method of the present invention increases the sterilization rate of sludge by increasing the effective chlorine generation efficiency as compared to the case where carbon electrodes are used for both the positive and negative electrodes, and is stable by removing the scale by polar conversion. Electrolytic treatment is possible, and it has the characteristics of reducing the cost of the electrode compared to the case where the negative and positive electrodes are platinum metal electrodes. Can do.
本発明の汚泥の処理方法の一実施例を示すフロー図である。It is a flowchart which shows one Example of the processing method of the sludge of this invention. 同汚泥の処理方法に用いる電解処理装置の断面図である。It is sectional drawing of the electrolytic treatment apparatus used for the processing method of the sludge.
符号の説明Explanation of symbols
1 汚泥供給ポンプ
2 電解液供給ポンプ
3 汚泥返送ポンプ
11 白金系金属電極
12 カーボン電極
13 直流電源
14 表面攪拌機
A 汚水
B 混合液
C 処理水
D 返送汚泥
E 余剰汚泥
F 電解処理汚泥
G 電解液
I 生物反応槽
II 最終沈殿池
III 電解処理装置
IV 電解処理槽
V 脱泡槽
DESCRIPTION OF SYMBOLS 1 Sludge supply pump 2 Electrolyte supply pump 3 Sludge return pump 11 Platinum metal electrode 12 Carbon electrode 13 DC power supply 14 Surface stirrer A Sewage B Mixed liquid C Treated water D Return sludge E Surplus sludge F Electrolyzed sludge G Electrolyte
I Bioreactor
II Final sedimentation basin
III Electrolytic treatment equipment
IV Electrolytic treatment tank
V Defoaming tank

Claims (2)

  1. 有機性汚水の活性汚泥処理に伴って発生した余剰汚泥を電解処理し、該電解処理汚泥を生物反応槽に返送して生物処理する汚泥の処理方法において、陽極を白金系金属電極、陰極をカーボン電極として交互に並列して複数枚配設し、1〜50mA/cm程度の電流密度で電解処理を行うとともに、通常の電解処理時間に対して1/3以下の時間、スケール除去のための極変換を行うことを特徴とする汚泥の処理方法。 In a sludge treatment method in which surplus sludge generated during the activated sludge treatment of organic sludge is electrolyzed, and the electrolyzed sludge is returned to the biological reaction tank for biological treatment, the anode is a platinum metal electrode and the cathode is carbon A plurality of electrodes are arranged alternately in parallel, and the electrolytic treatment is performed at a current density of about 1 to 50 mA / cm 2 , and the time for scale removal is less than 1/3 of the normal electrolytic treatment time. A method for treating sludge characterized by performing polar conversion.
  2. チタン等の金属基材に、白金とイリジウムの重量比が1:0.2〜1:2となるよう調製した混合物をコーティングして電極を形成し、該電極を白金系金属電極として使用することを特徴とする請求項1記載の汚泥の処理方法。   A metal base material such as titanium is coated with a mixture prepared such that the weight ratio of platinum and iridium is 1: 0.2 to 1: 2, and an electrode is formed, and the electrode is used as a platinum metal electrode. The sludge treatment method according to claim 1.
JP2006302497A 2006-11-08 2006-11-08 Method for treating sludge Pending JP2008114209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006302497A JP2008114209A (en) 2006-11-08 2006-11-08 Method for treating sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006302497A JP2008114209A (en) 2006-11-08 2006-11-08 Method for treating sludge

Publications (1)

Publication Number Publication Date
JP2008114209A true JP2008114209A (en) 2008-05-22

Family

ID=39500623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006302497A Pending JP2008114209A (en) 2006-11-08 2006-11-08 Method for treating sludge

Country Status (1)

Country Link
JP (1) JP2008114209A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120088728A (en) * 2009-09-24 2012-08-08 엠에스지 리쏘글라스 아게 Method for producing a housing with a component in a hollow space, corresponding housing, method for producing a semi-finished product, and semi-finished product
JP2016198728A (en) * 2015-04-10 2016-12-01 株式会社テクノラボ Method and apparatus for volume reduction of sludge by swirl flow type electrolytic treatment
WO2020199458A1 (en) * 2019-04-01 2020-10-08 清华大学 Anti-scaling electroosmosis electrode plate device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120088728A (en) * 2009-09-24 2012-08-08 엠에스지 리쏘글라스 아게 Method for producing a housing with a component in a hollow space, corresponding housing, method for producing a semi-finished product, and semi-finished product
KR101689541B1 (en) 2009-09-24 2016-12-26 엠에스지 리쏘글라스 아게 Method for producing a housing with a component in a hollow space, corresponding housing, method for producing a semi-finished product, and semi-finished product
JP2016198728A (en) * 2015-04-10 2016-12-01 株式会社テクノラボ Method and apparatus for volume reduction of sludge by swirl flow type electrolytic treatment
WO2020199458A1 (en) * 2019-04-01 2020-10-08 清华大学 Anti-scaling electroosmosis electrode plate device

Similar Documents

Publication Publication Date Title
JP4447352B2 (en) Sludge reduction treatment equipment
JP2008114209A (en) Method for treating sludge
Yunqing et al. Application of electrochemical treatment for the effluent from marine recirculating aquaculture systems
JP3796416B2 (en) Purification method of organic sewage using electrolytic method
JP2006312124A (en) Sludge treatment method
KR20100052962A (en) Treatment method using ultrasonic-electrolysis-precipitator for domestic sewage or wasted water
JP2008049343A (en) Organic waste water treatment device
JP4237582B2 (en) Surplus sludge reduction device and method
JP3825021B2 (en) Organic wastewater treatment apparatus and organic wastewater treatment method
JP4171440B2 (en) Waste water treatment apparatus and waste water treatment method using the same
JP4498791B2 (en) Sludge treatment method
CN103663838A (en) Integrated and comprehensive water treatment equipment for electrochemical water
JP2005074404A (en) Organic wastewater treatment equipment
JP2003062592A (en) Method for treating organic waste water containing chloride ion
JP2007301473A (en) Sludge treatment method
JP2006314884A (en) Sludge treatment method
KR20100032941A (en) Hospital wastewater treatment apparatus using electro-coagulation process
Bejan et al. Evaluation of electrolysis for oxidative deodorization of hog manure
JP2005262003A (en) Discoloring method and discoloring apparatus for waste water
JP2008200667A (en) Method and apparatus for deodorizing, decolorizing and sterilizing water
JP5073369B2 (en) Sludge treatment method
JP2007275741A (en) Apparatus for electrolyzing sludge
JP4712297B2 (en) Method for reducing excess sludge
JP2007313419A (en) Electrolytic treatment device for sludge
JP2007313418A (en) Treatment method of sludge