JP2015160080A - Method and apparatus for dehalogenating organic halogen compound using conductive diamond electrode - Google Patents

Method and apparatus for dehalogenating organic halogen compound using conductive diamond electrode Download PDF

Info

Publication number
JP2015160080A
JP2015160080A JP2014038496A JP2014038496A JP2015160080A JP 2015160080 A JP2015160080 A JP 2015160080A JP 2014038496 A JP2014038496 A JP 2014038496A JP 2014038496 A JP2014038496 A JP 2014038496A JP 2015160080 A JP2015160080 A JP 2015160080A
Authority
JP
Japan
Prior art keywords
cathode
organic halogen
anode
compartment
halogen compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014038496A
Other languages
Japanese (ja)
Other versions
JP6329392B2 (en
Inventor
達夫 下村
Tatsuo Shimomura
達夫 下村
智一 関根
Tomokazu Sekine
智一 関根
正幸 竹田
Masayuki Takeda
正幸 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Industrial Cleaning Co Ltd
Original Assignee
Ebara Industrial Cleaning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Industrial Cleaning Co Ltd filed Critical Ebara Industrial Cleaning Co Ltd
Priority to JP2014038496A priority Critical patent/JP6329392B2/en
Publication of JP2015160080A publication Critical patent/JP2015160080A/en
Application granted granted Critical
Publication of JP6329392B2 publication Critical patent/JP6329392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for dehalogenating a large amount of the object to be processed that contains high concentration organic halogen compounds, to low concentration level in a short period of time.SOLUTION: An electrolysis tank includes: a cathode compartment provided with a cathode that contains conductive diamond; an anode compartment provided with an anode that does not contain conductive diamond; and a barrier membrane that separates the cathode compartment from the anode compartment. In the electrolysis tank, anolyte is circulated only to the anode compartment, and the object to be processed containing organic halogen compounds is circulated only to the cathode compartment and the object to be processed containing organic halogen compounds is contacted only with the cathode to carry out an electrochemical dehalogenation treatment.

Description

本発明は、原子力施設内で発生する有機ハロゲン溶剤廃液、工場排水等の有機ハロゲン化合物を含む被処理物の脱ハロゲン方法と脱ハロゲン装置に関する。   The present invention relates to a dehalogenation method and a dehalogenation apparatus for an object to be treated containing an organic halogen compound such as an organic halogen solvent waste liquid generated in a nuclear facility or a factory effluent.

テトラクロロエチレンが原子力施設内のアスファルト固化装置点検時の洗浄剤として使用されている。発生するテトラクロロエチレン廃液は、アスファルト及びアスファルト中に取り込まれている放射性物質を含む不溶性固形物、水分、低沸点溶剤等の不純物を含有しているので、当該テトラクロロエチレン廃液を通常の産業廃棄物処理に付すことはできない。そこで、放射性物質を含有するテトラクロロエチレン廃液を蒸留して得られるテトラクロロエチレンと、純水及び鉄複合粒子を混合し、テトラクロロエチレンを分解するテトラクロロエチレン廃液の処理方法が提案されている(特許文献1)。しかしながら特許文献1に記載の方法では、鉄複合粒子の酸化とテトラクロロエチレンの還元とが当量反応として生じることから、大量のテトラクロロエチレンを処理するためには、大量の鉄複合粒子を添加する必要があり、廃棄物である酸化鉄が大量に発生する問題があった。   Tetrachlorethylene is used as a cleaning agent when checking asphalt solidification equipment in nuclear facilities. The generated tetrachlorethylene waste liquor contains impurities such as asphalt and insoluble solids containing radioactive materials incorporated into the asphalt, moisture, low boiling point solvents, etc., so that the tetrachlorethylene waste liquor is subjected to normal industrial waste treatment. It is not possible. Then, the processing method of the tetrachlorethylene waste liquid which mixes the tetrachloroethylene obtained by distilling the tetrachloroethylene waste liquid containing a radioactive substance, pure water, and iron composite particle, and decomposes | disassembles tetrachloroethylene is proposed (patent document 1). However, in the method described in Patent Document 1, since oxidation of iron composite particles and reduction of tetrachloroethylene occur as equivalent reactions, it is necessary to add a large amount of iron composite particles in order to treat a large amount of tetrachloroethylene, There was a problem that a large amount of iron oxide as waste was generated.

この問題を解決するため、モネル合金である陰極及び酸化イリジウムコートチタン電極である陽極を備える電解槽中で、高濃度のテトラクロロエチレンを含む被処理水を陰極とのみ接触させ、電気化学的脱塩素処理により脱塩素させてエチレン、エタンにまで還元するテトラクロロエチレン廃液の処理方法が提案されている(特許文献2)。しかしながら特許文献2に記載の方法では、低濃度のテトラクロロエチレンの処理効率は低く、10mg/L程度で脱塩素反応が停止してしまう(特許文献2実施例14)。テトラクロロエチレンの排水基準値は水質汚濁防止法により0.1mg/Lと定められているため、10mg/L程度のテトラクロロエチレンを含む廃液をそのまま排水することができず、さらに鉄複合粒子と接触させてテトラクロロエチレンを分解させる後処理を施す必要があった。
また、通常のスターラーによる撹拌手段を用いた場合、高濃度テトラクロロエチレンの分解速度は48mg/L・h程度であり(引用文献2実施例9)、特許文献1の方法よりは効率的であるものの、大量の有機塩素化合物を分解するためには長い時間がかかるという問題があった。
In order to solve this problem, electrochemical dechlorination treatment is performed by bringing the water to be treated containing high concentration of tetrachlorethylene into contact with only the cathode in an electrolytic cell having a cathode that is a Monel alloy and an anode that is an iridium oxide-coated titanium electrode. A method for treating tetrachlorethylene waste liquor that is dechlorinated by the above and reduced to ethylene and ethane has been proposed (Patent Document 2). However, in the method described in Patent Document 2, the treatment efficiency of low-concentration tetrachlorethylene is low, and the dechlorination reaction stops at about 10 mg / L (Patent Document 2 Example 14). Since the wastewater standard value for tetrachlorethylene is set at 0.1 mg / L by the Water Pollution Control Law, waste liquid containing about 10 mg / L of tetrachloroethylene cannot be drained as it is, and is further brought into contact with iron composite particles for tetrachlorethylene. It was necessary to apply a post-treatment to decompose the.
Moreover, when the stirring means by a normal stirrer is used, the decomposition rate of the high concentration tetrachlorethylene is about 48 mg / L · h (cited document 2 Example 9), which is more efficient than the method of Patent Document 1, There is a problem that it takes a long time to decompose a large amount of organochlorine compound.

一方、導電性ダイヤモンドを用いた陰極を備える陰極室と、導電性ダイヤモンドを用いた陽極を備える陽極室と、がイオン交換体によって区画された電解装置によって、有機化合物含有水の電解処理が行われると共に、前記陰極室と陽極室との間で前記有機化合物含有水を循環処理する有機化合物含有水の処理方法(特許文献3)が提案されている。しかしながら特許文献3に開示されている方法は、以下の3点において、電気化学反応に関する当業者の技術常識に反する記載があり、再現が困難である。
(1)塩素ガスの発生
特許文献3によると、有機塩素化合物含有排水を処理する場合、同排水の水循環を陰極室から陽極室へ流れるように行うとしている(段落0039及び実施例−2)。しかしながらこの方法では、陰極室において塩素イオンが発生し、これが陽極室に流れ込むことによって塩素ガスが生成して、電解貯槽へ戻るため、ここで塩素ガスが放散され、危険である。また、陰極周辺において還元により塩素ガスが発生するかのような記載がある(段落0040)が、塩素ガスは酸化によって生成するものであり、陰極において生成するとするのは正しくない。特許文献3に記載の装置構成、実施例に従うと、実際には陽極側で毒性および腐食性を持つ塩素ガスが発生してしまう。
(2)塩素イオンの酸化還元ピンポン反応による分解効率低下
特許文献3の実施例−2に記載の水循環方法は誤りであるとして、同排水の水循環を陽極室から陰極室へ流れるように方法を変更すれば、陽極で発生した塩素ガスが陰極で還元されて塩素イオンとなるため、電解貯槽での塩素ガスの放散は回避される。しかしながら、この変更した循環処理プロセスを用いて大量の有機塩素化合物を分解させようとすると、陰極で発生した塩素イオンが電解貯槽に流れ込み、電解貯槽内の排水の塩素イオン濃度が上昇し、陽極で塩素イオンからの次亜塩素酸イオン、塩素酸イオンおよび塩素ガスの発生、陰極でこれらの塩素系酸化剤の塩素イオンへの還元反応が生じるようになる。これらの反応は、陽極における有機塩素化合物の酸化反応や陰極における有機塩素化合物の脱塩素反応よりも電気化学的に容易に生じることから、しだいに上記の塩素イオンの酸化還元ピンポン反応のみが優勢となり、目的である有機塩素化合物の分解効率が低下し、分解反応が停滞してしまう。
(3)イオン交換体の腐食の問題
上記(1)又は(2)のいずれの方法を用いた場合でも、陽極にダイヤモンド電極を用いると、その強い酸化力のためにイオン交換体が侵されてしまい、イオン交換能力が低下し、本来透過しないはずのイオンが透過するようになる。例えば陰イオンである塩素イオンが陽イオン交換体を透過してしまう。陰極側で発生した塩素イオンが陽極側に透過してしまうと、上述したように塩素ガスが発生してしまう。
以上、特許文献3に記載の方法、およびこれに当業者が通常なし得る改良を加えたとしても、特許文献3に開示されるような陰極及び陽極双方にダイヤモンド電極を用いて、液を循環させる方法では、安定的に有機塩素化合物を分解できない。
On the other hand, the electrolytic treatment of the organic compound-containing water is performed by an electrolytic device in which a cathode chamber having a cathode using conductive diamond and an anode chamber having an anode using conductive diamond are partitioned by an ion exchanger. At the same time, a method for treating organic compound-containing water (Patent Document 3) is proposed in which the organic compound-containing water is circulated between the cathode chamber and the anode chamber. However, the method disclosed in Patent Document 3 is difficult to reproduce in the following three points, which are contrary to the technical common knowledge of those skilled in the art regarding electrochemical reactions.
(1) Generation of chlorine gas According to Patent Document 3, when the organic chlorine compound-containing wastewater is treated, the water circulation of the wastewater is performed so as to flow from the cathode chamber to the anode chamber (paragraph 0039 and Example-2). However, in this method, chlorine ions are generated in the cathode chamber and flow into the anode chamber, so that chlorine gas is generated and returned to the electrolytic storage tank. Further, there is a description as to whether chlorine gas is generated by reduction around the cathode (paragraph 0040), but chlorine gas is generated by oxidation, and it is not correct to generate at the cathode. According to the apparatus configuration and example described in Patent Document 3, chlorine gas having toxicity and corrosivity is actually generated on the anode side.
(2) Decrease in decomposition efficiency due to oxidation-reduction ping-pong reaction of chloride ion Assuming that the water circulation method described in Example-2 of Patent Document 3 is incorrect, the method is changed so that the water circulation of the drainage flows from the anode chamber to the cathode chamber. In this case, chlorine gas generated at the anode is reduced at the cathode to become chlorine ions, so that the diffusion of chlorine gas in the electrolytic storage tank is avoided. However, if a large amount of organochlorine compound is decomposed using this modified circulation treatment process, the chlorine ions generated at the cathode flow into the electrolytic storage tank, the chlorine ion concentration of the waste water in the electrolytic storage tank rises, and at the anode Generation of hypochlorite ions, chlorate ions and chlorine gas from chlorine ions, and reduction reaction of these chlorinated oxidants to chlorine ions occur at the cathode. Since these reactions occur more easily electrochemically than the oxidation reaction of organochlorine compounds at the anode and the dechlorination reaction of organochlorine compounds at the cathode, only the oxidation-reduction ping-pong reaction of the above chloride ions becomes dominant. The decomposition efficiency of the target organochlorine compound is lowered, and the decomposition reaction is stagnant.
(3) Problem of corrosion of ion exchanger Even if any of the above methods (1) or (2) is used, if a diamond electrode is used for the anode, the ion exchanger is attacked due to its strong oxidizing power. As a result, the ion exchange capacity is lowered, and ions that should not originally permeate are transmitted. For example, chloride ions, which are anions, pass through the cation exchanger. If chlorine ions generated on the cathode side permeate the anode side, chlorine gas is generated as described above.
As described above, even if the method described in Patent Document 3 and improvements that can be normally made by those skilled in the art are added, the liquid is circulated using the diamond electrode for both the cathode and the anode as disclosed in Patent Document 3. The method cannot stably decompose organochlorine compounds.

更に、導電性ダイヤモンドを少なくとも陰極に用いて、無機の硝酸性窒素を還元してアンモニアにする分解方法が検討された(例えば、特許文献4および特許文献5参照)。
しかし、特許文献4および5に記載の方法では、陰極において還元する対象物は有機ハロゲン化合物ではなく無機の硝酸性窒素であり、隔膜も用いられていない。このため反応液は陰極と陽極の両方に接触し、この方法で有機ハロゲン化合物を処理した場合には、還元脱ハロゲン化反応だけではなく酸化反応も同時に生じる。そのため塩素ガス、臭素ガス、ジクロロ酢酸、などの有害な分解生成物が生じる。
Furthermore, a decomposition method using inorganic diamond at least as a cathode to reduce inorganic nitrate nitrogen to ammonia has been studied (see, for example, Patent Document 4 and Patent Document 5).
However, in the methods described in Patent Documents 4 and 5, the object to be reduced at the cathode is not an organic halogen compound but inorganic nitrate nitrogen, and no diaphragm is used. Therefore, the reaction solution contacts both the cathode and the anode, and when the organic halogen compound is treated by this method, not only the reductive dehalogenation reaction but also the oxidation reaction occurs simultaneously. Therefore, harmful decomposition products such as chlorine gas, bromine gas and dichloroacetic acid are generated.

以上のように、高濃度の有機ハロゲン化合物を含む多量の被処理物を、安全にかつ短時間で低濃度まで脱ハロゲンする有効な方法は未だ提供されていない。   As described above, an effective method for safely dehalogenating a large amount of an object containing a high concentration of an organic halogen compound to a low concentration in a short time has not yet been provided.

特開2010−203930号公報JP 2010-203930 A 特開2013−039270号公報JP 2013-039270 A 特開2004−202283号公報JP 2004-202283 A 特開2004−321963号公報JP 2004-321963 A 特開2010−270385号公報JP 2010-270385 A

本発明は、高濃度の有機ハロゲン化合物を含む多量の被処理物を安全にかつ短時間で低濃度まで脱ハロゲンする方法及び当該方法を実施する装置を提供することを目的とする。   An object of the present invention is to provide a method for safely dehalogenating a large amount of an object containing a high concentration of an organic halogen compound to a low concentration in a short time and an apparatus for carrying out the method.

本発明の発明者らは、上記課題を解決するために鋭意検討した結果、導電性ダイヤモンドを用いた陰極及び、導電性ダイヤモンドではない陽極を備える電解槽中で、高濃度の有機ハロゲン化合物を含む被処理物を当該陰極とのみ接触させて電気化学的脱ハロゲン処理に付すことにより、有機ハロゲン化合物が短時間で低濃度まで脱ハロゲンされることを見出し、本発明を完成させるに至った。   As a result of intensive investigations to solve the above problems, the inventors of the present invention contain a high concentration of an organic halogen compound in an electrolytic cell including a cathode using conductive diamond and an anode that is not conductive diamond. It was found that the organic halogen compound is dehalogenated to a low concentration in a short time by bringing the object to be treated into contact with the cathode only and subjecting it to an electrochemical dehalogenation treatment, thereby completing the present invention.

本発明によれば、導電性ダイヤモンドを含む陰極を含む陰極区画、導電性ダイヤモンドを含まない陽極を含む陽極区画、及び当該陰極区画と陽極区画とを隔離する隔膜を備える電解槽中で、陽極液を当該陽極区画のみに循環させ、有機ハロゲン化合物を含む被処理物(以下「被処理物」と略すこともある)を当該陰極区画のみに循環させて当該陰極とのみ接触させて電気化学的脱ハロゲン処理を行うことを特徴とする有機ハロゲン化合物の脱ハロゲン方法が提供される。本発明において、さらに乳化剤を陰極区画のみに添加してもよい。   According to the present invention, an anolyte is provided in an electrolytic cell comprising a cathode compartment including a cathode containing conductive diamond, an anode compartment containing an anode not containing conductive diamond, and a diaphragm separating the cathode compartment and the anode compartment. Is circulated only in the anode compartment, and an object to be treated containing an organic halogen compound (hereinafter also referred to as “object to be treated”) is circulated only in the cathode compartment and brought into contact with only the cathode to perform electrochemical desorption. Provided is a method for dehalogenating an organic halogen compound, characterized by performing a halogen treatment. In the present invention, an emulsifier may be added only to the cathode compartment.

また、本発明によれば、導電性ダイヤモンドを含む陰極を含む陰極区画、導電性ダイヤモンドを含まない陽極を含む陽極区画、当該陰極区画と陽極区画とを隔離する隔膜を備える電解槽と、陽極液を当該陽極区画のみに循環させる陽極液循環経路と、有機ハロゲン化合物を含む被処理物を当該陰極区画のみに循環させる被処理物循環経路と、を備える有機ハロゲン化合物の脱ハロゲン装置が提供される。   Further, according to the present invention, a cathode compartment including a cathode containing conductive diamond, an anode compartment containing an anode not containing conductive diamond, an electrolytic cell comprising a diaphragm separating the cathode compartment and the anode compartment, and an anolyte An organic halogen compound dehalogenation apparatus comprising: an anolyte circulation path that circulates only to the anode compartment; and a workpiece circulation path that circulates a treatment object containing the organic halogen compound only to the cathode compartment. .

陰極は、被処理物と接触する全ての面が導電性ダイヤモンドで被覆されていることが望ましい。陰極を構成する基材は限定されるものではないが、ニオブ、ポリシリコン、タンタル、チタンを好ましく用いることができ、特にニオブが好適である。陰極の形状は限定されるものではないが、被処理物との接触面積を大きくするために、表面が波状の平板、プリーツ折りなどが好ましく、パンチングメタル、エキスパンドメタル、金網などを好適に用いることができる。   As for a cathode, it is desirable for all the surfaces which contact a to-be-processed object to be coat | covered with the conductive diamond. The substrate constituting the cathode is not limited, but niobium, polysilicon, tantalum, and titanium can be preferably used, and niobium is particularly preferable. The shape of the cathode is not limited, but in order to increase the contact area with the object to be processed, a corrugated flat plate, pleated folding, etc. are preferable, and punching metal, expanded metal, wire mesh, etc. are preferably used. Can do.

陽極は、導電性ダイヤモンドを含まないものであれば通常用いられる電極でよく、特に不溶性電極であることが好ましい。陽極を構成する基材は限定されるものではないが、チタン、アルミニウム、白金族金属を好ましく用いることができる。本発明で用いる陽極としては、白金族金属で表面が被覆されている酸化イリジウムコートチタン電極が特に好適である。   The anode may be a commonly used electrode as long as it does not contain conductive diamond, and is particularly preferably an insoluble electrode. Although the base material which comprises an anode is not limited, Titanium, aluminum, and a platinum group metal can be used preferably. As the anode used in the present invention, an iridium oxide-coated titanium electrode whose surface is coated with a platinum group metal is particularly suitable.

隔膜としては、孔径が5μm以下で、非加圧条件でガスを透過しないものが好ましく、陽イオン交換膜、官能基を有しないMF(マイクロフィルタ)膜、UF(ウルトラフィルタ)膜、セラミックなどの多孔質濾材;ナイロン、ポリエチレン、ポリプロピレン製の織布;マニラ麻;ガラス繊維;多孔性プラスチックフィルム等を好ましく用いることができ、特に陽イオン交換膜が好適である。隔膜の市販品の具体例は、Schweiz Seidengazefabrik製PE-10膜、Flon Industry製NY1-HD膜、ASTOM製EDCORE、デュポン(株)製N424などである。   The diaphragm preferably has a pore size of 5 μm or less and does not transmit gas under non-pressurized conditions, such as a cation exchange membrane, an MF (microfilter) membrane having no functional group, a UF (ultrafilter) membrane, a ceramic, etc. Porous filter media; nylon, polyethylene, polypropylene woven fabric; Manila hemp; glass fiber; porous plastic film can be preferably used, and a cation exchange membrane is particularly suitable. Specific examples of commercially available diaphragms are PE-10 membranes from Schweiz Seidengazefabrik, NY1-HD membranes from Flon Industry, EDCORE from ASTOM, N424 from DuPont.

本発明の有機ハロゲン化合物の脱ハロゲン方法及び本発明の有機ハロゲン化合物の脱ハロゲン装置は、高濃度の有機ハロゲン化合物を含む多量の被処理物を安全にかつ短時間で低濃度まで脱ハロゲンできる。特に、電解によるハロゲンイオンの生成及び蓄積による隔膜の腐食を防止でき、ハロゲンガスの発生を抑制できる。   The organic halogen compound dehalogenation method of the present invention and the organic halogen compound dehalogenation apparatus of the present invention can safely dehalogenate a large amount of an object containing a high concentration of an organic halogen compound to a low concentration in a short time. In particular, the corrosion of the diaphragm due to the generation and accumulation of halogen ions by electrolysis can be prevented, and the generation of halogen gas can be suppressed.

本発明の有機ハロゲン化合物の脱ハロゲン装置の構成を示す概略説明図である。It is a schematic explanatory drawing which shows the structure of the dehalogenation apparatus of the organic halogen compound of this invention. 実施例1〜4で用いた本発明の脱ハロゲン装置の電解槽を示す概略説明図である。It is a schematic explanatory drawing which shows the electrolytic cell of the dehalogenation apparatus of this invention used in Examples 1-4. 比較例5で用いた従来の脱ハロゲン装置の電解槽を示す概略説明図である。It is a schematic explanatory drawing which shows the electrolytic cell of the conventional dehalogenation apparatus used in the comparative example 5. 実施例5で用いた本発明の脱ハロゲン装置の電解槽を示す概略説明図である。It is a schematic explanatory drawing which shows the electrolytic cell of the dehalogenation apparatus of this invention used in Example 5. FIG. 比較例6で用いた従来の脱ハロゲン装置の電解槽を示す概略説明図である。It is a schematic explanatory drawing which shows the electrolytic cell of the conventional dehalogenation apparatus used in the comparative example 6.

以下、添付図面を参照しながら本発明本発明を詳細に説明する。
図1は、本発明の有機ハロゲン化合物の脱ハロゲン装置の構成を示す概略説明図である。電解槽1内は、隔膜4によって、陰極2を含む陰極区画及び陽極3を含む陽極区画に区分されている。陰極2及び陽極3は電源に接続されている。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a schematic explanatory view showing the structure of the organohalogen compound dehalogenation apparatus of the present invention. The electrolytic cell 1 is divided into a cathode compartment including a cathode 2 and an anode compartment including an anode 3 by a diaphragm 4. The cathode 2 and the anode 3 are connected to a power source.

陰極区画には、有機ハロゲン化合物を含む被処理物を投入する被処理物投入口11、及び電解液を投入する電解液投入口12が設けられており、さらに、電解処理後の被処理物含有電解液を陰極区画から抜き出す出口14と、陰極区画に被処理物含有電解液を再び導入する入口15とが設けられ、出口及び入口の間を連結する被処理物循環経路16が取り付けられている。電解処理が完了した後の処理水を排水するため、被処理物循環経路16の途中に分岐及び取り出し口を設けてもよいし、あるいは電解槽1に処理水取出口を設けてもよい。図1に示した電解槽1において、陰極区画の底部は傾斜し、被処理物含有電解液の出口14が最も低い位置となるように構成されている。   The cathode compartment is provided with a workpiece inlet 11 for feeding a workpiece containing an organic halogen compound, and an electrolyte inlet 12 for feeding an electrolyte, and further contains the workpiece after electrolytic treatment. An outlet 14 for extracting the electrolyte from the cathode compartment and an inlet 15 for reintroducing the workpiece-containing electrolyte into the cathode compartment are provided, and a workpiece circulation path 16 connecting the outlet and the inlet is attached. . In order to drain the treated water after completion of the electrolytic treatment, a branch and a take-out port may be provided in the middle of the treatment object circulation path 16, or a treated water take-out port may be provided in the electrolytic cell 1. In the electrolytic cell 1 shown in FIG. 1, the bottom of the cathode compartment is inclined so that the outlet 14 of the workpiece-containing electrolytic solution is at the lowest position.

陽極区画は隔膜4によって陰極区画と隔離されており、電解槽1に注入された被処理物は陰極2とのみ接触し、陽極3とは接触しない。陽極区画には、陽極液槽6から供給される陽極液を受け容れる入口18と、電気分解に使用された後に陽極液を陽極区画から抜き出す出口17と、が設けられており、さらに、抜き出した陽極液を再び陽極液槽6に送り戻し、更に陽極液槽6から陽極区画に送る陽極液循環経路19が取り付けられている。陽極液循環経路19は、陽極液槽6から抜き出した陽極液を冷却してから再度陽極区画に供給する熱交換器5を含む。   The anode compartment is separated from the cathode compartment by the diaphragm 4, and the workpiece injected into the electrolytic cell 1 contacts only the cathode 2 and does not contact the anode 3. The anode compartment is provided with an inlet 18 for receiving the anolyte supplied from the anolyte tank 6 and an outlet 17 for extracting the anolyte from the anode compartment after being used for electrolysis. An anolyte circulation path 19 for sending the anolyte back to the anolyte tank 6 again and further from the anolyte tank 6 to the anode compartment is attached. The anolyte circulation path 19 includes the heat exchanger 5 that cools the anolyte extracted from the anolyte tank 6 and supplies the anolyte again to the anode compartment.

図1に示す装置を用いて、有機ハロゲン化合物を脱ハロゲンする方法について説明する。
必要に応じて濾過、蒸留等の前処理に付された有機ハロゲン化合物を含む被処理物は、被処理物投入口11を介して、電解液は電解液投入口12を介して、それぞれ電解槽1の陰極区画に投入される。陰極区画に用いる電解液は、無水硫酸ナトリウム、塩化ナトリウム等の電解質を水、エタノール、メタノール、アセトニトリル、DMSO等の極性溶媒に分散または溶解したものである。電解液の調製は、電解槽1への投入前に電解液槽などで電解質を極性溶媒へ分散又は溶解させてもよいし、あるいは電解質と極性溶媒とを電解槽1へ投入して分散又は溶解させてもよい。
陽極液は、陽極液槽6から陽極液入口18を介して電解槽1内の陽極区画に投入される。
A method for dehalogenating an organic halogen compound using the apparatus shown in FIG. 1 will be described.
If necessary, an object to be processed containing an organic halogen compound subjected to pretreatment such as filtration and distillation is supplied through an object inlet 11 and an electrolytic solution is supplied through an electrolyte inlet 12 in an electrolytic cell. 1 into the cathode compartment. The electrolytic solution used for the cathode compartment is obtained by dispersing or dissolving an electrolyte such as anhydrous sodium sulfate or sodium chloride in a polar solvent such as water, ethanol, methanol, acetonitrile, or DMSO. Preparation of the electrolytic solution may be performed by dispersing or dissolving the electrolyte in a polar solvent in the electrolytic solution tank or the like before charging into the electrolytic cell 1, or by dispersing and dissolving the electrolyte and the polar solvent in the electrolytic cell 1. You may let them.
The anolyte is introduced from the anolyte tank 6 through the anolyte inlet 18 into the anode compartment in the electrolytic cell 1.

有機ハロゲン化合物を含む被処理物が電解槽1の陰極区画に注入され、陽極液が陽極区画に注入された後、有機ハロゲン化合物の電気化学的脱ハロゲン処理が実施される。陽極液は、陰極区画に注入される電解液と同一組成又は別組成の電解液でよい。陽極液は塩素イオンなどのハロゲンを含まないことが望ましい。   An object to be treated containing an organic halogen compound is injected into the cathode compartment of the electrolytic cell 1, and after an anolyte is injected into the anode compartment, an electrochemical dehalogenation treatment of the organic halogen compound is performed. The anolyte may be an electrolyte having the same or different composition as the electrolyte injected into the cathode compartment. It is desirable that the anolyte does not contain halogen such as chlorine ions.

電気分解の際、被処理物を含む電解液のpHは5〜12.5であることが好ましく、pHは7〜12であるであることがより好ましい。pHが低すぎると、被処理物中の水素イオン濃度が上昇して陰極2表面の水素イオンの還元反応(水素ガスの発生)が容易になり、陰極電位が上昇して有機ハロゲン化合物の還元脱ハロゲン化反応が起こりにくくなる結果、有機ハロゲン化合物の分解速度が低下するか、有機ハロゲン化合物の分解が起きなくなる。隔膜が陽イオン交換膜である場合、被処理物を含む電解液のpHが高すぎると、陽イオン交換膜の通電時電圧が上昇し、イオン交換能が低下して電気抵抗が増加する。   During the electrolysis, the pH of the electrolytic solution containing the object to be processed is preferably 5 to 12.5, and more preferably 7 to 12. If the pH is too low, the hydrogen ion concentration in the object to be treated increases, and the reduction reaction of hydrogen ions on the surface of the cathode 2 (generation of hydrogen gas) becomes easy, and the cathode potential rises to reduce the organic halogen compound by reductive desorption. As a result of the difficulty of the halogenation reaction, the decomposition rate of the organic halogen compound is reduced or the decomposition of the organic halogen compound does not occur. In the case where the diaphragm is a cation exchange membrane, if the pH of the electrolytic solution containing the object to be treated is too high, the energization voltage of the cation exchange membrane increases, the ion exchange capacity decreases, and the electrical resistance increases.

電気分解の際、電解槽1中の被処理物を含む電解液は撹拌され得る。撹拌手段は限定されず、一般的な撹拌手段を用いることができる。被処理物を含む電解液は電解槽1(陰極区画)底部の出口からポンプ7により吸引されて被処理物循環経路16を介して電解槽1上部の入口15に戻されて循環され、撹拌され得る。ポンプ7の具体例は、ダイヤフラムポンプ、渦巻きポンプである。好ましいポンプ7は渦巻きポンプである。   During the electrolysis, the electrolytic solution containing the workpiece in the electrolytic cell 1 can be stirred. The stirring means is not limited, and general stirring means can be used. The electrolytic solution containing the object to be treated is sucked by the pump 7 from the outlet at the bottom of the electrolytic cell 1 (cathode compartment), returned to the inlet 15 at the upper part of the electrolytic cell 1 through the material circulation path 16 and circulated and stirred. obtain. Specific examples of the pump 7 are a diaphragm pump and a spiral pump. A preferred pump 7 is a centrifugal pump.

電解槽1中で電気化学脱ハロゲン処理された被処理物を含む電解液は、電解槽1底部の出口14から抜き出され、被処理物循環経路16を介して送液され、入口15を介して再び電解槽1内の陰極区画に投入される。
電解槽1中で電気化学脱ハロゲン処理に用いられた陽極液は、電解槽1上部の出口17から抜き出され陽極液槽6に戻され、陽極液循環経路19を介して再び電解槽1上部の入口18から陽極区画に投入される。図1において、陽極液槽6から陽極区画に投入する前に、熱交換器5にて隔膜の使用温度範囲、好ましくは50℃以下に冷却する。
The electrolytic solution containing the workpiece that has been electrochemically dehalogenated in the electrolytic bath 1 is extracted from the outlet 14 at the bottom of the electrolytic bath 1, sent via the workpiece circulating path 16, and via the inlet 15. Then, it is again put into the cathode compartment in the electrolytic cell 1.
The anolyte used for the electrochemical dehalogenation treatment in the electrolytic cell 1 is extracted from the outlet 17 at the upper part of the electrolytic cell 1 and returned to the anolyte tank 6, and is again returned to the upper part of the electrolytic cell 1 through the anolyte circulation path 19. From the inlet 18 to the anode compartment. In FIG. 1, before putting into the anode compartment from the anolyte tank 6, the heat exchanger 5 cools the diaphragm to the operating temperature range, preferably 50 ° C. or less.

本発明の有機ハロゲン化合物の脱ハロゲン方法及び脱ハロゲン装置で脱ハロゲンされる有機ハロゲン化合物の具体例は、メタンの1〜4ハロゲン置換体、エタンの1〜6ハロゲン置換体、エチレンの1〜4ハロゲン置換体、アセチレンの1〜2ハロゲン置換体、プロパンの1〜8ハロゲン置換体、プロピレンの1〜6ハロゲン置換体、アレン(プロパジエン)の1〜4ハロゲン置換体、アリレン(メチルアセチレン)の1〜4ハロゲン置換体、ブタンの1〜10ハロゲン置換体、1−、2−あるいはiso−ブテンの1〜8ハロゲン置換体、1、3−ブタジエンの1〜6ハロゲン置換体、酢酸の1〜4ハロゲン置換体、フェノールの1〜5ハロゲン置換体、ビフェニルの1〜10ハロゲン置換体、ダイオキシン類である。好ましい有機ハロゲン化合物は、テトラクロロエチレン、トリクロロエチレン、トリフルオロ酢酸、ブロモエタンである。   Specific examples of the organic halogen compound to be dehalogenated by the organic halogen compound dehalogenation method and dehalogenation apparatus of the present invention include 1 to 4 halogen substituents of methane, 1 to 6 halogen substituents of ethane, and 1 to 4 of ethylene. Halogen-substituted, acetylene 1-2 halogen substituted, propane 1-8 halogen substituted, propylene 1-6 halogen substituted, allene (propadiene) 1-4 halogen substituted, allylene (methylacetylene) 1 1-4 halogen substituted products, 1-10 halogen substituted product of butane, 1-8 halogen substituted product of 1-, 2- or iso-butene, 1-6 halogen substituted product of 1,3-butadiene, 1-4 of acetic acid Halogen substituted products, 1-5 halogen substituted products of phenol, 1-10 halogen substituted products of biphenyl, and dioxins. Preferred organic halogen compounds are tetrachloroethylene, trichloroethylene, trifluoroacetic acid and bromoethane.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されない。各種測定方法は次のとおりである。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Various measurement methods are as follows.

(1)エチレンの1〜4ハロゲン置換体濃度の測定方法
陰極区画から採取された5mLの試料液をバイアル瓶に入れ、直ちにテフロン(登録商標)ライナー付きブチルゴム栓とアルミシールで密栓し、30分以上振とうし、気液のハロゲン化エチレン濃度を平衡化させる。次いで、ガスタイトシリンジで200μLの気相を採取しサンプルガスとする。PIDガスクロマトグラフ装置(hnu社製GC−311)を用いて、注入口及び検出器温度110℃、カラム温度70℃でカラム(hnu社製NBW−311)にサンプルガスを注入し、エチレンの1〜4ハロゲン置換体濃度を測定する。
(1) Method for measuring the concentration of 1 to 4 halogen substituents of ethylene 5 mL of the sample solution collected from the cathode compartment is placed in a vial and immediately sealed with a butyl rubber stopper with a Teflon (registered trademark) liner and an aluminum seal for 30 minutes. Shake as described above to equilibrate the halogenated ethylene concentration in the gas and liquid. Next, a gas phase of 200 μL is collected with a gas tight syringe and used as a sample gas. Using a PID gas chromatograph (GC-311 manufactured by hnu), sample gas was injected into the column (NBW-311 manufactured by hnu) at an inlet and detector temperature of 110 ° C. and a column temperature of 70 ° C. 4 Measure the halogen substitution product concentration.

(2)ハロゲンイオン濃度の測定方法
10mLの1N硝酸及び5g/Lの硝酸銀溶液1mLを、100mL共栓付きメスシリンダーに採取された適量の試料(ハロゲンイオンとして0.1mg以下)に加え、更に純水を加えて100mLの溶液を調製し、十分に振り混ぜて10分間放置する。調製された溶液の一部を50mm吸収セルに移し、420nmの波長で分光光度計((株)日立製作所製U−1800)により検量線法でハロゲンイオン濃度を測定する。
(2) Measuring method of halogen ion concentration Add 10 mL of 1N nitric acid and 1 mL of 5 g / L silver nitrate solution to an appropriate amount of sample (0.1 mg or less as halogen ion) collected in a 100 mL stoppered measuring cylinder, Add water to make a 100 mL solution, shake well and leave for 10 minutes. A part of the prepared solution is transferred to a 50 mm absorption cell, and the halogen ion concentration is measured by a calibration curve method with a spectrophotometer (U-1800 manufactured by Hitachi, Ltd.) at a wavelength of 420 nm.

(3)陰極電位の測定方法
比較電極(TOA/DKK社製HC−151A)を電解槽の陰極区画に浸漬し、陰極と比較電極の間の電位差を北斗電工(株)製ポテンショスタットHA−151Aにより測定する。測定値は以下の式により水素標準電極電位に換算する。
水素標準電極電位(VvsSHE)=比較電極測定値(VvsAg/AgCl)+0.199
(3) Cathode potential measurement method The reference electrode (HC-151A manufactured by TOA / DKK) is immersed in the cathode compartment of the electrolytic cell, and the potential difference between the cathode and the reference electrode is determined by Hokuto Denko's potentiostat HA-151A. Measure with The measured value is converted into a hydrogen standard electrode potential by the following formula.
Hydrogen standard electrode potential (VvsSHE) = Comparative electrode measured value (VvsAg / AgCl) + 0.199

[実施例1]
図2に示す試験装置を用いた。水酸化ナトリム溶液を500mL容セパラブルフラスコ中の40g/Lの無水硫酸ナトリウム溶液に添加し、pHを12に調整した。ハロゲンイオン濃度の測定感度を向上させるため、無水硫酸ナトリム溶液を電解液として使用したが、実用時には10g/L塩化ナトリウム溶液を電解液として使用してもよい。
袋状に成形された陽イオン交換膜4(デュポン(株)製N424)に入れられた陽極3(ペルメレック電極(株)製DSE電極)と、陰極としてのニオブ基材ダイヤモンド電極2(CONDIAS社製)を上記セパラブルフラスコに配置し、上記隔膜袋の中に40g/Lの無水硫酸ナトリウム溶液を陽極液として充填した。有機ハロゲン化合物としてテトラクロロエチレンを陰極区画に初期濃度7100mg/Lとなるように添加し、直流電源装置((株)高砂製作所製LX018−2A)を用いて1Aの電流を通電し、上記セパラブルフラスコ内の電解液の回転線速度が内周の3/4の地点で230mm/秒となるようにマグネチックスターラーの回転速度を設定し、電気分解を行った。上記ダイヤモンド電極は両面がダイヤモンド皮膜で被覆されており、被処理物と直接接触する全ての面がダイヤモンドで被覆されている条件とした。
[Example 1]
The test apparatus shown in FIG. 2 was used. The sodium hydroxide solution was added to 40 g / L anhydrous sodium sulfate solution in a 500 mL separable flask to adjust the pH to 12. In order to improve the measurement sensitivity of the halogen ion concentration, anhydrous sodium sulfate solution was used as the electrolytic solution, but a 10 g / L sodium chloride solution may be used as the electrolytic solution in practical use.
Anode 3 (DSE electrode manufactured by Permerek Electrode Co., Ltd.) placed in a cation-exchange membrane 4 (DuPont N424) formed into a bag shape, and niobium base diamond electrode 2 (manufactured by CONDIAS) as a cathode ) Was placed in the separable flask, and 40 g / L of anhydrous sodium sulfate solution was filled in the diaphragm bag as an anolyte. Tetrachlorethylene as an organic halogen compound was added to the cathode compartment to an initial concentration of 7100 mg / L, and a current of 1 A was applied using a DC power supply (LX018-2A manufactured by Takasago Seisakusho Co., Ltd.) The rotation speed of the magnetic stirrer was set so that the rotation linear velocity of the electrolyte solution was 230 mm / sec at a point of 3/4 of the inner circumference, and electrolysis was performed. The diamond electrode was coated on both sides with a diamond film, and all the surfaces in direct contact with the object to be treated were coated with diamond.

[実施例2]
有機ハロゲン化合物としてトリクロロエチレンを用いた以外は実施例1と同様に実施した。
[Example 2]
The same procedure as in Example 1 was performed except that trichlorethylene was used as the organic halogen compound.

[比較例1]
陰極をモネル合金金網に変更した以外は実施例1と同様に実施した。モネル合金金網は実施例1および2で使用した導電性ダイヤモンド電極と比較して表面積が4.5倍大きなものを用いた。
被処理物中のハロゲンイオン濃度を経時的に測定した。ハロゲンイオンはテトラクロロエチレン又はトリクロロエチレンが還元脱ハロゲン化されて生じるから、ハロゲンイオン濃度の増加速度からテトラクロロエチレン又はトリクロロエチレンの分解速度を計算することができる。結果を表1に示す。
[Comparative Example 1]
The same procedure as in Example 1 was performed except that the cathode was changed to a Monel alloy wire mesh. A Monel alloy wire mesh having a surface area 4.5 times larger than the conductive diamond electrode used in Examples 1 and 2 was used.
The halogen ion concentration in the workpiece was measured over time. Since halogen ions are generated by reductive dehalogenation of tetrachloroethylene or trichloroethylene, the decomposition rate of tetrachloroethylene or trichlorethylene can be calculated from the increasing rate of the halogen ion concentration. The results are shown in Table 1.

この結果より、本処理方法はテトラクロロエチレン、トリクロロエチレンの分解に有効であることが示された。   From this result, it was shown that this treatment method is effective for the decomposition of tetrachlorethylene and trichlorethylene.

また、PIDガスクロマトグラフィーを用いた測定により、テトラクロロエチレン、トリクロロエチレンの中間分解産物として1,1−ジクロロエチレン、t−1,2−ジクロロエチレン、塩化ビニルモノマーが微量発生し、それらが経時的にエチレンにまで分解されて減少、消滅していく現象が観察されたことから、本処理方法は広くハロゲン化エチレン類全般に適用性があることが認められた。   In addition, as a result of measurement using PID gas chromatography, trace amounts of 1,1-dichloroethylene, t-1,2-dichloroethylene, and vinyl chloride monomers are generated as intermediate decomposition products of tetrachloroethylene and trichlorethylene, and these become ethylene over time. Since the phenomenon of decomposition and decrease and disappearance was observed, it was confirmed that this treatment method is widely applicable to all halogenated ethylenes.

比較例1の結果と実施例1の結果を比較すると、陰極の電極面積が4.5分の1であるにも関わらず、本発明のダイヤモンド電極を陰極に用いた実施例1の方が1.3倍速い分解速度を示したことがわかる。   When the results of Comparative Example 1 and the results of Example 1 are compared, Example 1 using the diamond electrode of the present invention as the cathode is 1 in spite of the electrode area of the cathode being 1 / 4.5. It can be seen that the decomposition rate was 3 times faster.

また、実施例1の試験時における陰極電位は−3.3Vに達し、比較例1の陰極電位−1.2Vよりも圧倒的に強い還元電位を持っていることが示された。このように強い還元電位を生じることにより、有機ハロゲン化合物の効率的な脱ハロゲン反応が生じているものと考えられる。   Moreover, the cathode potential at the time of the test of Example 1 reached −3.3 V, and it was shown that the cathode potential was overwhelmingly stronger than the cathode potential −1.2 V of Comparative Example 1. By generating such a strong reduction potential, it is considered that an efficient dehalogenation reaction of the organic halogen compound occurs.

[実施例3]
実施例1と同様に図−2に示す装置を用いて、テトラクロロエチレンを初期濃度7100mg/Lとなるように無水硫酸ナトリウム溶液に添加したのち、乳化剤ライオミックスML(ライオン株式会社製)を2500mg/Lとなるように添加し、NaOHでpHを12に調整した条件で、電気化学的脱ハロゲン処理を実施した。テトラクロロエチレン濃度が150mg/L以下となり、液の白濁(乳化剤により分散した油滴)が消滅した時点で、再びテトラクロロエチレンを7100mg/L程度となるように追加し、分解速度を測定する操作を3回繰り返した。結果を表2に示す。
[Example 3]
Using the apparatus shown in FIG. 2 in the same manner as in Example 1, tetrachloroethylene was added to an anhydrous sodium sulfate solution to an initial concentration of 7100 mg / L, and then emulsifier Riomix ML (manufactured by Lion Corporation) was added to 2500 mg / L. Then, electrochemical dehalogenation treatment was performed under the condition that the pH was adjusted to 12 with NaOH. When the tetrachlorethylene concentration became 150 mg / L or less and the liquid turbidity (oil droplets dispersed by the emulsifier) disappeared, tetrachlorethylene was added again to be about 7100 mg / L, and the operation for measuring the decomposition rate was repeated three times. It was. The results are shown in Table 2.

表2より、乳化剤を添加しなかった実施例1と比べて、実施例3ではテトラクロロエチレンの分解速度が2倍程度増加していることがわかる。   From Table 2, it can be seen that in Example 3, the decomposition rate of tetrachloroethylene increased by about 2 times compared to Example 1 in which no emulsifier was added.

また、繰り返しテトラクロロエチレンを添加して分解試験を反復しても、乳化剤の効果が持続して分解速度が低下していないことがわかる。通常の電解処理においては、乳化剤自体が陽極の酸化力によって分解されてしまい繰り返し使用できないが、本発明の条件では乳化剤を陰極とのみ接触させているため、乳化剤の繰り返し使用が可能となった。   Moreover, even if it adds tetrachloroethylene repeatedly and repeats a decomposition test, it turns out that the effect of an emulsifier continues and the decomposition rate does not fall. In ordinary electrolytic treatment, the emulsifier itself is decomposed by the oxidizing power of the anode and cannot be used repeatedly. However, under the conditions of the present invention, the emulsifier is brought into contact only with the cathode, so that the emulsifier can be used repeatedly.

[実施例4]
実施例1と同様に図−2に示す装置を用いて、テトラクロロエチレンを初期濃度120mg/Lとなるように無水硫酸ナトリウム溶液に添加して電気化学的脱ハロゲン処理を実施した。陰極区画中の被処理物を含む電解液のpHが10〜12である時のハロゲンイオン濃度を測定し、ハロゲン化エチレンの分解速度を計算した。結果を表3に示す。
[Example 4]
Using the apparatus shown in FIG. 2 in the same manner as in Example 1, electrochemical dehalogenation treatment was performed by adding tetrachloroethylene to an anhydrous sodium sulfate solution to an initial concentration of 120 mg / L. The halogen ion concentration was measured when the pH of the electrolytic solution containing the object to be processed in the cathode compartment was 10 to 12, and the decomposition rate of ethylene halide was calculated. The results are shown in Table 3.

[比較例2]
比較例1と同様に陰極をモネル合金金網に変更した装置を用いた以外は実施例4と同様に実施し、テトラクロロエチレン濃度を測定し、ハロゲン化エチレンの分解速度を掲載した。結果を表3に示す。
[Comparative Example 2]
It carried out like Example 4 except having used the apparatus which changed the cathode into the Monel alloy metal mesh similarly to the comparative example 1, tetrachloroethylene concentration was measured, and the decomposition rate of the halogenated ethylene was published. The results are shown in Table 3.

表3より、陰極にダイヤモンド電極を用いた実施例4では、48時間以内に0.01mg/Lまでテトラクロロエチレン濃度を低減させることができたことがわかる。
一方、陰極にモネル合金を用いた比較例2では、テトラクロロエチレン濃度の低下が10mg/L付近で停滞し、排水基準値である0.1mg/Lまで到達できない現象が認められた。
これらの結果から、陰極の材質としてダイヤモンド電極を用いることにより、高濃度のテトラクロロエチレンを低濃度まで効率よく分解し、排水基準値を満たすことができるといえる。
From Table 3, it can be seen that in Example 4 using a diamond electrode as the cathode, the tetrachlorethylene concentration could be reduced to 0.01 mg / L within 48 hours.
On the other hand, in Comparative Example 2 using a Monel alloy for the cathode, a decrease in tetrachlorethylene concentration stagnated in the vicinity of 10 mg / L, and a phenomenon was observed that could not reach the drainage standard value of 0.1 mg / L.
From these results, it can be said that by using a diamond electrode as the material of the cathode, high concentration tetrachloroethylene can be efficiently decomposed to a low concentration and the drainage standard value can be satisfied.

[比較例3]
実施例1と同様に図−2に示す装置を用い、陰極を片面だけ導電性ダイヤモンドで被覆した電極に変更した。陰極としてポリシリコン基材の片面コートダイヤモンド電極(CONDIAS社製)を用い、その他の試験条件は実施例1と同様にして試験を行った。結果を表4に示す。
[Comparative Example 3]
As in Example 1, the apparatus shown in FIG. 2 was used, and the cathode was changed to an electrode coated on one side with conductive diamond. A polysilicon base single-sided diamond electrode (made by CONDIAS) was used as the cathode, and the other test conditions were the same as in Example 1. The results are shown in Table 4.

表4より、表面の一部が導電性ダイヤモンドで被覆されていない電極を陰極として使用すると、被覆されていない表面で優先的に水素ガスの発生が生じ、陰極電位が−1.2V程度までしか低下しなかった。その結果、実施例1と比較してテトラクロロエチレンの分解速度が1/5程度まで低下した。この結果より、本発明の処理方法において、陰極は被処理物と接触する全ての面が導電性ダイヤモンドで被覆されていることが望ましいといえる。   From Table 4, when an electrode whose surface is not coated with conductive diamond is used as a cathode, hydrogen gas is preferentially generated on the uncoated surface, and the cathode potential is only about -1.2V. It did not drop. As a result, compared with Example 1, the decomposition rate of tetrachloroethylene decreased to about 1/5. From this result, it can be said that, in the treatment method of the present invention, it is desirable that the cathode is coated with conductive diamond on all surfaces in contact with the object to be treated.

[比較例4]
実施例1と同様に図−2に示す装置を用い、陰極及び陽極の両方を両面コートダイヤモンド電極に変更した。陰極および陽極としてポリシリコン基材の両面コートダイヤモンド電極(CONDIAS社製)を用い、その他の試験条件は実施例1と同様にして試験を行った。結果を表5に示す。
[Comparative Example 4]
The apparatus shown in FIG. 2 was used in the same manner as in Example 1, and both the cathode and the anode were changed to double-side coated diamond electrodes. The test was conducted in the same manner as in Example 1 except that a polysilicon base double-sided coated diamond electrode (manufactured by CONDIAS) was used as the cathode and anode. The results are shown in Table 5.

比較例4におけるテトラクロロエチレンの分解速度は実施例1と同程度であった。しかしながら比較例4の運転を48時間続けたところ、隔膜袋として成型使用した陽イオン交換膜(デュポン(株)製N424)の色が初期の焦げ茶色から脱色されて薄い黄色となり、陽極区画(隔膜袋の内部)に塩素イオンが侵入し、強い塩素臭が発生した。これは陽極にダイヤモンド電極を使用したことにより、隔膜が強力な酸化力によって損傷し、陰イオンに対するバリアの役目を果たさなくなったことによると考えられる。   The decomposition rate of tetrachlorethylene in Comparative Example 4 was similar to that in Example 1. However, when the operation of Comparative Example 4 was continued for 48 hours, the color of the cation exchange membrane (N424 manufactured by DuPont Co., Ltd.) molded and used as a diaphragm bag was decolorized from the initial dark brown color to become pale yellow, and the anode compartment (diaphragm) Chlorine ions entered the inside of the bag) and a strong chlorine odor was generated. This is thought to be due to the fact that the diaphragm was damaged by strong oxidizing power due to the use of a diamond electrode for the anode, and no longer served as a barrier against anions.

[比較例5]
図−2に示す装置から陽イオン交換隔膜袋を取り除き、陽極と陰極がともに被処理液に接触している装置(図−3)を用い、その他の条件は実施例1と同一としてテトラクロロエチレンの分解試験を行った。結果を表6に示す。
[Comparative Example 5]
The cation exchange membrane bag is removed from the apparatus shown in FIG. 2 and the apparatus (FIG. 3) in which both the anode and the cathode are in contact with the liquid to be treated is used. A test was conducted. The results are shown in Table 6.

表−6には、分解試験開始からの経過時間ごとの分解速度の変化を示した。実施例1では24時間の運転中に分解速度はほぼ一定の60mg有機ハロゲン化合物/L・hだったのに対し、比較例5では最初から分解速度が38mg有機ハロゲン化合物/L・hと遅く、さらに時間経過とともに分解速度が低下していく傾向が認められた。これは、隔膜が存在しないため陰極で発生した塩素イオンが陽極で次亜塩素酸塩となり、これが再び陰極で塩素イオンとなるピンポン反応が優先的に生じて有機ハロゲン分解の電流効率が低下して、有機ハロゲン化合物分解の停滞を招くためと考えられる。   Table 6 shows the change in decomposition rate for each elapsed time from the start of the decomposition test. In Example 1, the degradation rate was approximately constant 60 mg organohalogen compound / L · h during operation for 24 hours, whereas in Comparative Example 5, the degradation rate was slow as 38 mg organohalogen compound / L · h from the beginning. Furthermore, there was a tendency for the decomposition rate to decrease with time. This is because chlorine ions generated at the cathode become hypochlorite at the anode because there is no diaphragm, and this causes a ping-pong reaction in which it becomes chlorine ions again at the cathode, resulting in reduced current efficiency of organic halogen decomposition. This is considered to cause a stagnation of the decomposition of the organic halogen compound.

[実施例5]
図−4に示す電解試験装置を用いてテトラクロロエチレン分解試験を行った。図−4の電解槽は、被処理物を含む電解液に接触する片面を導電性ダイヤモンドで被覆されたポリシリコン基材電極(CONDIAS社製)を陰極として、DSE電極(ペルメレック(株)製)を陽極として対向して配置し、両電極間に隔膜4として陽イオン交換膜(デュポン(株)製N424)を配して陽極区画と陰極区画を離隔した。陰極および陽極は片面のみ液と接触させる構成とし、テフロン(登録商標)製のパッキングを用いて側面及び背面が接液しないよう遮断した。
被処理物は混合槽内で電解液と混合され、入口15を介して電解槽の陰極区画に供給され、陰極区画上部の出口14から抜き出し混合槽に戻し、再度陰極区画に投入する循環経路16を形成した。陽極液を陽極液槽6から電解槽の陽極区画に供給し、陽極区画上部の出口17から抜き出して陽極液槽6に戻し、電解槽の下部の入口18から再度陽極区画に投入する循環経路19を形成した。電解液及び陽極液は実施例1と同条件とした。
[Example 5]
A tetrachlorethylene decomposition test was performed using the electrolytic test apparatus shown in FIG. The electrolytic cell shown in Fig. 4 has a DSE electrode (manufactured by Permerec Co., Ltd.) with a polysilicon base electrode (manufactured by CONDIAS) coated with conductive diamond on one side in contact with the electrolyte containing the object to be treated. Were placed opposite to each other as an anode, and a cation exchange membrane (N424 manufactured by DuPont Co., Ltd.) was arranged as a diaphragm 4 between both electrodes to separate the anode compartment and the cathode compartment. The cathode and the anode were configured such that only one side was in contact with the liquid, and the side and back surfaces were blocked from coming into contact with a Teflon (registered trademark) packing.
The object to be treated is mixed with the electrolytic solution in the mixing tank, supplied to the cathode compartment of the electrolytic tank through the inlet 15, extracted from the outlet 14 at the upper part of the cathode compartment, returned to the mixing tank, and fed again into the cathode compartment. Formed. A circulation path 19 for supplying the anolyte from the anolyte tank 6 to the anode compartment of the electrolytic cell, withdrawing it from the outlet 17 at the upper part of the anode compartment, returning it to the anolyte tank 6, and introducing it again into the anode compartment from the inlet 18 at the lower part of the electrolytic cell. Formed. The electrolytic solution and the anolyte were the same as in Example 1.

[比較例6]
図−5に示す電解試験装置を用いてテトラクロロエチレン分解試験を行った。図−5の電解槽は、混合槽内で電解液と混合させた被処理物を陽極区画に投入し、電解処理した後、陽極区画上部から抜き出して陰極区画下部から投入し、電解処理した後、陰極区画上部から抜き出して混合槽に戻す、循環経路を形成している。比較例6では、被処理物は陽極区画から陰極区画へと流入する。実施例5と同様、陰極は導電性ダイヤモンド被覆ポリシリコン基材電極、陽極はDSE電極とした。分解試験開始からの経過時間毎に測定したテトラクロロエチレン濃度に基づいて算出したハロゲン分解速度を表7に示す。
[Comparative Example 6]
A tetrachloroethylene decomposition test was conducted using the electrolytic test apparatus shown in FIG. The electrolytic cell shown in Fig. 5 is obtained by putting an object to be treated mixed with an electrolytic solution in a mixing vessel into the anode compartment, performing an electrolytic treatment, and then extracting from the upper portion of the anode compartment and feeding it from the lower portion of the cathode compartment. A circulation path is formed by extracting from the upper part of the cathode compartment and returning it to the mixing tank. In Comparative Example 6, the object to be processed flows from the anode compartment to the cathode compartment. As in Example 5, the cathode was a conductive diamond-coated polysilicon base electrode, and the anode was a DSE electrode. Table 7 shows the halogen decomposition rate calculated based on the tetrachlorethylene concentration measured at each elapsed time from the start of the decomposition test.

実施例5では8時間の運転中に分解速度はほぼ一定の53〜57mg有機ハロゲン化合物/L・hだったのに対し、比較例6では最初から分解速度が35mg有機ハロゲン化合物/L・hと遅く、さらに時間経過とともに分解速度が低下していく傾向が認められた。これは、陽極、陰極間で液が循環されているため陰極で発生した塩素イオンが陽極で次亜塩素酸塩となり、これが再び陰極で塩素イオンとなるピンポン反応が優先的に生じて有機ハロゲン分解の電流効率が低下していくためと考えられる。   In Example 5, the decomposition rate was almost constant 53 to 57 mg organic halogen compound / L · h during operation for 8 hours, whereas in Comparative Example 6, the decomposition rate was 35 mg organic halogen compound / L · h from the beginning. Slowly, the tendency for the decomposition rate to decrease with time was observed. This is because the liquid is circulated between the anode and the cathode, so that the chlorine ions generated at the cathode become hypochlorite at the anode, and the ping-pong reaction in which this becomes chlorine ions again at the cathode occurs preferentially to decompose the organic halogen. This is thought to be due to a decrease in current efficiency.

本発明の有機ハロゲン化合物の脱ハロゲン方法及び有機ハロゲン化合物の脱ハロゲン装置は、高濃度の有機ハロゲン化合物を含む被処理物の短時間で低濃度まで脱ハロゲン化するために好適である。   The organic halogen compound dehalogenation method and the organic halogen compound dehalogenation apparatus of the present invention are suitable for dehalogenating an object to be treated containing a high concentration of an organic halogen compound to a low concentration in a short time.

1…電解槽、2…陰極、3…陽極、4…隔膜、5…熱交換器、6…陽極液槽、7…ポンプ DESCRIPTION OF SYMBOLS 1 ... Electrolytic cell, 2 ... Cathode, 3 ... Anode, 4 ... Diaphragm, 5 ... Heat exchanger, 6 ... Anolyte tank, 7 ... Pump

Claims (8)

導電性ダイヤモンドを含む陰極を備える陰極区画、導電性ダイヤモンドを含まない陽極を備える陽極区画、及び当該陰極区画と陽極区画とを隔離する隔膜を備える電解槽中で、陽極液を当該陽極区画のみに循環させ、有機ハロゲン化合物を含む被処理物を当該陰極区画のみに循環させて、有機ハロゲン化合物を含む被処理物を当該陰極とのみ接触させ、電気化学的脱ハロゲン処理を行うことを特徴とする、有機ハロゲン化合物の脱ハロゲン方法。   In an electrolytic cell comprising a cathode compartment with a cathode containing conductive diamond, an anode compartment with an anode not containing conductive diamond, and a diaphragm separating the cathode compartment and the anode compartment, the anolyte is applied only to the anode compartment. Circulating, circulating an object to be treated containing an organic halogen compound only to the cathode compartment, bringing the object to be treated containing an organic halogen compound into contact with only the cathode, and performing an electrochemical dehalogenation treatment And a method for dehalogenation of an organic halogen compound. 前記陰極は、前記被処理物と直接接触する全ての面が導電性ダイヤモンドで被覆されていることを特徴とする、請求項1に記載された有機ハロゲン化合物の脱ハロゲン方法。   2. The method for dehalogenating an organic halogen compound according to claim 1, wherein all surfaces of the cathode that are in direct contact with the object to be processed are coated with conductive diamond. 前記陽極は、チタンまたは表面被覆チタンである、請求項1または2に記載された有機ハロゲン化合物の脱ハロゲン方法。   The method for dehalogenating an organic halogen compound according to claim 1, wherein the anode is titanium or surface-coated titanium. 前記有機ハロゲン化合物を含む被処理物に乳化剤を加えて上記陰極とのみ接触させることを特徴とする、請求項1〜3のいずれか1項に記載された有機ハロゲン化合物の脱ハロゲン方法。   The method for dehalogenating an organic halogen compound according to any one of claims 1 to 3, wherein an emulsifier is added to the object to be treated containing the organic halogen compound so as to contact only the cathode. 前記有機ハロゲン化合物を含む被処理物を上記電解槽下部から抜き出し前記電解槽上部に戻して循環させる、請求項1〜4のいずれか1項に記載された有機ハロゲン化合物の脱ハロゲン方法。   The method for dehalogenating an organic halogen compound according to any one of claims 1 to 4, wherein an object to be treated containing the organic halogen compound is extracted from the lower part of the electrolytic cell and returned to the upper part of the electrolytic cell and circulated. 導電性ダイヤモンドを含む陰極を備える陰極区画、導電性ダイヤモンドを含まない陽極を備える陽極区画、及び当該陰極区画と当該陽極区画とを隔離する隔膜を備える電解槽、
有機ハロゲン化合物を含む被処理物を当該陰極区画のみに循環させる被処理物循環経路、及び
陽極液を当該陽極区画のみに循環させる陽極液循環経路
を備える有機ハロゲン化合物の脱ハロゲン装置。
An electrolytic cell comprising a cathode compartment comprising a cathode comprising conductive diamond, an anode compartment comprising an anode not comprising conductive diamond, and a diaphragm separating the cathode compartment from the anode compartment;
An organic halogen compound dehalogenation apparatus comprising: a treatment object circulation path for circulating an object to be treated containing an organic halogen compound only to the cathode compartment; and an anolyte circulation path for circulating an anolyte only to the anode compartment.
前記被処理物循環経路は、前記陰極区画下部に設けられた出口と、前記陰極区画上部に設けられた入口と、当該出口から当該入口まで被処理物を送液する配管と、を備える、請求項6に記載の有機ハロゲン化合物の脱ハロゲン装置。   The workpiece circulation path includes an outlet provided in the lower portion of the cathode compartment, an inlet provided in the upper portion of the cathode compartment, and a pipe for feeding the workpiece from the outlet to the inlet. Item 7. An apparatus for dehalogenating an organic halogen compound according to Item 6. 前記陰極は、前記被処理物にと直接接触する全ての面が導電性ダイヤモンドで被覆されていることを特徴とする、請求項6又は7に記の有機ハロゲン化合物の脱ハロゲン装置。   8. The organohalogen compound dehalogenation apparatus according to claim 6, wherein all surfaces of the cathode that are in direct contact with the object to be processed are coated with conductive diamond.
JP2014038496A 2014-02-28 2014-02-28 Method and apparatus for dehalogenation of organic halogen compounds using conductive diamond electrode Active JP6329392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014038496A JP6329392B2 (en) 2014-02-28 2014-02-28 Method and apparatus for dehalogenation of organic halogen compounds using conductive diamond electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014038496A JP6329392B2 (en) 2014-02-28 2014-02-28 Method and apparatus for dehalogenation of organic halogen compounds using conductive diamond electrode

Publications (2)

Publication Number Publication Date
JP2015160080A true JP2015160080A (en) 2015-09-07
JP6329392B2 JP6329392B2 (en) 2018-05-23

Family

ID=54183586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014038496A Active JP6329392B2 (en) 2014-02-28 2014-02-28 Method and apparatus for dehalogenation of organic halogen compounds using conductive diamond electrode

Country Status (1)

Country Link
JP (1) JP6329392B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929185A (en) * 2021-09-26 2022-01-14 中国原子能科学研究院 Method for treating radioactive waste liquid containing nitric acid through electrolytic cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02501543A (en) * 1988-03-02 1990-05-31 トラステイーズ・オブ・ボストン・ユニバーシテイ Catalytic process for decomposing organic substances in aqueous and organic liquids to yield environmentally compatible products
US20020029977A1 (en) * 1999-10-14 2002-03-14 Natishan Paul M. Fabrication of a high surface area diamond-like carbon or dirty diamond coated metal mesh for electrochemical applications
JP2003073876A (en) * 2001-08-30 2003-03-12 Kobe Steel Ltd Electrode for electrochemical treatment, electrochemical treatment method and electrochemical treatment apparatus
WO2003091166A1 (en) * 2002-04-23 2003-11-06 Kurita Water Industries, Ltd. Method of disposing of waste water containing organic compound and apparatus
JP2004202283A (en) * 2002-12-20 2004-07-22 Kurita Water Ind Ltd Method and apparatus for treating organic compound-containing water
JP2005021744A (en) * 2003-06-30 2005-01-27 Kurita Water Ind Ltd Method and apparatus for electrolyzing emulsion
JP2010270385A (en) * 2009-05-25 2010-12-02 Kobe Univ Method of synthesizing ammonia
JP2013039270A (en) * 2011-08-18 2013-02-28 Japan Atomic Energy Agency Method for dechlorinating chlorinated aliphatic hydrocarbon compound and device for dechlorination

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02501543A (en) * 1988-03-02 1990-05-31 トラステイーズ・オブ・ボストン・ユニバーシテイ Catalytic process for decomposing organic substances in aqueous and organic liquids to yield environmentally compatible products
US20020029977A1 (en) * 1999-10-14 2002-03-14 Natishan Paul M. Fabrication of a high surface area diamond-like carbon or dirty diamond coated metal mesh for electrochemical applications
JP2003073876A (en) * 2001-08-30 2003-03-12 Kobe Steel Ltd Electrode for electrochemical treatment, electrochemical treatment method and electrochemical treatment apparatus
WO2003091166A1 (en) * 2002-04-23 2003-11-06 Kurita Water Industries, Ltd. Method of disposing of waste water containing organic compound and apparatus
JP2004202283A (en) * 2002-12-20 2004-07-22 Kurita Water Ind Ltd Method and apparatus for treating organic compound-containing water
JP2005021744A (en) * 2003-06-30 2005-01-27 Kurita Water Ind Ltd Method and apparatus for electrolyzing emulsion
JP2010270385A (en) * 2009-05-25 2010-12-02 Kobe Univ Method of synthesizing ammonia
JP2013039270A (en) * 2011-08-18 2013-02-28 Japan Atomic Energy Agency Method for dechlorinating chlorinated aliphatic hydrocarbon compound and device for dechlorination

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D. MISHRA, Z. LIAO, J. FARRELL: "Understanding Reductive Dechlorination of Trichloroethene on Boron-Doped Diamond Film Electrodes", ENVIRONMENTAL SCIENCE AND TECHNOLOGY, vol. 42, no. 24, JPN6017049953, 2008, pages 9344 - 9349, ISSN: 0003710749 *
S. M. KULIKOV, K. M. JUETTNER: "Electrochemical Reductive Dehalogenation of Brominated and Chlorinated Organic Compounds in Water-Me", INTERNATIONAL JOURNAL OF CHEMICAL SCIENCES, vol. Vol.7, Issue 2, JPN6017049951, 2009, pages 599 - 606, ISSN: 0003710750 *
S. M. KULIKOV, K. M. JUETTNER: "Electrochemical Reductive Dehalogenation of Brominated Organic Compounds in Water-Methanol Media on", INTERNATIONAL JOURNAL OF CHEMICAL SCIENCES, vol. Vol. 7, Issue 2, JPN6017049956, 2009, pages 625 - 631, ISSN: 0003710751 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929185A (en) * 2021-09-26 2022-01-14 中国原子能科学研究院 Method for treating radioactive waste liquid containing nitric acid through electrolytic cell

Also Published As

Publication number Publication date
JP6329392B2 (en) 2018-05-23

Similar Documents

Publication Publication Date Title
Gomez-Ruiz et al. Efficient electrochemical degradation of poly-and perfluoroalkyl substances (PFASs) from the effluents of an industrial wastewater treatment plant
Cotillas et al. Electrolytic and electro-irradiated processes with diamond anodes for the oxidation of persistent pollutants and disinfection of urban treated wastewater
Bagastyo et al. Electrochemical oxidation of electrodialysed reverse osmosis concentrate on Ti/Pt–IrO2, Ti/SnO2–Sb and boron-doped diamond electrodes
Iniesta et al. Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO2 anodes
Polatides et al. Electrochemical reduction of nitrate ion on various cathodes–reaction kinetics on bronze cathode
Bagastyo et al. Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes
Palma-Goyes et al. The abatement of indigo carmine using active chlorine electrogenerated on ternary Sb2O5-doped Ti/RuO2-ZrO2 anodes in a filter-press FM01-LC reactor
Zheng et al. The treatment of cyanide from gold mine effluent by a novel five-compartment electrodialysis
Eiband et al. Elimination of Pb2+ through electrocoagulation: Applicability of adsorptive stripping voltammetry for monitoring the lead concentration during its elimination
Martín de Vidales et al. Electrolysis of progesterone with conductive‐diamond electrodes
Rodríguez et al. Toward the development of efficient electro-Fenton reactors for soil washing wastes through microfluidic cells
Martín de Vidales et al. Scale-up of electrolytic and photoelectrolytic processes for water reclaiming: a preliminary study
JP2019531875A (en) Process for electrochemical purification of chloride-containing process solutions
Cataldo-Hernández et al. A membrane-based electrochemical flow reactor for generation of ferrates at near neutral pH conditions
JPS6280288A (en) Dehalogenation of organohalogen compound
JP6329392B2 (en) Method and apparatus for dehalogenation of organic halogen compounds using conductive diamond electrode
Qiao et al. Contribution of electrolyte in parametric optimization of perfluorooctanoic acid during electro-oxidation: Active chlorinated and sulfonated by-products formation and distribution
Huang et al. Formal reduction potentials and redox chemistry of polyhalogenated biphenyls in a bicontinuous microemulsion
Merica et al. Electroreduction of hexachlorobenzene in protic solvent at Hg cathodes
WO2016106630A1 (en) Device and method for generating oxidants in situ
EP0027745B1 (en) A process for the electrochemical degradation of persistent organic compounds, with harmful or potentially harmful properties
JP2013039270A (en) Method for dechlorinating chlorinated aliphatic hydrocarbon compound and device for dechlorination
EP0968963B1 (en) Method of decomposing endocrine-disrupting organic compounds with electrolysed water
KR20050072092A (en) Process for electrochemical oxidation of ferrocyanide to ferricyanide
JP2017209334A (en) Method and device for dehalogenation treatment of organic halogen compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180420

R150 Certificate of patent or registration of utility model

Ref document number: 6329392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250