JPH11221570A - Decomposition electrode for organic polluted water, decomposing method of organic polluted water using same and decomposing device of organic polluted water using same - Google Patents

Decomposition electrode for organic polluted water, decomposing method of organic polluted water using same and decomposing device of organic polluted water using same

Info

Publication number
JPH11221570A
JPH11221570A JP10024334A JP2433498A JPH11221570A JP H11221570 A JPH11221570 A JP H11221570A JP 10024334 A JP10024334 A JP 10024334A JP 2433498 A JP2433498 A JP 2433498A JP H11221570 A JPH11221570 A JP H11221570A
Authority
JP
Japan
Prior art keywords
electrode
organic sewage
decomposition
organic
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10024334A
Other languages
Japanese (ja)
Inventor
Masaharu Kobayashi
雅晴 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10024334A priority Critical patent/JPH11221570A/en
Publication of JPH11221570A publication Critical patent/JPH11221570A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an electrode which can decompose org. substances at low electrolytic voltage that can not be completely ionized. which gives a large throughput for the consumed electric power, which makes neutralization of the treated water unnecessary, and which is excellently convenient without producing of scum or the like by covering the surface of an electrode substrate with a trapping material which traps nitrogen-contg. org. compds. SOLUTION: For example, a commercially available titanium plate in 10 mm×10 mm size and 0.5 mm thickness is degreased with acetone, etched with a hot oxalic acid soln, cleaned with pure water and dried to prepare an electrode base body 1. Then a soln. prepared by dissolving tin chloride and antimony chloride by 100:1 weight ratio in ethanol is applied on the electrode base body 1, dried and baked at 550 deg.C for 10 min. This procedure is repeated to form an electrode coating 2 comprising doped tin oxide having 3μm thickness. Then a trapping material 3 comprising platinum is formed by using a bath of sodium phosphate and ammonium phosphate containing platinic chloride to obtain the decomposition electrode for an org. polluted water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は有機汚水、特に窒素
含有有機化合物を含んだ有機汚水、たとえば食品加工
場、水産加工場、酒造場、畜産場、屎尿処理場、排水処
理施設から排水される有機汚水の処理や、各家庭等で循
環温浴器の浴水を浄化するために好適な窒素含有有機汚
水の分解電極及びそれを用いた窒素含有有機汚水の分解
方法、及びそれを用いた窒素含有有機汚水の分解装置に
関するものである。
TECHNICAL FIELD The present invention relates to organic sewage, especially organic sewage containing nitrogen-containing organic compounds, such as wastewater from food processing plants, fishery processing plants, breweries, livestock farms, human waste treatment plants, and wastewater treatment facilities. Decomposition electrode of nitrogen-containing organic sewage suitable for treating organic sewage and purifying bath water of a circulating warm water bath in each household and the like, decomposition method of nitrogen-containing organic sewage using the same, and nitrogen-containing using the same The present invention relates to a device for decomposing organic sewage.

【0002】[0002]

【従来の技術】近年社会的に環境保護が強く叫ばれるよ
うになり、窒素や燐及び炭素等の元素から構成される有
機物を含んだ排水は河川や湖沼等を富栄養化し環境を悪
化させるため窒素や燐及び炭素等の元素から構成される
有機物を除去して放水しなければならなくなっている。
2. Description of the Related Art In recent years, environmental protection has been strongly called out by society, and wastewater containing organic matter composed of elements such as nitrogen, phosphorus, and carbon is eutrophic in rivers and lakes, thereby deteriorating the environment. It is necessary to remove organic matter composed of elements such as nitrogen, phosphorus, and carbon and to discharge water.

【0003】従来はこうした有機物が高濃度であれば、
水分を蒸発させて燃焼する方法や、噴霧燃焼法で燃焼さ
せる方法で処理していた。一般的な汚水では有機成分は
ppmオーダーの低濃度であるが、このような汚水の場
合は活性汚泥法による分解あるいは活性炭等による吸着
処理がなされてきた。
Conventionally, when such organic matter is in a high concentration,
The treatment is performed by a method of burning by evaporating water or a method of burning by a spray combustion method. Organic components have a low concentration on the order of ppm in general sewage. In such sewage, decomposition by activated sludge or adsorption treatment by activated carbon or the like has been performed.

【0004】しかし、焼却方法では、省エネルギー性に
欠けるとともに地球温暖化上好ましくないという問題点
があった。また活性汚泥法による生物処理では反応速度
が遅く、大量の排水を処理する為には膨大な敷地と時間
が必要になる。しかも微生物を取り扱う為に温度やpH
の適切な管理が必要であり、更に常時一定の溶液濃度保
持が必要であり、微生物の活動を損なう物質の混入を阻
止するという煩わしい管理や制御が必要であった。そし
てこうした煩わしい管理や制御を施した上でも微生物処
理では全有機炭素TOC(Total Organic
Carbon)がかなり残留し、処理としては不完全
で満足行くものではないという課題があった。
[0004] However, the incineration method has a problem that it lacks energy saving and is not preferable for global warming. In addition, the biological treatment by the activated sludge method has a slow reaction rate, and requires a large amount of land and time to treat a large amount of wastewater. And temperature and pH to handle microorganisms
In addition, it is necessary to maintain appropriate concentration of the solution at all times, and it is necessary to perform cumbersome management and control to prevent contamination of substances that impair the activity of microorganisms. Even after such troublesome management and control, the total organic carbon TOC (Total Organic)
However, there was a problem that carbon was considerably left and the treatment was incomplete and unsatisfactory.

【0005】また従来の循環温浴器における浴水の浄化
方法は、浴水中の好気性浄化細菌を濾過材に繁殖させ、
浴水中に溶解した有機物を分解することによって浴水中
のTOCの低減が行われてきた。しかし循環温浴器の設
置後、好気性浄化細菌が繁殖するまでの立ち上がり時間
が10日から14日程度必要であり、設置後直ちに本来
性能が発揮されないという課題を有していた。また浴水
の水質、入浴者の体質、薬剤服用者の入浴あるいはレジ
オネラ細菌を殺菌するために次亜塩素酸や熱による処理
が必要であり、この場合、好気性浄化細菌の繁殖率の低
下や死滅等により浴水の浄化性能が大きく変動するとい
った課題を有していた。また好気性浄化細菌を常に良好
な状態に維持するために、循環温浴器の運転中は浴水の
温度を35℃程度に保持する必要があるため入浴しない
ときにでも浴水の温度を前記の温度に保持する必要があ
るために常にヒーターに通電する必要があるため、省エ
ネルギー性に欠けるといった課題があった。
[0005] Further, in the conventional method of purifying bath water in a circulating warm water bath, aerobic purification bacteria in the bath water are propagated on a filter medium,
The TOC in bath water has been reduced by decomposing organic substances dissolved in bath water. However, after the installation of the circulating warm water bath, it takes about 10 to 14 days for the rise time of the aerobic purified bacteria to multiply, and there is a problem that the performance is not immediately exhibited immediately after the installation. In addition, treatment with hypochlorous acid or heat is necessary to disinfect the quality of bath water, the constitution of the bather, the bathing of the drug recipient, or the Legionella bacteria. There was a problem that the purification performance of bath water fluctuated greatly due to death or the like. In addition, in order to always maintain the aerobic purification bacteria in a good state, it is necessary to maintain the temperature of the bath water at about 35 ° C. during the operation of the circulating bath, so that the temperature of the bath water is maintained even when the bath is not bathed. Since it is necessary to maintain the temperature, it is necessary to always supply power to the heater, and there is a problem that energy saving is lacking.

【0006】こうした課題を解決するために、特開平6
−296992号公報には、有機酸含有排水の浄化方法
として、汚水中に電解質塩を添加し電解するとともに、
オゾン処理、紫外線処理を同時に行って、汚水中の有機
酸を炭酸ガスに分解する方法が提案されている。
In order to solve such a problem, Japanese Patent Laid-Open No.
Japanese Patent Application Laid-Open No. 296992 discloses a method of purifying organic acid-containing wastewater, in which an electrolyte salt is added to sewage and electrolysis is performed.
A method has been proposed in which an ozone treatment and an ultraviolet treatment are simultaneously performed to decompose organic acids in wastewater into carbon dioxide gas.

【0007】しかしこの方法は排水中の分解できる有機
物が有機酸だけであり汎用性に欠け、またオゾン処理や
紫外線(UV)処理を行わなければならず、作業が煩雑
で処理作業性に欠けるとともに、オゾン発生装置等を要
し装置が大型化しコストがかかるといった課題があっ
た。また循環温浴器の浴水の有機物除去では、オゾンは
浴室のような狭く密閉された空間では人体に影響を与え
る可能性があり、また紫外線単独では溶存する蛋白質な
どの窒素を含む有機炭素化合物を除去できないといった
課題を有していた。
However, in this method, the organic matter in the wastewater which can be decomposed is only an organic acid and lacks versatility, and requires ozone treatment and ultraviolet (UV) treatment, which is complicated and lacks in workability. In addition, there is a problem that an ozone generator or the like is required, the apparatus becomes large, and the cost increases. Also, when removing organic matter from the circulating water bath, ozone may affect the human body in a tightly closed space such as a bathroom, and ultraviolet rays alone may dissolve organic carbon compounds containing nitrogen, such as dissolved proteins, which are dissolved in proteins. There was a problem that it could not be removed.

【0008】また特開平5−23673号公報には、有
機性汚水を電解処理し有機成分を分解する際に、陽極と
して溶解性陽極と不溶性陽極を使用して電解を行い、不
溶性陽極で有機成分の分解を行い、分解生成物を溶解性
陽極の溶解によって生じる微粒子とともにフロック化す
ることにより凝集あるいは沈降を促して分解生成物質の
分離を容易に行わせる方法が提案されている。
In Japanese Patent Application Laid-Open No. Hei 5-23673, when an organic wastewater is electrolytically treated to decompose an organic component, electrolysis is performed using a soluble anode and an insoluble anode as anodes, and the organic component is treated with the insoluble anode. A method has been proposed in which the decomposition product is decomposed and flocculated with the fine particles generated by dissolving the soluble anode to promote flocculation or sedimentation to facilitate separation of the decomposition product.

【0009】この方法では不溶性陽極として白金あるい
は酸化鉛を用いている。白金は非常に安定な電極であり
人体や環境には安全であるが、酸素過電圧が高くないた
めに一般に陽極電位を貴に分極させてゆくと結合エネル
ギーに相当する酸化還元電位に達する前に酸素発生が起
こり、かつこの反応が支配的になるため効率的に有機物
の酸化分解ができないといった課題を有している。また
一方酸化鉛電極は白金より一般的に酸素過電圧は高く有
機物の分解性能は高いが、基体金属との密着性が低いた
め被覆された酸化鉛層が剥離をおこし水中に流出するた
め一般の汚水処理や、循環温浴器の浴水浄化処理ではこ
うして流出した酸化鉛による2次的な環境汚染や人体へ
の影響を考慮すると容易に用いることができないという
課題があった。さらにこの方法ではアルミ等の溶解性の
電極を用いるためにフロックが生成することから定期的
にフロックの処理が必要になり作業性に欠けるといった
課題もある。
In this method, platinum or lead oxide is used as an insoluble anode. Platinum is a very stable electrode that is safe for the human body and the environment.However, because the oxygen overvoltage is not high, generally the anode potential is preciously polarized so that the oxygen will not reach the oxidation-reduction potential corresponding to the binding energy. There is a problem that generation occurs and this reaction becomes dominant, so that organic substances cannot be efficiently oxidized and decomposed. On the other hand, a lead oxide electrode generally has a higher oxygen overvoltage than platinum and has a higher decomposability of organic substances, but has poor adhesion to a base metal, so that the coated lead oxide layer is peeled off and flows out into water. In the treatment and the bath water purification treatment of the circulating warm water bath, there is a problem that it cannot be easily used in consideration of the secondary environmental pollution and the influence on the human body due to the lead oxide thus leaked out. Further, in this method, since a floc is generated because a soluble electrode such as aluminum is used, there is a problem that the floc treatment is required periodically and the workability is lacking.

【0010】これらの課題を解決するものとして、特開
昭63−221888号公報には、ドープしたSnO2
(酸化錫)電極を用い溶液中の有機物を酸化分解しTO
Cを減少させるための、電解による工業汚水浄化方法が
開示されている。この方法は、酸化錫電極のような前記
二酸化鉛電極より酸素過電圧の高い電極を用いることに
より高い電極電位で有機物を無機化でき、また白金より
酸素過電圧が高いため同一の電解電流を流したときは酸
素発生を抑制することができるため低い電解電圧で分解
でき、エネルギー効率を上げることができる。
To solve these problems, Japanese Patent Application Laid-Open No. 63-221888 discloses a doped SnO 2.
(Tin oxide) The organic matter in the solution is oxidatively decomposed and
An industrial sewage purification method by electrolysis for reducing C is disclosed. In this method, organic substances can be mineralized at a high electrode potential by using an electrode having a higher oxygen overvoltage than the lead dioxide electrode such as a tin oxide electrode, and when the same electrolytic current is applied because the oxygen overvoltage is higher than platinum. Can suppress the generation of oxygen, so that it can be decomposed at a low electrolytic voltage, and the energy efficiency can be increased.

【0011】たとえば一辺50mm及び目開き6mmの
正方形切片のチタンエキスパンドメタルをクロロテン及
びアセトン中で脱脂し引き続き煮沸した蓚酸中でエッチ
ング後加熱板の上に置き、かつ450℃の温度に加熱
し、酢酸エチル中の無水SnCl4の0.7mol/L
溶液を噴霧しCl-でドープされたSnO2皮膜が形成さ
れた電極を調製し、この電極を陽極として、また正方形
切片の白金で被覆されたチタンエキスパンドメタルを陰
極として用いるものである。実施例として、安息香酸
(C65COOH)10ppmと0.5規定硫酸ナトリ
ウム(Na2SO4)溶液からなる電解液に100mAの
定電流で、比較のために酸化鉛(PbO)電極を用い電
解を行っている。安息香酸10ppmを0にするのに酸
化錫(SnO 2)電極は5時間で、酸化鉛(PbO)で
は24時間を要する旨記載されている。
For example, when each side has a size of 50 mm and a mesh size of 6 mm
Add square expanded titanium expanded metal to chlorothene
Etch in oxalic acid degreased in acetone and then boiled
After heating, place on a heating plate and heat to 450 ° C
And anhydrous SnCl in ethyl acetateFour0.7mol / L
Spray the solution to Cl-Doped with SnOTwoFilm is formed
Prepared electrode, use this electrode as the anode and square
Sections of platinum-coated titanium expanded metal are shaded.
It is used as a pole. As an example, benzoic acid
(C6HFiveCOOH) 10ppm and 0.5N sodium sulfate
Um (NaTwoSOFour) 100 mA of electrolyte solution
At a constant current, a lead oxide (PbO) electrode was
Have a solution. Acid to reduce benzoic acid 10ppm to 0
Tin oxide (SnO Two) The electrode is 5 hours, with lead oxide (PbO)
Is described as requiring 24 hours.

【0012】またナフタリンスルフォン酸(C107
3H)をpH12.5の溶液中で電解すると、ナフタ
リンスルフォン酸の濃度は20分後に初期値の30%
に、40分後に8%に3時間後に2%に減少し、全炭素
は1時間後に初期値の半分に、3.5時間後に15%に
減少させることができる旨記載されている。
Further, naphthalenesulfonic acid (C 10 H 7 S)
When O 3 H) is electrolyzed in a solution having a pH of 12.5, the concentration of naphthalenesulfonic acid becomes 30% of the initial value after 20 minutes.
It states that after 40 minutes it can be reduced to 8% to 3% after 2 hours and total carbon can be reduced to half of the initial value after 1 hour to 15% after 3.5 hours.

【0013】[0013]

【発明が解決しようとする課題】しかしながら上記従来
の電解による酸化分解方法では、有機物粒子は電極近傍
に捕捉される必要があり、容易にイオン化しない有機物
粒子は陽分極した電極近傍に捕捉されないため電解によ
る酸化分解は困難であるという課題を有していた。
However, in the above-described conventional oxidative decomposition method by electrolysis, the organic particles need to be captured near the electrode, and the organic particles that are not easily ionized are not captured near the positively polarized electrode. However, there is a problem that oxidative decomposition by oxidization is difficult.

【0014】また、特開昭63−221888号公報の
分解方法では、分解された有機物はナフタリンスルフォ
ン酸や安息香酸等であり、これらは溶液中でpHを調整
することによって容易にイオン化する物質であり、これ
らのイオン粒子は陽分極されたSnO2電極近傍に捕捉
され、高い電位で酸化分解される。しかし蛋白質等の水
中で完全にイオン化しにくい有機化合物では電極を陽分
極しても陽分極された電極に応答せず、陽極に捕捉する
ことが困難で分解効率が著しく低く実用化が困難である
といった課題を有していた。
In the decomposition method disclosed in JP-A-63-221888, the decomposed organic substances are naphthalenesulfonic acid, benzoic acid and the like, which are substances which are easily ionized by adjusting the pH in a solution. Yes, these ionic particles are trapped near the positively polarized SnO 2 electrode and are oxidatively decomposed at high potential. However, organic compounds, such as proteins, which do not easily ionize completely in water do not respond to the positively polarized electrode even if the electrode is positively polarized, and it is difficult to capture the anode, and the decomposition efficiency is extremely low, making practical application difficult. There was such a problem.

【0015】従って電解によって循環温浴器での浴水中
の蛋白質の無機化除去や、食品工場や水産加工場から排
出される汚水中の富栄養化物質である蛋白質の無機化分
解除去は困難である。またこの従来の分解方法ではこれ
らの有機物をイオン化するために溶液のpHをアルカリ
性にする必要があり、これらの電解した処理水を放出す
るためには、更に中和処理を施す必要があり、省力化や
作業性に欠けるとともに多大の設備投資を必要とすると
いう課題がある。
Therefore, it is difficult to demineralize proteins in the bath water in the circulating warm bath by electrolysis and to demineralize and remove proteins that are eutrophic substances in wastewater discharged from food factories and marine processing plants. . In addition, in this conventional decomposition method, it is necessary to make the pH of the solution alkaline in order to ionize these organic substances, and to release these electrolyzed treated water, it is necessary to further perform a neutralization treatment, thereby saving labor. However, there is a problem that it is not easy to operate, and it requires a large amount of equipment investment.

【0016】本発明は上記従来の課題を解決するもので
あり、蛋白質等の窒素含有有機化合物のような完全にイ
オン化しない有機物を低い電解電圧で分解し短時間のう
ちにTOCを除去でき、消費電力に対する処理量が多
く、処理水の中和処理が不要でかつスカム等を発生しな
い、利便性に優れた有機汚水の分解電極の提供、及び本
発明の分解電極を使用し窒素含有有機汚水の処理率が極
めて高く、省エネルギー性に優れるとともに保守管理の
作業性に優れた有機汚水の分解方法の提供、及び本発明
の分解電極を用い、コンパクトで窒素含有有機汚水を高
い処理率で処理できるとともに、スカム等が発生せず保
守管理が容易で省エネルギー性に優れた有機汚水の分解
装置の提供を目的とする。
The present invention solves the above-mentioned conventional problems, and decomposes an organic substance that is not completely ionized, such as a nitrogen-containing organic compound such as a protein, at a low electrolysis voltage to remove TOC in a short time and to reduce consumption. Providing a highly convenient decomposition electrode for organic sewage, which does not require a neutralization treatment of the treated water and does not generate scum, and a nitrogen-containing organic sewage using the decomposition electrode of the present invention. The treatment rate is extremely high, the provision of a method for decomposing organic sewage with excellent energy saving and excellent workability of maintenance management, and the decomposition electrode of the present invention can be used to treat compact, nitrogen-containing organic sewage at a high treatment rate. It is an object of the present invention to provide a device for decomposing organic sewage, which does not generate scum or the like, is easy to maintain, and has excellent energy saving.

【0017】[0017]

【課題を解決するための手段】この課題を解決するため
に本発明の有機汚水の分解電極は、電極基材がその表面
に窒素含有有機化合物を捕捉する捕捉材で被覆された構
成を有している。
In order to solve this problem, an organic sewage decomposition electrode according to the present invention has a structure in which an electrode substrate is coated on its surface with a trapping material for trapping a nitrogen-containing organic compound. ing.

【0018】これにより、有機汚水中の蛋白質等の窒素
含有有機化合物のような完全にイオン化し難い有機物を
低い電解電圧で分解し短時間のうちにTOCを除去で
き、消費電力に対する処理量が多く、処理水の中和処理
が不要でかつスカム等を発生しない、利便性に優れた有
機汚水の分解電極を実現することができる。
As a result, organic substances which are difficult to completely ionize, such as nitrogen-containing organic compounds such as proteins in organic sewage, can be decomposed at a low electrolysis voltage and TOC can be removed in a short period of time. In addition, it is possible to realize a highly convenient organic wastewater decomposition electrode that does not require neutralization of treated water and does not generate scum or the like.

【0019】また、本発明の有機汚水の分解方法は、窒
素含有有機汚水中に窒素含有有機化合物を捕捉材で被覆
された分解電極を陽極として用い電気分解を行う工程か
らなるので、これにより、蛋白質等のイオン化し難い窒
素含有有機化合物を高い分解率で分解でき、かつ省エネ
ルギー性に優れ保守管理作業の作業性に優れた有機汚水
の分解方法を実現できる。
Further, the method for decomposing organic sewage of the present invention comprises a step of performing electrolysis in a nitrogen-containing organic sewage using a decomposition electrode coated with a nitrogen-containing organic compound with a trapping material as an anode. It is possible to decompose a nitrogen-containing organic compound that is difficult to ionize, such as a protein, at a high decomposition rate, and realize a method for decomposing organic sewage, which is excellent in energy saving and excellent in workability of maintenance work.

【0020】本発明の有機汚水の分解装置は、窒素含有
有機汚水中に窒素含有有機化合物を捕捉する捕捉材が被
覆された分解電極を陽極として用いているので、これに
より、コンパクトで極めて狭い設置場所で高効率で蛋白
質などのイオン化し難い窒素含有有機化合物を分解する
ことができるとともに、保守管理が容易で省エネルギー
性に優れた有機汚水の分解装置を実現できる。
The decomposition apparatus for organic sewage of the present invention uses a decomposition electrode coated with a trapping material for trapping a nitrogen-containing organic compound in nitrogen-containing organic sewage as an anode. In addition to being able to decompose nitrogen-containing organic compounds such as proteins that are difficult to ionize at high efficiency in a place, an organic wastewater decomposer that is easy to maintain and manage and has excellent energy saving can be realized.

【0021】[0021]

【発明の実施の形態】請求項1に記載された有機汚水の
分解電極は、電極基材の表面を電極被覆材で覆った分解
電極であって、前記電極被覆材の表面には有機汚水中の
窒素含有有機化合物を捕捉する捕捉材が被覆された構成
なので、これにより窒素含有有機化合物を捕捉する捕捉
材によって、有機汚水中の蛋白質のような完全にイオン
化し難い粒子を電極近傍に捕捉することが可能となり窒
素含有有機化合物を極めて高い分解率で酸化分解できる
という作用を有する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The decomposition electrode for organic sewage according to claim 1 is a decomposition electrode in which the surface of an electrode substrate is covered with an electrode coating material, and the surface of the electrode coating material has organic sewage water. The structure is coated with a trapping material that traps nitrogen-containing organic compounds. With this trapping material that traps nitrogen-containing organic compounds, particles that are difficult to completely ionize, such as proteins in organic wastewater, are trapped near the electrodes. This has the effect that the nitrogen-containing organic compound can be oxidatively decomposed at an extremely high decomposition rate.

【0022】請求項2に記載された有機汚水の分解電極
は、請求項1において、電極被覆材が白金より酸素過電
圧の高い電極材で形成された構成なので、これにより、
電極近傍に捕捉された窒素含有有機化合物を容易に酸化
分解し、ガス化するという作用を有する。
The decomposition electrode for organic sewage described in claim 2 has a configuration in which the electrode coating material is formed of an electrode material having an oxygen overvoltage higher than that of platinum.
It has the effect of easily oxidizing and decomposing the nitrogen-containing organic compound trapped in the vicinity of the electrode and gasifying it.

【0023】請求項3に記載された有機汚水の分解電極
は、請求項1または2において、電極被覆材が酸化錫に
アンチモン、塩素、モリブデン、タングステン、ニオ
ブ、タンタルの内少なくとも1種類以上の元素をドープ
した混合物である構成なので、これにより、低い分解電
圧で電極近傍に捕捉された窒素含有有機化合物をより効
果的に酸化分解しガス化することができるので、電極の
信頼性を高めることができるという作用を有する。
According to a third aspect of the present invention, in the electrode for decomposing organic sewage, the electrode coating material is at least one element selected from the group consisting of antimony, chlorine, molybdenum, tungsten, niobium, and tantalum. Since the composition is a mixture doped with, the nitrogen-containing organic compound trapped in the vicinity of the electrode can be more effectively oxidized and decomposed and gasified at a low decomposition voltage, thereby improving the reliability of the electrode. Has the effect of being able to.

【0024】請求項4に記載された有機汚水の分解電極
は、請求項1乃至3の内のいずれか1項において、電極
基材がチタン、ジルコニウム、ニオブ、ニオブ、タンタ
ルまたはこれらの合金の内いずれか1からなる構成なの
で、これにより、請求項1乃至3の内のいずれか1項で
得られる作用の他、分解電極の耐久性を著しく向上させ
る作用を有する。
According to a fourth aspect of the present invention, there is provided the electrode for decomposing organic sewage according to any one of the first to third aspects, wherein the electrode substrate is made of titanium, zirconium, niobium, niobium, tantalum or an alloy thereof. Since it is composed of any one of them, it has the effect of significantly improving the durability of the decomposition electrode in addition to the effect obtained in any one of claims 1 to 3.

【0025】請求項5に記載された有機汚水の分解電極
は、請求項1乃至4の内のいずれか1項において、捕捉
材が白金もしくは白金酸化物あるいは蛋白質吸着高分子
化合物からなる構成なので、これにより、請求項1乃至
4の内のいずれか1項で得られる作用の他、蛋白質を吸
着し吸着された蛋白質を高い電位で酸化分解できるとい
う作用を有する。
According to a fifth aspect of the present invention, there is provided an electrode for decomposing organic sewage, wherein the trapping material is made of platinum, platinum oxide, or a protein-adsorbing polymer compound in any one of the first to fourth aspects. This has the effect of adsorbing proteins and oxidizing and decomposing the adsorbed proteins at a high potential, in addition to the effects obtained in any one of claims 1 to 4.

【0026】請求項6に記載された有機汚水の分解電極
は、請求項1乃至5の内のいずれか1項において、捕捉
材が支持体を介して電極被覆材に被覆されている構成な
ので、これにより、電極基材と捕捉材の間隔を制御で
き、かつ安定に電解可能であるので電解を効率的に促進
できるという作用を有する。
The electrode for decomposing organic sewage described in claim 6 has a structure in which the capturing material is coated on the electrode coating material via the support in any one of claims 1 to 5. Accordingly, the distance between the electrode base material and the trapping material can be controlled, and the electrolysis can be stably performed, so that the electrolysis can be efficiently promoted.

【0027】請求項7に記載された有機汚水の分解方法
は、窒素含有有機汚水中に請求項1乃至6の内のいずれ
か1項に記載された分解電極からなる陽極と、陰極とを
配置し、前記陽極と前記陰極に通電して、電気化学的反
応により窒素含有有機化合物を分解する構成なので、こ
れにより、消費電力に対する処理量が多く、処理水の中
和処理が不要でかつスカム等を発生しない処理をするこ
とができるという作用を有する。
According to a seventh aspect of the present invention, in the method for decomposing organic sewage, an anode comprising the decomposition electrode according to any one of the first to sixth aspects and a cathode are disposed in the nitrogen-containing organic sewage. Since the anode and the cathode are energized to decompose the nitrogen-containing organic compound by an electrochemical reaction, the amount of power consumption is large, the neutralization of the treated water is not required, and scum or the like is not required. This has the effect that processing can be performed that does not generate.

【0028】請求項8に記載された有機汚水分解装置
は、窒素含有有機汚水と支持電解質が添加された有機汚
水を貯める電解槽と、電解槽に設けられ有機汚水を電解
するための請求項1乃至6の内のいずれか1項に記載さ
れた分解電極からなる陽極と、陰極と、前記陽極と前記
陰極の間に電流を流し電解させる電圧印加部と、を備え
た構成なので、これにより、酸素の発生を抑制し窒素含
有有機化合物を効率よく酸化分解できるという作用を有
する。
The organic sewage decomposition apparatus according to claim 8 is an electrolytic tank for storing organic sewage to which nitrogen-containing organic sewage and a supporting electrolyte are added, and an electrolytic tank provided in the electrolytic tank for electrolyzing the organic sewage. An anode composed of the decomposition electrode according to any one of to 6 to 6, a cathode, and a voltage application unit for causing a current to flow between the anode and the cathode for electrolysis, so that the configuration includes: It has the effect of suppressing the generation of oxygen and efficiently oxidatively decomposing nitrogen-containing organic compounds.

【0029】請求項9に記載された有機汚水分解装置
は、請求項8において、前記陰極が、白金、白金酸化物
またはステンレス材料から形成された構成なので、これ
により、陰極は陽極がどのような材質でも相性が良く耐
久性に優れた窒素含有有機化合物を分解可能で自在性に
優れるという作用を有する。
In the organic sewage decomposition apparatus according to the ninth aspect, in the eighth aspect, the cathode is formed of platinum, platinum oxide, or a stainless steel material. It has the effect of being able to decompose a nitrogen-containing organic compound that is compatible with materials and has excellent durability, and has excellent flexibility.

【0030】次に本発明の実施の形態における有機汚水
の分解電極について具体的に説明する。
Next, the decomposition electrode for organic sewage in the embodiment of the present invention will be specifically described.

【0031】(実施の形態1)図1は本発明の実施の形
態1、2における有機汚水の分解電極の構造図である。
図1において1は電極基材、2は電極被覆材、3は捕捉
材である。本実施の形態1では縦10mm、横10m
m、厚さ0.5mmの市販のチタン板をアセトン脱脂
後、熱しゅう酸溶液でエッチングを行い、更に純水で洗
浄し乾燥し電極基材1とした。塩化錫と塩化アンチモン
を100:1の重量比でエタノールに溶解した溶液を電
極基材1に塗布、乾燥後550℃で10分間焼成し、こ
の操作を繰り返し行い厚さ3μmの原子価制御剤をドー
プされた(以下ドープした)酸化錫からなる電極被覆材
2を形成した。なお、原子価制御剤は、アンチモン、塩
素、モリブデン、タングステン、ニオブ、タンタルの少
なくとも1種類以上の元素を含むものである。次に塩化
白金酸をブタノール溶液に溶解し白金濃度が0.01m
ol/Lの白金溶液を調製し、該溶液を前記電極被覆材
2に塗布、乾燥後550℃で10分間焼成し、ドープし
た酸化錫がドープされた電極被覆材2の上に多孔質の白
金酸化物層を形成した被覆を形成し、有機汚水の分解電
極を得た。
(Embodiment 1) FIG. 1 is a structural diagram of an electrode for decomposing organic sewage in Embodiments 1 and 2 of the present invention.
In FIG. 1, 1 is an electrode substrate, 2 is an electrode coating material, and 3 is a trapping material. In the first embodiment, the length is 10 mm and the width is 10 m
A commercially available titanium plate having a thickness of 0.5 mm and a thickness of 0.5 mm was degreased with acetone, etched with a hot oxalic acid solution, further washed with pure water and dried to obtain an electrode substrate 1. A solution prepared by dissolving tin chloride and antimony chloride in ethanol at a weight ratio of 100: 1 is applied to the electrode substrate 1, dried and baked at 550 ° C. for 10 minutes. This operation is repeated to obtain a 3 μm-thick valence controlling agent. An electrode covering material 2 made of doped (hereinafter, doped) tin oxide was formed. The valence controlling agent contains at least one element of antimony, chlorine, molybdenum, tungsten, niobium, and tantalum. Next, chloroplatinic acid was dissolved in a butanol solution to obtain a platinum concentration of 0.01 m.
ol / L of a platinum solution, applied to the electrode coating material 2, dried and baked at 550 ° C. for 10 minutes to form a porous platinum coating on the doped tin oxide doped electrode coating material 2. A coating on which an oxide layer was formed was formed to obtain a decomposition electrode for organic wastewater.

【0032】(実施の形態2)図1に示すように、実施
の形態2では、縦10mm、横10mm、厚さ0.5m
mの市販のチタン板をアセトン脱脂後、熱しゅう酸溶液
でエッチングを行い、更に純水で洗浄し乾燥し電極基材
1とした。
(Embodiment 2) As shown in FIG. 1, in Embodiment 2, the height is 10 mm, the width is 10 mm, and the thickness is 0.5 m.
m, a commercially available titanium plate was degreased with acetone, etched with a hot oxalic acid solution, further washed with pure water and dried to obtain an electrode substrate 1.

【0033】塩化錫と塩化アンチモンを100:1の重
量比でエタノールに溶解した溶液を電極基材1に塗布、
乾燥後550℃で10分間焼成した。この操作を繰り返
し行い厚さ3μmのドープした酸化錫からなる電極被覆
材2を形成した。塩化白金酸を含むりん酸アンモニウム
及びリン酸ナトリウム浴を使用して白金からなる捕捉材
3を形成し、有機汚水の分解電極を得た。尚、実施の形
態1、2のドープした酸化錫からなる電極被覆材2上の
白金の分布、平均厚み及び白金の積層状態は高倍率走査
型電子顕微鏡を用いて確認した。
A solution prepared by dissolving tin chloride and antimony chloride in ethanol at a weight ratio of 100: 1 is applied to the electrode substrate 1.
After drying, baking was performed at 550 ° C. for 10 minutes. This operation was repeated to form an electrode covering material 2 made of doped tin oxide having a thickness of 3 μm. The capturing material 3 made of platinum was formed using an ammonium phosphate containing chloroplatinic acid and a sodium phosphate bath to obtain an electrode for decomposing organic sewage. The distribution of platinum, the average thickness, and the lamination state of platinum on the electrode covering material 2 made of doped tin oxide of Embodiments 1 and 2 were confirmed using a high-power scanning electron microscope.

【0034】(実施の形態3)図2は本発明の実施の形
態3における有機汚水の支持体を有する分解電極の構造
図である。1は電極基材、2は電極被覆材、3は捕捉
材、4は支持体、5、6は固定のためのチタン板であ
る。図2に示すように、実施の形態3では縦12mm、
横12mm、厚さ0.5mmの市販のチタン板をアセト
ン脱脂後、熱しゅう酸溶液でエッチングを行い、更に純
水で洗浄し乾燥し電極基材1とした。塩化錫と塩化アン
チモンを100:1の重量比でエタノールに溶解した溶
液を前記電極基材1に塗布、乾燥後550℃で10分間
焼成した。この操作を繰り返し行い厚さ3μmのドープ
した酸化錫からなる電極被覆材2を形成した。次に一辺
12mmの正方形メッシュ状チタン(線径10μmのチ
タン線を100μmの間隔で編んだもの)をアセトン脱
脂後、熱しゅう酸溶液でエッチングを行い表面を粗面化
し、更に純水で洗浄、乾燥し支持体4とした。これに捕
捉材3として蛋白質吸着高分子化合物と知られるポリス
チレンホモポリマー(膜、18(1)、54(199
3))を溶媒に分散しスラリー状にした溶液に浸漬し、
支持体4であるメッシュ状チタンにスチレンホモポリマ
ーを固定した。このようにして作製した捕捉材3である
高分子吸着材を付与した支持体4は次のようにして電極
基材1に固定した。すなわち、ドープされた酸化錫によ
って電極被覆材2を形成した電極基材1の外縁の端から
約1mmの幅でドープした酸化錫からなる電極被覆材2
を削り取り地金のチタン金属を露出させ、該支持体4と
電極基材1の互いの外縁を一致させて接合し、更に支持
体4と電極基材1を強固に固定させるために幅1mm、
長さ12mm、厚み0.5mmの直方体状のチタン板5
と幅1mm、長さ10mm、厚み0.5mmの直方体状
のチタン板6を支持体4と電極基材1の四辺の端を合せ
て接合したものに電気溶接を行い電極基材1の端から1
mmの部分を金属チタンで被覆し、支持体4と電極基材
1を強固に接合し、有機汚水の分解電極を得た。
(Embodiment 3) FIG. 2 is a structural view of a decomposition electrode having a support of organic sewage in Embodiment 3 of the present invention. 1 is an electrode substrate, 2 is an electrode covering material, 3 is a capturing material, 4 is a support, and 5 and 6 are titanium plates for fixing. As shown in FIG. 2, in the third embodiment, the height is 12 mm,
A commercially available titanium plate having a width of 12 mm and a thickness of 0.5 mm was degreased with acetone, etched with a hot oxalic acid solution, further washed with pure water and dried to obtain an electrode substrate 1. A solution prepared by dissolving tin chloride and antimony chloride in ethanol at a weight ratio of 100: 1 was applied to the electrode substrate 1, dried, and baked at 550 ° C. for 10 minutes. This operation was repeated to form an electrode covering material 2 made of doped tin oxide having a thickness of 3 μm. Next, square mesh titanium having a side of 12 mm (a titanium wire having a wire diameter of 10 μm knitted at intervals of 100 μm) was degreased with acetone, etched with a hot oxalic acid solution to roughen the surface, and further washed with pure water. The support was dried after drying. In addition, a polystyrene homopolymer (membrane, 18 (1), 54 (199)
3) is immersed in a solution obtained by dispersing the above in a solvent to form a slurry,
A styrene homopolymer was fixed on the mesh-like titanium as the support 4. The support 4 provided with the polymer adsorbent as the trapping material 3 thus produced was fixed to the electrode substrate 1 as follows. That is, the electrode coating material 2 made of tin oxide doped with a width of about 1 mm from the outer edge of the electrode substrate 1 on which the electrode coating material 2 is formed with the doped tin oxide
To expose the titanium metal of the ingot, to join the support 4 and the electrode substrate 1 so that their outer edges coincide with each other, and to further firmly fix the support 4 and the electrode substrate 1 to a width of 1 mm.
A rectangular parallelepiped titanium plate 5 having a length of 12 mm and a thickness of 0.5 mm
And a 1 mm wide, 10 mm long, 0.5 mm thick rectangular parallelepiped titanium plate 6 is joined by joining the edges of the four sides of the support 4 and the electrode substrate 1, and is electrically welded from the end of the electrode substrate 1. 1
mm portion was covered with titanium metal, and the support 4 and the electrode substrate 1 were firmly joined to obtain an organic sewage decomposition electrode.

【0035】実施の形態3のスチレンホモポリマーは透
過型電子顕微鏡で確認しメッシュ状チタンからなる支持
体4に均一に分散した状態で存在していることを透過型
電子顕微鏡で確認した。
The styrene homopolymer of Embodiment 3 was confirmed by a transmission electron microscope, and it was confirmed by a transmission electron microscope that the styrene homopolymer was present in a uniformly dispersed state on the support 4 made of mesh titanium.

【0036】(実施の形態4)図3は本発明の実施の形
態4における窒素含有有機分解装置の概略構成図であ
る。図3において、7は窒素を含む有機炭素を含んだ溶
液11をためた電解槽、8は電解槽7内の溶液11中に
浸漬され陰極9と対を成し陽極となる分解電極である。
陰極9は白金、白金酸化物、またはステンレス材料で構
成されている。10は分解電極8、陰極9に電流を印加
するための電圧印加部であり、溶液11は窒素を含む有
機炭素を含んだものであればどのような溶液であっても
よく、これはたとえば食品加工工場、水産加工工場、酒
造場、畜産場、し尿処理、汚水処理装置から排出される
排水に該当するものである。
(Embodiment 4) FIG. 3 is a schematic configuration diagram of a nitrogen-containing organic decomposition apparatus according to Embodiment 4 of the present invention. In FIG. 3, reference numeral 7 denotes an electrolytic tank containing a solution 11 containing nitrogen-containing organic carbon, and reference numeral 8 denotes a decomposition electrode which is immersed in the solution 11 in the electrolytic tank 7 and forms a pair with the cathode 9 and serves as an anode.
The cathode 9 is made of platinum, platinum oxide, or a stainless material. Reference numeral 10 denotes a voltage application unit for applying a current to the decomposition electrode 8 and the cathode 9, and the solution 11 may be any solution as long as it contains organic carbon containing nitrogen. It corresponds to wastewater discharged from processing plants, fishery processing plants, breweries, livestock farms, human waste treatment, and sewage treatment equipment.

【0037】[0037]

【実施例】次に本発明の有機汚水の分解方法について実
施例で具体的に説明する。分解電極としての陽極は実施
の形態1乃至3で得られたものを用いた。
Next, the method for decomposing organic sewage of the present invention will be described in detail with reference to examples. The anode obtained in Embodiment Modes 1 to 3 was used as an anode serving as a decomposition electrode.

【0038】試料溶液としては、分解対象蛋白質として
脱脂粉乳を用い、これを蒸留水で希釈し25mg/Lの
濃度とし、この溶液に硝酸カリウムを添加し溶液の導電
率を1000μS/cmに調整した。この時のTOC計
によるTOC測定値は18mg/Lであった。以下の実
施例、比較例でこの溶液を試料溶液として用いた。
As a sample solution, skim milk powder was used as a protein to be decomposed, and this was diluted with distilled water to a concentration of 25 mg / L, and potassium nitrate was added to the solution to adjust the conductivity of the solution to 1000 μS / cm. At this time, the TOC measurement value by the TOC meter was 18 mg / L. This solution was used as a sample solution in the following Examples and Comparative Examples.

【0039】尚、比較例として、次の比較電極を準備し
た。 (比較電極試料1)縦10mm、横10mm、厚さ0.
5mmの市販の白金板を比較電極試料1とした。
The following comparative electrode was prepared as a comparative example. (Comparative electrode sample 1) Length 10 mm, width 10 mm, thickness 0.
A 5 mm commercially available platinum plate was used as Comparative electrode sample 1.

【0040】(比較電極試料2)縦10mm、横10m
m、厚さ0.5mmの市販のチタン板をアセトン脱脂
後、熱蓚酸溶液でエッチングを行い、更に純水で洗浄し
乾燥し電極基材1とした塩化錫と塩化アンチモンを10
0:1の重量比でエタノールに溶解した溶液を前記基体
に塗布、乾燥後550℃で10分間焼成した。この操作
を繰り返し行い厚さ3μmのドープした酸化錫からなる
電極被覆材2を形成した。
(Comparative electrode sample 2) 10 mm long and 10 m wide
A commercially available titanium plate having a thickness of 0.5 mm and a thickness of 0.5 mm is degreased with acetone, etched with a hot oxalic acid solution, further washed with pure water, and dried.
A solution dissolved in ethanol at a weight ratio of 0: 1 was applied to the substrate, dried, and baked at 550 ° C. for 10 minutes. This operation was repeated to form an electrode covering material 2 made of doped tin oxide having a thickness of 3 μm.

【0041】また以下の方法によって分解電極及び比較
電極の電流−電位の関係を測定し、電極の酸素過電圧の
評価を行った。すなわちガラス容器に0.1mol/L
硫酸溶液を入れ、以上説明した分解電極及び比較電極の
内一つを陽極に、10cm2の面積の白金板を陰極と
し、電極間隔を0.5cmに保持して隔膜を介さずに電
解系を構成し、陽極の電極電位を参照電極(銀−塩化銀
電極(Ag/AgCl))に対してポテンショスタット
によって規制し、走査速度10mV/secで浸漬電位
から4V(vsAg/AgCl)まで一定の速度で走査
し、電流と電位の関係を求め、これから各電極の酸素過
電圧(η)とターフェルの傾きを求めた。
The current-potential relationship between the decomposition electrode and the comparative electrode was measured by the following method, and the oxygen overvoltage of the electrode was evaluated. That is, 0.1 mol / L in a glass container
A sulfuric acid solution is added, one of the decomposition electrode and the reference electrode described above is used as an anode, and a platinum plate having an area of 10 cm 2 is used as a cathode. The electrode interval is maintained at 0.5 cm and the electrolytic system is passed without a diaphragm. The potential of the anode is regulated by a potentiostat with respect to a reference electrode (silver-silver chloride electrode (Ag / AgCl)), and a constant speed from immersion potential to 4 V (vsAg / AgCl) at a scanning speed of 10 mV / sec. , And the relationship between the current and the potential was obtained. From this, the oxygen overvoltage (η) of each electrode and the slope of Tafel were obtained.

【0042】すなわち、酸素過電圧(η)は上記試料溶
液では0.1mA/cm2の電流密度での電位を各電極
で求めることで得られ、ターフェルの傾きは(数1)に
示すように所定の2点(電流密度と電位で決まる2点)
間の傾きを求めることで与えられる。このターフェルの
傾きは電流密度が0.1mA/cm2より1decad
e以上大きくなったときの酸素過電圧(η)の大きさを
推定するもので、ターフェルの傾きが大きくなれば酸素
過電圧(η)も大であると推定することができるもので
ある。
That is, the oxygen overpotential (η) can be obtained by obtaining a potential at a current density of 0.1 mA / cm 2 for each electrode in the sample solution, and the slope of Tafel is a predetermined value as shown in (Equation 1). 2 points (2 points determined by current density and potential)
It is given by finding the slope between them. The slope of this Tafel is 1 decad from the current density of 0.1 mA / cm 2 .
This is for estimating the magnitude of the oxygen overvoltage (η) when it becomes greater than or equal to e, and it can be estimated that the oxygen overvoltage (η) is also large if the slope of Tafel increases.

【0043】[0043]

【数1】 (Equation 1)

【0044】ここで、E2:電流密度j=1mA/cm
2での陽極電位、E1:電流密度j=0.1mA/cm2
での陽極電位、log10(j2):電流密度j2の常
用対数、log10(j1):電流密度j1の常用対数
である。この結果を(表1)に示す。
Here, E2: current density j = 1 mA / cm
Anode potential at 2 ; E1: current density j = 0.1 mA / cm 2
, And the logarithmic logarithm of the current density j2, log10 (j1): the logarithm of the current density j1. The results are shown in (Table 1).

【0045】[0045]

【表1】 [Table 1]

【0046】これから明らかなように実施の形態1乃至
3または比較電極試料2の電極では酸素過電圧(η)は
2.5V(vsAg/AgCl)の電位を示すのに対
し、比較電極試料1の白金電極は1.48Vであり、ド
ープした酸化錫電極が高い酸素過電圧(η)を示すこと
がわかる。またj=1mA/cm2以上の電流密度領域
でも、ターフェルの傾きから酸素過電圧(η)が実施の
形態1乃至3または比較電極試料2の電極で比較電極試
料1の電極より大きいことがわかる。なお、上記したよ
うに酸素過電圧(η)は0.1mA/cm2の電流密度
での電位としたものである。
As is apparent from the above, the oxygen overvoltage (η) of the electrode of the first to third embodiments or the comparative electrode sample 2 indicates a potential of 2.5 V (vsAg / AgCl), while the platinum of the comparative electrode sample 1 The electrode was at 1.48 V, indicating that the doped tin oxide electrode exhibited a high oxygen overpotential (η). Also, in the current density region of j = 1 mA / cm 2 or more, it can be seen from the slope of Tafel that the oxygen overvoltage (η) is larger in the electrodes of the first to third embodiments or the comparative electrode sample 2 than the comparative electrode sample 1. Note that, as described above, the oxygen overvoltage (η) is a potential at a current density of 0.1 mA / cm 2 .

【0047】(実施例1)実施の形態1の分解電極を陽
極とし、陽極の二倍の面積を持つ白金を陰極に用い上記
試料溶液200mLをマグネッチックスターラーで撹拌
しながら極間距離5mm、電流密度10mA/cm2
直流電流で10時間電気分解した。
(Example 1) The decomposition electrode of Embodiment 1 was used as an anode, and platinum having twice the area of the anode was used as a cathode. 200 mL of the sample solution was stirred with a magnetic stirrer, and the distance between the electrodes was 5 mm. Electrolysis was performed for 10 hours with a direct current having a density of 10 mA / cm 2 .

【0048】(比較例1)陽極に一辺10mm厚み0.
3mmの白金電極を用い、上記試料溶液200mLをマ
グネッチックスターラーで撹拌しながら極間距離5m
m、電流密度10mA/cm2の直流電流で10時間電
気分解した。
(Comparative Example 1) The thickness of each side of the anode was 10 mm and the thickness was 0.1 mm.
Using a 3 mm platinum electrode, 200 ml of the above sample solution was stirred with a magnetic stirrer and the distance between the electrodes was 5 m.
and electrolysis at a direct current of 10 mA / cm 2 for 10 hours.

【0049】(比較例2)陽極に比較電極試料1、陰極
に一辺10mm厚み0.3mmの白金電極を用い上記試
料溶液200mLをマグネッチックスターラーで撹拌し
ながら極間距離5mm、10mAの直流電流で10時間
電気分解した。
(Comparative Example 2) A comparative electrode sample 1 was used as an anode, and a platinum electrode having a side of 10 mm and a thickness of 0.3 mm was used as a cathode. Electrolyzed for 10 hours.

【0050】(実施例2)実施の形態2の分解電極を陽
極とし、陽極の二倍の面積を持つ白金を陰極に用い上記
試料溶液200mLをマグネッチックスターラーで撹拌
しながら極間距離5mm、10mAの直流電流で3時間
電気分解を行った。
(Example 2) Using the decomposition electrode of Embodiment 2 as an anode, platinum having twice the area of the anode as a cathode, and 200 mL of the above sample solution being stirred with a magnetic stirrer, a distance between the electrodes of 5 mm and 10 mA For 3 hours.

【0051】(実施例3)実施の形態3の分極電解を陽
極とし、陽極の二倍の面積を持つ白金を陰極に用い上記
試料溶液200mLをマグネッチックスターラーで撹拌
しながら極間距離5mm、10mAの直流電流で3時間
電気分解を行った。
(Example 3) The polarized electrolysis of Embodiment 3 was used as an anode, and platinum having twice the area of the anode was used as a cathode. 200 mL of the sample solution was stirred with a magnetic stirrer, and the distance between the electrodes was 5 mm and 10 mA. For 3 hours.

【0052】以上の結果を(表2)、図4に示す。The above results (Table 2) are shown in FIG.

【0053】[0053]

【表2】 [Table 2]

【0054】(表2)及び図4において、TOC除去率
(%)は(数2)で求めた。
In Table 2 and FIG. 4, the TOC removal rate (%) was obtained by (Equation 2).

【0055】[0055]

【数2】 (Equation 2)

【0056】ここで、TOC(i)は電解前の試料溶液
のTOC(mg/L)、TOC(t)はt時間電解した
時の試料溶液のTOC(mg/L)である。
Here, TOC (i) is the TOC (mg / L) of the sample solution before electrolysis, and TOC (t) is the TOC (mg / L) of the sample solution after electrolysis for t hours.

【0057】なお、TOC残存率(%)は(数3)で求
めた。
The TOC residual rate (%) was determined by (Equation 3).

【0058】[0058]

【数3】 (Equation 3)

【0059】図4から明らかなように、比較例1の白金
電極、比較例2のドープした酸化錫電極では10時間の
電解で50%と43%の残存率、すなわち50%と67
%のTOC除去率であったが、本実施例1のドープした
酸化錫被膜チタン電極に多孔質の白金を焼成法によって
形成した電極では10時間の電解で97%のTOCの除
去が達成されていることがわかる。また(表2)から他
の方法で多孔質層を形成する方法(実施例2及び実施例
3)で作製した電極を用い3時間の電解を行った時、実
施例1と同等のTOC除去率が得られている。また3時
間電解するとドープした酸化錫電極及び白金電極に比べ
約1.4倍から2倍のTOC除去量を示している。
As is clear from FIG. 4, the residual ratio of 50% and 43%, ie, 50% and 67%, in the platinum electrode of Comparative Example 1 and the doped tin oxide electrode of Comparative Example 2 after 10 hours of electrolysis.
% Of the TOC removal rate, but 97% TOC removal was achieved by electrolysis for 10 hours in the electrode formed by sintering porous platinum on the doped tin oxide-coated titanium electrode of Example 1. You can see that there is. In addition, from Table 2, when electrolysis was performed for 3 hours using the electrode prepared by the method of forming a porous layer by another method (Examples 2 and 3), the TOC removal rate equivalent to that of Example 1 was obtained. Has been obtained. Further, when electrolysis is performed for 3 hours, the TOC removal amount is about 1.4 to 2 times that of the doped tin oxide electrode and the platinum electrode.

【0060】更に、本実施例では脱脂粉乳の濃度を25
mg/Lとし初期TOC濃度を18mg/Lで行ったが
蛋白質濃度がこれより高いときには、濃度に比例して陽
極と、陰極の面積を大きくとればよいことが明らかにな
った。
Furthermore, in this example, the concentration of skim milk powder was 25
mg / L and the initial TOC concentration was 18 mg / L. When the protein concentration was higher than this, it became clear that the area of the anode and the cathode should be increased in proportion to the concentration.

【0061】[0061]

【発明の効果】以上のように本発明によれば以下の優れ
た効果を有する有機汚水の分解電極、及びそれを用いた
有機汚水の分解方法、及びそれを用いた有機汚水の分解
装置を実現できるものである。
As described above, according to the present invention, an organic sewage decomposition electrode having the following excellent effects, an organic sewage decomposition method using the same, and an organic sewage decomposition apparatus using the same are realized. You can do it.

【0062】請求項1に記載された有機汚水の分解電極
によれば、窒素含有有機化合物を捕捉する捕捉材によっ
て、有機汚水中の蛋白質のような完全にイオン化し難い
粒子を電極近傍に捕捉することが可能となり窒素含有有
機化合物を極めて高い分解率で酸化分解できる。
According to the decomposition electrode for organic sewage described in claim 1, particles that are difficult to completely ionize, such as proteins in organic sewage, are captured in the vicinity of the electrode by the capturing material that captures nitrogen-containing organic compounds. This makes it possible to oxidatively decompose nitrogen-containing organic compounds at an extremely high decomposition rate.

【0063】請求項2に記載された有機汚水の分解電極
によれば、請求項1で得られる効果の他、電極近傍に捕
捉された窒素含有有機化合物を容易に酸化分解しガス化
することができる。
According to the decomposition electrode for organic sewage described in claim 2, in addition to the effects obtained in claim 1, the nitrogen-containing organic compound trapped in the vicinity of the electrode can be easily oxidized and decomposed to gasify. it can.

【0064】請求項3に記載された有機汚水の分解電極
によれば、請求項1または2で得られる効果の他、低い
分解電圧で電極近傍に捕捉された窒素含有有機化合物を
より効果的に酸化分解しガス化することができるので、
電極の信頼性を高めることができる。また、省エネルギ
ー性を向上させることができる。
According to the decomposition electrode for organic sewage described in claim 3, in addition to the effects obtained in claim 1 or 2, the nitrogen-containing organic compound trapped near the electrode at a low decomposition voltage can be more effectively used. Because it can be oxidized and decomposed and gasified,
The reliability of the electrode can be improved. In addition, energy saving can be improved.

【0065】請求項4に記載された有機汚水の分解電極
によれば、請求項1乃至3の内のいずれか1項で得られ
る効果の他、分解電極の耐久性を著しく向上させること
ができる。
According to the decomposition electrode for organic sewage described in claim 4, in addition to the effect obtained in any one of claims 1 to 3, the durability of the decomposition electrode can be significantly improved. .

【0066】請求項5に記載された有機汚水の分解電極
によれば、請求項1乃至4の内のいずれか1項で得られ
る効果の他、蛋白質を吸着し吸着された蛋白質を高い電
極電位で酸化分解できる。蛋白質等を高効率で分解する
ので、スカム等の発生を著しく減少させることができ装
置をコンパクト化できる。
According to the decomposition electrode for organic sewage described in claim 5, in addition to the effects obtained in any one of claims 1 to 4, the protein is adsorbed and the adsorbed protein is converted to a high electrode potential. Can be oxidatively decomposed. Since proteins and the like are decomposed with high efficiency, generation of scum and the like can be significantly reduced, and the apparatus can be made compact.

【0067】請求項6に記載された有機汚水の分解電極
によれば、請求項1乃至5の内のいずれか1項で得られ
る効果の他、電極基材と捕捉材の間隔を制御できかつ安
定に電解可能であるので電解を効率的に促進できる。
According to the decomposition electrode for organic sewage described in claim 6, in addition to the effect obtained in any one of claims 1 to 5, the distance between the electrode substrate and the trapping material can be controlled and Since the electrolysis can be stably performed, the electrolysis can be efficiently promoted.

【0068】請求項7に記載された有機汚水の分解方法
によれば、消費電力に対する処理量が多く、処理水の中
和処理が不要でかつスカム等を発生しない処理をするこ
とができる。
According to the method for decomposing organic sewage described in claim 7, it is possible to carry out a treatment which requires a large amount of treatment with respect to power consumption, does not require neutralization treatment of treated water, and does not generate scum or the like.

【0069】請求項8に記載された有機汚水分解装置に
よれば、酸素の発生を抑制し窒素含有有機化合物を効率
よく酸化分解できる。
According to the organic sewage decomposition apparatus described in claim 8, the generation of oxygen can be suppressed and the nitrogen-containing organic compound can be efficiently oxidatively decomposed.

【0070】請求項9に記載された有機汚水分解装置に
よれば、請求項8で得られる効果の他、陰極は陽極がど
のような材質でも相性が良く耐久性に優れた窒素含有有
機化合物を分解可能で自在性に優れる。
According to the organic sewage decomposition apparatus according to the ninth aspect, in addition to the effects obtained in the eighth aspect, the cathode can be made of a nitrogen-containing organic compound having good compatibility and excellent durability regardless of the material of the anode. It can be disassembled and has excellent flexibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1、2における有機汚水の
分解電極の構造図
FIG. 1 is a structural diagram of a decomposition electrode of organic sewage in Embodiments 1 and 2 of the present invention.

【図2】本発明の実施の形態3における有機汚水の支持
体を有する分解電極の構造図
FIG. 2 is a structural diagram of a decomposition electrode having a support of organic sewage in Embodiment 3 of the present invention.

【図3】本発明の実施の形態4における窒素含有有機炭
素分解装置の概略構成図
FIG. 3 is a schematic configuration diagram of a nitrogen-containing organic carbon decomposition apparatus according to Embodiment 4 of the present invention.

【図4】電解時間とTOC残存率の関係を表す図FIG. 4 is a diagram showing the relationship between electrolysis time and TOC residual rate.

【符号の説明】[Explanation of symbols]

1 電極基材 2 電極被覆材 3 捕捉材 4 支持体 5、6 チタン板 7 電解槽 8 分解電極 9 陰極 10 電圧印加部 11 溶液 DESCRIPTION OF SYMBOLS 1 Electrode base material 2 Electrode coating material 3 Capture material 4 Support body 5, 6 Titanium plate 7 Electrolysis tank 8 Decomposition electrode 9 Cathode 10 Voltage application part 11 Solution

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】電極基材の表面を電極被覆材で覆った分解
電極であって、前記電極被覆材の表面には有機汚水中の
窒素含有有機化合物を捕捉する捕捉材が被覆されている
ことを特徴とする有機汚水の分解電極。
1. A decomposition electrode in which the surface of an electrode substrate is covered with an electrode coating material, wherein the surface of the electrode coating material is coated with a capturing material for capturing nitrogen-containing organic compounds in organic sewage. An electrode for decomposing organic sewage.
【請求項2】前記電極被覆材が白金より酸素過電圧の高
い電極材で形成されていることを特徴とする請求項1に
記載された有機汚水の分解電極。
2. The decomposition electrode for organic sewage according to claim 1, wherein said electrode coating material is formed of an electrode material having an oxygen overvoltage higher than that of platinum.
【請求項3】前記電極被覆材が酸化錫にアンチモン、塩
素、モリブデン、タングステン、ニオブ、タンタルの内
少なくとも1種類以上の元素をドープした混合物である
ことを特徴とする請求項1または2に記載された有機汚
水の分解電極。
3. The electrode coating material according to claim 1, wherein the electrode coating material is a mixture of tin oxide and at least one element selected from the group consisting of antimony, chlorine, molybdenum, tungsten, niobium, and tantalum. Of wastewater from organic wastewater.
【請求項4】前記電極基材がチタン、ジルコニウム、ニ
オブ、タンタルまたはこれらの合金の内いずれか1から
なることを特徴とする請求項1乃至3の内のいずれか1
項に記載された有機汚水の分解電極。
4. The electrode substrate according to claim 1, wherein said electrode substrate is made of any one of titanium, zirconium, niobium, tantalum, and an alloy thereof.
An electrode for decomposing organic sewage as described in the item.
【請求項5】前記捕捉材が白金もしくは白金酸化物ある
いは蛋白質吸着高分子化合物からなることを特徴とする
請求項1乃至4の内のいずれか1項に記載された有機汚
水の分解電極。
5. The electrode for decomposing organic sewage according to claim 1, wherein said trapping material is made of platinum, platinum oxide, or a protein-adsorbing polymer compound.
【請求項6】前記捕捉材が支持体を介して前記電極被覆
材に被覆されていることを特徴とする請求項1乃至5の
内のいずれか1項に記載された有機汚水の分解電極。
6. The electrode for decomposing organic sewage according to claim 1, wherein said trapping material is coated on said electrode coating material via a support.
【請求項7】窒素含有有機汚水中に請求項1乃至6の内
のいずれか1項に記載された分解電極からなる陽極と、
陰極とを配置し、前記陽極と前記陰極に通電して、電気
化学的反応により有機物を分解することを特徴とする有
機汚水の分解方法。
7. An anode comprising the decomposition electrode according to any one of claims 1 to 6 in a nitrogen-containing organic sewage,
A method for decomposing organic sewage, comprising disposing a cathode, energizing the anode and the cathode, and decomposing organic substances by an electrochemical reaction.
【請求項8】窒素含有有機汚水と支持電解質が添加され
た有機汚水を貯める電解槽と、前記電解槽に設けられ前
記有機汚水を電解するための請求項1乃至6の内のいず
れか1項に記載された分解電極からなる陽極と、陰極
と、前記陽極と前記陰極の間に電流を流し電解させる電
圧印加部と、を備えていることを特徴とする有機汚水分
解装置。
8. An electrolytic tank for storing an organic sewage to which nitrogen-containing organic sewage and a supporting electrolyte are added, and an electrolytic tank provided in the electrolytic tank for electrolyzing the organic sewage. An organic sewage decomposition apparatus, comprising: an anode comprising the decomposition electrode described in 1); a cathode; and a voltage applying unit for causing a current to flow between the anode and the cathode to perform electrolysis.
【請求項9】前記陰極が白金、白金酸化物またはステン
レス材料から形成されていることを特徴とする請求項8
に記載された有機汚水分解装置。
9. The cathode according to claim 8, wherein said cathode is formed of platinum, platinum oxide or a stainless steel material.
Organic sewage decomposition apparatus described in 1.
JP10024334A 1998-02-05 1998-02-05 Decomposition electrode for organic polluted water, decomposing method of organic polluted water using same and decomposing device of organic polluted water using same Withdrawn JPH11221570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10024334A JPH11221570A (en) 1998-02-05 1998-02-05 Decomposition electrode for organic polluted water, decomposing method of organic polluted water using same and decomposing device of organic polluted water using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10024334A JPH11221570A (en) 1998-02-05 1998-02-05 Decomposition electrode for organic polluted water, decomposing method of organic polluted water using same and decomposing device of organic polluted water using same

Publications (1)

Publication Number Publication Date
JPH11221570A true JPH11221570A (en) 1999-08-17

Family

ID=12135295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10024334A Withdrawn JPH11221570A (en) 1998-02-05 1998-02-05 Decomposition electrode for organic polluted water, decomposing method of organic polluted water using same and decomposing device of organic polluted water using same

Country Status (1)

Country Link
JP (1) JPH11221570A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020061136A (en) * 2001-01-16 2002-07-23 주식회사 한솔 a manufacturing of electrolytic arrangement for see water technigue
JP2002361282A (en) * 2001-06-08 2002-12-17 Permelec Electrode Ltd Method and apparatus for treating organic waste water
WO2004072329A1 (en) * 2003-02-14 2004-08-26 The University Of Hong Kong Device for and method of generating ozone
JP2007185649A (en) * 2005-12-16 2007-07-26 Univ Of Tokyo Treatment liquid flow type electrolyzer
JP2007538152A (en) * 2004-05-20 2007-12-27 デ・ノラ・エレートローディ・ソチエタ・ペル・アツィオーニ Anode for oxygen release
CN109402632A (en) * 2018-12-18 2019-03-01 广东省稀有金属研究所 A kind of electrode coating solution presoma, electrode coating solution, coated electrode and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020061136A (en) * 2001-01-16 2002-07-23 주식회사 한솔 a manufacturing of electrolytic arrangement for see water technigue
JP2002361282A (en) * 2001-06-08 2002-12-17 Permelec Electrode Ltd Method and apparatus for treating organic waste water
WO2004072329A1 (en) * 2003-02-14 2004-08-26 The University Of Hong Kong Device for and method of generating ozone
JP2007538152A (en) * 2004-05-20 2007-12-27 デ・ノラ・エレートローディ・ソチエタ・ペル・アツィオーニ Anode for oxygen release
JP2007185649A (en) * 2005-12-16 2007-07-26 Univ Of Tokyo Treatment liquid flow type electrolyzer
CN109402632A (en) * 2018-12-18 2019-03-01 广东省稀有金属研究所 A kind of electrode coating solution presoma, electrode coating solution, coated electrode and preparation method thereof

Similar Documents

Publication Publication Date Title
Shestakova et al. Electrode materials used for electrochemical oxidation of organic compounds in wastewater
JP2003293177A (en) Electrolytic cell for generating ozone
US9199867B2 (en) Removal of metals from water
JP2005000858A (en) Photocatalytic water treatment apparatus
CN105858818A (en) Method for effectively removing nitrate in underground water by using Zn/Cu/Ti multi-metal nanoelectrode
JP2007105673A (en) Treating method and treating apparatus of waste water containing nitrate nitrogen and electrolytic cell for treating waste water
KR101214824B1 (en) Improved COD abatement process for electrochemical oxidation
JPH11221570A (en) Decomposition electrode for organic polluted water, decomposing method of organic polluted water using same and decomposing device of organic polluted water using same
JP2004202283A (en) Method and apparatus for treating organic compound-containing water
JP2003126860A (en) Method and apparatus for treatment of waste liquid or waste water
CN1287010C (en) Ozone producing electrolyzer
JP2007061681A (en) Nitrate nitrogen-containing wastewater treatment method and apparatus, and electrolytic cell for wastewater treatment
JPWO2003091166A1 (en) Method and apparatus for treating wastewater containing organic compounds
JP2004237165A (en) Method and apparatus for treating organic compound-containing water
EP1135339A1 (en) Dimensionally stable electrode for treating hard-resoluble waste water
JP3285978B2 (en) Electrode for drinking water electrolysis, method for producing the same, and ion water generator
JP2975577B2 (en) Electrolytic treatment of electroless nickel plating wastewater
JP2006205139A (en) Method for controlling circulating water
JP2002079254A (en) Decomposition electrode for nitrogen component in organic wastewater, and method and apparatus for treating organic wastewater using the same
JP2904003B2 (en) Wastewater electrolytic treatment method and anode used for the electrolytic treatment
JP2004237207A (en) Method and apparatus for treating organic compound-containing water
CN110104737A (en) A kind of novel lead dioxide electrode preparation method and application with electrocatalytic oxidation property
JP4026464B2 (en) Treatment method for wastewater containing organic compounds
CN111252861A (en) Wet-type electrooxidation wastewater treatment device and wastewater treatment method
Kropp et al. A device that converts aqueous ammonia into nitrogen gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050131

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050215

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070129

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070730