JP4026464B2 - Treatment method for wastewater containing organic compounds - Google Patents

Treatment method for wastewater containing organic compounds Download PDF

Info

Publication number
JP4026464B2
JP4026464B2 JP2002288903A JP2002288903A JP4026464B2 JP 4026464 B2 JP4026464 B2 JP 4026464B2 JP 2002288903 A JP2002288903 A JP 2002288903A JP 2002288903 A JP2002288903 A JP 2002288903A JP 4026464 B2 JP4026464 B2 JP 4026464B2
Authority
JP
Japan
Prior art keywords
wastewater
organic compound
electrode
organic compounds
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002288903A
Other languages
Japanese (ja)
Other versions
JP2004121959A (en
Inventor
範人 池宮
良弘 恵藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002288903A priority Critical patent/JP4026464B2/en
Publication of JP2004121959A publication Critical patent/JP2004121959A/en
Application granted granted Critical
Publication of JP4026464B2 publication Critical patent/JP4026464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、有機化合物排水の処理方法に関し、特に、電解処理技術を利用し、有害で悪臭を放つ副生成物を発生させることなく、該排水中の有機化合物を二酸化炭素や水等の無機化合物にまで、分解処理することができる方法に関する。
【0002】
【従来の技術】
工場排水、畜産排水、生活排水、その他各種の排水中には、環境を汚染する可能性のある物質として、様々な有機化合物が含まれている。
なかでも工場排水については、上記の有機化合物を、排出が許容されるレベルまで低減する必要がある。
【0003】
この排水中の有機化合物の低減方法としては、活性汚泥法等の生物分解処理方法、オゾン酸化による処理方法、電気化学的な処理方法、その他各種の処理方法があるが、電気化学的な処理方法は、生物分解処理方法やオゾン酸化方法等に比べて、操作性が容易であるのみならず、使用装置をコンパクト化できたり、処理時間が短い等の利点がある。
このような観点から、従来、白金、酸化鉛、酸化すず等の様々な陽極材料を活用した電解処理方法が開発されている。
【0004】
しかし、工場排水は、強い腐食性を有する化合物を含んでいる場合も多く、上記の白金や酸化鉛等の陽極材料は、これら腐食性の化合物により、容易に腐食されてしまう。
しかも、白金電極の場合は、電解処理時の電流密度を0.1A/cm程度にすれば、安定して電解処理が行えるが、電解処理効率を高めるために、0.2A/cm以上の高い電流密度にすると、電極の劣化が大幅に進行し、電極の寿命が短くなる。
【0005】
一方、ダイヤモンドは、化学的安定性が高く、ホウ素や窒素をドープすることによって導電性を示すことから、排水の電気分解処理用の電極材料として期待されている。
藤嶋らの論文(Electrochemistry,Vol.67(1999)389)によれば、ホウ素をドープしたダイヤモンド電極は、電位窓が極めて広く、腐食性の強い水溶液中においても安定して動作することが報告されている。
また、藤嶋らの論文(Jornal of Electroanalytical Chemistry,Vol.396(1995)233)において、NOxがダイヤモンド電極(陰極)で効率よくアンモニアに還元されることが報告されている。
さらに、特開平7−299467号公報および米国特許第5399247号明細書には、ホウ素をドープしたダイヤモンド電極を陽極に用い、有機化合物を酸化分解できることが開示されている。
【特許文献1】
特開平7−299467号公報
【特許文献2】
米国特許第5399247号明細書
【非特許文献1】
Electrochemistry,Vol.67(1999)389
【非特許文献2】
Jornal of Electroanalytical Chemistry,Vol.396(1995)233
【0006】
【発明が解決しようとする課題】
しかし、上記のようなダイヤモンド電極を使用し、電流密度を高くして、工場排水等を実用的規模で処理する技術に関しては、未だ十分な報告はない。
例えば、電導度の低い排水を、ダイヤモンド電極を使用して処理する際には電解質物質を必要とするが、使用する電解質物質の種類によって電解効率がどのように変化するかについては、知られていない。
このため、排水を電解処理する際に必要とする電導度を確保する上で、どのような種類の電解質物質を添加すればよいかは判っていない。
しかも、電解質物質は、ダイヤモンド電極を使用する場合、0.1モル/リットル(以下、リットルを「L」、ミリリットルを「mL」と記す)(硫酸イオンの場合にあっては9600mg/L)以上の高濃度となるように添加する必要があるものの、電解処理後の排水とともに系外に排出されてしまうため、経済的に望ましくないと言う問題もある。
【0007】
本発明は、以上の諸点を踏まえ、工場排水、その他各種の排水中に含まれる有機化合物を、ダイヤモンド電極を使用して電気分解処理するに際し、当該有機化合物の分解効率と添加すべき電解質物質(種類や量等)とに関し、実用化の点から最も望ましいものを見出し、当該有機化合物を、有害で悪臭を放つ副生成物を生じることなく無害な無機化合物にまで分解することができる方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記の目的を達成するために検討を重ねた結果、前記した従来の白金、酸化鉛、酸化すず等の電極では電極の腐食を招き易いとの理由から使用が敬遠されていた硫酸イオンを電解質物質として使用すると、有機化合物の分解、特に次亞塩素酸イオンを電解質物質とする場合には分解し難い難分解性有機化合物が効率良く分解除去できるばかりでなく、硫酸イオン源であれば容易な濃縮操作で電解処理済み水から回収することかできるとの知見を得た。
【0009】
本発明の排水処理方法は、この知見に基づいてなされたもので、陰極および陽極に導電性ダイヤモンド電極を用いて有機化合物含有排水中の該有機化合物を電解処理する方法であって、この排水に、硫酸イオンを添加して電解処理し、電解処理後の処理水から硫酸イオンを回収し、この硫酸イオンを上記の有機化合物含有排水に添加することを特徴とする。
そして、本発明の排水処理方法では、上記の有機化合物含有排水の初期電導度は100mS/m以下であってもよい。
【0010】
本発明の処理対象水である排水は、有機化合物を含み、各種の工場から排出される産業排水はもとより、生活排水、その他の排水であってよい。
この有機化合物の種類は、特に制限せず、上記のような各種排水中に含まれるものであって、電気化学的な処理で二酸化炭素や水等の無機化合物にまで分解するものであれば、どのようなものであってもよい。
また、このような有機化合物の濃度も、特に制限せず、どのような濃度であってもよく、場合によっては、本発明の方法で処理するに先立ち、濃縮しておいてもよい。なお、ダイヤモンド電極の電気分解効率等の面からは、有機化合物の濃度は、0.5〜20g/L程度が好ましい。
【0011】
そして、上記の排水の初期電導度は100mS/m以下であってよい。
本発明において、初期電導度とは、電解質物質、本発明では硫酸イオンを添加する前の排水の電導度を言う。
初期電導度の下限は特に限定せず、極端な場合には0(検出限界以下)であってよい。
【0012】
上記排水に添加する硫酸イオン(SO −1)は、ダイヤモンド電極を使用して上記有機化合物を電解処理する際の電解質物質(電子の移動媒体)として作用するものであって、この硫酸イオン源としては、硫酸アンモニウム、硫酸カリウム、硫酸ソーダ、硫酸カルシウム、硫酸マグネシウム等の無機塩のみならず、硫酸そのものであってもダイヤモンド電極の化学的安定性が極めて高いため、十分実用に供することができる。
これらの硫酸イオン源は、単独で使用してもよいし、適宜の組み合わせによる2種以上を併用することもできる。
【0013】
硫酸イオンの添加量は、排水中の硫酸イオンの濃度が前記のように0.1モル/L(約9600mg/L)以上となる量であるのが好ましい。添加量の上限は、特に限定しないが、10モル/Lを超えても効果は飽和するため、10モル/L(約960,000mg/L)程度とすることが好ましい。
具体的には、初期電導度が100mS/mの排水に硫酸イオンを0.1モル/L程度添加した場合の排水の電導度は1500〜3000mS/m程度となり、排水中の有機化合物を高効率で電解処理することができる。
【0014】
本発明で使用する導電性ダイヤモンド電極は、Ni,Ta,Ti,Mo,W,Zr等の導電性金属材料を基板とし、これら基板の表面に導電性ダイヤモンド薄膜を析出させたものや、シリコンウエハ等の半導体材料を基板とし、このウエハ表面に導電性ダイヤモンド薄膜を合成させたもの、あるいは基板を用いない条件で板状に析出合成した導電性多結晶ダイヤモンド素材を挙げることができる。
なお、導電性(多結晶)ダイヤモンド薄膜は、ダイヤモンド薄膜の調製の際にボロンまたは塩素の所定量をドープして導電性を付与したものであり、ボロンをドープしたものが一般的である。
これらのドープ量は、少なすぎればドープする技術的意義が発現せず、多すぎてもドープ効果は飽和するため、ダイヤモンド薄膜素材の炭素量に対し50〜10,000ppmの範囲内のものが適している。
【0015】
本発明において、導電性ダイヤモンド電極は、一般には板状のものを使用するが、網目構造体を板状にしたもの等をも使用することができる。
また、炭素粉末、その他の粉末状の材料の表面を、導電性ダイヤモンド薄膜で覆ったものを電極として使用することもできる。この粉末状のダイヤモンド電極を使用する場合は、例えば、粉末状ダイヤモンド電極を電解液に分散させ、これを流動させて流動床を構成し、この流動床の一対を陰・陽両極として作用させればよい。
さらに、上記の基板を多孔質体としたもの、あるいは合成樹脂等からなる多孔質体に、導電性ダイヤモンド粉末を担持させて、高表面積を有する電極としたものを使用することもでき、この高表面積を有する電極で固定床を構成し、この固定床の一対を陰・陽両極として作用させればよい。
【0016】
本発明で用いる導電性ダイヤモンド電極は、従来の白金等の金属電極に比べると、電位窓が極めて広く、水の電気分解による水素発生や酸素発生を抑制しながら、排水中の有機化合物を効率的に酸化分解することができる。
このような導電性ダイヤモンド電極を用いて行う本発明の電解処理は、導電性ダイヤモンド電極表面の電流密度を10〜100,000A/mとし、有機化合物を含む排水であって、電解質物質として硫酸イオンを添加した排水を、導電性ダイヤモンド電極面と平行に、通液線速度(LV)10〜1,000m/hrで通液して、電極面と接触させることで行うことが好ましい。
【0017】
電流密度を10〜100,000A/mとするのは、10A/m未満では、有機化合物の電気分解を十分に進行させることができず、100,000A/mより大きくても電気分解効率が飽和する。
排水の通液方向を電極面と平行にするのは、排水と電極表面との接触効率を高めるためであり、排水の通液速度を、線速度(LV)で10〜1,000m/hrとするのは、これより遅すぎると、処理効率が低下し、これより速すぎると、排水と電極表面との接触時間を十分に取ることができず、有機化合物の電気分解を十分に進行させることができなくなる。
【0018】
なお、各電解反応槽内の温度は、特に限定しないが、低温すぎると、排水の電気分解が良好に進行せず、逆に高温すぎると、ガスの生成が多くなり、排水と電極表面との接触阻害が増大するのみならず、硫酸イオンによる装置構成材料の腐食の懸念があるため、本発明では、10〜95℃程度とすることが望ましい。
【0019】
さらに、本発明において、硫酸イオンは、処理済み水中に含有されて系外に排出されるため、この処理済み水から硫酸イオンを回収して再使用される。
このときの回収手法としては、処理済み水の蒸発濃縮法、逆浸透膜法、電気透析法、その他種々の手法により濃縮して回収する方法が挙げられる。濃縮回収した硫酸イオンは、そのまま処理対象排水に添加して再使用される。
濃縮回収水中の硫酸イオンの濃度は、特に制限しないが、低濃度すぎると、処理対象排水中に添加する濃縮回収水量が大量となって、電解処理対象排水量が増大し、高濃度すぎれば、濃縮に要するランニングコストが高騰するため、本発明では、0.05〜0.2モル/L(約4.8〜19.2mg/L)程度となるようにすることが好ましい
【0020】
【実施例】
実施例1
ボロンドープ法を用いて気相析出合成した積層状多結晶ダイヤモンド電極板(5cm×5cm×0.05cm)2枚を、極間距離1cmとなるように設定して電解反応槽を構成した。
【0021】
ジメチルスルホキシド(DMSO)を含む合成排水(DMSO:2300mg/L、TOC:710mg/L、電導度:0《検出限界以下》)1Lに、硫酸ナトリウムを14200mg/L(SO 2−:0.1モル/L)添加し(添加後の排水の電導度:1640mS/m)、電解貯槽に投入した。
この電解貯槽をスターラーで攪拌しつつ、送液ポンプを用い、上記の電解反応槽との間で500mL/分の流速で循環送液して、電解処理した。
【0022】
電解反応槽の供給電気量は、導電性ダイヤモンド電極表面の電流密度が0.2A/cm(2000A/m)となるように設定した。
【0023】
通液開始後、1,2,3時間経過した時点での電解反応槽出口水を採取し、TOCを分析したところ、表1の通りであった。
【0024】
【表1】

Figure 0004026464
【0025】
また、3時間経過後の電解処理済み水をビーカーに採り、90℃に保持しつつ水を蒸発させて20倍に濃縮した。
この濃縮水(硫酸ナトリウム濃度:284,000mg/L)の全量(約50mL)を上記のDMSOを含む合成排水に添加し(添加後の電導度:1600mS/m)、再度上記と同じ電解処理を行った。この結果は、表2の通りであった。
【0026】
【表2】
Figure 0004026464
【0027】
比較例1
実施例1の硫酸ナトリウムに代えて塩化ナトリウムを15000mg/L添加する以外は、実施例1と同様にして電解処理し、実施例1と同様の分析を行った。
この結果は、表2の通りであった。
なお、結果が悪かったため、処理済み水の濃縮、濃縮水の添加での電解処理は行わなかった。
【0028】
【表3】
Figure 0004026464
【0029】
実施例2
実施例1のDMSOに代えてテトラメチルアンモニウムヒドロキシドを含む合成排水((CHNOH:1500mg/L、TOC:770mg/L、初期電導度:0《検出限界以下》)1Lを使用する以外は、実施例1と同様にして(硫酸ナトリウム添加後の排水の電導度:1640mS/m)電解処理し、実施例1と同様の分析を行った。この結果は、表4の通りであった。
【0030】
【表4】
Figure 0004026464
【0031】
3時間経過後の電解処理済み水について、実施例1と同様に濃縮し、この濃縮水(硫酸ナトリウム濃度:284,000mg/L)の全量を上記のテトラメチルアンモニウムヒドロキシドを含む合成排水に添加し(添加後の電導度:1600mS/m)、再度上記と同じ電解処理を行った。この結果は、表5の通りであった。
【0032】
【表5】
Figure 0004026464
【0033】
比較例2
実施例1の硫酸ナトリウムに代えて塩化ナトリウムを15000mg/L添加する以外は、実施例2と同様にして電解処理し、実施例2と同様の分析を行った。
この結果は、表6の通りであった。
なお、結果が悪かったため、処理済み水の濃縮、濃縮水の添加での電解処理は行わなかった。
【0034】
【表6】
Figure 0004026464
【0035】
【発明の効果】
以上のように、本発明によれば、次のような効果を奏することができる。
(1)排水中の有機化合物を、有害で悪臭を放つ副生成物を発生させることなく、高効率で除去することができる。
(2)従来の白金系電極を用いる場合に比べて、電解効率が良く、特に必要電極面積が少なくて済み、電解反応装置を小型化することができる。
(3)導電性ダイヤモンド電極は、化学的安定性に優れ、通常の酸やアルカリによる腐食の懸念がなく、酸性条件からアルカリ性条件まで幅広いpH範囲において有効に作用するため、広範囲の種類の排水処理に実用的に供することができるばかりか、長期間に渡って安定した電解処理効果を持続することができる。
(4)排水処理に使用した後の硫酸イオン源(電解質物質)を回収して再利用することができるため、硫酸イオン源(電解質物質)に要するコストを大幅に削減することができる。[0001]
[Technical field to which the invention belongs]
The present invention relates to a method for treating organic compound wastewater, and in particular, using an electrolytic treatment technique, without generating byproducts that emit harmful and offensive odors, the organic compound in the wastewater is converted into an inorganic compound such as carbon dioxide or water. The present invention relates to a method that can be decomposed.
[0002]
[Prior art]
Industrial wastewater, livestock wastewater, domestic wastewater, and other various wastewaters contain various organic compounds as substances that may pollute the environment.
Above all, for industrial wastewater, it is necessary to reduce the above organic compounds to a level at which discharge is permitted.
[0003]
As methods for reducing organic compounds in the wastewater, there are biodegradation treatment methods such as activated sludge method, treatment method by ozone oxidation, electrochemical treatment methods, and various other treatment methods. Compared with the biodegradation treatment method, the ozone oxidation method, etc., not only is the operability easy, but also there are advantages that the apparatus used can be made compact and the treatment time is short.
From such a viewpoint, conventionally, an electrolytic treatment method utilizing various anode materials such as platinum, lead oxide, and tin oxide has been developed.
[0004]
However, factory wastewater often contains compounds having strong corrosive properties, and the anode materials such as platinum and lead oxide are easily corroded by these corrosive compounds.
Moreover, in the case of a platinum electrode, if the current density during the electrolytic treatment is about 0.1 A / cm 2 , the electrolytic treatment can be performed stably, but in order to increase the electrolytic treatment efficiency, it is 0.2 A / cm 2 or more. When the current density is high, the deterioration of the electrode is greatly advanced and the life of the electrode is shortened.
[0005]
On the other hand, diamond is expected as an electrode material for electrolysis of wastewater because it has high chemical stability and exhibits conductivity by doping with boron or nitrogen.
According to a paper by Fujishima et al. (Electrochemistry, Vol. 67 (1999) 389), it has been reported that a boron-doped diamond electrode has a very wide potential window and operates stably even in a corrosive aqueous solution. ing.
Further, in a paper by Fujishima et al. (Jornal of Electrochemical Chemistry, Vol. 396 (1995) 233), it is reported that NOx is efficiently reduced to ammonia at a diamond electrode (cathode).
Further, JP-A-7-299467 and US Pat. No. 5,399,247 disclose that a diamond electrode doped with boron can be used as an anode to oxidatively decompose an organic compound.
[Patent Document 1]
JP-A-7-299467 [Patent Document 2]
US Pat. No. 5,399,247 [Non-Patent Document 1]
Electrochemistry, Vol. 67 (1999) 389
[Non-Patent Document 2]
Jornal of Electroanalytical Chemistry, Vol. 396 (1995) 233
[0006]
[Problems to be solved by the invention]
However, there is still no sufficient report regarding a technique for using a diamond electrode as described above, increasing the current density, and treating industrial wastewater on a practical scale.
For example, when wastewater with low conductivity is treated using a diamond electrode, an electrolyte material is required, but it is known how the electrolytic efficiency changes depending on the type of electrolyte material used. Absent.
For this reason, it is not known what kind of electrolyte material should be added in order to ensure the electric conductivity required when electrolytically treating the waste water.
In addition, when using a diamond electrode, the electrolyte substance is 0.1 mol / liter (hereinafter, liter is expressed as “L” and milliliter is expressed as “mL”) (9600 mg / L in the case of sulfate ion) or more. However, since it is discharged out of the system together with the waste water after the electrolytic treatment, there is a problem that it is economically undesirable.
[0007]
In light of the above points, the present invention provides a method for decomposing organic compounds contained in factory effluents and other various effluents using a diamond electrode, and the decomposition efficiency of the organic compounds and the electrolyte substances to be added ( The most desirable from a practical point of view, and provide a method that can decompose the organic compound into a harmless inorganic compound without producing harmful and odorous by-products The purpose is to do.
[0008]
[Means for Solving the Problems]
As a result of repeated studies to achieve the above object, the present inventors have avoided using the conventional electrodes such as platinum, lead oxide, and tin oxide because they are likely to cause corrosion of the electrode. When sulfate ion is used as an electrolyte substance, it is possible not only to decompose organic compounds, particularly difficult to decompose organic compounds that are difficult to decompose when hypochlorite ions are used as an electrolyte substance, but also to provide a source of sulfate ions. Then, it was found that it can be recovered from the electrolytically treated water by an easy concentration operation.
[0009]
The wastewater treatment method of the present invention is based on this finding, and is a method for electrolytically treating the organic compound in the organic compound-containing wastewater using a conductive diamond electrode as a cathode and an anode, , and electrolysis by adding sulfate ions, sulfate ions were recovered from the treated water after the electrolytic treatment, the sulfate ions, wherein the Turkey be added to the organic compound-containing waste water described above.
In the wastewater treatment method of the present invention, the initial conductivity of the organic compound-containing wastewater may be 100 mS / m or less.
[0010]
The wastewater that is the water to be treated of the present invention contains organic compounds, and may be not only industrial wastewater discharged from various factories, but also domestic wastewater and other wastewater.
The type of the organic compound is not particularly limited, and is included in various wastewaters as described above, and can be decomposed into inorganic compounds such as carbon dioxide and water by electrochemical treatment. Any thing is acceptable.
Further, the concentration of such an organic compound is not particularly limited, and may be any concentration. In some cases, the organic compound may be concentrated prior to treatment by the method of the present invention. In view of the electrolysis efficiency of the diamond electrode, the concentration of the organic compound is preferably about 0.5 to 20 g / L.
[0011]
And the initial electrical conductivity of said waste_water | drain may be 100 mS / m or less.
In the present invention, the initial electrical conductivity refers to the electrical conductivity of the waste water before adding an electrolyte substance, in the present invention, sulfate ions.
The lower limit of the initial conductivity is not particularly limited, and may be 0 (below the detection limit) in an extreme case.
[0012]
Sulfate ions to be added to the waste water (SO 4 -1) is for acting as an electrolyte material (electron transfer medium) at the time of electrolytic treatment of the organic compound by using a diamond electrode, an ion source sulfuric acid For example, not only inorganic salts such as ammonium sulfate, potassium sulfate, sodium sulfate, calcium sulfate, and magnesium sulfate, but also sulfuric acid itself, the chemical stability of the diamond electrode is extremely high, so that it can be sufficiently put into practical use.
These sulfate ion sources may be used alone or in combination of two or more by an appropriate combination.
[0013]
The amount of sulfate ion added is preferably such that the concentration of sulfate ion in the wastewater is 0.1 mol / L (about 9600 mg / L) or more as described above. The upper limit of the addition amount is not particularly limited, but the effect is saturated even if it exceeds 10 mol / L, and it is preferably about 10 mol / L (about 960,000 mg / L).
Specifically, the conductivity of the wastewater is about 1500 to 3000 mS / m when sulfate ions are added to the wastewater having an initial conductivity of 100 mS / m at about 0.1 mol / L, and the organic compound in the wastewater is highly efficient. Can be electrolyzed.
[0014]
The conductive diamond electrode used in the present invention has a conductive metal material such as Ni, Ta, Ti, Mo, W, Zr or the like as a substrate, and a conductive diamond thin film is deposited on the surface of the substrate, or a silicon wafer. Examples thereof include a semiconductor material such as a substrate and a conductive diamond thin film synthesized on the wafer surface, or a conductive polycrystalline diamond material deposited and synthesized in the form of a plate under the condition that the substrate is not used.
In addition, the conductive (polycrystalline) diamond thin film is obtained by doping a predetermined amount of boron or chlorine during the preparation of the diamond thin film and imparting conductivity, and generally doped with boron.
If the doping amount is too small, the technical significance of doping will not be manifested. If the doping amount is too large, the doping effect will be saturated, so that the doping within the range of 50 to 10,000 ppm with respect to the carbon content of the diamond thin film material is suitable. ing.
[0015]
In the present invention, the conductive diamond electrode is generally a plate-like one, but it is also possible to use a plate having a mesh structure.
In addition, the surface of carbon powder or other powdered material covered with a conductive diamond thin film can be used as an electrode. When using this powdered diamond electrode, for example, a powdered diamond electrode is dispersed in an electrolyte solution and fluidized to form a fluidized bed, and a pair of fluidized beds can act as negative and positive electrodes. That's fine.
Furthermore, a porous body made of the above substrate, or a porous body made of a synthetic resin or the like, and a conductive diamond powder supported thereon to form an electrode having a high surface area can be used. What is necessary is just to comprise a fixed bed with the electrode which has a surface area, and let a pair of this fixed bed act as a negative / positive electrode.
[0016]
The conductive diamond electrode used in the present invention has a much wider potential window than conventional metal electrodes such as platinum, and efficiently suppresses the generation of organic compounds in wastewater while suppressing hydrogen generation and oxygen generation due to water electrolysis. It can be oxidatively decomposed.
The electrolytic treatment of the present invention performed using such a conductive diamond electrode is a waste water containing an organic compound having a current density of 10-100,000 A / m 2 on the surface of the conductive diamond electrode, and sulfuric acid as an electrolyte substance. It is preferable to carry out the drainage to which ions are added by passing the wastewater parallel to the conductive diamond electrode surface at a liquid passage linear velocity (LV) of 10 to 1,000 m / hr and bringing it into contact with the electrode surface.
[0017]
To the current density 10~100,000A / m 2, in less than 10A / m 2, can not be sufficiently advanced electrolysis of organic compounds, electrolysis be greater than 100,000 A / m 2 Efficiency is saturated.
The reason why the drainage direction is parallel to the electrode surface is to increase the contact efficiency between the drainage and the electrode surface, and the drainage rate is 10 to 1,000 m / hr in terms of linear velocity (LV). If it is too late, the treatment efficiency will decrease, and if it is too fast, sufficient contact time between the drainage and the electrode surface cannot be taken, and the electrolysis of the organic compound will proceed sufficiently. Can not be.
[0018]
The temperature in each electrolytic reaction tank is not particularly limited. However, if the temperature is too low, the electrolysis of the wastewater does not proceed well. Conversely, if the temperature is too high, the generation of gas increases and the drainage and the electrode surface In addition to the increase in contact inhibition, there is a concern that the material constituting the apparatus may be corroded by sulfate ions.
[0019]
Further, in the present invention, the sulfate ions, to be discharged is contained in the treated water out of the system, Ru is reused from the treated water to recover the sulfuric acid ion.
Examples of the recovery technique at this time include an evaporative concentration method of treated water, a reverse osmosis membrane method, an electrodialysis method, and a method of concentrating and recovering by various other methods. Concentrated recovered sulfuric acid ion, Ru is reused by adding to it processed wastewater.
The concentration of sulfate ions in the concentrated and recovered water is not particularly limited, but if the concentration is too low, the amount of concentrated and recovered water added to the wastewater to be treated becomes large, increasing the amount of wastewater subject to electrolytic treatment. In the present invention, it is preferable that the running cost is about 0.05 to 0.2 mol / L (about 4.8 to 19.2 mg / L) .
[0020]
【Example】
Example 1
An electrolytic reaction tank was configured by setting two stacked polycrystalline diamond electrode plates (5 cm × 5 cm × 0.05 cm) synthesized by vapor deposition using a boron doping method so that the distance between the electrodes was 1 cm.
[0021]
Synthetic waste water containing dimethyl sulfoxide (DMSO) (DMSO: 2300 mg / L, TOC: 710 mg / L, conductivity: 0 << below detection limit >>) and sodium sulfate 14200 mg / L (SO 4 2− : 0.1 Mol / L) was added (conductivity of waste water after addition: 1640 mS / m) and put into an electrolytic storage tank.
While this electrolytic storage tank was agitated with a stirrer, the liquid supply pump was used to circulate the liquid at a flow rate of 500 mL / min between the electrolytic reaction tank and perform electrolytic treatment.
[0022]
The amount of electricity supplied to the electrolytic reaction tank was set so that the current density on the surface of the conductive diamond electrode was 0.2 A / cm 2 (2000 A / m 2 ).
[0023]
Table 1, shows the TOC analysis of the electrolytic reactor outlet water after 1, 2, 3 hours had passed after the start of liquid flow.
[0024]
[Table 1]
Figure 0004026464
[0025]
In addition, the electrolytically treated water after 3 hours was taken in a beaker, and the water was evaporated while being kept at 90 ° C. to be concentrated 20 times.
The total amount (about 50 mL) of this concentrated water (sodium sulfate concentration: 284,000 mg / L) is added to the above synthetic wastewater containing DMSO (conductivity after addition: 1600 mS / m), and the same electrolytic treatment as above is performed again. went. The results are shown in Table 2.
[0026]
[Table 2]
Figure 0004026464
[0027]
Comparative Example 1
The electrolytic treatment was performed in the same manner as in Example 1 except that 15000 mg / L of sodium chloride was added instead of sodium sulfate in Example 1, and the same analysis as in Example 1 was performed.
The results are shown in Table 2.
In addition, since the result was bad, the electrolytic treatment by concentration of treated water and addition of concentrated water was not performed.
[0028]
[Table 3]
Figure 0004026464
[0029]
Example 2
Instead of DMSO in Example 1, 1 L of synthetic waste water containing tetramethylammonium hydroxide ((CH 3 ) 4 NOH: 1500 mg / L, TOC: 770 mg / L, initial conductivity: 0 << below detection limit >>) Except for the above, electrolytic treatment was performed in the same manner as in Example 1 (conductivity of drainage after addition of sodium sulfate: 1640 mS / m), and the same analysis as in Example 1 was performed. The results are shown in Table 4.
[0030]
[Table 4]
Figure 0004026464
[0031]
The electrolyzed water after the lapse of 3 hours was concentrated in the same manner as in Example 1, and the total amount of this concentrated water (sodium sulfate concentration: 284,000 mg / L) was added to the above synthetic wastewater containing tetramethylammonium hydroxide. (Conductivity after addition: 1600 mS / m), and the same electrolytic treatment as described above was performed again. The results are shown in Table 5.
[0032]
[Table 5]
Figure 0004026464
[0033]
Comparative Example 2
The electrolytic treatment was performed in the same manner as in Example 2 except that 15000 mg / L of sodium chloride was added instead of sodium sulfate in Example 1, and the same analysis as in Example 2 was performed.
The results are shown in Table 6.
In addition, since the result was bad, the electrolytic treatment by concentration of treated water and addition of concentrated water was not performed.
[0034]
[Table 6]
Figure 0004026464
[0035]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
(1) Organic compounds in waste water can be removed with high efficiency without generating by-products that are harmful and give off bad odor.
(2) Compared with the case of using a conventional platinum-based electrode, the electrolysis efficiency is good, particularly the required electrode area is small, and the electrolytic reaction apparatus can be miniaturized.
(3) Conductive diamond electrodes are excellent in chemical stability, have no concern about corrosion due to ordinary acids and alkalis, and operate effectively in a wide pH range from acidic conditions to alkaline conditions. In addition to being practically usable, it is possible to maintain a stable electrolytic treatment effect over a long period of time.
(4) Since the sulfate ion source (electrolyte material) after used for wastewater treatment can be recovered and reused, the cost required for the sulfate ion source (electrolyte material) can be greatly reduced.

Claims (2)

陰極および陽極に導電性ダイヤモンド電極を用いて有機化合物含有排水中の該有機化合物を電解処理する方法であって、
前記有機化合物含有排水に、硫酸イオンを添加して電解処理し、電解処理後の処理水から硫酸イオンを回収し、回収された該硫酸イオンを有機化合物含有排水に添加することを特徴とする有機化合物含有排水の処理方法。
A method of electrolytically treating the organic compound in the organic compound-containing wastewater using a conductive diamond electrode for the cathode and the anode,
The organic compound-containing wastewater is electrolyzed by adding sulfate ions, the sulfate ions are recovered from the treated water after the electrolytic treatment, and the recovered sulfate ions are added to the organic compound-containing wastewater. Treatment method for compound-containing wastewater.
前記有機化合物含有排水の初期電導度が100mS/m以下であることを特徴とする請求項1に記載の有機化合物含有排水の処理方法。 The method for treating organic compound-containing wastewater according to claim 1, wherein the initial conductivity of the organic compound-containing wastewater is 100 mS / m or less.
JP2002288903A 2002-10-01 2002-10-01 Treatment method for wastewater containing organic compounds Expired - Fee Related JP4026464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002288903A JP4026464B2 (en) 2002-10-01 2002-10-01 Treatment method for wastewater containing organic compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002288903A JP4026464B2 (en) 2002-10-01 2002-10-01 Treatment method for wastewater containing organic compounds

Publications (2)

Publication Number Publication Date
JP2004121959A JP2004121959A (en) 2004-04-22
JP4026464B2 true JP4026464B2 (en) 2007-12-26

Family

ID=32281271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002288903A Expired - Fee Related JP4026464B2 (en) 2002-10-01 2002-10-01 Treatment method for wastewater containing organic compounds

Country Status (1)

Country Link
JP (1) JP4026464B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4539837B2 (en) * 2004-12-01 2010-09-08 栗田工業株式会社 Wastewater pyrolysis system
JP5482917B2 (en) 2013-01-22 2014-05-07 栗田工業株式会社 Water recovery device for closed system space

Also Published As

Publication number Publication date
JP2004121959A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP3913923B2 (en) Water treatment method and water treatment apparatus
EP3162768B1 (en) Resource reuse-type industrial waste water treatment method and apparatus utilizing oxidizing agent generated by utilizing waste water
JP4116726B2 (en) Electrochemical treatment method and apparatus
US6767447B2 (en) Electrolytic cell for hydrogen peroxide production and process for producing hydrogen peroxide
JP4936505B2 (en) Method and apparatus for treating ammonia-containing water
US20130168262A1 (en) Method and system for electrochemical removal of nitrate and ammonia
CN109081401B (en) Method for degrading pollutants in water by synchronously exciting persulfate-ozone by cathode and anode
JP2003293177A (en) Electrolytic cell for generating ozone
JP2005193202A (en) Water treatment method and water treatment system
JP2004202283A (en) Method and apparatus for treating organic compound-containing water
JP2004008954A (en) Method of decomposing organic matter in liquid to be treated
JP4026464B2 (en) Treatment method for wastewater containing organic compounds
JP3982500B2 (en) Method and apparatus for treating wastewater containing organic compounds
Chandrasekara Pillai et al. Using RuO2 anode for chlorine dioxide production in an un-divided electrochemical cell
JP4616594B2 (en) Water treatment method and water treatment apparatus
JP2002346566A (en) Apparatus and method for water treatment
JP2004237207A (en) Method and apparatus for treating organic compound-containing water
JP3788688B2 (en) Method and apparatus for electrolytic treatment of oxidized nitrogen-containing water
JP2004237165A (en) Method and apparatus for treating organic compound-containing water
JP4071980B2 (en) Method and apparatus for cleaning electronic parts
JP4062690B2 (en) Organic wastewater treatment method
JP2006035158A5 (en)
JP2005272908A (en) Bipolar electrode for electrolytic treatment and electrolytic treatment apparatus using it
JPH07299465A (en) Electrolytic treatment of waste water and anode used therefor
JP2004237275A (en) Method for treating organic compound-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees