JP2006035158A5 - - Google Patents

Download PDF

Info

Publication number
JP2006035158A5
JP2006035158A5 JP2004221517A JP2004221517A JP2006035158A5 JP 2006035158 A5 JP2006035158 A5 JP 2006035158A5 JP 2004221517 A JP2004221517 A JP 2004221517A JP 2004221517 A JP2004221517 A JP 2004221517A JP 2006035158 A5 JP2006035158 A5 JP 2006035158A5
Authority
JP
Japan
Prior art keywords
water
treated
hydrogen
reaction tank
biological reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004221517A
Other languages
Japanese (ja)
Other versions
JP2006035158A (en
JP4616594B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2004221517A priority Critical patent/JP4616594B2/en
Priority claimed from JP2004221517A external-priority patent/JP4616594B2/en
Publication of JP2006035158A publication Critical patent/JP2006035158A/en
Publication of JP2006035158A5 publication Critical patent/JP2006035158A5/ja
Application granted granted Critical
Publication of JP4616594B2 publication Critical patent/JP4616594B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

即ち、本発明は、以下の内容をその要旨とするものである。
(1)水の電気分解により発生する水素と脱窒菌を用いて水の脱窒処理を行う水処理方法において、脱窒菌固定化担体を装入した生物反応槽とともに、水素発生源として固体高分子電解質膜電極を用いた水電解装置(以下、「SPE水電解装置」ということもある)を使用し、SPE水電解装置の陽極側の陽極水を電気分解しつつ、被処理水をSPE水電解装置の陰極側を通して生物反応槽に通水することを特徴とする水処理方法。
(2)被処理水を、液配管を通して、SPE水電解装置の陰極側から脱窒菌固定化担体を装入した生物反応槽へ流通させて処理することを特徴とする、前記(1)に記載の水処理方法。
(3)SPE水電解装置の陽極側の陽極水を電気分解し、発生した水素を陰極側の被処理水中に供給し、脱窒菌固定化担体を装入した生物反応槽で被処理水の脱窒反応を行うことを特徴とする、前記(1)または(2)に記載の水処理方法。
(4)被処理水の水質に応じて、pH調整用の薬液を注入し、被処理水への水素イオンの供給を行いながら脱窒処理を行なうことを特徴とする、前記(1)ないし(3)のいずれかに記載の水処理方法。
(5)生物反応槽での被処理水のpHが6〜9であることを特徴とする、前記(1)ないし(4)のいずれかに記載の水処理方法。
(6)脱窒菌固定化担体を装入した生物反応槽と、水素発生源として固体高分子電解質膜電極を用いた水電解装置(SPE水電解装置)と、生物反応槽とSPE水電解装置の陰極側をつなぐ液配管と、被処理液通水ポンプとを必須の構成要素として有し、被処理水をSPE水電解装置の陰極側から生物反応槽へ流通させることを特徴とする水処理装置。
(7)更に、液配管にpH調整装置を接続したものであることを特徴とする、前記(6)に記載の水処理装置。
That is, the gist of the present invention is as follows.
(1) In a water treatment method of denitrifying water using hydrogen generated by electrolysis of water and denitrifying bacteria, a solid polymer as a hydrogen generating source together with a biological reaction tank charged with a denitrifying bacteria immobilized carrier Using a water electrolysis device using an electrolyte membrane electrode (hereinafter sometimes referred to as “SPE water electrolysis device”), electrolyzing the anode water on the anode side of the SPE water electrolysis device, and subjecting the water to be treated to SPE water electrolysis A water treatment method comprising passing water through a biological reaction tank through a cathode side of the apparatus.
(2) The treated water is treated by flowing the treated water from the cathode side of the SPE water electrolysis apparatus through the liquid pipe to the biological reaction tank charged with the denitrifying bacteria-immobilized carrier. Water treatment method.
(3) Electrolysis of the anode water on the anode side of the SPE water electrolysis apparatus, supply of the generated hydrogen into the water to be treated on the cathode side, and removal of the water to be treated in the biological reaction tank charged with the denitrifying bacteria-immobilized carrier. The water treatment method according to (1) or (2), wherein a nitrogen reaction is performed.
(4) depending on the quality of the water to be treated, by injecting a chemical solution for pH adjustment, and performing denitrification while supplying hydrogen ions to the water to be treated, to the (1) to ( The water treatment method according to any one of 3) .
(5) The water treatment method according to any one of (1) to (4) above, wherein the pH of the water to be treated in the biological reaction tank is 6 to 9.
(6) A biological reaction tank charged with a denitrifying carrier-immobilized carrier, a water electrolysis apparatus (SPE water electrolysis apparatus) using a solid polymer electrolyte membrane electrode as a hydrogen generation source, a bioreaction tank and an SPE water electrolysis apparatus A water treatment apparatus having a liquid pipe connecting the cathode side and a liquid flow pump to be treated as essential components, and allowing the water to be treated to flow from the cathode side of the SPE water electrolysis apparatus to the biological reaction tank. .
(7) The water treatment apparatus according to (6) , further comprising a pH adjusting device connected to the liquid pipe.

従来の電気分解による水処理装置では被処理水の中に陰極と陽極を浸漬して電気分解を行なっているため、陽極で発生した溶存酸素が被処理水中に混入することが避けられず、この溶存酸素が脱窒反応の阻害要因となっていた。一方、本発明では、SPE膜電極そのものが電極であると同時に隔壁ともなっており、電気分解槽の陽極室と陰極室を分離する構造となっているため、電気分解を行う間、各電極室ではそれぞれ独立して水の電気化学的な反応が進行し、酸素が陽極室で発生しても、被処理水に溶存酸素が混入することがなく、脱窒反応に何らの悪影響を及ぼすことはなく、効率的に脱窒菌による反応を行うことができる。 In conventional water treatment equipment using electrolysis, the cathode and anode are immersed in the water to be treated for electrolysis, so it is inevitable that dissolved oxygen generated at the anode is mixed into the water to be treated. Dissolved oxygen was an impediment to the denitrification reaction. On the other hand, in the present invention, the SPE film electrode itself is an electrode and at the same time a partition, and is structured to separate the anode chamber and the cathode chamber of the electrolysis tank. Even if the electrochemical reaction of water proceeds independently and oxygen is generated in the anode chamber, dissolved oxygen is not mixed into the water to be treated, and there is no adverse effect on the denitrification reaction. The reaction by denitrifying bacteria can be performed efficiently.

脱窒反応は、嫌気的条件下において、次の反応式(1)、(2)に従って逐次的に進行し、硝酸性窒素は、亜硝酸性窒素へ一旦還元された後、窒素ガスへと還元され、無害化処理される。
2NO + 2H → 2NO + 2H
(1)
2NO + 3H + 2H → N + 4H
(2)
上記の反応式(1)、(2)から、総括脱窒反応式は、下記の反応式(3)となる。
2NO + 5H + 2H → N + 6H
(3)
The denitrification reaction proceeds sequentially according to the following reaction formulas (1) and (2) under anaerobic conditions, and nitrate nitrogen is once reduced to nitrite nitrogen and then reduced to nitrogen gas. And detoxified.
2NO 3 + 2H 2 → 2NO 2 + 2H 2 O
(1)
2NO 2 - + 3H 2 + 2H + → N 2 + 4H 2 O
(2)
From the above reaction formulas (1) and (2), the overall denitrification reaction formula is the following reaction formula (3).
2NO 3 + 5H 2 + 2H + → N 2 + 6H 2 O
(3)

図2に示すSPE電解槽100は、単極槽型であり、SPE膜5に陽極6と陰極7が接合されたSPE膜電極を、陽極給電体8と陰極給電体9及び支持基体10で挟み込んだ構造となっている。支持基体10及び各給電体8、9には、陽極水と陰極水がSPE膜電極に接触し、かつ通水可能となるよう、それぞれ流路11、12が設けられており、各給電体8、9の各電極6、7と接する流路部分はスリットとなっている。陰極給電体9のスリット数と断面積は、被処理水の通水流量および電流密度から、所定の通水速度が得られるよう決定される。被処理水は、流入口4からSPE電解槽100に流入し、陰極7に接触しながら水素の供給を受けて、流出口3から流出する。同様に、陽極水は流入口2からSPE電解槽100に流入し、流出口1から流出するが、陽極給電体8のスリット数と断面積は、陽極水及び発生ガスが滞留することなく流出可能なものであればよい。複極槽型SPE電解槽では、両面にスリットを有した1枚の給電体が、陽極給電体と陰極給電体を兼ねる形で両面でSPE膜電極と接触することによって、SPE膜電極が複数枚直列に重ねられた構造となる。 The SPE electrolytic cell 100 shown in FIG. 2 is a monopolar cell type, and an SPE film electrode in which an anode 6 and a cathode 7 are joined to an SPE film 5 is sandwiched between an anode power supply 8, a cathode power supply 9 and a support base 10. It has a structure. The support base 10 and the power feeders 8 and 9 are provided with flow paths 11 and 12, respectively, so that the anode water and the cathode water are in contact with the SPE membrane electrode and can pass water. , 9 are in the form of slits in the flow path portion in contact with the electrodes 6, 7. The number of slits and the cross-sectional area of the cathode power supply 9 are determined so as to obtain a predetermined water flow rate from the flow rate and current density of the water to be treated. The water to be treated flows into the SPE electrolytic cell 100 from the inlet 4, receives supply of hydrogen while contacting the cathode 7 , and flows out from the outlet 3. Similarly, the anode water flows into the SPE electrolytic cell 100 from the inlet 2 and flows out from the outlet 1, but the number of slits and the cross-sectional area of the anode feeder 8 can flow out without retention of anode water and generated gas. Anything is acceptable. In a bipolar electrode type SPE electrolytic cell, a single feeder having slits on both sides is in contact with the SPE membrane electrode on both sides in the form of serving as both an anode feeder and a cathode feeder, thereby providing a plurality of SPE membrane electrodes. It becomes the structure piled up in series.

このSPE水電解では、電極板を用いた通常の電気分解槽とは違い、SPE膜電極そのものが電極であると同時に隔壁ともなり、電気分解槽の陽極室と陰極室を分離する構造となる。このため、電気分解を行う間、各電極室ではそれぞれ独立して水の電気化学的な反応が進行することになる。脱窒菌を用いた脱窒反応においては、水中の溶存酸素は阻害要因となるが、SPE水電解装置により水素を供給する場合、酸素が陽極室で発生しても、何ら影響を及ぼすことはない。 In this SPE water electrolysis, unlike a normal electrolysis tank using an electrode plate, the SPE film electrode itself is an electrode and at the same time a partition, and has a structure in which the anode chamber and the cathode chamber of the electrolysis tank are separated . For this reason, during the electrolysis, the electrochemical reaction of water proceeds independently in each electrode chamber. In the denitrification reaction using denitrifying bacteria, dissolved oxygen in water becomes an inhibiting factor, but when hydrogen is supplied by the SPE water electrolyzer, even if oxygen is generated in the anode chamber, it does not have any effect. .

SPE水電解槽100は、この電極と膜の接合体であるSPE膜電極と、電極に給電するための給電体8,9および支持基体10とから構成される。給電体8,9を通してSPE膜電極に電圧を印加すると、電極6,7とSPE膜5の界面で電気化学的反応が進行し、陽極6では下記の反応式(4)に従って、水が分解され酸素が発生し、陽極6の微小隙間を通って水中に放出される。
O → 1/2O+ 2H + 2e
(4)
(4)式により生成した水素イオン(H・xHO)は膜中のイオン交換基を介して陰極に移動し、電子と再結合して、下記の反応式(5)従い、水素ガス(分子状水素)として発生し、同様に陰極の微小隙間を通って水中に放出される。
2H + 2e → H
(5)
The SPE water electrolyzer 100 includes an SPE membrane electrode that is a joined body of the electrode and the membrane, power feeders 8 and 9 for feeding power to the electrode, and a support base 10. When a voltage is applied to the SPE film electrode through the feeders 8 and 9, an electrochemical reaction proceeds at the interface between the electrodes 6 and 7 and the SPE film 5, and water is decomposed at the anode 6 according to the following reaction formula (4). Oxygen is generated and released into water through a minute gap in the anode 6.
H 2 O → 1/2 O 2 + 2H + + 2e
(4)
(4) produced hydrogen ions (H + · xH 2 O) by equation moves to the cathode through the ion-exchange groups in the membrane, recombine with electrons, follow the following reaction formula (5), hydrogen It is generated as a gas (molecular hydrogen) and is similarly released into water through a minute gap in the cathode.
2H + + 2e → H 2
(5)

上記の反応式(4)、(5)によって、SPE膜電極は電気分解により強酸性となるため、電極として使用する材料としては耐酸性が要求され、かつ触媒活性の点から、白金族金属およびこれらの合金や酸化物が使用される。陰極7には、例えばPt、Pt−Pd、Ir−Pt等が用いられ、陽極6には、例えば不溶性のIr、Ir−Ru、Ir−Pt等が用いられる。また、給電体8,9は電極に給電する働きの他に、水およびガスの流路、複極槽の場合は隣接する両極室の隔壁と電子伝導の役割をもっている。給電体8,9に使用される材料としては、良好な電導性、電解雰囲気に対する耐食性が要求され、例えばPtめっきTi、Ti、Nb、Ti−Pd、C等が用いられる。 According to the above reaction formulas (4) and (5) , the SPE film electrode becomes strongly acidic by electrolysis. Therefore, acid resistance is required as a material to be used as an electrode, and from the point of catalytic activity, platinum group metals and These alloys and oxides are used. For the cathode 7, for example, Pt, Pt—Pd, Ir—Pt or the like is used, and for the anode 6, for example, insoluble Ir, Ir—Ru, Ir—Pt or the like is used. In addition to supplying power to the electrodes, the feeders 8 and 9 have a role of water and gas flow paths, and in the case of a bipolar tank, the partition between adjacent bipolar chambers and the role of electron conduction. As a material used for the power feeding bodies 8 and 9, good electrical conductivity and corrosion resistance against an electrolytic atmosphere are required. For example, Pt-plated Ti, Ti, Nb, Ti—Pd, C, or the like is used.

また、上記反応式(5)からわかるように、陰極面7では、陽極6からSPE膜5を介して運ばれてきた水素イオンが、電子を受け取って水素になる反応のみが生じ、副生成物である水酸化物イオンは生成せず、長期間の通電を行っても金属塩がスケールとして陰極へ付着することはない。従って、電極を洗浄するために極性転換するが必要なく、電極寿命が長くなることから、運転管理が簡易になるとともに、運転管理費を安くすることができる。 Further, as can be seen from the above reaction formula (5) , on the cathode surface 7, only a reaction in which hydrogen ions carried from the anode 6 through the SPE film 5 receive electrons to become hydrogen occurs, and a by-product is generated. The hydroxide ions are not generated, and the metal salt does not adhere to the cathode as a scale even when energized for a long period of time. Therefore, it is not necessary to switch the polarity in order to clean the electrode, and the electrode life is prolonged, so that the operation management is simplified and the operation management cost can be reduced.

上記反応式(5)によって、通電により、直径数10μmの微小水素気泡(分子状水素)が生成する。水素の消費または散逸が起こらなければ、それぞれの存在確率増大するから、微小水素気泡は他に生成した水素気泡と衝突を繰返し、より直径の大きい気泡へと成長していく。水素気泡の直径が大きくなるほど水素の溶解効率は低下し、水素気泡となって被処理水から放散されてしまい、水素利用効率の低下につながるため、水素利用効率を向上させるためには、生成した水素をできるだけ短時間の内に、水中へ拡散させていくことが望ましい。 According to the above reaction formula (5) , a small hydrogen bubble (molecular hydrogen) having a diameter of several tens of μm is generated by energization . If the consumption or dissipation of hydrogen does not occur, the existence probability of each increases, so that the minute hydrogen bubbles repeatedly collide with other generated hydrogen bubbles and grow into bubbles having a larger diameter. As the diameter of hydrogen bubbles increases, the hydrogen dissolution efficiency decreases, and hydrogen bubbles are released from the water to be treated, leading to a decrease in hydrogen utilization efficiency. It is desirable to diffuse hydrogen into water in as short a time as possible.

本発明に使用するSPE水電解装置200は、この目的を実現するために、SPE電極槽100の陰極面7の被処理水の通水量が、通電によって発生した微小水素気泡を十分に被処理水に溶解することができるような量であることが好ましい。このような通水量は、所要通電量における電流密度に応じて適切な値が決定される。 In order to achieve this object, the SPE water electrolysis apparatus 200 used in the present invention sufficiently treats minute hydrogen bubbles generated by energization of the water to be treated on the cathode surface 7 of the SPE electrode tank 100. The amount is preferably such that it can be dissolved in the solution. Such a water flow amount is determined as an appropriate value according to the current density at the required energization amount .

また、SPE電極槽の陽極では上記反応式(4)の反応が進行するため、陽極水中にカルシウムイオン等の陽イオンが多量に存在すると、これが水素イオンの移動を妨げる要因となり、長期運転した場合に、水素発生効率を低下させる恐れがある。従って、陽極水としては純水またはそれに近いものを用いることが好ましく、イオン交換水、精製水、蒸留水等が適している。また、水道水を使用する場合は、硬度が低い方が良く、かつ硫酸等による定期的な陽極の酸洗浄が必要となる。 In addition, since the reaction of the above reaction formula (4) proceeds at the anode of the SPE electrode tank, if a large amount of cations such as calcium ions are present in the anode water, this will hinder the movement of hydrogen ions, resulting in a long-term operation. In addition, the hydrogen generation efficiency may be reduced. Therefore, it is preferable to use pure water or water close to it as the anode water, and ion exchange water, purified water, distilled water, and the like are suitable. Further, when using tap water, it is better that the hardness is low, and periodic acid cleaning of the anode with sulfuric acid or the like is required.

本発明の水処理装置では、上記反応式(3)における水素の利用効率が優れているため、生物反応槽25の液中の溶存水素濃度は0.01mg/L程度となり、気相への水素ガスの放出は極めて少ない。このため、気相中の水素濃度は1%程度となり、爆発下限値である4%に達しないため、通常の電解水生成器と同様に、水素ガスによる爆発の危険性は無く、処理装置を防爆構造とする必要性も無い。 In the water treatment apparatus of the present invention, the hydrogen utilization efficiency in the above reaction formula (3) is excellent, so the dissolved hydrogen concentration in the liquid of the biological reaction tank 25 is about 0.01 mg / L, and hydrogen into the gas phase There is very little outgassing. For this reason, the hydrogen concentration in the gas phase is about 1%, and does not reach the explosion lower limit of 4%. Therefore, as with normal electrolyzed water generators, there is no danger of explosion due to hydrogen gas. There is no need for an explosion-proof structure.

また、上記反応式(3)から、脱窒反応が進行するに伴い、脱窒菌が水中の水素イオンを消費するため、生物反応槽25内のpHは上昇していく。脱窒菌の活性はpHに影響され、pH7.5付近が最も活性が高く、8以上の高pH条件下ではその活性が低下する。さらに、pHが高い場合、カルシウムイオンやマグネシウムイオン等の金属イオンが脱窒菌固定化担体表面及び内部に析出し、脱窒菌と被処理水との接触効率を低下させ、脱窒反応を阻害する。従って、被処理水の硝酸性窒素濃度が高濃度である場合や、pHが高い場合には、必要に応じて、外部より水素イオンを供給してpHの調整を行い、脱窒反応を促進させる必要がある。 Further, from the above reaction formula (3) , as the denitrification reaction proceeds, the denitrifying bacteria consume hydrogen ions in the water, so that the pH in the biological reaction tank 25 increases. The activity of denitrifying bacteria is affected by pH, and the activity is highest near pH 7.5, and the activity decreases under high pH conditions of 8 or more. Further, when the pH is high, metal ions such as calcium ions and magnesium ions are deposited on the surface and inside of the denitrifying bacteria-immobilized carrier, reducing the contact efficiency between the denitrifying bacteria and the water to be treated, and inhibiting the denitrification reaction. Therefore, when the nitrate nitrogen concentration of the water to be treated is high or the pH is high, hydrogen ions are supplied from the outside to adjust the pH as necessary to promote the denitrification reaction. There is a need.

このような脱窒反応の特性から、脱窒菌を用いて水の脱窒処理を行う本発明の水処理方法において、被処理水の水質に応じて、pH調整装置によりpH調整用薬液を適量注入することによって、被処理水へ水素イオンの供給を行いながら、脱窒処理を行うことを特徴としている。生物反応槽での被処理水のpHは6〜9が好ましく、pH6.8〜8.0が最適である。pH調整に用いられる薬液としては、硫酸や塩酸等の強酸が適しており、被処理水水質に応じて適宜希釈され、また注入速度が決定される。 Due to the characteristics of the denitrification reaction, in the water treatment method of the present invention in which water is denitrified using denitrifying bacteria, an appropriate amount of a pH adjusting chemical solution is injected by a pH adjusting device according to the quality of the water to be treated. Thus, denitrification is performed while supplying hydrogen ions to the water to be treated. PH is preferably from 6 to 9 of the water to be treated in the bioreactor, PH6.8~8.0 is optimal. A strong acid such as sulfuric acid or hydrochloric acid is suitable as the chemical solution used for pH adjustment, and it is appropriately diluted according to the quality of the water to be treated, and the injection rate is determined.

被処理水のpH調整を行う場合は、図1に示すように液配管の途中にpH調整装置を設置する。pH調整装置は、pH測定用電極28、pHメーター29、薬注ポンプ30および薬液タンク31から構成される。被処理水のpH調整は、生物反応槽25内のpHが所定の値となるように、pH測定用電極28とpHメーター29によって、薬注ポンプ30をON−OFF制御して、希硫酸等のpH調整用薬液を流入口32から被処理水中に断続的に注入することによって行う。生物反応槽25内のpHは、水素イオンが脱窒反応に十分寄与することができ、脱窒菌の活性が比較的高い6〜9が適しており、pH6.8〜8.0が最適であるWhen pH adjustment of to-be-processed water is performed, as shown in FIG. 1, a pH adjustment apparatus is installed in the middle of liquid piping. The pH adjusting device includes a pH measuring electrode 28, a pH meter 29, a chemical injection pump 30, and a chemical liquid tank 31. The pH of the water to be treated is adjusted such that the chemical injection pump 30 is ON / OFF controlled by the pH measuring electrode 28 and the pH meter 29 so that the pH in the biological reaction tank 25 becomes a predetermined value, dilute sulfuric acid or the like. The pH adjusting chemical solution is intermittently injected into the water to be treated from the inlet 32. The pH in the biological reaction tank 25 is preferably 6-9, in which hydrogen ions can sufficiently contribute to the denitrification reaction, and the activity of denitrifying bacteria is relatively high, and pH 6.8-8.0 is optimal. .

図2に示すSPE電解槽100を用いて予備的な試験を行い、水の電気分解により発生する水素の陰極側の水相への移動の様子を見るために総括水素移動容量係数を求めた。
液中への水素の溶解速度は、液中の水素ガス気泡からのみ溶解すると仮定した場合に下記の式(10)によって表される。

dC/dt = KLa×(Cs−C)
(6)
ここで、Cは溶存水素濃度、Csは飽和溶存水素濃度、tは時間、KLaは総括水素移動容量係数である。飽和溶存水素濃度Csが一定であれば、水素溶解速度は、溶存水素濃度Cおよび総括水素移動容量係数KLaによって決定される。即ち、図2のSPE電解槽100を用いて、一定の通電量、即ち一定の水素発生量となる条件で、陰極側の通水速度を種々変化させてそれぞれの場合の液中の水素濃度を測定することによって、式(6)からそれぞれの場合の総括水素移動容量係数KLaを求めることができる。
A preliminary test was performed using the SPE electrolytic cell 100 shown in FIG. 2, and an overall hydrogen transfer capacity coefficient was determined in order to see how hydrogen generated by electrolysis of water moves to the water phase on the cathode side.
The dissolution rate of hydrogen in the liquid is expressed by the following equation (10) when it is assumed that the hydrogen gas is dissolved only from hydrogen gas bubbles in the liquid.

dC / dt = KLa × (Cs−C)
(6)
Here, C is the dissolved hydrogen concentration, Cs is the saturated dissolved hydrogen concentration, t is the time, and KLa is the overall hydrogen transfer capacity coefficient. If the saturated dissolved hydrogen concentration Cs is constant, the hydrogen dissolution rate is determined by the dissolved hydrogen concentration C and the overall hydrogen transfer capacity coefficient KLa. That is, using the SPE electrolyzer 100 of FIG. 2, the water concentration in the liquid in each case is varied by varying the water flow rate on the cathode side under the condition of a constant energization amount, that is, a constant hydrogen generation amount. By measuring, the overall hydrogen transfer capacity coefficient KLa in each case can be obtained from Equation (6) .

Claims (7)

水の電気分解により発生する水素と脱窒菌を用いて水の脱窒処理を行う水処理方法において、脱窒菌固定化担体を装入した生物反応槽とともに、水素発生源として固体高分子電解質膜電極を用いた水電解装置を使用し、この水電解装置の陽極側の陽極水を電気分解しつつ、被処理水をこの水電解装置の陰極側を通して生物反応槽に通水することを特徴とする水処理方法。   In a water treatment method for denitrifying water using hydrogen and denitrifying bacteria generated by electrolysis of water, a solid polymer electrolyte membrane electrode as a hydrogen generation source together with a biological reaction tank charged with a denitrifying bacteria immobilization support A water electrolysis apparatus using water is used, and water to be treated is passed through a biological reaction tank through the cathode side of the water electrolysis apparatus while electrolyzing anode water on the anode side of the water electrolysis apparatus. Water treatment method. 被処理水を、液配管を通して、固体高分子電解質膜電極を用いた水電解装置の陰極側から脱窒菌固定化担体を装入した生物反応槽へ流通させて処理することを特徴とする、請求項1に記載の水処理方法。   The water to be treated is treated by flowing it through a liquid piping from a cathode side of a water electrolysis apparatus using a solid polymer electrolyte membrane electrode to a biological reaction tank charged with a denitrifying bacteria-immobilized support. Item 2. The water treatment method according to Item 1. 固体高分子電解質膜電極を用いた水電解装置の陽極側の陽極水を電気分解し、発生した水素を陰極側の被処理水中に供給し、脱窒菌固定化担体を装入した生物反応槽で被処理水の脱窒反応を行うことを特徴とする、請求項1または2に記載の水処理方法。   In a biological reaction tank that electrolyzes anode water on the anode side of a water electrolyzer using a solid polymer electrolyte membrane electrode, supplies the generated hydrogen to the water to be treated on the cathode side, and is loaded with a denitrifying bacteria immobilization support The water treatment method according to claim 1 or 2, wherein a denitrification reaction of water to be treated is performed. 被処理水の水質に応じて、pH調整用の薬液を注入し、被処理水への水素イオンの供給を行いながら脱窒処理を行なうことを特徴とする、請求項1ないし3のいずれかに記載の水処理方法。 Depending on the quality of the water to be treated, by injecting a chemical solution for pH adjustment, and performing denitrification while supplying hydrogen ions to the water to be treated, in any one of claims 1 to 3 The water treatment method as described. 生物反応槽での被処理水のpHが6〜9であることを特徴とする、請求項1ないし4のいずれかに記載の水処理方法。 The water treatment method according to any one of claims 1 to 4 , wherein the pH of the water to be treated in the biological reaction tank is 6 to 9. 脱窒菌固定化担体を装入した生物反応槽と、水素発生源として固体高分子電解質膜電極を用いた水電解装置と、生物反応槽とこの水電解装置の陰極側をつなぐ液配管と、被処理液通水ポンプとを必須の構成要素として有し、被処理水をSPE水電解装置の陰極側から生物反応槽へ流通させることを特徴とする水処理装置。   A biological reaction tank charged with a denitrifying carrier-immobilized carrier, a water electrolysis apparatus using a solid polymer electrolyte membrane electrode as a hydrogen generation source, a liquid pipe connecting the biological reaction tank and the cathode side of the water electrolysis apparatus, A water treatment apparatus comprising a treatment liquid water pump as an essential component, and flowing treated water from a cathode side of an SPE water electrolysis apparatus to a biological reaction tank. 更に、液配管にpH調整装置を接続したものであることを特徴とする、請求項6に記載の水処理装置。 The water treatment apparatus according to claim 6 , further comprising a pH adjusting device connected to the liquid pipe.
JP2004221517A 2004-07-29 2004-07-29 Water treatment method and water treatment apparatus Active JP4616594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004221517A JP4616594B2 (en) 2004-07-29 2004-07-29 Water treatment method and water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004221517A JP4616594B2 (en) 2004-07-29 2004-07-29 Water treatment method and water treatment apparatus

Publications (3)

Publication Number Publication Date
JP2006035158A JP2006035158A (en) 2006-02-09
JP2006035158A5 true JP2006035158A5 (en) 2007-08-30
JP4616594B2 JP4616594B2 (en) 2011-01-19

Family

ID=35900716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004221517A Active JP4616594B2 (en) 2004-07-29 2004-07-29 Water treatment method and water treatment apparatus

Country Status (1)

Country Link
JP (1) JP4616594B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2977473C (en) 2009-06-16 2021-12-14 Cambrian Innovation, Inc. Systems and devices for treating and monitoring water, wastewater and other biodegradable matter
CA2783256C (en) 2009-12-08 2018-06-12 Justin Buck Microbially-based sensors for environmental monitoring
US10099950B2 (en) 2010-07-21 2018-10-16 Cambrian Innovation Llc Bio-electrochemical system for treating wastewater
US10851003B2 (en) 2010-07-21 2020-12-01 Matthew Silver Denitrification and pH control using bio-electrochemical systems
WO2012054629A2 (en) 2010-10-19 2012-04-26 Cambrian Innovation Bio-electrochemical systems
CN103843184B (en) 2011-06-14 2016-09-14 凯博瑞创新公司 Biological aerobic quantity sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10230291A (en) * 1997-02-20 1998-09-02 Hitachi Plant Eng & Constr Co Ltd Biological denitrification method of water and device therefor
JPH11267688A (en) * 1998-03-25 1999-10-05 Hitachi Ltd Removing device and removing method of oxide nitrogen
JP3887214B2 (en) * 2001-11-27 2007-02-28 株式会社陸上養殖工学研究所 Circulating aquaculture equipment

Similar Documents

Publication Publication Date Title
ES2861451T3 (en) Method for electrolyzing alkaline water
CN101531411A (en) Method for electrochemically disinfecting gas diffusion electrode system
Zhang et al. Anolyte recirculation effects in buffered and unbuffered single-chamber air-cathode microbial fuel cells
JP2013108104A (en) Electrolytic synthesis device, electrolytic treating device, electrolytic synthesis method, and electrolytic treatment method
KR100917146B1 (en) Electroyzing apparatus for treating nitrogen and phosphorus simultaneously in sewage and waste water and, its treating method for sewage and waste water using it thereof
JP2007105673A (en) Treating method and treating apparatus of waste water containing nitrate nitrogen and electrolytic cell for treating waste water
US20130098819A1 (en) Enhanced resin regeneration
CN109516527B (en) Continuous flow electrochemical filtration system and application thereof in ammonia nitrogen wastewater degradation
KR101214824B1 (en) Improved COD abatement process for electrochemical oxidation
JP2006035158A5 (en)
JP2004202283A (en) Method and apparatus for treating organic compound-containing water
CN106957092B (en) Method for electro-removing ammonia nitrogen by three-dimensional pulse
JP4616594B2 (en) Water treatment method and water treatment apparatus
Modisha et al. Electrocatalytic process for ammonia electrolysis: a remediation technique with hydrogen co-generation
JP2007061681A (en) Nitrate nitrogen-containing wastewater treatment method and apparatus, and electrolytic cell for wastewater treatment
CN108474123B (en) Hydrogen peroxide generator
KR101338287B1 (en) Oxidation Method of Electro-activated Catalyst to Apply in Odor Gases Removal, And Oxidation Apparatus Thereof
JP2010270364A (en) Ozone-generating method and ozone-generating apparatus
He et al. Electrochemical treatment of residual ammonia nitrogen in biologically pretreated coking wastewater with three-dimensional electrodes
Komori et al. High-rate hydrogenotrophic denitrification in a fluidized-bed biofilm reactor using solid-polymer-electrolyte membrane electrode (SPEME)
JP2006150320A (en) System for thermally decomposing drainage
JP2004237165A (en) Method and apparatus for treating organic compound-containing water
US3287168A (en) Fuel cell electrode and preparation thereof
CN112028187A (en) Electrocatalytic oxidation device and method
CN109052755A (en) The processing method of admiro waste water based on electrocatalytic oxidation