JP2004237275A - Method for treating organic compound-containing water - Google Patents

Method for treating organic compound-containing water Download PDF

Info

Publication number
JP2004237275A
JP2004237275A JP2003114151A JP2003114151A JP2004237275A JP 2004237275 A JP2004237275 A JP 2004237275A JP 2003114151 A JP2003114151 A JP 2003114151A JP 2003114151 A JP2003114151 A JP 2003114151A JP 2004237275 A JP2004237275 A JP 2004237275A
Authority
JP
Japan
Prior art keywords
organic compound
water
containing water
concentration
concentrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003114151A
Other languages
Japanese (ja)
Inventor
Norito Ikemiya
範人 池宮
Haruyoshi Yamakawa
晴義 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2003114151A priority Critical patent/JP2004237275A/en
Publication of JP2004237275A publication Critical patent/JP2004237275A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently electrolyze organic compound-containing water. <P>SOLUTION: Organic compound-containing water is frozen and concentrated in a freezing concentrator 50 and the concentrated water is electrolyzed in an electrolytic cell 10. A part of or the whole of treated water due to electrolysis may be added to the organic compound-containing water before freeze concentration or a part of or the whole of the treated water may be added to the freeze-concentrated organic compound-containing water after it is subjected to concentration treatment. Preferably, an electrolyte is added to the organic compound-containing water and this electrolyte-added water is electrolyzed. Further, as the electrodes 11 and 12 of the electrolytic cell 10, diamond electrodes are preferably used. By this treatment method for the organic compound-containing water, the concentration of the organic compound of the organic compound-containing water is increased to enable an efficient electrolytic treatment. Furthermore, a volatile component does not get mixed in vapor like an evaporative concentration method and it is unnecessary to treat the organic matter in vapor or vapor condensed water. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、有機化合物含有水の処理方法に関する。特に電解処理技術を利用して、有害で悪臭を放つ副生成物を発生することなくこれらの有機化合物を二酸化炭素、水などの無機化合物に完全に分解処理することができる有機化合物含有水の処理方法に関する。
【0002】
【従来の技術】
工場排水中には汚染物質として、さまざまな有機化合物が含まれていて排出が許容されるレベルまで低減する必要がある。この排水を処理する方法として電気化学的な処理方法が知られている。電気化学的な処理方法は、活性汚泥法などの生物分解処理や、オゾン酸化法などに比べて、操作性が容易であり装置がコンパクトになるという利点がある。このような観点から、白金、酸化鉛、酸化すずといったさまざまな陽極材料を活用した電解処理法が考案されている。しかしながら、工場排水には腐食性の強い物質を含んでいる場合も多く、白金や酸化鉛といった電極材料は容易に汚染されるという問題があった。また、白金電極では、0.1A/cm程度の電流密度では安定に電解処理を行えるが、0.2A/cm以上の電流密度では大幅に劣化が進行して寿命が短くなるという問題があった。
【0003】
これに対し、ダイヤモンドは化学的安定性が高く、ホウ素や窒素をドープすることによって導電性を示すことから排水処理のための電極材料として期待されている。非特許文献1の論文(藤島ら)では、ホウ素をドープしたダイヤモンドの電極の電位窓が極めて広く、腐食性の強い水溶液中においても安定に動作することが報告されている。また、非特許文献2の論文(藤島ら)では、NOxがダイヤモンド陰極で効率よくアンモニアに還元されることが報告されている。また、イーストマンコダック社による特許文献1および特許文献2にはホウ素をドープしたダイヤモンドを陽極に用いて有機化合物を酸化分解できることが示唆されている。上記のようにダイヤモンド電極の使用によって、有機化合物を含有する排水をより大きな電流密度によって効率的に電解処理することが期待される。
【0004】
ところで、一般に電解処理では、有機物濃度を酸化するのに必要な最適な電流密度は、排水中の有機物濃度と、電極への有機物の物質移動速度の積に比例する(非特許文献3参照。)。この最適な電流密度は限界電流密度(Ilim)と表現され、この電流密度以上に実際の電流密度を高くとっても、有機物の電極への物質移動速度が律速となり、電流の多くは有機物の酸化には関与せず電流効率は低くなる。なお、Ilimは下記式(1)で示される。
lim=αK[TOC] …(1)
ただし、αは比例定数、Kは物質移動速度、[TOC]は排水中の全有機性炭素濃度である。
そして、実際の電流密度をIとすると、
I<Ilimの場合、電流効率は、100%となり、
I>Ilimの場合、電流効率は0%〜100%の範囲内になり、IがIlimに比べて顕著に小さい場合には、電流効率は100%より著しく悪いこととなる。
【0005】
【非特許文献1】
藤嶋ら、「Electrochemistry」,Vol.67(1999)389
【非特許文献2】
藤嶋ら、「Journal of Electroanalytical Chemistry」,Vol.396(1995)233
【非特許文献3】
「Journal of the Electrochemical Society」,Vol.148(2001)D60)
【特許文献1】
特開平7−299467号公報
【特許文献2】
米国特許第5399247号明細書
【0006】
【発明が解決しようとする課題】
すなわち、前記のようにダイヤモンド電極の採用によって電流密度を十分に大きくしても、有機物濃度が高い電解初期には処理効率がよいものの、処理の進行に従って有機物濃度が低下すると、処理効率が低下し、エネルギー効率および処理コストの面から問題がある。
ここで、エネルギー効率は、100%の電流効率で酸化反応が進行する場合の理想的な電力Pidealと、実際に投入した電力P(P=(電流)×(電圧))の比によって次のように表される。
(エネルギー効率:%)=Pideal/P×100
したがって、電流効率の低下によって、そのままエネルギー効率が低下することになる。
【0007】
また、ダイヤモンド電極を用いた電解処理では、有機物濃度が高い程、または排水の伝導度が高いほど効率がよいことが知られている。このため伝導度の低い排水を処理する場合には、効率的な処理が難しいという問題がある。
また、排水の有機物濃度が低い場合にも効率的な処理が困難になる。このため、処理対象となる排水の有機物濃度が低い場合には、排水中の有機物濃度を高くするために前処理として原水を濃縮することが考えられる。排水を濃縮する技術の一つとして蒸発濃縮法がある。しかし、揮発性有機物を含有する排水の場合は、蒸気中に有機物が混入するため、別途、蒸気や蒸気凝縮水中の有機物処理が必要となり、装置が複雑になるという課題がある。
【0008】
本発明は、上記事情を背景としてなされたものであり、有機化合物含有水の電解処理において、高いエネルギー効率および有利な処理コストによって排水に含まれる有機化合物を効率良く、二酸化炭素、水あるいは窒素などの無機物まで分解して除去する新規な有機化合物含有水の処理方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するため本発明の有機化合物含有水の処理方法のうち請求項1記載の発明は、有機化合物含有水を凍結濃縮した後、電解処理することを特徴とする。
【0010】
請求項2記載の有機化合物含有水の処理方法の発明は、請求項1記載の発明において、電解処理した処理水の一部または全部を前記凍結濃縮前の有機化合物含有水に加えることを特徴とする。
【0011】
請求項3記載の有機化合物含有水の処理方法の発明は、請求項1または2に記載の発明において、電解処理した処理水の一部または全部を濃縮処理した後、前記凍結濃縮後の有機化合物含有水に加えることを特徴とする。
【0012】
請求項4記載の有機化合物含有水の処理方法の発明は、請求項1〜3のいずれかに記載の発明において、電解処理に用いる電極のうち、少なくとも陽極に導電性ダイヤモンド電極を用いることを特徴とする。
【0013】
請求項5記載の有機化合物含有水の処理方法の発明は、請求項1〜4のいずれかに記載の発明において、前記有機化合物含有水に電解質を添加して電解に供することを特徴とする。
【0014】
すなわち本発明によれば、有機化合物含有水を凍結濃縮した後、電解処理することにより、有機化合物の濃度を高めて処理効率を上げることができる。なお、凍結濃縮の方法は低温で処理するため、有毒ガスや悪臭物質を発生することがなく、凝縮水中に保たれたまま電解処理され無害化される。すなわち凍結濃縮を採用することによって、蒸発濃縮法のように、揮発成分が蒸気中に混入することがなく、蒸気や蒸気凝縮水中の有機物処理も必要とされない利点を有している。また、凍結濃縮では凝縮水中に有機物がほとんど混入しないため、別途処理する必要がない。
なお、凍結濃縮装置の構成は特に限定するものではないが、分離回収した清浄水中の有機物濃度ができるだけ低くなるものが好ましい。また凍結した清浄水の解氷時に発生する融解潜熱をジュール熱で発熱する電解処理装置の冷却などに利用することも可能である。
【0015】
また、電解処理した処理水は、蒸発濃縮法、RO膜処理、電気透析法などの手法を用いて濃縮したり、処理水の一部または全量を凍結濃縮装置に返送するものとすれば、有機物濃度の低減を少なくして循環処理が可能になり、電解処理における効率がよくなる。また、有機物含有水に電解質を添加している場合には、処理水を循環させることによって電解質を回収、再利用することができ、電解質添加のためのコストが大幅に低減される。しかも、上記のように処理水は濃縮されて循環するので電解質の濃縮作用も得られ、有機化合物含有水の伝導度が適切に保たれて処理効率が向上する。
【0016】
また、本発明によれば、有機化合物を含んだ排水中に電解質を添加して電解処理することにより、伝導度の低い有機化合物含有水を処理する際にも高い効率で水中の有機化合物を電気化学的に酸化分解して除去できる。添加する電解質は、硫酸ナトリウムなどのような電解質塩類でも添加できる。
【0017】
なお、上記処理方法においては、電解に用いる電極のうち、少なくとも陽極に導電性ダイヤモンド電極を用いるのが望ましい。好適には陽極、陰極ともにダイヤモンド電極とする。導電性ダイヤモンド電極を用いた電解処理によって、水中の有機化合物を高効率で除去できる。従来の白金系電極を用いた電解処理に比べて電解効率が良く、特に必要電極面積が少なくてすみ電解反応装置が小型化できる技術的特長があり、経済的メリットが大きい。また、導電性ダイヤモンドは化学的安定性に優れ、通常の酸やアルカリによる腐食の心配がなく、酸条件からアルカリ条件の幅広いpH範囲を有する水処理に適用できて、かつ長期間に渡って安定した電解酸化処理効果が持続する。
【0018】
導電性ダイヤモンド電極としては、Ni、Ta、Ti、Mo、W、Zr等の導電性金属材料を基板とし、これらの基板の表面に導電性ダイヤモンド薄膜を析出させたものや、シリコンウエハ等の半導体材料を基板とし、このウエハ表面に導電性ダイヤモンド薄膜を合成させたもの、さらに、基板を用いない条件で板状に析出合成した導電性多結晶ダイヤモンドなどを挙げることができる。また、ダイヤモンドの結晶性については特に制限はなく、非晶質のものであっても良い。
なお、導電性ダイヤモンド電極は、ダイヤモンド膜の合成の際にボロン、窒素等の所定量をドープして導電性を付与したものであり、通常はボロンドープしたものが一般的である。これらのドープ量は、少なすぎると技術的意義が発生せず、多すぎてもドープ効果が飽和するため、ダイヤモンド薄膜の炭素量に対して、50〜10,000ppmの範囲のものが適している。
【0019】
本発明において、導電性ダイヤモンド電極は、通常は板状のものを使用するが、網目構造物を板状にしたものも使用できる。また、炭素粉末などにダイヤモンドをコーティングした粉末を電解液によって流動させて、流動床を構成することもできる。さらに、三次元構造の基質にダイヤモンド粉末を担持させ、高表面積を有する固定床を構成し、反応速度を大きくすることもできる。
導電性ダイヤモンド電極は、従来の白金等の金属電極に比べると、電位窓が極めて広く水の電気分解による水素発生や酸素発生を抑えながら、目的の有機物質のみを効率的に酸化分解処理できる。この導電性ダイヤモンド電極を用いて行う電解処理は、導電性ダイヤモンド電極表面の電流密度を10〜100,000A/mとし、有機物質を含む水をダイヤモンド電極面と平行方向に、通液線速度を10〜10,000m/hで接触処理させることが望ましい。さらに電解時の電解槽内等の液温度は通常10〜95℃の温度で処理するのが望ましい。
【0020】
【発明の実施の形態】
以下に、本発明の一実施形態を図1に基づいて説明する。
図1に示すように、導電性ダイヤモンド電極11、12を対面させ、両電極間に処理すべき有機化合物含有水を通液させる電解槽10を設ける。該電解槽10に設けた電極11、12には、図示しない電源が接続されている。
この実施形態では、有機化合物含有排水を凍結濃縮する凍結濃縮装置50を備えており、該凍結濃縮装置50で濃縮された有機化合物含有水を貯水する濃縮水槽51を有している。該濃縮水槽51では、適宜の電解質を添加するようにしている。濃縮水槽51の濃縮水は、電解槽10に供給されるように構成されている。なお、送液に際して適宜図示しないポンプが用いられる。電解槽10には、電解処理された処理水からガスを分離する気液分離器52が接続されている。さらに、該気液分離器52でガスが分離された処理水を濃縮する濃縮装置53を備えており、該濃縮装置53で濃縮された処理水は、上記濃縮水槽51に供給されるように構成されている。上記濃縮装置53には既知のものを使用することができ、蒸発濃縮装置、RO膜あるいは電気透析装置等を用いることができる。
また、気液分離器52から排出される処理水の一部は、濃縮装置53に供給することなく、濃縮水槽51から電解槽10に送液される有機物含有水に加えることができるように構成されている。
【0021】
次に、上記処理装置の動作(処理方法)について説明する。有機化合物を含有する排水等の原水が凍結濃縮装置に供給され、凍結濃縮される。該凍結濃縮によって有機化合物は濃縮される。清浄な水分は凍結し、その後、清浄水として系外に排出される。有機化合物が濃縮された有機化合物含有水は、濃縮水槽51に貯水される。濃縮水槽51では有機化合物の濃度が高められており、電解槽10に通液することで効率よく電解処理される。また、有機化合物含有水に電解質が添加されていることによって一層電解処理の効率が向上する。電解槽10では電解処理によって有機化合物が分解されており、該分解に伴ってガスが発生する。電解処理がなされた処理水は発生ガスとともに電解槽10から排出され、気液分離器52において上記発生ガスを分離した後、一部が電解槽10の供給側に返流される。残部の処理水は濃縮装置53に送液されて処理水に含まれる有機化合物や電解質が濃縮処理される。濃縮された処理水は、前記濃縮水槽51に供給され、含有物を分離した処理水は系外に排出される。
上記処理を繰り返すことにより、有機化合物含有水は、有機物濃度を高くして電解槽で電解処理することができ、処理効率が高まるとともに電解質が回収されてさらに処理効率が向上する。
【0022】
次に、上記実施形態の変更例を図2に基づいて説明する。
この実施形態においても、前記実施形態と同様に、電極11、12を有する電解槽10を備えており、さらに有機化合物を含有する排水等の原水を凍結濃縮する凍結濃縮装置50と濃縮水を貯水する濃縮水槽51とを備えており、さらに電解処理した処理水の気液分離を行う気液分離器52を有している。
この実施形態では、気液分離器52でガスが分離された処理水の一部または全部は、前記凍結濃縮装置50に供給されるように構成されている。
【0023】
次に、上記処理装置の動作(処理方法)について説明する。この実施形態においても上記実施形態と同様に、有機化合物含有水が凍結濃縮装置で凍結濃縮され、有機化合物が濃縮された有機化合物含有水は濃縮水槽51に貯水される。濃縮水槽51の濃縮水は、電解槽10に通液されて効率よく電解処理される。電解槽10で電解処理された処理水は、気液分離器52において発生ガスを分離した後、一部が凍結濃縮装置50に送液されて凍結濃縮に供され、残部処理水は系外に排出される。
上記処理を繰り返すことにより、有機化合物含有水は、有機物濃度が適度に高くされた状態で効率よく電解処理されるとともに、電解質が回収されてさらに処理効率が向上する。
【0024】
【実施例】
次に、本発明の実施例を説明する。
実施例1
ボロンドープ法を用いて気相析出合成した多結晶導電性ダイヤモンド板(25cm×10cm×0.05cm)2枚を電極に用い、極間距離5mmに設定して電解槽とし、図2に示す装置に組み込んだ。導電性ダイヤモンドは、ダイヤモンドの炭素量に対して、約8,000ppmのボロンがドープされている。揮発性有機化合物を含む有機性混合排水を凍結濃縮し、電解処理した。電解処理時の電流密度=0.2A/cm,極間電圧=20V、通液線速度=1000m/h、液温=60℃とした。
【0025】
各処理行程における性状は以下の通りであった。
排水性状及び流量:有機物濃度(TOC)=555mg/L
流量=9m/d
凍結濃縮水性状及び流量:有機物濃度(TOC)=4982mg/L
流量=1m/d
凍結清浄水性状及び流量:有機物濃度(TOC)=2mg/L
流量=9m/d
電解処理水性状及び流量:有機物濃度(TOC)=5mg/L
電解質濃度=0.1M NaSO
流量=1m/d
返送水性状及び流量:有機物濃度(TOC)=5mg/L
電解質濃度=0.1M NaSO
流量=1m/d
【0026】
上記に示すように、電解処理時の有機物濃度、および電解質濃度は高く維持されて、電解処理が効率よく、かつ効果的に行われていることが確認された。
【0027】
【発明の効果】
以上説明したように、本発明の有機化合物含有水の処理方法によれば、有機化合物含有水を凍結濃縮した後、電解処理するので、効率的な電解処理が可能になるとともに、蒸発濃縮法のように、揮発成分が蒸気中に混入することがなく、蒸気や蒸気凝縮水中の有機物処理も必要とされない。
【0028】
【図面の簡単な説明】
【図1】本発明の一実施形態における処理装置の概略を示す図である。
【図2】同じく、変更された処理装置の概略を示す図である。
【符号の説明】
10 電解槽
11、12 導電性ダイヤモンド電極
50 凍結濃縮装置
51 濃縮水槽
52 気液分離器
53 濃縮装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for treating organic compound-containing water. In particular, treatment of organic compound-containing water that can completely decompose these organic compounds into inorganic compounds such as carbon dioxide and water without generating harmful and odorous by-products by utilizing electrolytic treatment technology About the method.
[0002]
[Prior art]
Industrial wastewater contains various organic compounds as pollutants and needs to be reduced to an acceptable level. As a method for treating this wastewater, an electrochemical treatment method is known. The electrochemical treatment method has an advantage that the operability is easy and the apparatus is compact as compared with a biodegradation treatment such as an activated sludge method and an ozone oxidation method. From such a viewpoint, an electrolytic treatment method utilizing various anode materials such as platinum, lead oxide, and tin oxide has been devised. However, factory wastewater often contains highly corrosive substances, and there has been a problem that electrode materials such as platinum and lead oxide are easily contaminated. Further, in the case of a platinum electrode, the electrolytic treatment can be performed stably at a current density of about 0.1 A / cm 2, but at a current density of 0.2 A / cm 2 or more, there is a problem that deterioration is greatly advanced and the life is shortened. there were.
[0003]
On the other hand, diamond is expected to be used as an electrode material for wastewater treatment because diamond has high chemical stability and exhibits conductivity when doped with boron or nitrogen. Non-Patent Document 1 (Fujishima et al.) Reports that the potential window of a boron-doped diamond electrode is extremely wide, and that the electrode operates stably even in a highly corrosive aqueous solution. Non-Patent Document 2 (Fujishima et al.) Reports that NOx is efficiently reduced to ammonia at a diamond cathode. Further, Patent Documents 1 and 2 by Eastman Kodak Company suggest that it is possible to oxidatively decompose organic compounds using boron-doped diamond as an anode. As described above, the use of a diamond electrode is expected to efficiently perform electrolytic treatment of wastewater containing an organic compound with a higher current density.
[0004]
By the way, generally, in the electrolytic treatment, the optimum current density necessary for oxidizing the organic substance concentration is proportional to the product of the organic substance concentration in the waste water and the mass transfer rate of the organic substance to the electrode (see Non-Patent Document 3). . This optimum current density is expressed as a limit current density (I lim ). Even if the actual current density is set higher than this current density, the mass transfer rate of the organic substance to the electrode is rate-determining, and most of the current is generated by oxidation of the organic substance. Does not participate and the current efficiency decreases. Note that I lim is represented by the following equation (1).
I lim = αK [TOC] (1)
Here, α is a proportionality constant, K is the mass transfer rate, and [TOC] is the total organic carbon concentration in the wastewater.
Then, assuming that the actual current density is I,
If I <I lim , the current efficiency is 100%,
If I> I lim , the current efficiency is in the range of 0% to 100%, and if I is significantly smaller than I lim , the current efficiency is significantly worse than 100%.
[0005]
[Non-patent document 1]
Fujishima et al., "Electrochemistry", Vol. 67 (1999) 389
[Non-patent document 2]
Fujishima et al., "Journal of Electroanalytical Chemistry", Vol. 396 (1995) 233
[Non-Patent Document 3]
"Journal of the Electrochemical Society", Vol. 148 (2001) D60)
[Patent Document 1]
Japanese Patent Application Laid-Open No. 7-299467 [Patent Document 2]
US Patent No. 5,399,247 [0006]
[Problems to be solved by the invention]
That is, even if the current density is sufficiently increased by the use of the diamond electrode as described above, the processing efficiency is good in the early stage of electrolysis in which the organic substance concentration is high, but when the organic substance concentration decreases as the processing proceeds, the processing efficiency decreases. Problems in terms of energy efficiency and processing costs.
Here, the energy efficiency is determined by the ratio of the ideal power P ideal when the oxidation reaction proceeds at a current efficiency of 100% to the actually applied power P (P = (current) × (voltage)). Is represented as
(Energy efficiency:%) = P ideal / P × 100
Therefore, the energy efficiency is directly reduced due to the reduction in the current efficiency.
[0007]
It is known that the efficiency of electrolytic treatment using a diamond electrode is higher as the concentration of organic substances is higher or the conductivity of wastewater is higher. For this reason, when treating wastewater with low conductivity, there is a problem that efficient treatment is difficult.
Also, when the concentration of organic matter in the wastewater is low, efficient treatment becomes difficult. For this reason, when the organic matter concentration of the wastewater to be treated is low, it is conceivable to concentrate raw water as a pretreatment in order to increase the organic matter concentration in the wastewater. One of the technologies for condensing wastewater is an evaporative concentration method. However, in the case of wastewater containing volatile organic matter, since organic matter is mixed into steam, it is necessary to separately treat organic matter in steam or steam condensed water, and there is a problem that the apparatus becomes complicated.
[0008]
The present invention has been made in view of the above circumstances, and in the electrolytic treatment of organic compound-containing water, efficiently removes organic compounds contained in wastewater by high energy efficiency and advantageous treatment costs, such as carbon dioxide, water or nitrogen. It is an object of the present invention to provide a novel method for treating organic compound-containing water that decomposes and removes inorganic substances.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 of the method for treating organic compound-containing water of the present invention is characterized in that the organic compound-containing water is freeze-concentrated and then subjected to electrolytic treatment.
[0010]
The invention of the method for treating organic compound-containing water according to claim 2 is characterized in that, in the invention according to claim 1, a part or all of the electrolytically treated water is added to the organic compound-containing water before freeze-concentration. I do.
[0011]
According to a third aspect of the present invention, there is provided the method for treating organic compound-containing water according to the first or second aspect, wherein after a part or all of the electrolytically treated water is concentrated, the organic compound after the freeze concentration is concentrated. It is characterized by being added to the contained water.
[0012]
According to a fourth aspect of the present invention, there is provided a method of treating water containing an organic compound according to any one of the first to third aspects, wherein a conductive diamond electrode is used at least as an anode among the electrodes used for the electrolytic treatment. And
[0013]
The invention of the method for treating organic compound-containing water according to claim 5 is characterized in that, in the invention according to any one of claims 1 to 4, an electrolyte is added to the organic compound-containing water for electrolysis.
[0014]
That is, according to the present invention, after the organic compound-containing water is freeze-concentrated and then subjected to electrolytic treatment, the concentration of the organic compound can be increased and the treatment efficiency can be increased. Since the freeze-concentration method is performed at a low temperature, no toxic gas or odorous substance is generated, and it is electrolyzed and maintained harmless in the condensed water. That is, by adopting the freeze concentration, there is an advantage that, unlike the evaporation concentration method, no volatile components are mixed into the steam, and the treatment of organic substances in the steam or the steam condensed water is not required. In the case of freeze concentration, organic matter is hardly mixed in the condensed water, so that there is no need to perform a separate treatment.
The configuration of the freeze concentration device is not particularly limited, but it is preferable that the concentration of organic substances in the separated and recovered clean water be as low as possible. Further, the latent heat of melting generated when the frozen clean water is thawed can be used for cooling an electrolytic treatment apparatus that generates heat by Joule heat.
[0015]
In addition, if the treated water subjected to the electrolytic treatment is concentrated by using a method such as an evaporative concentration method, an RO membrane treatment, or an electrodialysis method, or if part or all of the treated water is returned to a freeze-concentrator, an organic substance can be used. The circulation process can be performed with a reduced concentration, and the efficiency in the electrolytic process is improved. Further, when the electrolyte is added to the organic substance-containing water, the electrolyte can be recovered and reused by circulating the treated water, and the cost for adding the electrolyte is greatly reduced. In addition, since the treated water is concentrated and circulated as described above, a function of concentrating the electrolyte is also obtained, and the conductivity of the organic compound-containing water is appropriately maintained, thereby improving the treatment efficiency.
[0016]
Further, according to the present invention, by adding an electrolyte to wastewater containing an organic compound and performing an electrolytic treatment, the organic compound in the water can be efficiently treated even when treating an organic compound-containing water having low conductivity. It can be removed by chemical oxidative decomposition. The electrolyte to be added may be an electrolyte salt such as sodium sulfate.
[0017]
In the above treatment method, it is desirable to use a conductive diamond electrode for at least the anode among the electrodes used for electrolysis. Preferably, both the anode and the cathode are diamond electrodes. By the electrolytic treatment using the conductive diamond electrode, organic compounds in water can be removed with high efficiency. Compared with the conventional electrolytic treatment using a platinum-based electrode, the electrolytic efficiency is better, and there is a technical advantage that the required electrode area is small and the electrolytic reaction apparatus can be downsized. In addition, conductive diamond has excellent chemical stability, is free from corrosion by ordinary acids and alkalis, can be applied to water treatment with a wide pH range from acid conditions to alkali conditions, and is stable for a long time. The effect of the electrolytic oxidation treatment is maintained.
[0018]
As the conductive diamond electrode, a conductive metal material such as Ni, Ta, Ti, Mo, W, or Zr is used as a substrate, and a conductive diamond thin film is deposited on the surface of these substrates, or a semiconductor such as a silicon wafer. Examples of the material include a substrate made of a material and a conductive diamond thin film synthesized on the surface of the wafer, and a conductive polycrystalline diamond deposited and synthesized in a plate shape without using the substrate. The crystallinity of diamond is not particularly limited, and may be amorphous.
The conductive diamond electrode is one which is doped with a predetermined amount of boron, nitrogen or the like at the time of synthesizing a diamond film to impart conductivity, and is generally boron-doped. If the doping amount is too small, the technical significance does not occur, and if it is too large, the doping effect is saturated. Therefore, the doping amount in the range of 50 to 10,000 ppm is suitable for the carbon amount of the diamond thin film. .
[0019]
In the present invention, the conductive diamond electrode usually has a plate-like shape, but a plate-shaped mesh structure can also be used. Alternatively, a fluidized bed can be formed by flowing a powder of diamond coated carbon powder or the like with an electrolytic solution. Further, a diamond bed is supported on a substrate having a three-dimensional structure to form a fixed bed having a high surface area, thereby increasing the reaction rate.
A conductive diamond electrode has an extremely wide potential window as compared with a conventional metal electrode such as platinum, and can efficiently oxidize and decompose only a target organic substance while suppressing generation of hydrogen and oxygen due to electrolysis of water. In the electrolytic treatment using the conductive diamond electrode, the current density on the surface of the conductive diamond electrode is set to 10 to 100,000 A / m 2, and water containing an organic substance is applied in a direction parallel to the diamond electrode surface at a liquid passing linear velocity. Is preferably subjected to contact treatment at 10 to 10,000 m / h. Further, it is desirable that the temperature of the liquid in the electrolytic cell during the electrolysis is usually 10 to 95 ° C.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 1, there is provided an electrolytic cell 10 in which the conductive diamond electrodes 11 and 12 face each other, and between which the organic compound-containing water to be treated flows. A power source (not shown) is connected to the electrodes 11 and 12 provided in the electrolytic cell 10.
In this embodiment, a freeze concentration device 50 for freeze-concentrating wastewater containing organic compounds is provided, and a concentrated water tank 51 for storing water containing organic compounds concentrated by the freeze concentration device 50 is provided. In the concentrated water tank 51, an appropriate electrolyte is added. The concentrated water in the concentrated water tank 51 is configured to be supplied to the electrolytic tank 10. It should be noted that a pump (not shown) is appropriately used at the time of liquid feeding. A gas-liquid separator 52 that separates gas from the electrolytically treated water is connected to the electrolytic cell 10. Further, a concentrating device 53 for concentrating the treated water from which gas has been separated by the gas-liquid separator 52 is provided, and the treated water concentrated by the concentrating device 53 is supplied to the concentrated water tank 51. Have been. A known device can be used as the concentrating device 53, and an evaporating concentrating device, an RO membrane, an electrodialysis device, or the like can be used.
In addition, a part of the treated water discharged from the gas-liquid separator 52 can be added to the organic substance-containing water sent from the concentrated water tank 51 to the electrolytic tank 10 without being supplied to the concentrating device 53. Have been.
[0021]
Next, the operation (processing method) of the processing device will be described. Raw water such as wastewater containing an organic compound is supplied to a freeze concentration device and freeze concentrated. The organic compound is concentrated by the freeze concentration. The clean water is frozen and then discharged out of the system as clean water. The organic compound-containing water in which the organic compound is concentrated is stored in the concentrated water tank 51. The concentration of the organic compound is increased in the concentrated water tank 51, and the electrolytic treatment is efficiently performed by passing the liquid through the electrolytic tank 10. Further, the efficiency of the electrolytic treatment is further improved by adding the electrolyte to the water containing the organic compound. In the electrolytic cell 10, the organic compound is decomposed by the electrolytic treatment, and gas is generated with the decomposition. The treated water subjected to the electrolytic treatment is discharged from the electrolytic cell 10 together with the generated gas. After the generated gas is separated in the gas-liquid separator 52, a part of the water is returned to the supply side of the electrolytic cell 10. The remaining treated water is sent to the concentrating device 53, where the organic compounds and electrolytes contained in the treated water are concentrated. The concentrated treated water is supplied to the concentrated water tank 51, and the treated water from which the content is separated is discharged out of the system.
By repeating the above treatment, the organic compound-containing water can be subjected to the electrolytic treatment in the electrolytic cell with the concentration of the organic substance being increased, so that the treatment efficiency is increased and the electrolyte is recovered, thereby further improving the treatment efficiency.
[0022]
Next, a modification of the above embodiment will be described with reference to FIG.
In this embodiment, similarly to the above-described embodiment, an electrolytic cell 10 having electrodes 11 and 12 is provided, and a freeze-concentration device 50 for freezing and concentrating raw water such as wastewater containing an organic compound and a concentrated water storage device are provided. And a gas-liquid separator 52 for performing gas-liquid separation of treated water subjected to electrolytic treatment.
In this embodiment, a part or all of the treated water from which the gas has been separated by the gas-liquid separator 52 is configured to be supplied to the freeze concentration device 50.
[0023]
Next, the operation (processing method) of the processing device will be described. In this embodiment, similarly to the above embodiment, the organic compound-containing water is freeze-concentrated by the freeze-concentration device, and the organic compound-containing water in which the organic compound is concentrated is stored in the concentrated water tank 51. The concentrated water in the concentrated water tank 51 is passed through the electrolytic tank 10 to be efficiently electrolyzed. The treated water subjected to the electrolytic treatment in the electrolytic tank 10 separates the generated gas in the gas-liquid separator 52, and a part of the treated water is sent to the freeze concentration device 50 to be subjected to freeze concentration, and the remaining treated water is discharged outside the system. Is discharged.
By repeating the above process, the organic compound-containing water is efficiently electrolyzed in a state where the concentration of the organic substance is appropriately increased, and the electrolyte is recovered to further improve the processing efficiency.
[0024]
【Example】
Next, examples of the present invention will be described.
Example 1
Using two polycrystalline conductive diamond plates (25 cm × 10 cm × 0.05 cm) synthesized by vapor deposition using the boron doping method as electrodes, the distance between the electrodes was set to 5 mm to form an electrolytic cell, and the apparatus shown in FIG. Incorporated. The conductive diamond is doped with about 8,000 ppm of boron based on the carbon content of the diamond. The organic mixed wastewater containing volatile organic compounds was freeze-concentrated and subjected to electrolytic treatment. The current density during the electrolysis treatment was 0.2 A / cm 2 , the voltage between the electrodes was 20 V, the liquid flow velocity was 1000 m / h, and the liquid temperature was 60 ° C.
[0025]
The properties in each processing step were as follows.
Drainage property and flow rate: Organic matter concentration (TOC) = 555 mg / L
Flow rate = 9m 3 / d
Freeze-concentrated aqueous state and flow rate: Organic matter concentration (TOC) = 4982 mg / L
Flow rate = 1m 3 / d
Freeze-cleaning aqueous state and flow rate: Organic matter concentration (TOC) = 2 mg / L
Flow rate = 9m 3 / d
Aqueous state and flow rate of electrolytic treatment: Organic substance concentration (TOC) = 5 mg / L
Electrolyte concentration = 0.1 M Na 2 SO 4
Flow rate = 1m 3 / d
Returned water state and flow rate: Organic matter concentration (TOC) = 5 mg / L
Electrolyte concentration = 0.1 M Na 2 SO 4
Flow rate = 1m 3 / d
[0026]
As described above, it was confirmed that the concentration of the organic substance and the concentration of the electrolyte during the electrolytic treatment were kept high, and that the electrolytic treatment was performed efficiently and effectively.
[0027]
【The invention's effect】
As described above, according to the method for treating organic compound-containing water of the present invention, after the organic compound-containing water is freeze-concentrated and then subjected to electrolytic treatment, efficient electrolytic treatment becomes possible, and the evaporative concentration method is used. As described above, no volatile components are mixed into the steam, and no treatment of organic substances in the steam or the steam condensed water is required.
[0028]
[Brief description of the drawings]
FIG. 1 is a view schematically showing a processing apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram schematically showing a modified processing apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Electrolysis tanks 11 and 12 Conductive diamond electrode 50 Freeze-concentration apparatus 51 Concentration water tank 52 Gas-liquid separator 53 Concentration apparatus

Claims (5)

有機化合物含有水を凍結濃縮した後、電解処理することを特徴とする有機化合物含有水の処理方法。A method for treating organic compound-containing water, comprising subjecting the organic compound-containing water to freeze-concentration and electrolytic treatment. 電解処理した処理水の一部または全部を前記凍結濃縮前の有機化合物含有水に加えることを特徴とする請求項1記載の有機化合物含有水の処理方法。The method for treating organic compound-containing water according to claim 1, wherein part or all of the electrolytically treated water is added to the organic compound-containing water before the freeze-concentration. 電解処理した処理水の一部または全部を濃縮処理した後、前記凍結濃縮後の有機化合物含有水に加えることを特徴とする請求項1または2に記載の有機化合物含有水の処理方法。The method for treating organic compound-containing water according to claim 1 or 2, wherein a part or all of the electrolytically treated water is concentrated and then added to the organic compound-containing water after the freeze concentration. 電解処理に用いる電極のうち、少なくとも陽極に導電性ダイヤモンド電極を用いることを特徴とする請求項1〜3のいずれかに記載の有機化合物含有水の処理方法。The method for treating organic compound-containing water according to any one of claims 1 to 3, wherein a conductive diamond electrode is used for at least the anode among the electrodes used for the electrolytic treatment. 前記有機化合物含有水に電解質を添加して電解に供することを特徴とする請求項1〜4のいずれかに記載の有機化合物含有水の処理方法。The method for treating organic compound-containing water according to any one of claims 1 to 4, wherein an electrolyte is added to the organic compound-containing water for electrolysis.
JP2003114151A 2003-04-18 2003-04-18 Method for treating organic compound-containing water Pending JP2004237275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003114151A JP2004237275A (en) 2003-04-18 2003-04-18 Method for treating organic compound-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003114151A JP2004237275A (en) 2003-04-18 2003-04-18 Method for treating organic compound-containing water

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003028911A Division JP2004237207A (en) 2003-02-05 2003-02-05 Method and apparatus for treating organic compound-containing water

Publications (1)

Publication Number Publication Date
JP2004237275A true JP2004237275A (en) 2004-08-26

Family

ID=32959568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003114151A Pending JP2004237275A (en) 2003-04-18 2003-04-18 Method for treating organic compound-containing water

Country Status (1)

Country Link
JP (1) JP2004237275A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011015556A1 (en) * 2009-08-04 2011-02-10 Siemens Aktiengesellschaft Process for degrading organic pollutants in industrial wastewater and associated system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011015556A1 (en) * 2009-08-04 2011-02-10 Siemens Aktiengesellschaft Process for degrading organic pollutants in industrial wastewater and associated system

Similar Documents

Publication Publication Date Title
JP3910095B2 (en) Electrolyzer for ozone generation
JP4116726B2 (en) Electrochemical treatment method and apparatus
JP3913923B2 (en) Water treatment method and water treatment apparatus
JP2006297206A (en) Electrolytic treatment method and apparatus for ammonia nitrogen-containing waste water
JP2007098272A (en) Ammonia-containing water treatment method and apparatus
KR20060119840A (en) The process and the apparatus for cleansing the electronic part using functional water
CN112978874A (en) Method for purifying iodine salt-containing wastewater by using flowing electrode capacitive deionization device
JP2004202283A (en) Method and apparatus for treating organic compound-containing water
JP2007105673A (en) Treating method and treating apparatus of waste water containing nitrate nitrogen and electrolytic cell for treating waste water
JP4190173B2 (en) Electrochemical treatment method and electrochemical treatment apparatus
JP3982500B2 (en) Method and apparatus for treating wastewater containing organic compounds
JP2004237207A (en) Method and apparatus for treating organic compound-containing water
JP2004237275A (en) Method for treating organic compound-containing water
JP2002346566A (en) Apparatus and method for water treatment
JP4026464B2 (en) Treatment method for wastewater containing organic compounds
KR102492246B1 (en) Hybrid water treatment system for red tide removal and perchlorate control and water treatment method using the same
JP2005021744A (en) Method and apparatus for electrolyzing emulsion
JP2004237165A (en) Method and apparatus for treating organic compound-containing water
JP4616594B2 (en) Water treatment method and water treatment apparatus
JP2005193196A (en) Waste water treatment method and system
JP4071980B2 (en) Method and apparatus for cleaning electronic parts
JPH11221570A (en) Decomposition electrode for organic polluted water, decomposing method of organic polluted water using same and decomposing device of organic polluted water using same
JP3988480B2 (en) Waste water treatment apparatus and method
JP4053805B2 (en) Functional water, production method and production apparatus thereof
KR20040057008A (en) Electrolytic waste treatment system