JP2001017995A - Treatment of volatile organochlorine compound and device therefor - Google Patents
Treatment of volatile organochlorine compound and device thereforInfo
- Publication number
- JP2001017995A JP2001017995A JP11196576A JP19657699A JP2001017995A JP 2001017995 A JP2001017995 A JP 2001017995A JP 11196576 A JP11196576 A JP 11196576A JP 19657699 A JP19657699 A JP 19657699A JP 2001017995 A JP2001017995 A JP 2001017995A
- Authority
- JP
- Japan
- Prior art keywords
- water
- volatile organic
- organic chlorine
- compound
- product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Physical Water Treatments (AREA)
- Removal Of Specific Substances (AREA)
- Biological Treatment Of Waste Water (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、揮発性有機塩素化
合物のジクロルエチレン、トリクロルエチレンおよびテ
トラクロルエチレンを分解処理する揮発性有機塩素化合
物の処理方法およびその装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for treating volatile organic chlorine compounds which decompose volatile organic chlorine compounds such as dichloroethylene, trichloroethylene and tetrachloroethylene.
【0002】[0002]
【従来の技術】従来、トリクロルエチレン(CHCl=
CCl2 )やテトラクロルエチレン(CCl2 =CCl
2 )などの塩素基を有する揮発性有機塩素化合物の処理
方法としては、例えば特開平8−281066号公報お
よび特開平9−122441号公報に記載のように、揮
発性の有機塩素化合物を分解して親水化し、この親水化
された有機塩素化合物を水に溶解して生物処理する構成
が知られている。2. Description of the Related Art Conventionally, trichloroethylene (CHCl =
CCl 2 ) or tetrachloroethylene (CCl 2 = CCl
As a method for treating a volatile organic chlorine compound having a chlorine group such as 2 ), for example, as described in JP-A-8-281066 and JP-A-9-122441, a volatile organic chlorine compound is decomposed. A configuration is known in which the organic chlorine compound hydrophilized is dissolved in water to perform biological treatment.
【0003】すなわち、特開平8−281066号公報
に記載のものは、揮発性の有機塩素化合物を含有する気
体に紫外線を照射して揮発性の有機塩素化合物をジクロ
ルアセチルクロリド、モノクロルアセチルクロリドなど
のアセチルクロリドなどの親水化した有機塩素化合物に
分解し、生物処理槽に設けた微生物を担持する充填材を
充填し上方から散水されて湿潤化された充填層を通過さ
せ、担持された微生物により生物処理され、最終分解物
の塩化水素および二酸化炭素に酸化分解する。[0003] That is, the one described in Japanese Patent Application Laid-Open No. 8-281066 discloses a method in which a gas containing a volatile organic chlorine compound is irradiated with ultraviolet rays to convert the volatile organic chlorine compound into dichloroacetyl chloride, monochloroacetyl chloride, or the like. Decomposes into hydrochlorinated organochlorine compounds such as acetyl chloride, filled with a filler that supports microorganisms provided in the biological treatment tank, passed through a packed bed that has been sprinkled and moistened from above, and It is biologically treated and oxidatively decomposed to the final decomposition products, hydrogen chloride and carbon dioxide.
【0004】また、特開平9−122441号公報に記
載のものは、揮発性の有機塩素化合物を含有する気体に
紫外線を照射して揮発性の有機塩素化合物をアセチルク
ロリドなどの有機塩素化合物に分解し、このアセチルク
ロリドなどの有機塩素化合物を含有したガスを曝気して
水に溶解させ、塩素化合物などの好気性生物の成育に阻
害となる物質を除去する還元性物質を添加するとともに
活性炭と接触させて生物処理する構成が採られている。[0004] Further, in the method disclosed in Japanese Patent Application Laid-Open No. 9-122441, a gas containing a volatile organic chlorine compound is irradiated with ultraviolet rays to decompose the volatile organic chlorine compound into an organic chlorine compound such as acetyl chloride. Then, a gas containing an organic chlorine compound such as acetyl chloride is aerated and dissolved in water, and a reducing substance such as a chlorine compound that inhibits the growth of aerobic organisms is added, and the gas is contacted with activated carbon. The biological treatment is carried out.
【0005】ところで、テトラクロルエチレン(CCl
2 =CCl2 )を親水化して生成する副生成物であるト
リクロルアセチルクロリドを水と接触させることにより
生成するハロ酢酸であるトリクロル酢酸を唯一の炭素源
とする好気性微生物は収率が非常に低く、増殖率が極め
て低いことが知られている。このため、上記特開平8−
281066号公報および特開平9−122441号公
報に記載のように、揮発性の有機塩素化合物を分解して
親水化し、この親水化された有機塩素化合物を水に溶解
して生物処理する構成において、トリクロルエチレン
(CHCl=CCl2 )から生成するハロ酢酸であるジ
クロル酢酸は処理できるが、テトラクロルエチレン(C
Cl2 =CCl2 )を親水化して生成する副生成物であ
るトリクロル酢酸(CCl3 COOH)を好気性微生物
にて処理する際には、稀薄濃度で長時間滞留させること
により処理できる程度で、ある程度の濃度になると、ほ
とんど生物処理できない。[0005] Incidentally, tetrachloroethylene (CCl
2 = CCl 2 ) is aerobic microorganism having only one carbon source, trichloroacetic acid, which is a haloacetic acid produced by contacting trichloroacetyl chloride, which is a byproduct produced by hydrophilizing water, with water. It is known that the growth rate is very low. For this reason, Japanese Patent Application Laid-Open No.
As described in Japanese Patent No. 281066 and Japanese Patent Application Laid-Open No. 9-122441, in a configuration in which a volatile organic chlorine compound is decomposed and hydrophilized, and the hydrophilized organic chlorine compound is dissolved in water and subjected to biological treatment, Dichloroacetic acid, which is a haloacetic acid formed from trichloroethylene (CHCl = CCl 2 ), can be treated, but tetrachloroethylene (C
When trichloroacetic acid (CCl 3 COOH), which is a by-product produced by hydrophilizing Cl 2 = CCl 2 ), is treated with an aerobic microorganism, it can be treated by staying at a dilute concentration for a long time. At a certain concentration, almost no biological treatment is possible.
【0006】このため、テトラクロルエチレンの分解に
より生成するトリクロル酢酸は、さらに紫外線や過酸化
物などにてさらに酸化分解を進行させたり、アルカリな
どにて熱分解するなどの処理をしているが、多大な処理
エネルギが必要となるとともに、有害な副生成物が生成
するおそれもある。また、活性炭などにて吸着分離する
方法では、頻繁な活性炭の交換が必要で、処理が煩雑と
なるとともに、多大な処理コストが必要となる問題があ
る。For this reason, trichloroacetic acid produced by the decomposition of tetrachloroethylene is further subjected to treatment such as further oxidative decomposition with ultraviolet rays or peroxide, or thermal decomposition with alkali or the like. In addition, a large amount of processing energy is required, and harmful by-products may be generated. In addition, the method of performing adsorption separation using activated carbon or the like requires frequent replacement of activated carbon, resulting in a problem that the processing becomes complicated and a large processing cost is required.
【0007】[0007]
【発明が解決しようとする課題】上述したように、従来
の特開平8−281066号公報および特開平9−12
2441号公報に記載のような親水化した有機塩素化合
物を水に溶解して生物処理する構成では、テトラクロル
エチレン(CCl2 =CCl2 )およびこのテトラクロ
ルエチレンの親水化処理により生成するトリクロル酢酸
を、生物処理により効率よく無害化処理することが困難
である問題がある。また、酸化分解の進行や吸着分離な
どの方法では、処理が煩雑で時間を要し、処理コストが
増大する問題がある。As described above, as described above, Japanese Patent Application Laid-Open Nos. 8-281066 and 9-12 are disclosed.
In a configuration for biological treatment by dissolving a hydrophilized organic chlorine compound in water as described in Japanese Patent No. 2441, tetrachloroethylene (CCl 2 = CCl 2 ) and trichloroacetic acid generated by the hydrophilization treatment of tetrachloroethylene. There is a problem that it is difficult to efficiently detoxify the harmful substance by biological treatment. Further, methods such as oxidative decomposition and adsorption / separation have a problem that the treatment is complicated and time-consuming, and the treatment cost is increased.
【0008】本発明は、上記の問題点に鑑みなされたも
ので、ジクロルエチレン、トリクロルエチレンあるいは
テトラクロルエチレンを効率よく確実に処理して無害化
する揮発性有機塩素化合物の処理方法およびその装置を
提供することを目的とする。The present invention has been made in view of the above problems, and a method and apparatus for treating a volatile organic chlorine compound that efficiently and reliably treats dichloroethylene, trichloroethylene, or tetrachloroethylene to make them harmless. The purpose is to provide.
【0009】[0009]
【課題を解決するための手段】請求項1記載の揮発性有
機塩素化合物の処理方法は、ジクロルエチレン、トリク
ロルエチレンおよびテトラクロルエチレンの少なくとも
いずれか1つの揮発性有機塩素化合物を含有する汚水か
ら前記揮発性有機塩素化合物を抽出し、この抽出した前
記揮発性有機塩素化合物に酸素存在下で紫外線を照射し
て酸化し親水性の第1次副生成物を生成させ、この第1
次副生成物をアルカリ性から中性の範囲にpH調整した
水と接触させて水和させ易分解性の第2次副生成物を生
成し、この第2次副生成物を含有する水に燐化合物およ
び窒素化合物の少なくともいずれか一方を添加して活性
炭に担持させた微生物により前記第2次副生成物を分解
するものである。According to a first aspect of the present invention, there is provided a method for treating a volatile organic chlorine compound from wastewater containing at least one volatile organic chlorine compound of dichloroethylene, trichloroethylene and tetrachloroethylene. Extracting the volatile organic chlorine compound, irradiating the extracted volatile organic chlorine compound with ultraviolet rays in the presence of oxygen to produce a hydrophilic primary by-product,
The secondary by-product is brought into contact with water whose pH has been adjusted to a range from alkaline to neutral to hydrate to form a readily decomposable secondary by-product. The second by-product is decomposed by a microorganism which is added to at least one of a compound and a nitrogen compound and supported on activated carbon.
【0010】そして、汚水から抽出したジクロルエチレ
ン、トリクロルエチレンおよびテトラクロルエチレンの
少なくともいずれか1つの揮発性有機塩素化合物に酸素
存在下で紫外線を照射して効率よく親水性の第1次副生
成物に酸化し、この第1次副生成物をアルカリ性から中
性の範囲にpH調整した水と接触させて水和させ効率よ
く生成した易分解性の第2次副生成物を燐化合物および
窒素化合物の少なくともいずれか一方を添加して活性炭
に担持させた微生物により分解するため、微生物の活性
が増大し、別途微生物の栄養源となる有機物を添加する
ことなく第2次副生成物が栄養源として分解され、有機
物の添加による運転コストの増大および余剰汚泥の発生
が低減し、効率よく揮発性有機塩素化合物を無害化す
る。[0010] Then, ultraviolet rays are irradiated to at least one volatile organic chlorine compound of dichloroethylene, trichloroethylene and tetrachloroethylene extracted from the wastewater in the presence of oxygen to efficiently produce hydrophilic first by-products. The primary by-product is oxidized into water, and the easily decomposable secondary by-product produced by hydration by contacting the primary by-product with water whose pH has been adjusted from alkaline to neutral is efficiently converted into a phosphorus compound and nitrogen. Since at least one of the compounds is added and decomposed by the microorganisms supported on activated carbon, the activity of the microorganisms is increased, and the secondary by-products can be converted into nutrients without adding an organic substance which is a nutrient of the microorganisms. As a result, the increase in operating costs and the generation of excess sludge due to the addition of organic substances are reduced, and the volatile organic chlorine compounds are efficiently rendered harmless.
【0011】請求項2記載の揮発性有機塩素化合物の処
理方法は、請求項1記載の揮発性有機塩素化合物の処理
方法において、活性炭は、少なくとも一部に燐化合物お
よび窒素化合物の少なくともいずれか一方を含有する窒
素−燐供給充填材を含有するものである。According to a second aspect of the present invention, there is provided the method for treating a volatile organic chlorine compound according to the first aspect, wherein the activated carbon has at least a portion of at least one of a phosphorus compound and a nitrogen compound. And a nitrogen-phosphorus supply filler containing
【0012】そして、少なくとも一部に燐化合物および
窒素化合物の少なくともいずれか一方を含有する窒素−
燐供給充填材を含有する活性炭を用いるため、別途燐化
合物および窒素化合物の少なくともいずれか一方を添加
する構成が不要で、容易に揮発性有機塩素化合物が処理
される。[0012] A nitrogen compound containing at least a phosphorus compound and / or a nitrogen compound at least partially.
Since activated carbon containing a phosphorus supply filler is used, there is no need to separately add at least one of a phosphorus compound and a nitrogen compound, and volatile organic chlorine compounds can be easily treated.
【0013】請求項3記載の揮発性有機塩素化合物の処
理方法は、請求項1記載の揮発性有機塩素化合物の処理
方法において、活性炭は、骨炭であるものである。According to a third aspect of the present invention, in the method for treating a volatile organic chlorine compound, the activated carbon is bone charcoal.
【0014】そして、活性炭に骨炭を用いるため、別途
化合物および窒素化合物の少なくともいずれか一方を添
加する構成が不要で、容易に揮発性有機塩素化合物が処
理される。Since bone charcoal is used as activated carbon, there is no need to separately add at least one of a compound and a nitrogen compound, and volatile organic chlorine compounds can be easily treated.
【0015】請求項4記載の揮発性有機塩素化合物の処
理方法は、請求項2記載の揮発性有機塩素化合物の処理
方法において、窒素−燐供給充填材は、リン酸アンモニ
ウムマグネシウムであるものである。According to a fourth aspect of the present invention, there is provided the method for treating a volatile organic chlorine compound according to the second aspect, wherein the nitrogen-phosphorus supply filler is ammonium magnesium phosphate. .
【0016】そして、窒素−燐供給充填材としてリン酸
アンモニウムマグネシウムを用いることから、例えば屎
尿処理の際に汚泥として生じるリン酸アンモニウムマグ
ネシウムが利用可能となり、効率よく揮発性有機塩素化
合物が処理される。Further, since ammonium magnesium phosphate is used as the nitrogen-phosphorus supply filler, for example, ammonium magnesium phosphate generated as sludge at the time of treating human waste can be used, and volatile organic chlorine compounds can be efficiently treated. .
【0017】請求項5記載の揮発性有機塩素化合物の処
理方法は、請求項1ないし4いずれか一記載の揮発性有
機塩素化合物の処理方法において、第1次副生成物と水
との接触の際に水を循環させて生成する第2次副生成物
を濃縮するものである。According to a fifth aspect of the present invention, there is provided a method for treating a volatile organic chlorine compound according to any one of the first to fourth aspects, wherein the first by-product is contacted with water. In this case, the secondary by-product generated by circulating water is concentrated.
【0018】そして、第1次副生成物と水との接触の際
に水を循環させて生成する第2次副生成物を濃縮するた
め、第2次副生成物の処理効率が向上するとともに、第
2次副生成物の処理コストが低減する。[0018] Since the secondary by-product generated by circulating water at the time of contact between the primary by-product and water is concentrated, the processing efficiency of the secondary by-product is improved. In addition, the processing cost of the secondary by-product is reduced.
【0019】請求項6記載の揮発性有機塩素化合物の処
理方法は、請求項1ないし5いずれか一記載の揮発性有
機塩素化合物の処理方法において、水は、揮発性有機塩
素化合物が抽出された汚水であるものである。The method for treating a volatile organic chlorine compound according to claim 6 is the method for treating a volatile organic chlorine compound according to any one of claims 1 to 5, wherein the water is obtained by extracting the volatile organic chlorine compound. It is sewage.
【0020】そして、第1次副生成物と接触させて易分
解性の第2次副生成物を生成させる水として揮発性有機
塩素化合物を抽出した汚水を再利用するため、後段の生
物活性炭による処理により第2次副生成物とともに汚水
が処理され、また第1次副生成物と接触させるための水
を別途必要とせず、処理の効率化が図れる。In order to reuse the wastewater from which the volatile organic chlorine compound has been extracted as the water which is brought into contact with the primary by-product to produce a readily decomposable secondary by-product, the bioactive carbon in the latter stage is used. By the treatment, the wastewater is treated together with the secondary by-product, and the water for contacting the primary by-product is not separately required, so that the efficiency of the treatment can be improved.
【0021】請求項7記載の揮発性有機塩素化合物の処
理装置は、ジクロルエチレン、トリクロルエチレンおよ
びテトラクロルエチレンの少なくともいずれか1つの揮
発性有機塩素化合物を含有する汚水から前記揮発性有機
塩素化合物を抽出する抽出手段と、この抽出手段にて抽
出した前記揮発性有機塩素化合物に紫外線を酸素存在下
で紫外線を照射して酸化し親水性の第1次副生成物を生
成させる紫外線照射手段と、この紫外線照射手段により
前記第1次副生成物を水に接触させて水和させ易分解性
の第2次副生成物を生成する分解手段と、この分解手段
にて生成した第2次副生成物を含有する水のpHをアル
カリ性から中性の範囲にpH調整するpH調整手段と、
このpH調整手段にてpHが調整された水に燐化合物お
よび窒素化合物の少なくともいずれか一方を添加する添
加手段と、微生物を担持する活性炭を収容し、前記添加
手段にて燐化合物および窒素化合物の少なくともいずれ
か一方が添加された水に含有する前記第2次副生成物を
前記活性炭に担持させた微生物により分解する生物活性
炭手段とを具備したものである。The apparatus for treating a volatile organic chlorine compound according to claim 7 is characterized in that the volatile organic chlorine compound is converted from wastewater containing at least one volatile organic chlorine compound of dichloroethylene, trichloroethylene and tetrachloroethylene. Extracting means for extracting the volatile organic chlorine compound extracted by the extracting means, and irradiating the volatile organic chlorine compound with ultraviolet rays in the presence of oxygen in the presence of oxygen to oxidize and generate a hydrophilic primary by-product; A decomposing means for bringing the primary by-product into contact with water to hydrate it by this ultraviolet irradiation means to produce an easily decomposable secondary by-product; and a secondary by-product produced by this decomposing means. PH adjusting means for adjusting the pH of water containing the product to a range from alkaline to neutral,
An addition unit for adding at least one of a phosphorus compound and a nitrogen compound to water whose pH has been adjusted by the pH adjustment unit, and an activated carbon carrying microorganisms are accommodated. A biological activated carbon means for decomposing the secondary by-product contained in the water to which at least one of them is added by a microorganism carried on the activated carbon.
【0022】そして、抽出手段にて汚水から抽出したジ
クロルエチレン、トリクロルエチレンおよびテトラクロ
ルエチレンの少なくともいずれか1つの揮発性有機塩素
化合物に、紫外線照射手段にて酸素存在下で紫外線を照
射して効率よく親水性の第1次副生成物に酸化し、この
第1次副生成物をpH調整手段にてアルカリ性から中性
の範囲にpH調整した水に分解手段にて接触させて水和
させ効率よく生成した易分解性の第2次副生成物を、添
加手段にて燐化合物および窒素化合物の少なくともいず
れか一方を添加して、生物活性炭手段の活性炭に担持さ
せた微生物により分解するため、微生物の活性が増大
し、別途微生物の栄養源となる有機物を添加することな
く第2次副生成物が栄養源として分解され、有機物の添
加による運転コストの増大および余剰汚泥の発生が低減
し、効率よく揮発性有機塩素化合物を無害化する。The volatile organic chlorine compound of at least one of dichloroethylene, trichloroethylene and tetrachloroethylene extracted from the wastewater by the extraction means is irradiated with ultraviolet rays in the presence of oxygen by ultraviolet irradiation means. Efficiently oxidizes to a hydrophilic primary by-product, and hydrates this primary by-product by contacting it with water whose pH has been adjusted from alkaline to neutral by a pH adjusting means by a decomposition means. To efficiently decompose easily produced secondary by-products by adding at least one of a phosphorus compound and a nitrogen compound by adding means and decomposing them by microorganisms supported on activated carbon of biological activated carbon means, The activity of microorganisms is increased, and secondary by-products are decomposed as nutrients without adding organic matter which is a nutrient source of the microorganisms separately. It reduces the growth and development of excess sludge, detoxifies efficiently volatile organic chlorine compounds.
【0023】請求項8記載の揮発性有機塩素化合物の処
理装置は、請求項7記載の揮発性有機塩素化合物の処理
装置において、添加手段は、燐化合物および窒素化合物
の少なくともいずれか一方を含有する窒素−燐供給充填
材する充填槽と、pH調整手段にてpHが調整された水
を前記充填槽に流入させる流入路と、前記充填槽内に貯
留する水を生物活性炭手段に流出させる流出路とを備え
たものである。[0023] The apparatus for treating a volatile organic chlorine compound according to claim 8 is the apparatus for treating a volatile organic chlorine compound according to claim 7, wherein the adding means contains at least one of a phosphorus compound and a nitrogen compound. A filling tank for supplying nitrogen-phosphorus, a filling tank, an inflow passage for allowing water whose pH has been adjusted by the pH adjusting means to flow into the filling tank, and an outflow passage for allowing water stored in the filling tank to flow to the biological activated carbon means. It is provided with.
【0024】そして、燐化合物および窒素化合物の少な
くともいずれか一方を添加は、pH調整手段にてpHが
調整された水を流入路を介して燐化合物および窒素化合
物の少なくともいずれか一方を含有する窒素−燐供給充
填材する充填槽に流入させ、窒素−燐供給充填材から燐
化合物および窒素化合物の少なくともいずれか一方が供
給された水を流出路を介して充填槽内から生物活性炭手
段に流出させるため、第1次副生成物と接触させて易分
解性の第2次副生成物に分解した水を生物活性炭手段に
流出させる流路中で燐化合物および窒素化合物の少なく
ともいずれか一方が供給され、揮発性有機塩素化合物が
連続的に処理され、処理効率が向上する。The addition of at least one of the phosphorus compound and the nitrogen compound is carried out by adding water whose pH has been adjusted by pH adjusting means to nitrogen containing at least one of the phosphorus compound and the nitrogen compound through an inflow passage. -Flowing into the filling tank for the phosphorus-supplying filler, and allowing the water supplied with at least one of the phosphorus compound and the nitrogen compound from the nitrogen-phosphorus-supplying filler to flow out of the filling tank to the biological activated carbon means through the outflow passage. Therefore, at least one of a phosphorus compound and a nitrogen compound is supplied in a flow path in which water decomposed into a readily decomposable secondary by-product by contact with the primary by-product is discharged to the biological activated carbon means. In addition, the volatile organic chlorine compound is continuously treated, and the treatment efficiency is improved.
【0025】請求項9記載の揮発性有機塩素化合物の処
理装置は、ジクロルエチレン、トリクロルエチレンおよ
びテトラクロルエチレンの少なくともいずれか1つの揮
発性有機塩素化合物を含有する汚水から前記揮発性有機
塩素化合物を抽出する抽出手段と、この抽出手段にて抽
出した前記揮発性有機塩素化合物に紫外線を酸素存在下
で紫外線を照射して酸化し親水性の第1次副生成物を生
成させる紫外線照射手段と、この紫外線照射手段により
前記第1次副生成物を水に接触させて水和させ易分解性
の第2次副生成物を生成する分解手段と、この分解手段
にて生成した第2次副生成物を含有する水のpHをアル
カリ性から中性の範囲にpH調整するpH調整手段と、
少なくとも一部に燐化合物および窒素化合物の少なくと
もいずれか一方を含有するとともに活性炭を含有し微生
物を担持する担体を収容し、前記分解手段にて生成した
第2次副生成物を前記微生物により分解する生物活性炭
手段とを具備したものである。The volatile organic chlorine compound treatment apparatus according to the ninth aspect is characterized in that the volatile organic chlorine compound is converted from sewage containing at least one volatile organic chlorine compound of dichloroethylene, trichloroethylene and tetrachloroethylene. Extracting means for extracting the volatile organic chlorine compound extracted by the extracting means, and irradiating the volatile organic chlorine compound with ultraviolet rays in the presence of oxygen in the presence of oxygen to oxidize and generate a hydrophilic primary by-product; A decomposing means for bringing the primary by-product into contact with water to hydrate it by this ultraviolet irradiation means to produce an easily decomposable secondary by-product; and a secondary by-product produced by this decomposing means. PH adjusting means for adjusting the pH of water containing the product to a range from alkaline to neutral,
At least a portion contains at least one of a phosphorus compound and a nitrogen compound, and contains a carrier that contains activated carbon and carries a microorganism, and degrades the secondary by-product generated by the decomposition means with the microorganism. Biological activated carbon means.
【0026】そして、抽出手段にて汚水から抽出したジ
クロルエチレン、トリクロルエチレンおよびテトラクロ
ルエチレンの少なくともいずれか1つの揮発性有機塩素
化合物に、紫外線照射手段にて酸素存在下で紫外線を照
射して効率よく親水性の第1次副生成物に酸化し、この
第1次副生成物をpH調整手段にてアルカリ性から中性
の範囲にpH調整した水に分解手段にて接触させて水和
させ効率よく生成した易分解性の第2次副生成物を、添
加手段にて燐化合物および窒素化合物の少なくともいず
れか一方を添加して、生物活性炭手段の活性炭に担持さ
せた微生物により分解するため、微生物の活性が増大
し、別途微生物の栄養源となる有機物を添加することな
く第2次副生成物が栄養源として分解され、有機物の添
加による運転コストの増大および余剰汚泥の発生が低減
し、効率よく揮発性有機塩素化合物を無害化する。The volatile organic chlorine compound of at least one of dichloroethylene, trichloroethylene and tetrachloroethylene extracted from the sewage by the extraction means is irradiated with ultraviolet rays in the presence of oxygen by ultraviolet irradiation means. Efficiently oxidizes to a hydrophilic primary by-product, and hydrates this primary by-product by contacting it with water whose pH has been adjusted from alkaline to neutral by a pH adjusting means by a decomposition means. To efficiently decompose easily produced secondary by-products by adding at least one of a phosphorus compound and a nitrogen compound by adding means and decomposing them by microorganisms supported on activated carbon of biological activated carbon means, The activity of microorganisms is increased, and secondary by-products are decomposed as nutrients without adding organic matter which is a nutrient source of the microorganisms separately. It reduces the growth and development of excess sludge, detoxifies efficiently volatile organic chlorine compounds.
【0027】請求項10記載の揮発性有機塩素化合物の
処理装置は、請求項9記載の揮発性有機塩素化合物の処
理装置において、担体は、骨炭であるものである。According to a tenth aspect of the present invention, there is provided the apparatus for treating a volatile organic chlorine compound according to the ninth aspect, wherein the carrier is bone charcoal.
【0028】そして、活性炭に骨炭を用いるため、別途
燐化合物および窒素化合物の少なくともいずれか一方を
添加する構成が不要で、容易に揮発性有機塩素化合物が
処理される。Since bone charcoal is used as activated carbon, there is no need to separately add at least one of a phosphorus compound and a nitrogen compound, and volatile organic chlorine compounds can be easily treated.
【0029】請求項11記載の揮発性有機塩素化合物の
処理装置は、請求項9または10記載の揮発性有機塩素
化合物の処理装置において、担体は、リン酸アンモニウ
ムマグネシウムを含有するものである。[0029] The apparatus for treating a volatile organic chlorine compound according to claim 11 is the apparatus for treating a volatile organic chlorine compound according to claim 9 or 10, wherein the carrier contains ammonium magnesium phosphate.
【0030】そして、リン酸アンモニウムマグネシウム
を含有する担体を用いるため、担体から第2次副生成物
を処理しつつ燐化合物および窒素化合物が供給され、別
途燐化合物および窒素化合物の少なくともいずれか一方
を添加する構成が不要で、処理効率が向上するととも
に、例えば屎尿処理の際に汚泥として生じるリン酸アン
モニウムマグネシウムが利用可能となり、効率よく揮発
性有機塩素化合物が処理される。Since a carrier containing ammonium magnesium phosphate is used, a phosphorus compound and a nitrogen compound are supplied while treating the secondary by-product from the carrier, and at least one of the phosphorus compound and the nitrogen compound is separately supplied. The configuration to add is unnecessary, and the processing efficiency is improved, and ammonium magnesium phosphate generated as sludge at the time of human waste treatment can be used, and the volatile organic chlorine compound is efficiently processed.
【0031】請求項12記載の揮発性有機塩素化合物の
処理装置は、請求項7ないし11いずれか一記載の揮発
性有機塩素化合物の処理装置において、分解手段は、第
1次副生成物と水との接触の際に循環手段にて水を循環
させて生成する第2次副生成物を濃縮する閉鎖循環回路
を備えたものである。According to a twelfth aspect of the present invention, there is provided the apparatus for treating a volatile organic chlorine compound according to any one of the seventh to eleventh aspects, wherein the decomposition means comprises a primary by-product and water. And a closed circulation circuit for concentrating secondary by-products generated by circulating water with a circulating means at the time of contact with water.
【0032】そして、分解手段に第1次副生成物と水と
の接触の際に循環手段にて水を循環させて生成する第2
次副生成物を濃縮する閉鎖循環回路を設けるため、生成
する第2次副生成物が濃縮されるため、第2次副生成物
の処理効率が向上するとともに、第2次副生成物の処理
コストが低減する。Then, when the primary by-product and the water come into contact with the decomposing means, water is circulated by the circulating means to form the second by-product.
Since the secondary by-product to be produced is concentrated because the closed circulation circuit for concentrating the by-product is provided, the processing efficiency of the secondary by-product is improved, and the treatment of the secondary by-product is performed. Costs are reduced.
【0033】[0033]
【発明の実施の形態】以下、本発明の実施の一形態にお
ける揮発性有機塩素化合物の処理装置の構成を図面を参
照して説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of a volatile organic chlorine compound processing apparatus according to an embodiment of the present invention will be described below with reference to the drawings.
【0034】図1において、1は揮発性有機塩素化合物
の処理装置で、この揮発性有機塩素化合物の処理装置1
は、抽出手段としての抽出装置2を備えている。この抽
出装置2は、揮発性有機塩素化合物であるジクロルエチ
レン(CHCl=CHCl、CH2 =CCl2 )、トリ
クロルエチレン(CHCl=CCl2 )やテトラクロル
エチレン(CCl2 =CCl2 )を混入する汚水が流入
する原水管3が接続された図示しない気密構造の抽出槽
を備えている。そして、この抽出装置2は、酸素を含有
する気体である空気を曝気する図示しない曝気手段を備
え、空気の曝気にて汚水中に混入する揮発性有機塩素化
合物であるジクロルエチレン(CHCl=CHCl、C
H2 =CCl2 )、トリクロルエチレン(CHCl=C
Cl2 )やテトラクロルエチレン(CCl2 =CC
l2 )を空気に抽出させる。なお、曝気手段の代わりに
脱気手段を用い、真空脱気にて汚水中の揮発性有機塩素
化合物を空気中に抽出してもよい。さらに、抽出装置2
には、揮発性有機塩素化合物が抽出された汚水を第1次
処理水として流出する排水管4が接続されている。In FIG. 1, reference numeral 1 denotes an apparatus for treating a volatile organic chlorine compound.
Is provided with an extraction device 2 as extraction means. The extraction device 2 mixes volatile organic chlorine compounds such as dichloroethylene (CHCl = CHCl, CH 2 = CCl 2 ), trichloroethylene (CHCl = CCl 2 ), and tetrachloroethylene (CCl 2 = CCl 2 ). An airtight extraction tank (not shown) is connected to the raw water pipe 3 into which sewage flows. The extraction device 2 includes an aeration unit (not shown) for aerating air, which is a gas containing oxygen, and dichloroethylene (CHCl = CHCl), which is a volatile organic chlorine compound mixed into sewage by aeration of air. , C
H 2 = CCl 2 ), trichloroethylene (CHCl = C
Cl 2 ) or tetrachloroethylene (CCl 2 = CC)
l 2 ) is allowed to extract into the air. In addition, you may extract a volatile organic chlorine compound in sewage into air by vacuum deaeration using a deaeration means instead of an aeration means. Furthermore, the extraction device 2
Is connected to a drain pipe 4 from which sewage from which volatile organic chlorine compounds have been extracted flows out as primary treated water.
【0035】そして、この抽出装置2には、第1送気管
6を介して紫外線照射手段としての紫外線照射槽(UV
照射槽)7が接続されている。この紫外線照射槽7は、
プラグフロー型などの気密構造に形成され、キセノンラ
ンプ、低圧水銀ランプ、高圧水銀ランプなどの紫外線を
照光する図示しない紫外線ランプを配設している。この
紫外線ランプは、波長が300nm以下の紫外線を照射可
能、例えば185nmおよび254nmの波長の紫外線を照
射する119Wの合成石英ガラス管ランプなど、不純物
が0.001%以下の合成石英ガラスにて形成され、波
長が200nm以下の紫外線を50%以上透過する図示し
ないガラス管にて構成されている。そして、抽出装置2
から空気中の抽出された揮発性有機塩素化合物に空気中
の酸素が存在する状態下で紫外線を照射することによ
り、酸化分解された第1次副生成物、例えばテトラクロ
ルエチレン(CCl2 =CCl2 )の場合、塩化カルボ
ニル(COCl2 )やトリクロルアセチルクロリド(C
Cl3 COCl:TCAA)などに分解される。The extraction device 2 is provided with an ultraviolet irradiation tank (UV) as an ultraviolet irradiation means via a first air supply pipe 6.
(Irradiation tank) 7 is connected. This ultraviolet irradiation tank 7
An ultraviolet lamp (not shown) which is formed in an airtight structure such as a plug flow type and irradiates ultraviolet rays such as a xenon lamp, a low-pressure mercury lamp, and a high-pressure mercury lamp is provided. This ultraviolet lamp can be irradiated with ultraviolet rays having a wavelength of 300 nm or less, for example, a synthetic quartz glass tube lamp of 119 W or less, which emits ultraviolet rays having wavelengths of 185 nm and 254 nm, is made of synthetic quartz glass having impurities of 0.001% or less. And a glass tube (not shown) that transmits 50% or more of ultraviolet rays having a wavelength of 200 nm or less. And the extraction device 2
Irradiates the extracted volatile organochlorine compounds in the air with ultraviolet rays in the presence of oxygen in the air, thereby oxidatively decomposing primary by-products such as tetrachlorethylene (CCl 2 CCCl). 2 ) In the case of carbonyl chloride (COCl 2 ) or trichloroacetyl chloride (C
Cl 3 COCl: TCAA).
【0036】また、この紫外線照射槽7には、第2送気
管9を介して分解手段10が接続されている。この分解手
段10は、第2送気管9が接続される吸収槽11と、この吸
収槽11に水が流通可能な第1送水管12を介して接続され
る吸収液槽13と、吸収液槽13内の水を吸収槽11に循環さ
せる循環手段として図示しないポンプを備えた循環管14
とを備えている。A decomposition means 10 is connected to the ultraviolet irradiation tank 7 via a second air supply pipe 9. The decomposition means 10 includes an absorption tank 11 to which the second air supply pipe 9 is connected, an absorption liquid tank 13 connected to the absorption tank 11 via a first water supply pipe 12 through which water can flow, and an absorption liquid tank Circulation pipe 14 provided with a pump (not shown) as a circulating means for circulating water in 13 to absorption tank 11
And
【0037】そして、吸収槽11は、酸性水などにより腐
食されないように耐腐食構造に形成されている。また、
吸収槽11には、第2送気管9から送気される第1次副生
成物を含有する空気を循環管14にて循環する水と気液混
合する図示しないエジェクタを上部に備えている。この
第1送水管12および循環管14にて閉鎖循環回路15が構成
される。そして、この第1次副生成物の水との接触によ
り、ジクロルアセチルクロリド(Cl2 CHCOCl)
は第2次副生成物としてのジクロル酢酸(CHCl2 C
OOH:DCAA)として溶解し、トリクロルアセチル
クロリド(CCl3 COCl)は第2次副生成物として
のトリクロル酢酸(CCl3 COOH:TCAA)とし
て溶解する。また、吸収槽11には、第1次副生成物が水
との接触により除去された空気を排気する排気管16が接
続されている。The absorption tank 11 is formed to have a corrosion-resistant structure so as not to be corroded by acidic water or the like. Also,
The absorption tank 11 is provided with an ejector (not shown) for mixing air containing primary by-products supplied from the second air supply pipe 9 with water circulating in the circulation pipe 14 in a gas-liquid manner. The first water supply pipe 12 and the circulation pipe 14 constitute a closed circulation circuit 15. Then, by contact of the primary by-product with water, dichloroacetyl chloride (Cl 2 CHCOCl)
Represents dichloroacetic acid (CHCl 2 C) as a secondary by-product
OOH: DCAA), and trichloroacetyl chloride (CCl 3 COCl) dissolves as a secondary by-product, trichloroacetic acid (CCl 3 COOH: TCAA). An exhaust pipe 16 for exhausting air from which primary by-products have been removed by contact with water is connected to the absorption tank 11.
【0038】一方、吸収液槽13は、同様に酸性水などに
より腐食されないように耐腐食構造に形成されている。
そして、吸収液槽13には、第2次副生成物を含有する水
のpHを検出して、水をアルカリ性から中性の範囲、例
えばpH7〜8の弱アルカリ性に制御するpH調整手段
としての第1pH制御装置18が設けられている。さら
に、吸収液槽13には、貯留する水が所定量以下とならな
いように水を供給する水供給手段としての水供給管19が
接続されている。On the other hand, the absorbing liquid tank 13 is also formed to have a corrosion resistant structure so as not to be corroded by acidic water or the like.
Then, the absorption liquid tank 13 detects the pH of the water containing the secondary by-product, and serves as a pH adjusting means for controlling the water to be in a range from alkaline to neutral, for example, weak alkaline of pH 7 to 8. A first pH controller 18 is provided. Further, the absorption liquid tank 13 is connected to a water supply pipe 19 as a water supply means for supplying water so that the stored water does not become less than a predetermined amount.
【0039】また、分解手段10の吸収液槽13には、第2
送水管21を介して生物活性炭手段22が接続されている。
この生物活性炭手段22は、第2送水管21が接続される調
整槽23と、この調整槽23に第3送水管24を介して接続さ
れる生物活性炭槽25と、この生物活性炭槽25内の一部の
水を調整槽23に返送する返送管26とを備えている。The absorption liquid tank 13 of the decomposition means 10 has a second
The biological activated carbon means 22 is connected via a water pipe 21.
The biological activated carbon means 22 includes a regulating tank 23 to which the second water pipe 21 is connected, a biological activated carbon tank 25 connected to the regulating tank 23 via a third water pipe 24, A return pipe 26 for returning a part of the water to the adjustment tank 23 is provided.
【0040】そして、調整槽23には、第2送水管21から
送水される第2次副生成物を含有する水のpHを検出し
てアルカリ性から中性の範囲、例えばpH7〜8の弱ア
ルカリ性に制御するpH調整手段としての第2pH制御
装置27が設けられている。また、調整槽23には、第2送
水管21を介して流入した第2次副生成物を含有する水に
窒素化合物および燐化合物の少なくともいずれか一方を
添加する添加手段としてのNP添加装置28が接続されて
いる。Then, the pH of the water containing the secondary by-product sent from the second water pipe 21 is detected in the adjusting tank 23 to detect the pH of the water from an alkaline to neutral range, for example, a weak alkaline pH range of 7 to 8. A second pH control device 27 is provided as a pH adjusting means for controlling the pH. The adjusting tank 23 has an NP adding device 28 as an adding means for adding at least one of a nitrogen compound and a phosphorus compound to the water containing the secondary by-products flowing in through the second water supply pipe 21. Is connected.
【0041】また、生物活性炭槽25には活性炭を主体と
し微生物を担持する図示しない担体が収容され、第3送
水管24を介して流入した水中に含有する第2次副生成物
を微生物にて分解する。そして、生物活性炭手段22の生
物活性炭槽25には、第2次副生成物が分解された水を処
理水として流出する放流管30が接続されている。The biological activated carbon tank 25 contains a carrier (not shown) mainly composed of activated carbon and carrying microorganisms. The secondary by-products contained in the water flowing in through the third water pipe 24 are converted by microorganisms. Decompose. A discharge pipe 30 is connected to the biological activated carbon tank 25 of the biological activated carbon means 22 for discharging water in which the secondary by-product is decomposed as treated water.
【0042】次に、上記実施の一形態の処理装置におけ
る揮発性有機塩素化合物の処理動作について説明する。Next, the processing operation of the volatile organic chlorine compound in the processing apparatus of the above embodiment will be described.
【0043】揮発性有機塩素化合物であるジクロルエチ
レン(CHCl=CHCl、CH2=CCl2 )、トリ
クロルエチレン(CHCl=CCl2 )やテトラクロル
エチレン(CCl2 =CCl2 )を含有する汚水を、原
水管3を介して抽出装置2に流入し、この汚水に空気を
散気して汚水中の揮発性有機塩素化合物を空気中に揮発
させる。そして、この揮発性有機塩素化合物を含有する
空気を第1送気管6を介して紫外線照射槽7に流入す
る。また、揮発性有機塩素化合物が除かれた汚水は、排
水管4を介して排出される、別途汚水処理される。Soil containing dichloroethylene (CHCl = CHCl, CH 2 = CCl 2 ), trichloroethylene (CHCl = CCl 2 ) or tetrachloroethylene (CCl 2 = CCl 2 ), which is a volatile organic chlorine compound, The water flows into the extraction device 2 through the raw water pipe 3, and air is diffused into the wastewater to volatilize volatile organic chlorine compounds in the wastewater into the air. Then, the air containing the volatile organic chlorine compound flows into the ultraviolet irradiation tank 7 through the first air supply pipe 6. Further, the sewage from which the volatile organic chlorine compounds have been removed is discharged through the drain pipe 4 and separately treated.
【0044】次に、紫外線照射槽7の図示しない紫外線
ランプを点灯させ、抽出装置2から第1送気管6を介し
て紫外線照射槽7に流入した揮発性有機塩素化合物を含
有する空気に、波長が300nm以下、特に200nm以下
の紫外線を所定時間、例えば20秒程度照射する。この
紫外線の照射により、揮発性有機塩素化合物のほぼ全量
が、空気中の酸素により親水性の塩化カルボニル(CO
Cl2 )やジクロルアセチルクロリド(Cl2 CHCO
Cl)、トリクロルアセチルクロリド(CCl3 COC
l)、一酸化炭素(CO)、二酸化炭素(CO2 )、塩
化水素(HCl)などの第1次副生成物に酸化分解され
る。そして、紫外線を所定時間照射後、紫外線照射槽7
内の空気を第2送気管9を介して分解手段10の吸収槽11
に送気する。Next, an ultraviolet lamp (not shown) of the ultraviolet irradiation tank 7 is turned on, and the air containing the volatile organic chlorine compound which flows into the ultraviolet irradiation tank 7 from the extraction device 2 through the first air supply pipe 6 has a wavelength. Is irradiated with ultraviolet rays of 300 nm or less, particularly 200 nm or less for a predetermined time, for example, about 20 seconds. By the irradiation of the ultraviolet rays, almost all of the volatile organic chlorine compounds are converted to carbonyl chloride (CO 2) which is hydrophilic by oxygen in the air.
Cl 2 ) and dichloroacetyl chloride (Cl 2 CHCO)
Cl), trichloroacetyl chloride (CCl 3 COC)
l), is oxidatively decomposed into primary by-products such as carbon monoxide (CO), carbon dioxide (CO 2 ), and hydrogen chloride (HCl). Then, after irradiation with ultraviolet rays for a predetermined time, the ultraviolet irradiation tank 7
The air inside the vessel is passed through the second air supply pipe 9 to the absorption tank 11 of the decomposition means 10.
To the air.
【0045】一方、吸収槽11内にポンプを駆動して循環
管14を介して分解手段10の吸収液槽13から水を、エジェ
クタにて第2送気管9を介して送気された空気とともに
吸収槽11に流入させる。このエジェクタを介した水の流
入の際、循環する水にて第1次副生成物を含有する空気
が巻き込まれるように吸引され、第1次副生成物を含有
する空気が細かい気泡となって水と気液混合し、吸収槽
11に流入する。この気液混合により、親水性に酸化分解
された塩化カルボニル(COCl2 )や一酸化炭素(C
O)、二酸化炭素(CO2 )、塩化水素(HCl)など
は水に効率よく溶解し、ジクロルアセチルクロリド(C
l2 CHCOCl)はジクロル酢酸(CHCl2 COO
H:DCAA)として溶解し、トリクロルアセチルクロ
リド(CCl3 COCl)は、トリクロル酢酸(CCl
3 COOH:TCAA)として溶解し、第2次副生成物
となる。なお、空気中の酸素の一部も合わせて溶解す
る。さらに、吸収槽11内に流入して吸収槽11の底部に貯
留する水と衝突することにより、エジェクタによる気液
混合にて溶解しきれずに吸収槽11内に流入した第1次副
生成物や空気中の酸素も巻き込まれて水に溶解するとと
もに、吸収槽11の底部に貯留する水が攪拌される。On the other hand, a pump is driven into the absorption tank 11 to supply water from the absorption liquid tank 13 of the decomposing means 10 via the circulation pipe 14 together with air supplied through the second air supply pipe 9 by the ejector. It flows into the absorption tank 11. During the inflow of water through the ejector, the air containing the primary by-product is sucked into the circulating water so as to be entrained, and the air containing the primary by-product becomes fine bubbles. Water and gas-liquid mixing, absorption tank
Flow into 11. By this gas-liquid mixing, carbonyl chloride (COCl 2 ) and carbon monoxide (C
O), carbon dioxide (CO 2 ), hydrogen chloride (HCl) and the like are efficiently dissolved in water, and dichloroacetyl chloride (C
l 2 CHCOCl) is dichloroacetic acid (CHCl 2 COO).
H: DCAA), and trichloroacetyl chloride (CCl 3 COCl) is dissolved in trichloroacetic acid (CCl 3
3 COOH: TCAA) to form a secondary by-product. Note that a part of oxygen in the air is dissolved together. Further, by colliding with water that flows into the absorption tank 11 and is stored at the bottom of the absorption tank 11, primary by-products that flow into the absorption tank 11 without being completely dissolved by gas-liquid mixing by the ejector and Oxygen in the air is also entrained and dissolved in the water, and the water stored at the bottom of the absorption tank 11 is stirred.
【0046】そして、第1次副生成物の接触により第2
次副生成物を含有する水は、第1送水管12を介して吸収
液槽13内に流入する。そして、この吸収液槽13に流入し
た水は塩化水素が溶解するため、第1pH制御装置18に
より水酸化ナトリウム(NaOH)や炭酸ナトリウム
(Na2 CO3 )、炭酸水素ナトリウム(NaHC
O3)、水酸化カリウム(KOH)などのアルカリを添
加して略中性から弱アルカリ性に調整する。そして、略
中性から弱アルカリ性に調整された水の一部は、循環管
14を介して再び吸収槽11に返送されて循環される。な
お、吸収液槽13内の貯留する水は、適宜水供給管19から
水が適宜供給されて所定量以下とならないようになって
いる。Then, the second by-product is brought into contact with the second by-product.
The water containing the by-product flows into the absorption liquid tank 13 through the first water supply pipe 12. Since hydrogen chloride is dissolved in the water flowing into the absorption liquid tank 13, the first pH controller 18 controls sodium hydroxide (NaOH), sodium carbonate (Na 2 CO 3 ), and sodium hydrogen carbonate (NaHC).
O 3 ) and potassium hydroxide (KOH) are added to adjust the pH from almost neutral to slightly alkaline. Part of the water adjusted from almost neutral to slightly alkaline is
It is returned to the absorption tank 11 again via 14 and circulated. It should be noted that the water stored in the absorption liquid tank 13 is supplied from a water supply pipe 19 as appropriate, so that it does not become less than a predetermined amount.
【0047】また、吸収液槽13内の水は、第2送水管21
を介して生物活性炭手段22の調整槽23に流入される。そ
して、調整槽23内に流入した水には、第2pH制御手段
により略中性から弱アルカリ性に調整されつつNP添加
装置にて窒素化合物および燐化合物が添加される。さら
に、この窒素化合物および燐化合物が添加された調整槽
23内の水は、第3送水管24を介して生物活性炭槽25に流
入される。そして、生物活性炭槽25内に流入された第2
次副生成物を含有する水は、担体の活性炭にて第2次副
生成物の一部が吸着除去されるとともに担体に担持する
微生物により第2次副生成物を炭素源として分解処理す
る。すなわち、生物活性炭槽内に流入する水は、ハロ酢
酸であるジクロル酢酸あるいはトリクロル酢酸と、pH
調整により生成した無害の無機物質塩と、無害の炭酸ガ
スや酸素とを含有することから、微生物はハロ酢酸を炭
素源して分解吸収する。この微生物の処理により、返送
管26にて調整槽23および生物活性炭槽25で循環する水
は、次第に無機物質の塩や炭酸ガス、酸素のみを含有す
る状態となる。The water in the absorbing liquid tank 13 is supplied to the second water pipe 21.
Through the control tank 23 of the biological activated carbon means 22. Then, the nitrogen compound and the phosphorus compound are added to the water flowing into the adjustment tank 23 by the NP addition device while being adjusted from substantially neutral to weakly alkaline by the second pH control means. Further, a regulating tank to which the nitrogen compound and the phosphorus compound are added.
The water in 23 flows into the biological activated carbon tank 25 via the third water pipe 24. And the second flowing into the biological activated carbon tank 25
The water containing the secondary by-products is partially desorbed and removed by the activated carbon of the carrier and decomposed by the microorganisms carried on the carrier using the secondary by-products as a carbon source. In other words, the water flowing into the biological activated carbon tank is dihaloacetic acid or trichloroacetic acid
Since it contains the harmless inorganic substance salt generated by the adjustment and harmless carbon dioxide gas and oxygen, the microorganism decomposes and absorbs haloacetic acid as a carbon source. As a result of the treatment of the microorganisms, the water circulating in the adjusting tank 23 and the biological activated carbon tank 25 in the return pipe 26 gradually contains only inorganic salt, carbon dioxide, and oxygen.
【0048】そして、生物活性炭槽25内の水の一部は、
放流管30を介して排出され、別途塩などを除去する汚水
処理された後に無害の処理水として放流される。Then, part of the water in the biological activated carbon tank 25 is
The water is discharged through the discharge pipe 30 and is separately discharged as harmless treated water after being subjected to sewage treatment for removing salts and the like.
【0049】次に、上記実施の形態の作用を説明する。Next, the operation of the above embodiment will be described.
【0050】テトラクロルエチレン(CCl2 =CCl
2 )を親水化して生成する副生成物であるトリクロル酢
酸(CCl3 COOH)は、理論的酸素要求量が0.0
9g−O2 /g−TCAAと非常に低く比較的に難分解
性であることから、微生物にて処理するには活性汚泥を
維持する必要があり、この活性汚泥の維持は他の有機物
の栄養源が必要となる。そこで、図6に示すように、従
来の活性汚泥による活性汚泥槽31に、炭素源、窒素源お
よび燐源を供給するCNP添加装置32を設けるととも
に、活性汚泥の流出を防止する膜分離装置33を接続した
実験装置34を構成した。Tetrachloroethylene (CCl 2 CCCl)
Trichloracetic acid (CCl 3 COOH), which is a by-product formed by hydrophilizing 2 ), has a theoretical oxygen demand of 0.0
Since it is 9g-O 2 / g-TCAA and very low relatively persistent, to process in microorganisms must maintain activated sludge, maintaining the activated sludge in the other organic nutrient Source is required. Therefore, as shown in FIG. 6, a conventional activated sludge tank 31 made of activated sludge is provided with a CNP addition device 32 for supplying a carbon source, a nitrogen source and a phosphorus source, and a membrane separation device 33 for preventing outflow of the activated sludge. Was connected to the experimental apparatus 34.
【0051】すなわち、図6に示すように、実験装置34
は、原水管3が接続され排水管4を有した抽出槽を備え
た抽出装置2に、第1送気管6を介して紫外線照射槽7
を接続する。さらに、紫外線照射槽7には、第2送気管
9を介して、排気管16を備えた吸収槽11と、水供給管19
が接続されるとともに第1pH制御装置18が接続された
吸収液槽13と、第1送水管12および循環管14を備えた閉
鎖循環回路15とを有した分解手段10を接続する。そし
て、この分離手段10に第2pH制御装置27および炭素源
例えば酵母エキス、窒素源となる窒素化合物および燐源
となる燐化合物を供給するCNP添加装置32が接続され
た活性汚泥槽31を接続するとともに、この活性汚泥槽31
に放流管30が接続された膜分離装置33を接続して実験装
置34を構成する。ここで、膜分離装置33としては、分画
分子量が2万程度のUF膜を備えたものを用いた。That is, as shown in FIG.
Is connected to an extraction device 2 having an extraction tank having a drain pipe 4 to which a raw water pipe 3 is connected.
Connect. Further, the ultraviolet irradiation tank 7 has an absorption tank 11 provided with an exhaust pipe 16 and a water supply pipe 19 via a second air supply pipe 9.
Is connected, and the decomposition means 10 having the closed circulation circuit 15 including the first water supply pipe 12 and the circulation pipe 14 is connected to the absorption liquid tank 13 to which the first pH control device 18 is connected. The separation means 10 is connected to a second pH control device 27 and an activated sludge tank 31 to which a CNP adding device 32 for supplying a carbon source such as yeast extract, a nitrogen compound serving as a nitrogen source and a phosphorus compound serving as a phosphorus source is connected. With this activated sludge tank 31
An experimental device 34 is constructed by connecting a membrane separation device 33 to which a discharge pipe 30 is connected. Here, as the membrane separation device 33, one provided with a UF membrane having a molecular weight cut off of about 20,000 was used.
【0052】そして、汚泥濃度を約4000mg/リッ
トルに調整した活性汚泥槽31に流入するトリクロル酢酸
を4000mg/リットルとし、滞留時間が3日で、ト
リクロル酢酸の負荷を0.33g−TCAA/gVSS
/日、容積負荷を1.3kg−TCAA/m3 /日と
し、CNP添加装置32からトリクロル酢酸とのBOD比
率で約倍の量の酵母エキスを添加し、活性汚泥処理の際
のpHは微生物の活性が大きい7.5に自動設定し、水
温を30℃に保温して活性汚泥槽の底部に配設した曝気
装置にて15リットル/分で空気を曝気して処理した。
その結果を図7に示す。Then, the trichloracetic acid flowing into the activated sludge tank 31 whose sludge concentration was adjusted to about 4000 mg / liter was 4000 mg / liter, the residence time was 3 days, and the load of trichloroacetic acid was 0.33 g-TCAA / g VSSA.
/ Day, volume load is set to 1.3 kg-TCAA / m 3 / day, about twice the amount of yeast extract in BOD ratio with trichloroacetic acid is added from the CNP addition device 32, and the pH during activated sludge treatment is controlled by microorganisms. The activity of the activated sludge was automatically set to 7.5, the water temperature was kept at 30 ° C., and air was aerated at 15 liters / minute by an aeration device arranged at the bottom of the activated sludge tank.
FIG. 7 shows the result.
【0053】この図7に示す結果から、酵母エキスを添
加している15日間ではトリクロル酢酸は良好に分解さ
れてほとんど検出されなかったが、酵母エキスの添加を
中止した15日以降では急激にトリクロル酢酸が検出さ
れ、微生物によりトリクロル酢酸が分解されなかったこ
とがわかる。このことから、炭素源は微生物の増殖のみ
だけでなくトリクロル酢酸の分解にも不可欠であること
がわかる。そして、この実験装置34では、炭素源の他に
栄養元素となる窒素源および燐源を添加する装置も合わ
せて必要となり、装置構成が複雑大型化し、酵母エキ
ス、窒素源および燐源の3種類の添加により運転コスト
の増大も生じる。さらに、酵母エキスを添加することに
より余剰汚泥が発生し、この余剰汚泥を別途処理する工
程も必要となった。From the results shown in FIG. 7, trichloracetic acid was satisfactorily decomposed for 15 days while the yeast extract was added, and was hardly detected. However, the trichloroacetic acid was rapidly reduced after 15 days when the addition of the yeast extract was stopped. Acetic acid was detected, indicating that trichloroacetic acid was not decomposed by the microorganism. This indicates that the carbon source is indispensable not only for the growth of microorganisms but also for the decomposition of trichloroacetic acid. In this experimental device 34, a device for adding a nitrogen source and a phosphorus source, which are nutrient elements, in addition to the carbon source is also required. The configuration of the device becomes complicated and large, and three types of yeast extract, nitrogen source and phosphorus source are used. The addition of also increases operating costs. Furthermore, the addition of the yeast extract generates excess sludge, which requires a separate treatment of the excess sludge.
【0054】一方、本発明の生物活性炭による処理装置
41を用いて同様に実験した。処理装置41としては、図2
に示すように、原水管3が接続された抽出装置2に第1
送気管6を介して接続される紫外線照射槽7に第2送気
管9を介して、吸収槽11、吸収液槽13および閉路循環回
路15を備えた分解手段10に接続する。そして、この分解
手段10に、第2pH制御装置27およびNP添加装置28が
接続された調整槽23を接続するとともに、調整槽23に生
物活性炭槽25を接続した。また、抽出装置2に接続され
る排水管4を分解手段10の吸収液槽13に接続して、抽出
装置2から流出される揮発性有機塩素化合物が抽出され
た汚水である第1処理水を第1次副生成物を含有する空
気と接触させる水とした。さらに、吸収槽11内の汚水と
接触された空気を排気する排気管16を調整槽23に接続
し、調整槽23に第2排気管42を接続して処理装置41を構
成した。ここで、生物活性炭槽25に充填する活性炭の充
填活性炭容積は、0.5リットルとし、汚水との接触時
間は約10分とした。その結果を図3に示す。On the other hand, a treatment apparatus using the biological activated carbon of the present invention
The same experiment was performed using 41. As the processing device 41, FIG.
As shown in FIG. 1, the extraction device 2 to which the raw water pipe 3 is connected has the first
An ultraviolet irradiation tank 7 connected via an air supply pipe 6 is connected via a second air supply pipe 9 to a decomposition means 10 having an absorption tank 11, an absorption liquid tank 13 and a closed circuit circuit 15. Then, an adjusting tank 23 to which a second pH control device 27 and an NP adding device 28 were connected was connected to the decomposition means 10, and a biological activated carbon tank 25 was connected to the adjusting tank 23. Further, the drain pipe 4 connected to the extraction device 2 is connected to the absorption liquid tank 13 of the decomposing means 10, and the first treated water, which is the effluent from which the volatile organic chlorine compounds are extracted from the extraction device 2, is extracted. This was water to be brought into contact with air containing the primary by-product. Further, an exhaust pipe 16 for exhausting the air contacted with the sewage in the absorption tank 11 was connected to the adjusting tank 23, and a second exhaust pipe 42 was connected to the adjusting tank 23 to constitute a processing apparatus 41. Here, the volume of the activated carbon charged into the biological activated carbon tank 25 was 0.5 liter, and the contact time with the wastewater was about 10 minutes. The result is shown in FIG.
【0055】図3に示す結果から、生物活性炭槽25への
第2次副生成物を含有する水の通水初期では、トリクロ
ル酢酸はほとんど検出されなかったが、その後活性炭の
吸着能がほぼなくなり、約1ヶ月経過した時点でトリク
ロル酢酸の分解率が8割程度となった。この後、負荷を
9.9kg−TCAA/m3 /日に低減した結果、分解
率が99%以上で安定して処理された。このように、容
積負荷は若干低下するものの、有機物の添加および生物
活性炭槽での空気の曝気をすることなく略同程度に処理
できた。すなわち、有機物の添加が不要で装置構成を簡
略化できるとともに運転コストを低減できることがわか
る。From the results shown in FIG. 3, trichloroacetic acid was hardly detected at the beginning of the passage of the water containing the secondary by-products into the biological activated carbon tank 25, but the adsorption capacity of the activated carbon almost disappeared thereafter. After about one month, the decomposition rate of trichloroacetic acid became about 80%. Thereafter, the load was reduced to 9.9 kg-TCAA / m 3 / day. As a result, the treatment was stably performed at a decomposition rate of 99% or more. As described above, although the volume load was slightly reduced, the treatment could be performed at substantially the same level without adding an organic substance and aerating the air in the biological activated carbon tank. That is, it is understood that the addition of an organic substance is not required, the apparatus configuration can be simplified, and the operating cost can be reduced.
【0056】次に、図1に示すNP添加装置28の代わり
に窒素化合物および燐化合物を含有する窒素−燐供給充
填材を汚水の流通途中に配設して、汚水の流通の際に窒
素化合物および燐化合物を供給する処理装置51にて同様
に実験した。Next, instead of the NP adding device 28 shown in FIG. 1, a nitrogen-phosphorus supply filler containing a nitrogen compound and a phosphorus compound is disposed in the middle of the flow of the wastewater, and the nitrogen compound is supplied during the flow of the wastewater. The same experiment was conducted with the processing apparatus 51 for supplying a phosphorus compound.
【0057】すなわち、処理装置51は、図1に示す調整
槽23にはNP添加装置28は設けず、調整槽23と生物活性
炭槽25との間に、図1に示す第3送水管24に並列に、調
整槽23に流入路としての流入管52を介して接続されると
ともに生物活性炭槽25に流出路としての流出管53を介し
て接続され、窒素−燐供給充填材としての粒状のリン酸
アンモニウムマグネシウムを充填した添加手段としての
NP充填槽54を設けている。そして、図1に示す調整槽
23にはここで、生物活性炭槽25は活性炭を0.5リット
ル充填して水の接触時間を15分とし、NP充填槽54は
リン酸アンモニウムマグネシウムを0.01リットル充
填して水との接触時間を0.3分とした。そして、調整
槽23にジクロル酢酸を1000mg/リットルを含有す
る水を0.48リットル/日の条件で流入させるととも
に、生物活性炭槽25から調整槽23への返送管26を介した
循環量を約48リットル/日とし、調整槽23に流入する
ジクロル酢酸濃度を10mg/リットルとして処理し
た。その結果を図5に示す。That is, the treatment device 51 is not provided with the NP addition device 28 in the adjusting tank 23 shown in FIG. 1, but is provided between the adjusting tank 23 and the biological activated carbon tank 25 in the third water supply pipe 24 shown in FIG. In parallel, it is connected to the regulating tank 23 through an inflow pipe 52 as an inflow path, and is connected to the biological activated carbon tank 25 through an outflow pipe 53 as an outflow path. An NP filling tank 54 is provided as an adding means filled with ammonium magnesium oxide. And the adjustment tank shown in FIG.
23, the biological activated carbon tank 25 is filled with 0.5 liter of activated carbon to make the contact time of water 15 minutes, and the NP filling tank 54 is filled with 0.01 liter of ammonium magnesium phosphate and brought into contact with water. The time was set to 0.3 minutes. Then, water containing 1000 mg / liter of dichloroacetic acid was flowed into the adjustment tank 23 at a condition of 0.48 liter / day, and the amount of circulation via the return pipe 26 from the biological activated carbon tank 25 to the adjustment tank 23 was reduced. The treatment was carried out at 48 liters / day with the concentration of dichloroacetic acid flowing into the adjusting tank 23 being 10 mg / liter. The result is shown in FIG.
【0058】この図5に示す結果から、調整槽23の水を
NP充填槽54を通さずに直接第3送水管24を介して生物
活性炭槽25に送水して、図1に示す処理装置1のNP添
加装置28による窒素化合物および燐化合物の無添加状態
での処理と同様に処理すると、運転開始後から4日目ま
では流水中に塩素が検出されないとともに、ジクロル酢
酸がほとんど検出されなかった。このため、始めの4日
目までは活性炭による吸着能によりジクロル酢酸が吸着
除去されたものと考えられる。さらに、7日目からは塩
素収支によりジクロル酢酸が微生物により分解され始め
ていることが認められたが、分解率は約52%程度であ
った。そこで、第3送水管24を切り換えてNP充填槽を
流通させて処理を継続した結果、分解が促進され、99
%以上の除去率が認められた。From the results shown in FIG. 5, the water in the regulating tank 23 is directly sent to the biological activated carbon tank 25 through the third water pipe 24 without passing through the NP filling tank 54, and the water is supplied to the treatment apparatus 1 shown in FIG. In the same manner as in the case where the nitrogen compound and the phosphorus compound were not added by the NP addition device 28, chlorine was not detected in the running water and dichloroacetic acid was hardly detected until 4 days after the start of the operation. . For this reason, it is considered that dichloroacetic acid was adsorbed and removed by the adsorption capacity of activated carbon until the first four days. Further, from day 7, it was recognized that dichloroacetic acid was starting to be decomposed by microorganisms due to a chlorine balance, but the decomposition rate was about 52%. Therefore, as a result of switching the third water supply pipe 24 and circulating the NP filling tank to continue the treatment, decomposition is promoted, and
% Removal rate was observed.
【0059】ここで、実質的に供給されるBOD源とな
るジクロル酢酸は111mg−BOD/日となり、この
BODを分解するのに必要な窒素濃度は5.5mg/
日、燐濃度は1.1mg/日となる。ところが、炭素源
を含有しない水道水を第1次副生成物との接触対象とな
る水とすると、窒素濃度は約0.5mg/日、燐濃度は
約0.0005mg/日しか得られない。このことか
ら、窒素源および燐源が不足することは明らかである。Here, the dichloracetic acid substantially serving as the BOD source supplied is 111 mg-BOD / day, and the nitrogen concentration required to decompose this BOD is 5.5 mg / BOD.
On a day, the phosphorus concentration is 1.1 mg / day. However, when tap water containing no carbon source is used as the water to be contacted with the primary by-product, only about 0.5 mg / day of nitrogen concentration and about 0.0005 mg / day of phosphorus concentration can be obtained. From this, it is clear that the nitrogen and phosphorus sources are deficient.
【0060】そして、図4に示す処理装置により処理し
た場合に、流出する処理水中の窒素濃度は約0.3mg
/リットル、燐濃度は約0.2mg/リットルであっ
た。このことから、窒素−燐供給充填材であるリン酸ア
ンモニウムマグネシウムが充填するNP充填槽を流通さ
せることにより、不足する窒素源および燐源が供給さ
れ、揮発性有機塩素化合物の第2次副生成物が十分に処
理されることがわかる。Then, when treated by the treatment apparatus shown in FIG. 4, the nitrogen concentration in the treated water flowing out is about 0.3 mg.
/ Liter, phosphorus concentration was about 0.2 mg / liter. Therefore, by flowing the NP filling tank filled with ammonium magnesium phosphate, which is a nitrogen-phosphorus supply filler, insufficient nitrogen and phosphorus sources are supplied, and secondary by-products of volatile organic chlorine compounds are produced. It turns out that the thing is sufficiently processed.
【0061】また、このNP充填槽54を流通させること
により、窒素化合物を添加する装置および燐化合物を添
加する装置が不要で単に水を流通させる単純な構造で、
連続的に容易に処理できる。Further, by flowing through the NP filling tank 54, a device for adding a nitrogen compound and a device for adding a phosphorus compound are unnecessary, and a simple structure for simply flowing water is provided.
Can be easily processed continuously.
【0062】上述したように、汚水から抽出したジクロ
ルエチレン、トリクロルエチレンおよびテトラクロルエ
チレンの少なくともいずれか1つの揮発性有機塩素化合
物に酸素存在下で紫外線を照射して効率よく酸化分解し
た第1次副生成物を、アルカリ性から中性の範囲にpH
調整した水と接触させて効率よく生成した易分解性の第
2次副生成物を燐化合物および窒素化合物の少なくとも
いずれか一方を添加して活性炭に担持させた微生物によ
り分解するため、微生物の活性が増大し、別途微生物の
炭素源となる有機物を添加することなく第2次副生成物
を炭素源として分解でき、有機物の添加による運転コス
トの増大および余剰汚泥の発生を低減でき、効率よく揮
発性有機塩素化合物を無害化できる。As described above, at least one volatile organic chlorine compound of dichloroethylene, trichloroethylene and tetrachloroethylene extracted from wastewater is irradiated with ultraviolet rays in the presence of oxygen to efficiently oxidatively decompose the first organic compound. PH of secondary by-products from alkaline to neutral
The easily decomposable secondary by-product formed efficiently by contacting with the adjusted water is decomposed by a microorganism supported on activated carbon by adding at least one of a phosphorus compound and a nitrogen compound. The secondary by-product can be decomposed as a carbon source without adding an organic substance which is a carbon source of microorganisms separately, and an increase in operation cost and generation of excess sludge due to the addition of the organic substance can be reduced, and efficient volatilization can be achieved. Harmful organic chlorine compounds.
【0063】そして、第1次副生成物と水との接触の際
に循環管14にて水を循環させて閉鎖循環回路15を形成
し、生成する第2次副生成物を濃縮させるため、第2次
副生成物の処理効率を向上できるとともに、第2次副生
成物の処理コストを低減できる。Then, when the first by-product and the water come into contact with each other, water is circulated in the circulation pipe 14 to form a closed circulation circuit 15, and the produced second by-product is concentrated. The processing efficiency of the secondary by-product can be improved, and the processing cost of the secondary by-product can be reduced.
【0064】また、第2pH制御装置27にてpHが調整
された水を流入管52を介して燐化合物および窒素化合物
を含有する窒素−燐供給充填材であるリン酸アンモニウ
ムマグネシウムを充填するNP充填槽54に流通させるこ
とにより、第1次副生成物と接触させて易分解性の第2
次副生成物に分解した水を連続的に処理でき、処理効率
を向上できる。Further, NP filling of water whose pH has been adjusted by the second pH control device 27 through an inflow pipe 52 with ammonium magnesium phosphate which is a nitrogen-phosphorus supply filler containing a phosphorus compound and a nitrogen compound. By circulating through the tank 54, it is brought into contact with the primary by-products, and
Water decomposed into secondary by-products can be treated continuously, and treatment efficiency can be improved.
【0065】なお、上記実施の形態において、NP添加
装置を設けて説明したが、生物活性炭槽内の担体中に、
例えば燐化合物および窒素化合物の少なくともいずれか
一方を含有する窒素−燐供給充填材、具体的には遅効性
肥料などの窒素−燐供給充填材としてのリン酸アンモニ
ウムマグネシウムを混合したり、骨炭を混合してもよ
い。さらに、活性炭として、骨炭を用いてもよい。これ
らの構成によれば、別途隣化合物や窒素化合物を添加す
る装置が不要で、微生物の担体として利用でき、処理コ
ストを低減でき、処理効率を向上できる。In the above embodiment, the NP addition device is provided and described. However, the carrier in the biological activated carbon tank contains:
For example, a nitrogen-phosphorus supply filler containing at least one of a phosphorus compound and a nitrogen compound, specifically, ammonium magnesium phosphate as a nitrogen-phosphorus supply filler such as a slow-acting fertilizer, or bone charcoal is mixed. May be. Further, bone charcoal may be used as activated carbon. According to these configurations, an apparatus for separately adding a neighboring compound or a nitrogen compound is not required, and can be used as a carrier for microorganisms, thereby reducing processing costs and improving processing efficiency.
【0066】また、第1次副生成物を含有する空気と接
触させる水として、排水管4から排水する第1処理水と
して排水する汚水を用いてもよい。この構成によれば、
汚水として、有機物を含む場合、この有機物も生物活性
炭槽25で処理されるので、処理効率を向上でき、また窒
素化合物や燐化合物などを含有する場合には微生物の活
性を増大させるために添加する窒素化合物や燐化合物の
添加量を低減できるとともに汚水中の窒素化合物および
燐化合物が微生物に吸収されるので、処理コストを低減
できる。As the water to be brought into contact with the air containing the primary by-products, sewage discharged as first treated water discharged from the drain pipe 4 may be used. According to this configuration,
When sewage contains organic matter, this organic matter is also treated in the biological activated carbon tank 25, so that treatment efficiency can be improved, and when it contains a nitrogen compound or a phosphorus compound, it is added to increase the activity of microorganisms. Since the amount of the nitrogen compound and the phosphorus compound added can be reduced, and the nitrogen compound and the phosphorus compound in the sewage are absorbed by the microorganism, the treatment cost can be reduced.
【0067】また、第1次副生成物の水との接触とし
て、エジェクタを用いて気液混合して説明したが、水中
に曝気したり、第1次副生成物を充填した槽内に水を噴
霧するなどいずれの気液混合方法でもできる。The first by-product is contacted with water by gas-liquid mixing using an ejector. However, the first by-product is aerated in water or the water is filled in a tank filled with the first by-product. And any gas-liquid mixing method such as spraying.
【0068】[0068]
【発明の効果】請求項1記載の揮発性有機塩素化合物の
処理方法によれば、汚水から抽出したジクロルエチレ
ン、トリクロルエチレンおよびテトラクロルエチレンの
少なくともいずれか1つの揮発性有機塩素化合物に酸素
存在下で紫外線を照射して酸化した第1次副生成物を、
アルカリ性から中性の範囲にpH調整した水と接触させ
て易分解性の第2次副生成物を生成し、この第2次副生
成物を燐化合物および窒素化合物の少なくともいずれか
一方を添加して活性炭に担持させた微生物により分解す
るため、微生物の活性が増大し、別途微生物の栄養源と
なる有機物を添加することなく第2次副生成物を栄養源
として分解でき、有機物の添加による運転コストの増大
および余剰汚泥の発生を低減でき、効率よく揮発性有機
塩素化合物を無害化できる。According to the method for treating a volatile organic chlorine compound according to the first aspect of the present invention, oxygen is present in at least one of the volatile organic chlorine compounds extracted from sewage, such as dichloroethylene, trichloroethylene and tetrachloroethylene. The primary by-product oxidized by irradiating ultraviolet rays under the
A readily decomposable secondary by-product is produced by contacting with water whose pH has been adjusted to a range from alkaline to neutral, and this secondary by-product is added with at least one of a phosphorus compound and a nitrogen compound. Decomposed by the microorganisms supported on activated carbon, the activity of the microorganisms is increased, and the secondary by-products can be decomposed as a nutrient source without separately adding an organic substance serving as a nutrient source of the microorganism. Increase in cost and generation of excess sludge can be reduced, and volatile organic chlorine compounds can be efficiently made harmless.
【0069】請求項2記載の揮発性有機塩素化合物の処
理方法によれば、請求項1記載の揮発性有機塩素化合物
の処理方法の効果に加え、少なくとも一部に燐化合物お
よび窒素化合物の少なくともいずれか一方を含有する窒
素−燐供給充填材を含有する活性炭を用いるため、別途
燐化合物および窒素化合物の少なくともいずれか一方を
添加する構成が不要となり、容易に揮発性有機塩素化合
物を処理できる。According to the method for treating a volatile organic chlorine compound according to the second aspect, in addition to the effect of the method for treating a volatile organic chlorine compound according to the first aspect, at least a part of at least one of a phosphorus compound and a nitrogen compound. Since activated carbon containing a nitrogen-phosphorus supply filler containing either one of them is used, it is not necessary to separately add at least one of a phosphorus compound and a nitrogen compound, and the volatile organic chlorine compound can be easily treated.
【0070】請求項3記載の揮発性有機塩素化合物の処
理方法によれば、請求項1記載の揮発性有機塩素化合物
の処理方法の効果に加え、活性炭に骨炭を用いるため、
別途化合物および窒素化合物の少なくともいずれか一方
を添加する構成が不要となり、容易に揮発性有機塩素化
合物を処理できる。According to the method for treating a volatile organic chlorine compound according to the third aspect, in addition to the effect of the method for treating a volatile organic chlorine compound according to the first aspect, since bone carbon is used as activated carbon,
There is no need to separately add at least one of the compound and the nitrogen compound, and the volatile organic chlorine compound can be easily treated.
【0071】請求項4記載の揮発性有機塩素化合物の処
理方法によれば、請求項2記載の揮発性有機塩素化合物
の処理方法の効果に加え、窒素−燐供給充填材としてリ
ン酸アンモニウムマグネシウムを用いることから、例え
ば屎尿処理の際に汚泥として生じるリン酸アンモニウム
マグネシウムを利用でき、効率よく揮発性有機塩素化合
物を処理できる。According to the method for treating a volatile organic chlorine compound according to the fourth aspect, in addition to the effect of the method for treating a volatile organic chlorine compound according to the second aspect, ammonium magnesium phosphate is used as a nitrogen-phosphorus supply filler. Since it is used, for example, ammonium magnesium phosphate generated as sludge at the time of treating human waste can be used, and the volatile organic chlorine compound can be efficiently treated.
【0072】請求項5記載の揮発性有機塩素化合物の処
理方法によれば、請求項1ないし4いずれか一記載の揮
発性有機塩素化合物の処理方法の効果に加え、第1次副
生成物と水との接触の際に循環手段にて水を循環させて
閉鎖循環回路を形成して生成する第2次副生成物を濃縮
するため、第2次副生成物の処理効率を向上できるとと
もに、第2次副生成物の処理コストを低減できる。According to the method for treating a volatile organic chlorine compound according to the fifth aspect, in addition to the effect of the method for treating a volatile organic chlorine compound according to any one of the first to fourth aspects, a primary by-product and a volatile organic chlorine compound can be eliminated. In order to concentrate the secondary by-product generated by forming a closed circulation circuit by circulating water by the circulation means at the time of contact with water, while improving the processing efficiency of the secondary by-product, The processing cost of the secondary by-product can be reduced.
【0073】請求項6記載の揮発性有機塩素化合物の処
理方法によれば、請求項1ないし5いずれか一記載の揮
発性有機塩素化合物の処理方法の効果に加え、第1次副
生成物と接触させて易分解性の第2次副生成物を生成さ
せる水として揮発性有機塩素化合物を抽出した汚水を再
利用するため、後段の生物活性炭による処理により第2
次副生成物とともに汚水を処理でき、また第1次副生成
物と接触させるための水を別途必要とせず、処理効率を
向上できる。According to the method for treating a volatile organic chlorine compound according to the sixth aspect, in addition to the effect of the method for treating a volatile organic chlorine compound according to any one of the first to fifth aspects, a primary by-product and a volatile organic chlorine compound are eliminated. In order to reuse the sewage from which the volatile organochlorine compound has been extracted as water for generating a readily decomposable secondary by-product by contact, the second stage treatment with biological activated carbon is carried out.
The wastewater can be treated together with the secondary by-product, and the water for contacting the primary by-product is not separately required, so that the treatment efficiency can be improved.
【0074】請求項7記載の揮発性有機塩素化合物の処
理装置によれば、汚水から抽出したジクロルエチレン、
トリクロルエチレンおよびテトラクロルエチレンの少な
くともいずれか1つの揮発性有機塩素化合物に酸素存在
下で紫外線を照射して酸化した第1次副生成物をアルカ
リ性から中性の範囲にpH調整した水に接触させて易分
解性の第2次副生成物を生成し、この第2次副生成物を
燐化合物および窒素化合物の少なくともいずれか一方を
添加して活性炭に担持させた微生物により分解するた
め、微生物の活性を増大でき、別途微生物の栄養源とな
る有機物を添加することなく第2次副生成物を栄養源と
して分解でき、有機物の添加による運転コストの増大お
よび余剰汚泥の発生を低減でき、効率よく揮発性有機塩
素化合物を無害化できる。According to the apparatus for treating volatile organic chlorine compounds according to claim 7, dichloroethylene extracted from wastewater,
A primary organic by-product oxidized by irradiating ultraviolet rays to at least one volatile organic chlorine compound of trichloroethylene and tetrachloroethylene in the presence of oxygen is brought into contact with water whose pH has been adjusted from alkaline to neutral. To produce a secondary by-product easily decomposable, and the secondary by-product is decomposed by a microorganism supported on activated carbon by adding at least one of a phosphorus compound and a nitrogen compound. The activity can be increased, the secondary by-product can be decomposed as a nutrient source without separately adding an organic substance serving as a nutrient source of microorganisms, and the increase in operation cost and the generation of excess sludge due to the addition of the organic substance can be efficiently reduced. Volatile organic chlorine compounds can be rendered harmless.
【0075】請求項8記載の揮発性有機塩素化合物の処
理装置によれば、請求項7記載の揮発性有機塩素化合物
の処理装置の効果に加え、pH調整手段にてpHが調整
された水を燐化合物および窒素化合物の少なくともいず
れか一方を含有する窒素−燐供給充填材する充填槽に流
入させて燐化合物および窒素化合物の少なくともいずれ
か一方を添加するので、第1次副生成物と接触させて易
分解性の第2次副生成物に分解した水を生物活性炭手段
に流出させる流路中で燐化合物および窒素化合物の少な
くともいずれか一方を供給でき、揮発性有機塩素化合物
を連続的に処理でき、処理効率を向上できる。According to the apparatus for treating a volatile organic chlorine compound according to the eighth aspect, in addition to the effect of the apparatus for treating a volatile organic chlorine compound according to the seventh aspect, water whose pH has been adjusted by the pH adjusting means can be used. A nitrogen-phosphorus supply containing at least one of a phosphorus compound and a nitrogen compound is supplied to a filling tank for supplying a filler, and at least one of the phosphorus compound and the nitrogen compound is added. And at least one of a phosphorus compound and a nitrogen compound can be supplied in a flow path for allowing water decomposed into secondary decomposable by-products to flow out to a biological activated carbon means, thereby continuously treating volatile organic chlorine compounds. Processing efficiency can be improved.
【0076】請求項9記載の揮発性有機塩素化合物の処
理装置によれば、汚水から抽出したジクロルエチレン、
トリクロルエチレンおよびテトラクロルエチレンの少な
くともいずれか1つの揮発性有機塩素化合物に酸素存在
下で紫外線を照射して酸化した第1次副生成物をアルカ
リ性から中性の範囲にpH調整した水に接触させて易分
解性の第2次副生成物を生成し、この第2次副生成物を
燐化合物および窒素化合物の少なくともいずれか一方を
添加して活性炭に担持した微生物により分解するため、
微生物の活性を増大でき、別途微生物の栄養源となる有
機物を添加することなく第2次副生成物を栄養源として
分解でき、有機物の添加による運転コストの増大および
余剰汚泥の発生を低減でき、効率よく揮発性有機塩素化
合物を無害化できる。According to the apparatus for treating volatile organic chlorine compounds according to the ninth aspect, dichloroethylene extracted from wastewater,
A primary organic by-product oxidized by irradiating ultraviolet rays to at least one volatile organic chlorine compound of trichloroethylene and tetrachloroethylene in the presence of oxygen is brought into contact with water whose pH has been adjusted from alkaline to neutral. To produce easily degradable secondary by-products, and to decompose the secondary by-products by microorganisms supported on activated carbon by adding at least one of a phosphorus compound and a nitrogen compound,
The activity of microorganisms can be increased, the secondary by-product can be decomposed as a nutrient source without adding an organic substance which is a nutrient source of the microorganism separately, and the increase in operation cost and the generation of excess sludge due to the addition of organic substances can be reduced, It is possible to efficiently detoxify volatile organic chlorine compounds.
【0077】請求項10記載の揮発性有機塩素化合物の
処理装置によれば、請求項9記載の揮発性有機塩素化合
物の処理装置の効果に加え、活性炭に骨炭を用いるた
め、別途燐化合物および窒素化合物の少なくともいずれ
か一方を添加する構成が不要となり、容易に揮発性有機
塩素化合物を処理できる。According to the apparatus for treating a volatile organic chlorine compound according to the tenth aspect, in addition to the effect of the apparatus for treating a volatile organic chlorine compound according to the ninth aspect, since bone carbon is used as activated carbon, a phosphorus compound and a nitrogen compound are separately provided. There is no need to add at least one of the compounds, and the volatile organic chlorine compound can be easily treated.
【0078】請求項11記載の揮発性有機塩素化合物の
処理装置によれば、請求項9または10記載の揮発性有
機塩素化合物の効果に加え、リン酸アンモニウムマグネ
シウムを含有する担体を用いるため、担体から第2次副
生成物を処理しつつ燐化合物および窒素化合物が供給さ
れ、別途燐化合物および窒素化合物の少なくともいずれ
か一方を添加する構成が不要となり、処理効率を向上で
きるとともに、例えば屎尿処理の際に汚泥として生じる
リン酸アンモニウムマグネシウムを利用でき、効率よく
揮発性有機塩素化合物を処理できる。According to the apparatus for treating a volatile organic chlorine compound according to the eleventh aspect, in addition to the effect of the volatile organic chlorine compound according to the ninth or tenth aspect, a carrier containing ammonium magnesium phosphate is used. The phosphorus compound and the nitrogen compound are supplied while treating the secondary by-product from the above, and a structure in which at least one of the phosphorus compound and the nitrogen compound is separately added becomes unnecessary, and the treatment efficiency can be improved, and for example, in the treatment of human waste In this case, ammonium magnesium phosphate generated as sludge can be used, and volatile organic chlorine compounds can be efficiently treated.
【0079】請求項12記載の揮発性有機塩素化合物の
処理装置によれば、請求項7ないし11いずれか一記載
の揮発性有機塩素化合物の処理装置の効果に加え、分解
手段に第1次副生成物と水との接触の際に循環手段にて
水を循環させて生成する第2次副生成物を濃縮する閉鎖
循環回路を設けるため、生成する第2次副生成物が濃縮
されるので第2次副生成物の処理効率を向上できるとと
もに、第2次副生成物の処理コストを低減できる。According to the apparatus for treating a volatile organic chlorine compound according to the twelfth aspect, in addition to the effect of the apparatus for treating a volatile organic chlorine compound according to any one of the seventh to eleventh aspects, the primary auxiliary secondary means can be added to the decomposition means. In order to provide a closed circulation circuit for concentrating the secondary by-product generated by circulating water by the circulation means at the time of contact between the product and water, the generated secondary by-product is concentrated. The processing efficiency of the secondary by-product can be improved, and the processing cost of the secondary by-product can be reduced.
【図1】本発明の揮発性有機塩素化合物の処理方法を実
施する装置の実施の一形態を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of an apparatus for performing a method for treating a volatile organic chlorine compound of the present invention.
【図2】本発明の揮発性有機塩素化合物の処理方法を実
施する装置の他の実施の形態を示すブロック図である。FIG. 2 is a block diagram showing another embodiment of the apparatus for performing the method for treating a volatile organic chlorine compound of the present invention.
【図3】同上処理状況を説明するグラフである。FIG. 3 is a graph illustrating a processing status of the above.
【図4】本発明の揮発性有機塩素化合物の処理方法を実
施する装置のさらに他の実施の形態を示すブロック図で
ある。FIG. 4 is a block diagram showing still another embodiment of the apparatus for performing the method for treating a volatile organic chlorine compound of the present invention.
【図5】同上処理状況を説明するグラフである。FIG. 5 is a graph for explaining a processing state of the embodiment.
【図6】本発明の揮発性有機塩素化合物の処理方法の比
較対照とした装置を示すブロック図である。FIG. 6 is a block diagram showing an apparatus as a comparative control of the method for treating a volatile organic chlorine compound of the present invention.
【図7】同上処理状況を説明するグラフである。FIG. 7 is a graph for explaining a processing state of the embodiment.
1 揮発性有機塩素化合物の処理装置 2 抽出手段としての抽出装置 7 紫外線照射手段としての紫外線照射槽 10 分解手段 14 循環手段としての循環管 15 閉鎖循環回路 18 pH調整手段としての第1pH制御装置 22 生物活性炭手段 27 pH調整手段としての第2pH制御装置 28 添加手段としてのNP添加装置 52 流入路としての流入管 53 流出路としての流出管 54 添加手段としてのNP充填槽 DESCRIPTION OF SYMBOLS 1 Processing apparatus of volatile organic chlorine compound 2 Extraction apparatus as extraction means 7 Ultraviolet irradiation tank as ultraviolet irradiation means 10 Decomposition means 14 Circulation pipe as circulation means 15 Closed circulation circuit 18 First pH control apparatus as pH adjustment means 22 Biological activated carbon means 27 Second pH control device as pH adjustment means 28 NP addition device as addition means 52 Inflow pipe as inflow path 53 Outflow pipe as outflow path 54 NP filling tank as addition means
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 9/00 504 C02F 9/00 504A 1/32 1/32 1/58 1/58 A 3/10 3/10 Z Fターム(参考) 4D003 AA01 AA12 AB12 BA02 CA10 DA07 DA08 EA25 FA01 FA04 FA06 4D037 AA11 AA14 AB14 BA18 BB09 CA01 CA07 CA11 CA14 4D038 AA08 AB14 BB06 BB07 BB13 BB16 BB19 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C02F 9/00 504 C02F 9/00 504A 1/32 1/32 1/58 1/58 A 3/10 3 / 10Z F term (reference) 4D003 AA01 AA12 AB12 BA02 CA10 DA07 DA08 EA25 FA01 FA04 FA06 4D037 AA11 AA14 AB14 BA18 BB09 CA01 CA07 CA11 CA14 4D038 AA08 AB14 BB06 BB07 BB13 BB16 BB19
Claims (12)
およびテトラクロルエチレンの少なくともいずれか1つ
の揮発性有機塩素化合物を含有する汚水から前記揮発性
有機塩素化合物を抽出し、 この抽出した前記揮発性有機塩素化合物に酸素存在下で
紫外線を照射して酸化し親水性の第1次副生成物を生成
させ、 この第1次副生成物をアルカリ性から中性の範囲にpH
調整した水と接触させて水和させ易分解性の第2次副生
成物を生成し、 この第2次副生成物を含有する水に燐化合物および窒素
化合物の少なくともいずれか一方を添加して活性炭に担
持させた微生物により前記第2次副生成物を分解するこ
とを特徴とする揮発性有機塩素化合物の処理方法。1. The volatile organic chlorine compound is extracted from wastewater containing at least one volatile organic chlorine compound of dichloroethylene, trichloroethylene and tetrachloroethylene, and the extracted volatile organic chlorine compound is extracted. Is irradiated with ultraviolet rays in the presence of oxygen to oxidize to generate a hydrophilic primary by-product, and the primary by-product is converted into a pH range from alkaline to neutral.
Hydrated by contacting with the adjusted water to produce a readily decomposable secondary by-product, and adding at least one of a phosphorus compound and a nitrogen compound to water containing the secondary by-product. A method for treating a volatile organic chlorine compound, wherein the secondary by-product is decomposed by a microorganism supported on activated carbon.
よび窒素化合物の少なくともいずれか一方を含有する窒
素−燐供給充填材を含有することを特徴とする請求項1
記載の揮発性有機塩素化合物の処理方法。2. The activated carbon according to claim 1, wherein the activated carbon contains a nitrogen-phosphorus feed filler containing at least one of a phosphorus compound and a nitrogen compound.
The method for treating a volatile organic chlorine compound according to the above.
請求項1記載の揮発性有機塩素化合物の処理方法。3. The method for treating a volatile organochlorine compound according to claim 1, wherein the activated carbon is bone charcoal.
ウムマグネシウムであることを特徴とする請求項2記載
の揮発性有機塩素化合物の処理方法。4. The method according to claim 2, wherein the nitrogen-phosphorus supply filler is ammonium magnesium phosphate.
循環させて生成する第2次副生成物を濃縮することを特
徴とする請求項1ないし4いずれか一記載の揮発性有機
塩素化合物の処理方法。5. The method according to claim 1, wherein the secondary by-product formed by circulating water when contacting the primary by-product with water is concentrated. A method for treating volatile organic chlorine compounds.
た汚水であることを特徴とする請求項1ないし5いずれ
か一記載の揮発性有機塩素化合物の処理方法。6. The method for treating a volatile organic chlorine compound according to claim 1, wherein the water is wastewater from which the volatile organic chlorine compound has been extracted.
およびテトラクロルエチレンの少なくともいずれか1つ
の揮発性有機塩素化合物を含有する汚水から前記揮発性
有機塩素化合物を抽出する抽出手段と、 この抽出手段にて抽出した前記揮発性有機塩素化合物に
紫外線を酸素存在下で紫外線を照射して酸化し親水性の
第1次副生成物を生成させる紫外線照射手段と、 この紫外線照射手段により前記第1次副生成物を水に接
触させて水和させ易分解性の第2次副生成物を生成する
分解手段と、 この分解手段にて生成した第2次副生成物を含有する水
のpHをアルカリ性から中性の範囲にpH調整するpH
調整手段と、 このpH調整手段にてpHが調整された水に燐化合物お
よび窒素化合物の少なくともいずれか一方を添加する添
加手段と、 微生物を担持する活性炭を収容し、前記添加手段にて燐
化合物および窒素化合物の少なくともいずれか一方が添
加された水に含有する前記第2次副生成物を前記活性炭
に担持させた微生物により分解する生物活性炭手段とを
具備したことを特徴とする揮発性有機塩素化合物の処理
装置。7. Extraction means for extracting said volatile organic chlorine compound from sewage water containing at least one volatile organic chlorine compound of dichloroethylene, trichloroethylene and tetrachloroethylene, and said extraction means Ultraviolet irradiation means for irradiating the volatile organic chlorine compound with ultraviolet light in the presence of oxygen to oxidize the volatile organic chlorine compound to produce a hydrophilic primary by-product; Means for contacting water with water to hydrate to form easily decomposable secondary by-products; and adjusting the pH of water containing secondary by-products generated by the decomposition means from alkaline to neutral PH adjusted to the range of pH
Adjusting means, adding means for adding at least one of a phosphorus compound and a nitrogen compound to water whose pH has been adjusted by the pH adjusting means, and accommodating activated carbon carrying microorganisms; And a biological activated carbon means for decomposing the secondary by-product contained in the water to which at least one of the nitrogen compound has been added by a microorganism carried on the activated carbon. Compound processing equipment.
の少なくともいずれか一方を含有する窒素−燐供給充填
材する充填槽と、pH調整手段にてpHが調整された水
を前記充填槽に流入させる流入路と、前記充填槽内に貯
留する水を生物活性炭手段に流出させる流出路とを備え
たことを特徴とする請求項7記載の揮発性有機塩素化合
物の処理装置。8. The addition means includes a filling tank for supplying nitrogen-phosphorus containing at least one of a phosphorus compound and a nitrogen compound, and water whose pH has been adjusted by the pH adjusting means flows into the filling tank. The volatile organic chlorine compound treatment apparatus according to claim 7, further comprising an inflow passage for discharging the water stored in the filling tank and an outflow passage for flowing out the water to the biological activated carbon means.
およびテトラクロルエチレンの少なくともいずれか1つ
の揮発性有機塩素化合物を含有する汚水から前記揮発性
有機塩素化合物を抽出する抽出手段と、 この抽出手段にて抽出した前記揮発性有機塩素化合物に
紫外線を酸素存在下で紫外線を照射して酸化し親水性の
第1次副生成物を生成させる紫外線照射手段と、 この紫外線照射手段により前記第1次副生成物を水に接
触させて水和させ易分解性の第2次副生成物を生成する
分解手段と、 この分解手段にて生成した第2次副生成物を含有する水
のpHをアルカリ性から中性の範囲にpH調整するpH
調整手段と、 少なくとも一部に燐化合物および窒素化合物の少なくと
もいずれか一方を含有するとともに活性炭を含有し微生
物を担持する担体を収容し、前記分解手段にて生成した
第2次副生成物を前記微生物により分解する生物活性炭
手段とを具備したことを特徴とする揮発性有機塩素化合
物の処理装置。9. Extraction means for extracting said volatile organic chlorine compound from sewage water containing at least one volatile organic chlorine compound of dichloroethylene, trichloroethylene and tetrachloroethylene, and said extraction means Ultraviolet irradiation means for irradiating the volatile organic chlorine compound with ultraviolet light in the presence of oxygen to oxidize the volatile organic chlorine compound to produce a hydrophilic primary by-product; Means for contacting water with water to hydrate to form easily decomposable secondary by-products; and adjusting the pH of water containing secondary by-products generated by the decomposition means from alkaline to neutral PH adjusted to the range of pH
Adjusting means, at least partially containing at least one of a phosphorus compound and a nitrogen compound and containing a carrier that contains activated carbon and carries a microorganism, and the secondary by-product generated by the decomposition means is An apparatus for treating volatile organic chlorine compounds, comprising: biological activated carbon means decomposed by microorganisms.
請求項9記載の揮発性有機塩素化合物の処理装置。10. The apparatus for treating volatile organic chlorine compounds according to claim 9, wherein the carrier is bone charcoal.
ウムを含有することを特徴とした請求項9または10記
載の揮発性有機塩素化合物の処理装置。11. The apparatus for treating a volatile organic chlorine compound according to claim 9, wherein the carrier contains magnesium ammonium phosphate.
接触の際に循環手段にて水を循環させて生成する第2次
副生成物を濃縮する閉鎖循環回路を備えたことを特徴と
した請求項7ないし11いずれか一記載の揮発性有機塩
素化合物の処理装置。12. The decomposing means includes a closed circulation circuit for concentrating a secondary by-product generated by circulating water by a circulating means at the time of contact between the first by-product and water. The apparatus for treating a volatile organic chlorine compound according to any one of claims 7 to 11, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19657699A JP4132436B2 (en) | 1999-07-09 | 1999-07-09 | Method and apparatus for treating volatile organochlorine compounds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19657699A JP4132436B2 (en) | 1999-07-09 | 1999-07-09 | Method and apparatus for treating volatile organochlorine compounds |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001017995A true JP2001017995A (en) | 2001-01-23 |
JP4132436B2 JP4132436B2 (en) | 2008-08-13 |
Family
ID=16360051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19657699A Expired - Fee Related JP4132436B2 (en) | 1999-07-09 | 1999-07-09 | Method and apparatus for treating volatile organochlorine compounds |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4132436B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003035647A (en) * | 2001-07-24 | 2003-02-07 | Kaken:Kk | Volatile organic chlorine compound sensor |
JP2003340481A (en) * | 2002-05-24 | 2003-12-02 | Kurita Water Ind Ltd | Biological activated carbon tower and apparatus for producing purified water |
JP2013141643A (en) * | 2012-01-11 | 2013-07-22 | Kurita Water Ind Ltd | Method and apparatus for recovery of process wastewater from electronic industry |
KR20140032911A (en) * | 2012-09-07 | 2014-03-17 | 에보닉 인두스트리에스 아게 | Process for treating a wastewater stream which is formed in the workup of a triacetoneamine-containing reaction mixture |
JP2015058398A (en) * | 2013-09-19 | 2015-03-30 | ダイキン工業株式会社 | Method and apparatus for treating waste water containing organofluorine surfactant |
WO2021024653A1 (en) * | 2019-08-08 | 2021-02-11 | ウシオ電機株式会社 | Gas processing device, gas processing system, and gas processing method |
-
1999
- 1999-07-09 JP JP19657699A patent/JP4132436B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003035647A (en) * | 2001-07-24 | 2003-02-07 | Kaken:Kk | Volatile organic chlorine compound sensor |
JP2003340481A (en) * | 2002-05-24 | 2003-12-02 | Kurita Water Ind Ltd | Biological activated carbon tower and apparatus for producing purified water |
JP2013141643A (en) * | 2012-01-11 | 2013-07-22 | Kurita Water Ind Ltd | Method and apparatus for recovery of process wastewater from electronic industry |
KR20140032911A (en) * | 2012-09-07 | 2014-03-17 | 에보닉 인두스트리에스 아게 | Process for treating a wastewater stream which is formed in the workup of a triacetoneamine-containing reaction mixture |
JP2014050834A (en) * | 2012-09-07 | 2014-03-20 | Evonik Industries Ag | Treatment method of waste water flow generated in post-treatment of triacetone amine-containing reaction mixture |
KR102098047B1 (en) | 2012-09-07 | 2020-04-07 | 에보니크 오퍼레이션즈 게엠베하 | Process for treating a wastewater stream which is formed in the workup of a triacetoneamine-containing reaction mixture |
JP2015058398A (en) * | 2013-09-19 | 2015-03-30 | ダイキン工業株式会社 | Method and apparatus for treating waste water containing organofluorine surfactant |
WO2021024653A1 (en) * | 2019-08-08 | 2021-02-11 | ウシオ電機株式会社 | Gas processing device, gas processing system, and gas processing method |
Also Published As
Publication number | Publication date |
---|---|
JP4132436B2 (en) | 2008-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8562828B2 (en) | Wastewater treatment apparatus | |
JPH0975993A (en) | Treatment of organic matter-containing waste water and device therefor | |
JP3795268B2 (en) | Method and apparatus for treating wastewater containing organochlorine compounds | |
JP4132436B2 (en) | Method and apparatus for treating volatile organochlorine compounds | |
JP3700846B2 (en) | Method and apparatus for removing ammoniacal nitrogen from wastewater | |
JPH1199394A (en) | Method for removing organic matter in water | |
EP0242941B1 (en) | Process and apparatus for the deodorization of air | |
JP2000176468A (en) | Sewage treatment and device therefor | |
JP2004148242A (en) | Waste water treatment method and waste water treatment equipment | |
JP2000061497A (en) | Treatment of organic wastewater and equipment therefor | |
JP4522302B2 (en) | Detoxification method of organic arsenic | |
JP3537995B2 (en) | Wastewater treatment method | |
KR19980085039A (en) | Wastewater treatment method and device by electron beam and ozone | |
JP3547573B2 (en) | Water treatment method | |
JPH11347576A (en) | Method and apparatus for treating water | |
JP2001000984A (en) | Treatment method using ozone and hydrogen peroxide | |
JP4025972B2 (en) | Advanced wastewater treatment method and advanced treatment equipment | |
JP3556515B2 (en) | Wastewater treatment method using ozone and hydrogen peroxide | |
JP2000051656A (en) | Method and apparatus for treating volatile organic chlorine compound | |
JP2000084357A (en) | Treatment of organic chlorine compound and device therefor | |
JP2001104996A (en) | Water treatment method and apparatus | |
JP2003024991A (en) | Treatment system for wastewater containing formalin | |
JP2002263670A (en) | Sewage treatment method | |
JP4641131B2 (en) | Water treatment apparatus and method | |
JP2000350993A (en) | Treatment apparatus of dmso-containing water and treatment equipment of waste water of semiconductor factory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080507 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080602 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20170606 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |