JP3537995B2 - Wastewater treatment method - Google Patents

Wastewater treatment method

Info

Publication number
JP3537995B2
JP3537995B2 JP17012497A JP17012497A JP3537995B2 JP 3537995 B2 JP3537995 B2 JP 3537995B2 JP 17012497 A JP17012497 A JP 17012497A JP 17012497 A JP17012497 A JP 17012497A JP 3537995 B2 JP3537995 B2 JP 3537995B2
Authority
JP
Japan
Prior art keywords
ozone
water
treated
concentration
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17012497A
Other languages
Japanese (ja)
Other versions
JPH1110171A (en
Inventor
健一 宍田
保 小寺
春美 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP17012497A priority Critical patent/JP3537995B2/en
Publication of JPH1110171A publication Critical patent/JPH1110171A/en
Application granted granted Critical
Publication of JP3537995B2 publication Critical patent/JP3537995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、オゾンおよび過酸
化水素を利用する廃水処理方法に関する。さらに詳しく
は、下水またはし尿の二次処理水、産業排水または廃棄
物埋立地浸出水またはこれらの二次処理水などを、オゾ
ンおよび過酸化水素を用いて処理する廃水処理方法に関
する。なお、本発明において「処理」の語は、廃水の浄
化の意であり、廃水を消毒、殺菌、脱色、脱臭、あるい
は廃水中の有機物の分解、透明度の改善、BOD、CO
Dの低減を行う操作をいう。
The present invention relates to a wastewater treatment method using ozone and hydrogen peroxide. More specifically, the present invention relates to a wastewater treatment method for treating secondary treatment water of sewage or night soil, industrial wastewater or leachate of landfill waste, or secondary treatment water thereof using ozone and hydrogen peroxide. In the present invention, the term "treatment" means purification of wastewater, and disinfects, sterilizes, decolorizes, and deodorizes wastewater, or decomposes organic matter in wastewater, improves transparency, improves BOD, CO2
An operation for reducing D.

【0002】[0002]

【従来の技術】近年、廃水を浄化して再利用することの
重要性が増している。再利用の一環として従来の窒素・
りんの除去を目的とした高度処理に加え、脱臭、脱色、
殺菌、微量汚染物質の除去などを目的とした処理方法の
導入が進められている。具体的には、活性炭処理、オゾ
ン処理、膜処理などの処理方法が実施されている。これ
らの処理方法のうち、活性炭処理は有機性の汚濁物質の
吸着除去は可能であるが殺菌作用はなく、活性炭の交換
が必要である。オゾン処理は脱色、脱臭、殺菌効果は優
れているが、汚濁物質の分解機能が低い。膜処理は水処
理という観点からは優れているが、廃棄物を副生すると
いう問題がある。
2. Description of the Related Art In recent years, the importance of purifying wastewater for reuse has increased. As part of reuse, conventional nitrogen
In addition to advanced treatment for phosphorus removal, deodorization, decolorization,
Introduction of treatment methods for the purpose of sterilization, removal of trace contaminants, and the like has been promoted. Specifically, treatment methods such as activated carbon treatment, ozone treatment, and film treatment are being implemented. Among these treatment methods, activated carbon treatment can adsorb and remove organic pollutants, but has no bactericidal action, and requires replacement of activated carbon. The ozone treatment has excellent decolorization, deodorization and sterilization effects, but has a low function of decomposing pollutants. Membrane treatment is excellent from the viewpoint of water treatment, but has a problem of producing waste.

【0003】そこで、特公昭60−6718号公報、特
公昭60−41999号公報、特開昭58−55088
号公報などには、前記処理方法の問題点を総合的に解決
する手段として、廃水にオゾンと過酸化水素とを添加
し、処理する方法が記載されている。記載の処理方法
は、オゾンと過酸化水素とを廃水中に添加することによ
り非常に酸化力の強いOHラジカルを生成させ、生成し
たOHラジカルをもって廃水を処理するものである。O
Hラジカルは、オゾンよりも強力な酸化剤であり、オゾ
ン単独では分解できない廃水中の汚濁成分を分解除去す
ることが可能である。脱臭、脱色、殺菌効果が優れてい
る上、二次的な廃棄物も発生しない、効果的な処理方法
である。
Therefore, Japanese Patent Publication No. Sho 60-6718, Japanese Patent Publication No. Sho 60-41999, and Japanese Patent Application Laid-Open No. 58-55088 are disclosed.
Japanese Patent Application Publication No. JP-A-2006-13312 describes a method of treating wastewater by adding ozone and hydrogen peroxide to the wastewater as a means for comprehensively solving the problems of the treatment method. The treatment method described above is to add ozone and hydrogen peroxide to wastewater to generate OH radicals having extremely strong oxidizing power, and treat the wastewater with the generated OH radicals. O
H radicals are stronger oxidizing agents than ozone, and can decompose and remove pollutants in wastewater that cannot be decomposed by ozone alone. It is an effective treatment method that has excellent deodorizing, decoloring and sterilizing effects and does not generate secondary waste.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記のオゾン
と過酸化水素とを併用する廃水処理方法は、強力な酸化
作用を有し、他の方法では処理の難しい汚濁物質をクリ
ーンに処理できる極めて優れた特徴を有する反面、添加
した高価な酸化剤、とくにオゾンを十分に利用していな
かったので、処理コストが高くなる欠点があり、広く利
用されるに至っていない。さらに、処理後何等かの手段
を講じなければ、オゾンが処理水中に残留するという点
も問題であった。本発明者は、オゾンと過酸化水素とを
併用した強力な酸化力を活かして多くの汚濁物質を処理
するとともに、添加する高価なオゾンをできるだけ有効
に利用して処理コストの低減をはかることを課題とし
て、本発明を完成したのである。
However, the above-mentioned wastewater treatment method using ozone and hydrogen peroxide together has a strong oxidizing effect, and is capable of cleanly treating pollutants which are difficult to treat by other methods. Although it has excellent features, it does not sufficiently utilize the added expensive oxidizing agent, especially ozone, and thus has a disadvantage of increasing the processing cost, and has not been widely used. Another problem is that ozone remains in the treated water unless some measures are taken after the treatment. The inventor of the present invention treats many pollutants by utilizing the strong oxidizing power of the combined use of ozone and hydrogen peroxide, and seeks to reduce the treatment cost by using the expensive ozone to be added as effectively as possible. As an object, the present invention has been completed.

【0005】[0005]

【課題を解決するための手段】本発明者が研究の結果、
被処理水中の汚濁物質の濃度や種類に影響される値であ
るが、被処理水中のオゾン濃度と過酸化水素濃度、なか
でもオゾン濃度が酸化剤の有効利用に大きく影響するこ
とが明らかになった。すなわち、オゾン添加量と溶存オ
ゾン濃度との間に一定の線形関係が成立すること、溶存
オゾン濃度を一定水準に維持すれば、オゾンの利用効率
が上昇し、安定した処理が可能であることを見出した。
Means for Solving the Problems As a result of the research by the present inventor,
Although the value is affected by the concentration and type of pollutants in the water to be treated, it has been clarified that the concentration of ozone and hydrogen peroxide in the water to be treated has a significant effect on the effective use of oxidizing agents, especially the concentration of ozone. Was. That is, a certain linear relationship is established between the amount of added ozone and the concentration of dissolved ozone, and if the concentration of dissolved ozone is maintained at a constant level, the efficiency of use of ozone is increased and stable treatment is possible. I found it.

【0006】そこで本発明は、前記の課題を解決する手
段として、廃水にオゾンを添加して処理する第1工程
と、第1工程で処理された被処理水にオゾンおよび過酸
化水素を添加して処理する第2工程とからなる廃水処理
方法であって、第2工程入口側の被処理水中の溶存オゾ
ン濃度が所定の値に維持されるように、第1工程に添加
するオゾン量を制御することを特徴とする廃水処理方法
を提供する。また、廃水にオゾンを添加して処理する第
1工程と、第1工程で処理された被処理水にオゾンおよ
び過酸化水素を添加して処理する第2工程とからなる廃
水処理方法であって、第2工程出口側の被処理水中の溶
存オゾン濃度が所定の値に維持されるように、第2工程
に添加するオゾン量を制御することを特徴とする廃水処
理方法を提供する。さらに、前記の2つの廃水処理方法
を組み合わせることにより、廃水にオゾンを添加して処
理する第1工程と、第1工程で処理された被処理水にオ
ゾンおよび過酸化水素を添加して処理する第2工程とか
らなる廃水処理方法であって、第2工程入口側の被処理
水中の溶存オゾン濃度が所定の値に維持されるように第
1工程に添加するオゾン量を制御し、かつ、第2工程出
口側の被処理水中の溶存オゾン濃度が所定の値に維持さ
れるように第2工程に添加するオゾン量を制御すること
を特徴とする廃水処理方法を提供する。前記第2工程入
口側の被処理水中の溶存オゾン濃度が、0.1ないし1
0mg/リットルの範囲に維持されるように第1工程に
添加するオゾン量を制御することが望ましい。また、前
記第2工程出口側の被処理水中の溶存オゾン濃度は、
0.1ないし2mg/リットルに維持されるように、第
2工程に添加するオゾン量を制御することが好ましい。
そして、好ましくは、被処理水の溶存オゾン濃度を測定
して添加するオゾン量を制御し、さらに添加する過酸化
水素量を被処理水1リットル当たり0.1〜100mg
に制御する。また、これらの廃水処理方法において、第
2工程で処理された被処理水をばっ気し被処理水中の残
存するオゾンおよび過酸化水素を除去するとよい。
Therefore, the present invention solves the above-mentioned problems by providing a first step of adding ozone to wastewater for treatment, and adding ozone and hydrogen peroxide to the water to be treated treated in the first step. A wastewater treatment method comprising the steps of: (a) controlling the amount of ozone added to the first step so that the concentration of dissolved ozone in the water to be treated on the inlet side of the second step is maintained at a predetermined value; And a method for treating wastewater. A wastewater treatment method comprising a first step of adding ozone to wastewater for treatment, and a second step of adding ozone and hydrogen peroxide to the treated water treated in the first step for treatment. A wastewater treatment method characterized by controlling the amount of ozone added to the second step so that the concentration of dissolved ozone in the water to be treated at the outlet of the second step is maintained at a predetermined value. Further, by combining the above two wastewater treatment methods, a first step in which ozone is added to wastewater for treatment and a treatment in which ozone and hydrogen peroxide are added to water to be treated treated in the first step. A wastewater treatment method comprising the second step, wherein the amount of ozone added to the first step is controlled so that the concentration of dissolved ozone in the water to be treated on the inlet side of the second step is maintained at a predetermined value, and A wastewater treatment method is provided, wherein the amount of ozone added to the second step is controlled so that the concentration of dissolved ozone in the water to be treated at the outlet of the second step is maintained at a predetermined value. Into the second step
The dissolved ozone concentration in the water to be treated on the mouth side is 0.1 to 1
In the first step to maintain the range of 0mg / liter
It is desirable to control the amount of ozone to be added. Also before
The concentration of dissolved ozone in the water to be treated at the outlet of the second step is
So that it is maintained at 0.1 to 2 mg / liter.
It is preferable to control the amount of ozone added to the two steps.
And preferably, measure the dissolved ozone concentration of the water to be treated.
To control the amount of ozone added
0.1-100mg of hydrogen per liter of water to be treated
To control. In these wastewater treatment methods, it is preferable that the water to be treated treated in the second step is aerated to remove remaining ozone and hydrogen peroxide in the water to be treated.

【0007】[0007]

【発明の実施の形態】本発明の廃水処理方法を具体的に
詳しく説明する。本発明においては、はじめ第1工程に
おいて廃水にオゾンを単独で添加して処理し、さらに得
られた被処理水を第2工程でオゾンと過酸化水素とを併
用して処理する。この間、第1工程および/または第2
工程出口の被処理水中の溶存オゾン濃度を検出して、所
定の溶存オゾン濃度を維持するように第1工程および/
または第2工程に添加するオゾン量を制御することによ
り、汚濁物質を効率的に酸化分解することができる。な
お、オゾンは同伴気体とともに廃水または被処理水に注
入、添加する。
BEST MODE FOR CARRYING OUT THE INVENTION The wastewater treatment method of the present invention will be specifically described in detail. In the present invention, first, ozone is independently added to wastewater in the first step for treatment, and the resulting water to be treated is treated in the second step using both ozone and hydrogen peroxide. During this, the first step and / or the second step
The dissolved ozone concentration in the water to be treated at the process outlet is detected, and the first and / or the third step is performed so as to maintain a predetermined dissolved ozone concentration.
Alternatively, the pollutant can be efficiently oxidatively decomposed by controlling the amount of ozone added to the second step. The ozone is injected and added to the wastewater or the water to be treated together with the accompanying gas.

【0008】本発明は、オゾンと過酸化水素とが反応し
て発生するOHラジカルにより、被処理水中の汚濁物質
の分解を行うものであるが、他方、OHラジカルはオゾ
ンや過酸化水素と反応してその強い酸化力を消失する。
すなわち、オゾンや過酸化水素の濃度が低すぎるとOH
ラジカルの発生は少なく、逆にオゾンや過酸化水素の濃
度が高すぎると、発生したOHラジカルが汚濁物質を酸
化することなくオゾンや過酸化水素と反応して消失し、
いずれの場合にも期待する処理が行われない。OHラジ
カルとオゾンとの反応速度は、オゾンが気相から液相へ
移動する速度に比べて非常に早いため、通常、被処理水
中の溶存オゾン濃度は低い状態になっており、液相中の
溶存オゾンが処理を阻害することは少なく、むしろ液相
中の溶存オゾン濃度が低すぎるために処理反応が進行し
ない場合が多い。
The present invention decomposes pollutants in the water to be treated by OH radicals generated by the reaction between ozone and hydrogen peroxide. On the other hand, OH radicals react with ozone and hydrogen peroxide. Then the strong oxidizing power disappears.
That is, if the concentration of ozone or hydrogen peroxide is too low, OH
The generation of radicals is small, and if the concentration of ozone or hydrogen peroxide is too high, the generated OH radicals react with ozone or hydrogen peroxide without oxidizing pollutants and disappear,
In either case, the expected processing is not performed. Since the reaction rate between OH radicals and ozone is much faster than the rate at which ozone moves from the gas phase to the liquid phase, the concentration of dissolved ozone in the water to be treated is usually low, and the Dissolved ozone rarely hinders the treatment. Rather, the treatment reaction often does not proceed because the concentration of dissolved ozone in the liquid phase is too low.

【0009】したがって、廃水または被処理水に添加す
るオゾン量が汚濁物質量に対して少な過ぎると、オゾン
は被処理水中で汚濁物質との反応により消費され、溶存
オゾン濃度を高く維持することができなくなり、過酸化
水素と接触してOHラジカルを生成する機会がなくな
る。この結果、オゾン単独による処理とほとんど効果は
変らないか、もしくは過酸化水素による反応が阻害され
る。そこで、廃水処理の初期段階においては、むしろオ
ゾンを単独で用い所要の残存オゾン濃度が維持できるよ
うになるまで処理を行うことが効率よく処理するための
条件となる。逆に、廃水中の汚濁物質が少な過ぎると、
被処理水中の残存オゾン濃度が高くなってオゾンが吸収
されにくくなり、添加したオゾンが使用されないで無駄
に排出される割合が多くなり、オゾンの利用効率が低下
することになるので、被処理水中に過酸化水素を添加し
てOHラジカルを発生させ処理した方が有利である。
Therefore, if the amount of ozone added to the wastewater or the water to be treated is too small relative to the amount of the pollutants, the ozone is consumed by the reaction with the pollutants in the water to be treated, and the dissolved ozone concentration can be kept high. And no opportunity to generate OH radicals upon contact with hydrogen peroxide. As a result, the effect is almost the same as the treatment with ozone alone, or the reaction with hydrogen peroxide is inhibited. Therefore, in the initial stage of wastewater treatment, it is rather necessary to use ozone alone and carry out the treatment until the required residual ozone concentration can be maintained. Conversely, if the wastewater contains too little pollutants,
Since the residual ozone concentration in the water to be treated becomes high and ozone is hardly absorbed, the rate of wasteful use of the added ozone is increased and the use efficiency of ozone is reduced. It is more advantageous to add hydrogen peroxide to OH to generate OH radicals and to treat the OH radical.

【0010】一方、過酸化水素は液状で被処理水に添加
することができるので濃度調整は容易であるが、濃度が
高すぎると汚濁物質の酸化反応が阻害されるる。しか
し、被処理水中の汚濁物質濃度が変動しても、汚濁物質
に対する過酸化水素の最適な添加量の変化は比較的小さ
いので、過酸化水素の添加量を一定としてもその一定値
が最適値に近い値であれば、オゾンを十分に供給さえす
れば処理はほぼ適切に行われる。
On the other hand, the concentration of hydrogen peroxide can be easily adjusted because it can be added to the water to be treated in a liquid state. However, if the concentration is too high, the oxidation reaction of pollutants is inhibited. However, even if the concentration of pollutants in the water to be treated fluctuates, the change in the optimal amount of hydrogen peroxide added to the pollutants is relatively small. If the value is close to the above, the treatment can be performed almost properly as long as ozone is sufficiently supplied.

【0011】以上の知見から、廃水にオゾンを単独で添
加して汚濁物質を処理する第1工程と被処理水にオゾン
と過酸化水素の両方を添加する第2工程とを有する廃水
処理方法において、工程出口の被処理水中の残存オゾン
濃度を監視し、所要の濃度範囲に維持するようオゾン添
加量を制御することにより、オゾン添加量を処理すべき
廃水または被処理水中の汚濁物質濃度の変化に追随させ
た、効率的な処理を行うことが可能になる。オゾン添加
量の制御は、被処理水中の残存オゾン濃度を検出し、あ
らかじめ実験や経験から求められた、廃水中の汚濁物質
の濃度や種類によって定まる目標値に従って制御すると
よい。第2工程では、残存オゾン濃度を検出することに
より、OHラジカルの発生量を一定化することが可能に
なり、廃水浄化の目標水準に対し、安定化した処理がで
きる。
From the above findings, a wastewater treatment method comprising a first step of treating pollutants by adding ozone alone to wastewater and a second step of adding both ozone and hydrogen peroxide to the water to be treated. Monitoring the concentration of ozone remaining in the water to be treated at the process outlet and controlling the amount of ozone added so as to maintain the concentration within the required range, thereby changing the concentration of pollutants in the wastewater or water to be treated. It is possible to perform an efficient process that follows. The amount of ozone added may be controlled by detecting the concentration of ozone remaining in the water to be treated, and in accordance with a target value determined in advance by experiments and experiences and determined by the concentration and type of pollutants in the wastewater. In the second step, by detecting the residual ozone concentration, it is possible to stabilize the generation amount of OH radicals, and it is possible to perform processing that is stabilized with respect to the target level of wastewater purification.

【0012】溶存オゾン濃度の具体的な目標値は、処理
対象物質の種類や濃度、共存物質の種類や濃度、処理装
置、気体液体接触状況などにより一概に規定することは
難しいので、実験的、経験的に決めることが好ましい。
一般的には第2工程の入口で、0.1ないし10mg/
リットルである。0.1mg/リットル以下では溶存す
るオゾン濃度が低すぎて第2工程での処理が十分に行え
ず、また、10mg/リットル以上になるまでオゾンを
添加すれば、通常、無駄に消費されるオゾンが多くな
る。また、第2工程の出口では、0.1ないし2mg/
リットル、好ましくは0.3ないし1mgの範囲。に維
持するとよい。0.1mg/リットル以下では制御が困
難になり、2mg/リットル以上では無駄な余剰オゾン
が系外に放出されることになる。前記の手段によってオ
ゾン添加量を制御すれば、過酸化水素濃度を制御するだ
けでは処理の困難な高濃度の汚濁物質を含む被処理水を
処理でき、また従来のように被処理水の濃度の変動範囲
をすべてカバーできる量のオゾンを一律に添加すること
によるオゾンの無駄な消費を防止することができる。
The specific target value of the dissolved ozone concentration is difficult to specify unconditionally according to the type and concentration of the substance to be treated, the type and concentration of the coexisting substance, the processing apparatus, the gas-liquid contact state, and the like. It is preferable to determine it empirically.
In general, at the inlet of the second step, 0.1 to 10mg /
A liter. If the concentration is less than 0.1 mg / l, the concentration of dissolved ozone is too low to perform the treatment in the second step sufficiently. Increase. At the outlet of the second step, 0.1 to 2 mg /
Liters, preferably in the range of 0.3 to 1 mg. Should be maintained. If it is less than 0.1 mg / liter, control becomes difficult, and if it is more than 2 mg / liter, useless surplus ozone will be discharged out of the system. By controlling the amount of ozone added by the above means, it is possible to treat water to be treated containing high-concentration pollutants, which is difficult to treat only by controlling the concentration of hydrogen peroxide. It is possible to prevent wasteful consumption of ozone by uniformly adding an amount of ozone that can cover the entire fluctuation range.

【0013】オゾン添加量の制御は同伴気体を含む全体
のガス量を制御することにより行っても、気体中のオゾ
ン濃度を調整することにより行ってもよい。さらに、オ
ゾン発生器自体を調整してオゾンの発生量を制御しても
よい。一般的にはガス流量を制御する方が簡便である。
被処理水中の溶存オゾン濃度や排ガス中の余剰オゾン濃
度は、応答速度を速くするために瞬時に測定できること
が望ましく、紫外線吸収式濃度計などを使用することが
できる。
The control of the amount of added ozone may be performed by controlling the total amount of gas including the accompanying gas, or by controlling the concentration of ozone in the gas. Further, the amount of ozone generated may be controlled by adjusting the ozone generator itself. Generally, it is easier to control the gas flow rate.
It is desirable that the dissolved ozone concentration in the water to be treated and the excess ozone concentration in the exhaust gas can be measured instantaneously in order to increase the response speed, and an ultraviolet absorption type densitometer or the like can be used.

【0014】オゾンの添加方式にとくに制限はなく、た
とえば散気式、エジェクター式を採用することができ
る。ただ汚濁物質濃度が高い場合にはオゾンを気泡塔一
基で吸収させるには限界があるため、処理装置を多段に
組むことが好ましい。オゾン溶解槽での被処理水の滞留
時間は、通常1〜60分の範囲内、好ましくは5〜25
分程度である。
There is no particular limitation on the method of adding ozone, and for example, a diffuser type or an ejector type can be adopted. However, when the concentration of the pollutants is high, there is a limit to the absorption of ozone by a single bubble column. The residence time of the water to be treated in the ozone dissolving tank is generally in the range of 1 to 60 minutes, preferably 5 to 25 minutes.
Minutes.

【0015】オゾンは、無声放電法をはじめ種々の方式
のオゾン発生器を利用して供給でき、特別の制限はな
い。しかし、気体中に含まれているオゾンの濃度が高い
ほど被処理水中へのオゾンの溶解が促進されるので、気
体1リットル中に少なくとも20mg、好ましくは50
mg以上オゾンを含有させるとよい。100mg以上含
まれておればさらに好ましい。オゾンの媒体になる気体
としては空気、酸素富化空気やその他の気体を用いるこ
とができる。供給するオゾンガスの気泡の平均径は、被
処理水の性状にもよるが、一般的に、1〜10000μ
mまでの範囲が好ましく、とくに10〜1000μmの
範囲が気液接触面積が大きい割に分散エネルギーの消費
量が小さく好適である。オゾンを含有する排ガスを、前
処理として廃水に添加することもできる。
Ozone can be supplied using various types of ozone generators including a silent discharge method, and there is no particular limitation. However, as the concentration of ozone contained in the gas is higher, the dissolution of ozone in the water to be treated is promoted, so that at least 20 mg, preferably 50 mg, per liter of gas is used.
It is good to contain more than mg of ozone. It is more preferable that the content is 100 mg or more. Air, oxygen-enriched air and other gases can be used as the gas serving as the ozone medium. The average diameter of the supplied ozone gas bubbles depends on the properties of the water to be treated.
m is preferable, and a range of 10 to 1000 μm is particularly preferable because the consumption of the dispersion energy is small in spite of the large gas-liquid contact area. Exhaust gas containing ozone can be added to wastewater as a pretreatment.

【0016】本発明の水処理方法において、オゾン添加
量の制御に加えて過酸化水素の添加量を制御することに
より、オゾン添加量のみを制御する場合と比較して効率
的な処理および一層精密な制御が可能になる。被処理水
中に添加する過酸化水素の濃度は、被処理水に含まれる
処理対象物質や共存物質の種類、濃度、処理装置、使用
するオゾン量および気液接触状況などにより一概に規定
できないが、通常、被処理水1リットル当り、0.1〜
100mg、好ましくは0.5〜50mgの範囲内であ
る。一般に被処理水中の過酸化水素濃度には最適値が存
在するので、実験的、経験的に過酸化水素の最適添加量
を求めるとよい。
In the water treatment method of the present invention, by controlling the amount of hydrogen peroxide in addition to the control of the amount of ozone added, more efficient treatment and more precise processing than when only the amount of ozone is controlled. Control becomes possible. The concentration of hydrogen peroxide to be added to the water to be treated cannot be specified unconditionally according to the type and concentration of the substance to be treated and the coexisting substance contained in the water to be treated, the concentration, the treatment equipment, the amount of ozone used, and the gas-liquid contact conditions. Usually, 0.1 to 1 liter of treated water
100 mg, preferably in the range of 0.5 to 50 mg. In general, there is an optimum value for the concentration of hydrogen peroxide in the water to be treated. Therefore, it is preferable to experimentally and empirically determine the optimum amount of hydrogen peroxide to be added.

【0017】また、過酸化水素の添加方式にとくに制限
はないが、局所的にせよ高濃度ではOHラジカルによる
処理反応が阻害されるため、過酸化水素の注入口を複数
に分割するか、低濃度で複数回に分割して添加するか、
連続的に添加するか、もしくは十分に攪拌される状態で
添加することが好ましい。被処理水とオゾン含有気体と
の接触面積は大きい程、たとえばオゾン含有気体の気泡
が小さいほど最適な過酸化水素添加量が大きくなる傾向
がある。
Although the method of adding hydrogen peroxide is not particularly limited, the treatment reaction with OH radicals is inhibited even at a high concentration locally. Add it in multiple portions at different concentrations,
It is preferable to add continuously or to be sufficiently stirred. The larger the contact area between the water to be treated and the ozone-containing gas, for example, the smaller the bubbles of the ozone-containing gas, the larger the optimal amount of hydrogen peroxide tends to be.

【0018】添加する過酸化水素は市販の過酸化水素水
を用いても、過酸化水素製造装置から直接供給してもよ
い。水酸化ナトリウム水溶液を電解液として電解製造し
た過酸化水素水を用いることもできる。被処理水に添加
する過酸化水素水の濃度に特に制限はなく、添加量、ポ
ンプ性能などを勘案して制御しやすい濃度にすればよ
い。処理温度は、被処理水が液相を保持範囲であればよ
いが、通常は常温で行う。被処理水の温度が高いほど反
応速度が早くなる利点はあるが、オゾン、過酸化水素の
自己分解の比率も大きくなるため、処理に見合った最適
な温度を適宜設定すればよい。
The hydrogen peroxide to be added may be a commercially available hydrogen peroxide solution or may be directly supplied from a hydrogen peroxide production device. Hydrogen peroxide water electrolytically produced using an aqueous solution of sodium hydroxide as an electrolytic solution can also be used. There is no particular limitation on the concentration of the hydrogen peroxide solution added to the water to be treated, and the concentration may be easily controlled in consideration of the amount added, pump performance, and the like. The treatment temperature may be any range as long as the water to be treated retains a liquid phase, but is usually at room temperature. The higher the temperature of the water to be treated, the higher the reaction rate, but the rate of self-decomposition of ozone and hydrogen peroxide also increases. Therefore, an optimum temperature suitable for the treatment may be set as appropriate.

【0019】本発明の具体的な実施形態を図面を参照し
て説明する。図1は連続多槽方式の廃水処理例を模式的
に示した図である。廃水は配管6からポンプ3によって
第1工程の反応槽1aに送入される。オゾンは同伴気体
とともに配管7から流量調節計5aを通り反応槽1aに
注入される。反応槽1bの入口側ではオゾン濃度計4a
を取り付けて溶存オゾン濃度を測定し、測定値が所定値
になるように、注入オゾン量を流量調節計5aにより制
御している。反応槽1aにおいて処理された被処理水は
配管8から供給される過酸化水素水とともに、第2工程
の反応槽1bに導入される。反応槽1bの出口側ではオ
ゾン濃度計4bを取り付けて溶存オゾン濃度を測定し、
測定値が所定値になるように注入オゾン量を流量調節計
5bにより制御している。反応槽1bにおいて処理され
た被処理水は、滞留槽2に導入され配管9から吹き込ま
れる空気でばっ気され処理水として取り出される。ま
た、第1工程、第2工程の反応槽1a、1b、ならびに
滞留槽2から排出された排ガスは、配管10によりオゾ
ン処理器(不図示)に送られ、放出される。
A specific embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a view schematically showing an example of a continuous multi-tank type wastewater treatment. The waste water is sent from the pipe 6 to the reaction tank 1a in the first step by the pump 3. Ozone is injected into the reaction tank 1a together with the accompanying gas from the pipe 7 through the flow controller 5a. At the inlet side of the reaction tank 1b, an ozone concentration meter 4a
And the dissolved ozone concentration is measured, and the amount of injected ozone is controlled by the flow controller 5a so that the measured value becomes a predetermined value. The water to be treated treated in the reaction tank 1a is introduced into the reaction tank 1b in the second step together with the hydrogen peroxide solution supplied from the pipe 8. At the outlet side of the reaction tank 1b, an ozone concentration meter 4b was attached to measure the dissolved ozone concentration.
The amount of injected ozone is controlled by the flow controller 5b so that the measured value becomes a predetermined value. The water to be treated, which has been treated in the reaction tank 1b, is introduced into the retention tank 2 and aerated with air blown from the pipe 9, and is taken out as treated water. Further, the exhaust gas discharged from the reaction tanks 1a and 1b in the first step and the second step and the retention tank 2 is sent to an ozonizer (not shown) through a pipe 10 and is discharged.

【0020】[0020]

【実施例】図1に記載の構成と同じ第1工程と第2工程
とからなる流通式の実験装置を用い、本発明の実験およ
び比較実験を行ったので、以下に実施例および比較例と
して説明する。実施例および比較例中の処理効率は、処
理前後の水質汚濁指標を用い次式により求めた。 処理効率(%)= {1−( C/C0 )}×100 ただし、C: 第2工程処理後の処理後の水質汚濁指標 C0 :第1工程供給水の水質汚濁指標 なお、水質汚濁指標にはCOD値を用いた。
EXAMPLE An experiment and a comparative experiment of the present invention were conducted using a flow-type experimental apparatus comprising the first step and the second step having the same configuration as that shown in FIG. explain. The treatment efficiency in the examples and comparative examples was determined by the following equation using the water pollution index before and after the treatment. Treatment efficiency (%) = {1− (C / C 0 )} × 100 where C: water pollution index after treatment after the second step treatment C 0 : water pollution index after supply of the first step, water pollution The COD value was used as an index.

【0021】実施例1 実情に合わせるために第1工程への供給水を経過時間と
ともに次の順序で調整し、汚濁物質濃度を変えつつ、1
0時間実験した。 実験開始−2時間 廃棄物埋立地の浸出水2次処
理水を供給 2−4時間 上記供給水を清水で2倍に希
釈して供給 4−6時間 上記供給水をさらに2倍に希
釈して供給 6−8時間 廃棄物埋立地の浸出水2次処
理水を供給 8−10時間 上記供給水を清水で4倍に希
釈して供給 実験中、第2工程入口側の処理水中の溶存オゾン濃度を
をオゾン濃度計4a(紫外線吸光度法)により測定し、
溶存オゾン濃度が2mg/リットルになるように流量調
節計5aを用いオゾン添加量を制御して処理を行った。
この間、流量調節計5bでは流量を一定にして制御し
た。1時間ごとに第2工程出口側の被処理水中のCOD
およびオゾン添加量を測定した。測定結果から求めたC
OD処理効率(%)と経過時間(hr)との関係を図2
に、全オゾン添加量(初期量(全オゾン添加量80mg
/リットル)に対する重量%で表示、以下同じ)と経過
時間(hr)との関係をで図3に示した。
Example 1 In order to match the actual situation, the supply water to the first step was adjusted in the following order along with the elapsed time, and the concentration of pollutants was changed.
The experiment was performed for 0 hours. Start of experiment-2 hours Supply of leachate secondary wastewater from waste landfill 2-4 hours Supply water is diluted 2 times with fresh water and supply 4-6 hours The supply water is further diluted 2 times Supply 6-8 hours Leachate from waste landfill Leachate secondary supply water 8-10 hours Dissolve ozone concentration in treated water on the inlet side of the second step during supply experiment by diluting the above supply water 4 times with fresh water Is measured by an ozone concentration meter 4a (ultraviolet absorption method),
The treatment was performed by controlling the amount of added ozone using the flow rate controller 5a so that the dissolved ozone concentration was 2 mg / liter.
During this time, the flow controller 5b controlled the flow rate to be constant. COD in the water to be treated at the outlet of the second process every hour
And the amount of added ozone was measured. C obtained from measurement results
FIG. 2 shows the relationship between the OD processing efficiency (%) and the elapsed time (hr).
The total amount of ozone added (initial amount (total ozone added 80 mg
/ Liter) and the elapsed time (hr) are shown in FIG.

【0022】実施例2 実施例1と同様に、ただし流量調節計5aでは流量を一
定に制御し第2工程出口側の被処理水中の溶存オゾン濃
度をオゾン濃度計4b(紫外線吸光度法)により測定
し、測定した溶存オゾン濃度が0.5mg/リットルに
なるように流量調節計5bを用いてオゾン添加量を制御
し、実験を行った。1時間ごとに第2工程出口側の被処
理水中のCODおよびオゾン添加量を測定した。実施例
1と同様に、測定結果から求めた処理効率と経過時間と
の関係を図2に、オゾン添加量と経過時間との関係をで
図3に示した。
Example 2 As in Example 1, except that the flow rate is controlled to be constant by the flow controller 5a, and the dissolved ozone concentration in the water to be treated at the outlet of the second step is measured by the ozone concentration meter 4b (ultraviolet absorbance method). Then, an experiment was performed by controlling the amount of added ozone using the flow controller 5b so that the measured dissolved ozone concentration was 0.5 mg / liter. Every hour, the COD and ozone addition amount in the water to be treated at the outlet of the second step were measured. As in Example 1, the relationship between the processing efficiency obtained from the measurement results and the elapsed time is shown in FIG. 2, and the relationship between the ozone addition amount and the elapsed time is shown in FIG.

【0023】実施例3 実施例1と同様に、ただしオゾン濃度計4aおよびbに
より第1および第2工程出口側の被処理水中のオゾン濃
度を測定し、溶存オゾン濃度が4aで2mg/リット
ル、4bで0.5mg/リットルになるように流量調節
計5aおよび5bを用いてオゾン添加量を制御し、実験
を行った。実施例1と同様にCODおよびオゾン添加量
を測定し、測定結果から求めた処理効率と経過時間との
関係を図2に、オゾン添加量と経過時間との関係をで図
3に示した。
Example 3 As in Example 1, except that the ozone concentration in the water to be treated at the outlet of the first and second steps was measured by the ozone concentration meters 4a and 4b, and the dissolved ozone concentration was 2 mg / liter at 4a. The experiment was performed by controlling the amount of ozone added using the flow controllers 5a and 5b so that the amount became 0.5 mg / liter at 4b. COD and the amount of added ozone were measured in the same manner as in Example 1. FIG. 2 shows the relationship between the processing efficiency and the elapsed time obtained from the measurement results, and FIG. 3 shows the relationship between the amount of added ozone and the elapsed time.

【0024】比較例1 実施例1と同様に、ただし第1工程へのオゾン添加量も
一定に制御して実験を行った。実施例1と同様にCOD
およびオゾン添加量を測定し、測定結果から求めた処理
効率と経過時間との関係を図2に、オゾン添加量と経過
時間との関係をで図3に示した。
Comparative Example 1 An experiment was conducted in the same manner as in Example 1 except that the amount of ozone added to the first step was controlled to be constant. COD as in the first embodiment
FIG. 2 shows the relationship between the processing efficiency and the elapsed time obtained from the measurement results, and FIG. 3 shows the relationship between the ozone addition amount and the elapsed time.

【0025】比較例2 実施例3と同様に、ただし、第1工程への供給廃水に過
酸化水素を3mg/リットルの割合で添加した。実施例
1と同様にCODおよびオゾン添加量を測定し、測定結
果から求めた処理効率と経過時間との関係を図2に、オ
ゾン添加量と経過時間との関係をで図3に示した。
Comparative Example 2 As in Example 3, except that hydrogen peroxide was added to the wastewater supplied to the first step at a rate of 3 mg / liter. COD and the amount of added ozone were measured in the same manner as in Example 1. FIG. 2 shows the relationship between the processing efficiency and the elapsed time obtained from the measurement results, and FIG. 3 shows the relationship between the amount of added ozone and the elapsed time.

【0026】実施例4 実施例3の実験を開始してから8時間経過後に、滞留槽
2の前後の被処理水中の溶存オゾン濃度および過酸化水
素濃度を測定した。その結果、滞留槽2の前では溶存オ
ゾン濃度が0.5mg/リットル、過酸化水素濃度が
0.3mg/リットルであったのに対し、滞留槽2の後
では溶存オゾン濃度が0.1mg/リットル、過酸化水
素濃度が0.1mg/リットルであった。
Example 4 Eight hours after the start of the experiment of Example 3, the concentrations of dissolved ozone and hydrogen peroxide in the water to be treated before and after the storage tank 2 were measured. As a result, the dissolved ozone concentration was 0.5 mg / liter and the hydrogen peroxide concentration was 0.3 mg / liter before the retention tank 2, whereas the dissolved ozone concentration was 0.1 mg / liter after the retention tank 2. Liter and the concentration of hydrogen peroxide were 0.1 mg / liter.

【0027】実施例5 下水2次処理水を用いて、図1に示す装置において処理
テストを行った。ただし、溶存オゾン濃度計4aにおけ
る溶存オゾン濃度が2mg/リットル、溶存オゾン濃度
計4bにおける溶存オゾン濃度が0.5mg/リットル
になるように流量調節計5a、5bをそれぞれ変化させ
た。第1工程、第2工程における被処理水1リットルあ
たりのオゾン添加量(mg/リットル)及びCOD処理
効率の経時変化(hr)を図4に示す。
Example 5 A treatment test was carried out in the apparatus shown in FIG. 1 using sewage secondary treated water. However, the flow controllers 5a and 5b were respectively changed so that the dissolved ozone concentration in the dissolved ozone concentration meter 4a was 2 mg / liter and the dissolved ozone concentration in the dissolved ozone concentration meter 4b was 0.5 mg / l. FIG. 4 shows the amount of ozone added per liter of water to be treated (mg / liter) and the change over time (hr) in COD treatment efficiency in the first step and the second step.

【0028】比較例3 実施例5と同様の条件下において、ただし溶存オゾン濃
度計4aおよび4bにおける検出値によって流量調節計
5a、5bの設定を変化させることなく、一定のオゾン
添加量(第1工程15mg/リットル、第2工程10m
g/リットル)とした。オゾン濃度計4aおよび4bで
測定した溶存オゾン濃度(mg/リットル)、COD処
理効率の経時変化を図5に示す。
COMPARATIVE EXAMPLE 3 Under the same conditions as in Example 5, but without changing the settings of the flow controllers 5a and 5b according to the detection values of the dissolved ozone concentration meters 4a and 4b, Process 15mg / liter, 2nd process 10m
g / liter). FIG. 5 shows the changes over time in the dissolved ozone concentration (mg / liter) and the COD treatment efficiency measured by the ozone concentration meters 4a and 4b.

【0029】[0029]

【発明の効果】本発明を利用すれば、被処理水の濃度変
化に対応して適量のオゾンを添加することが可能にな
り、オゾンによる処理効率が向上する。オゾンの添加量
を削減することができ、処理コストを低く抑えることが
できる。
According to the present invention, it becomes possible to add an appropriate amount of ozone in response to a change in the concentration of the water to be treated, and the treatment efficiency with ozone is improved. The amount of ozone added can be reduced, and the processing cost can be kept low.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の流通処理形態例の模式図FIG. 1 is a schematic diagram of an example of a distribution processing mode according to the present invention.

【図2】COD処理効率と経過時間との関係FIG. 2 shows the relationship between COD processing efficiency and elapsed time.

【図3】全オゾン添加量と経過時間との関係FIG. 3 shows the relationship between the total amount of added ozone and the elapsed time.

【図4】オゾン添加量およびCOD処理効率と経過時間
との関係(実施例4)
FIG. 4 shows the relationship between the amount of ozone added, COD treatment efficiency, and elapsed time (Example 4).

【図5】溶存オゾン濃度およびCOD処理効率と経過時
間との関係(比較例3)
FIG. 5 shows the relationship between dissolved ozone concentration and COD treatment efficiency and elapsed time (Comparative Example 3).

【符号の説明】[Explanation of symbols]

1:反応槽 (a:第1工程、b:第2工程) 2:
滞留槽 3:送水ポンプ 4:オゾン濃度計 5:オゾン流
量調節計 6:被処理水配管 7:オゾン供給配管 8:過酸
化水素水供給配管 9:空気配管 10:排ガス配管
1: reaction tank (a: first step, b: second step) 2:
Retention tank 3: Water pump 4: Ozone concentration meter 5: Ozone flow controller 6: Treated water pipe 7: Ozone supply pipe 8: Hydrogen peroxide water supply pipe 9: Air pipe 10: Exhaust gas pipe

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭55−149688(JP,A) 特開 昭55−56889(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/78 C02F 1/20 C02F 1/72 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-55-149688 (JP, A) JP-A-55-56889 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1/78 C02F 1/20 C02F 1/72

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】廃水にオゾンを添加して処理する第1工程
と、第1工程で処理された被処理水にオゾンおよび過酸
化水素を添加して処理する第2工程とからなる廃水処理
方法であって、第2工程入口側の被処理水中の溶存オゾ
ン濃度が所定の値に維持されるように、第1工程に添加
するオゾン量を制御することを特徴とする廃水処理方
法。
1. A wastewater treatment method comprising: a first step of adding ozone to wastewater for treatment; and a second step of adding ozone and hydrogen peroxide to the treated water treated in the first step for treatment. Wherein the amount of ozone added to the first step is controlled so that the concentration of dissolved ozone in the water to be treated on the inlet side of the second step is maintained at a predetermined value.
【請求項2】廃水にオゾンを添加して処理する第1工程
と、第1工程で処理された被処理水にオゾンおよび過酸
化水素を添加して処理する第2工程とからなる廃水処理
方法であって、第2工程出口側の被処理水中の溶存オゾ
ン濃度が所定の値に維持されるように、第2工程に添加
するオゾン量を制御することを特徴とする廃水処理方
法。
2. A wastewater treatment method comprising: a first step of adding ozone to wastewater for treatment; and a second step of adding ozone and hydrogen peroxide to the treated water treated in the first step for treatment. Wherein the amount of ozone added to the second step is controlled so that the concentration of dissolved ozone in the water to be treated at the outlet of the second step is maintained at a predetermined value.
【請求項3】廃水にオゾンを添加して処理する第1工程
と、第1工程で処理された被処理水にオゾンおよび過酸
化水素を添加して処理する第2工程とからなる廃水処理
方法であって、第2工程入口側の被処理水中の溶存オゾ
ン濃度が所定の値に維持されるように第1工程に添加す
るオゾン量を制御し、かつ、第2工程出口側の被処理水
中の溶存オゾン濃度が所定の値に維持されるように第2
工程に添加するオゾン量を制御することを特徴とする廃
水処理方法。
3. A wastewater treatment method comprising: a first step of adding ozone to wastewater for treatment; and a second step of adding ozone and hydrogen peroxide to the treated water treated in the first step for treatment. Controlling the amount of ozone added to the first step so that the concentration of dissolved ozone in the water to be treated on the inlet side of the second step is maintained at a predetermined value, and So that the dissolved ozone concentration of
A wastewater treatment method comprising controlling the amount of ozone added to a process.
【請求項4】前記第2工程入口側の被処理水中の溶存オ
ゾン濃度が0.1ないし10mg/リットルに維持され
るように第1工程に添加するオゾン量を制御することを
特徴とする請求項1、2又は3に記載の廃水処理方法。
4. Dissolved water in the water to be treated on the inlet side of the second step.
Dzon concentration is maintained between 0.1 and 10 mg / l
To control the amount of ozone added to the first step
The wastewater treatment method according to claim 1, 2, or 3.
【請求項5】前記第2工程出口側の被処理水中の溶存オ
ゾン濃度が0.1ないし2mg/リットルに維持される
ように、第2工程に添加するオゾン量を制御することを
特徴とする請求項1〜4のいずれかに記載の廃水処理方
法。
5. A method for dissolving dissolved water in the water to be treated at the outlet of the second step.
Dzon concentration is maintained between 0.1 and 2 mg / l
Thus, controlling the amount of ozone added to the second step
Wastewater treatment method according to any one of claims 1 to 4, characterized in that:
Law.
【請求項6】被処理水の溶存オゾン濃度を測定して添加
するオゾン量を制御し、さらに添加する過酸化水素量を
被処理水1リットル当たり0.1〜100mgに制御す
ることを特徴とする、請求項1〜5のいずれかに記載の
水処理方法。
6. Addition by measuring the dissolved ozone concentration of the water to be treated.
The amount of ozone to be added is controlled, and the amount of hydrogen peroxide
Control to 0.1 to 100 mg per liter of treated water
The method according to any one of claims 1 to 5, wherein
Water treatment method.
【請求項7】第2工程で処理された被処理水をばっ気し
て、被処理水中の溶存オゾンを除去することを特徴とす
る、請求項1〜6のいずれかに記載の廃水処理方法。
7. The wastewater treatment method according to claim 1 , wherein the treated water treated in the second step is aerated to remove dissolved ozone in the treated water. .
JP17012497A 1997-06-26 1997-06-26 Wastewater treatment method Expired - Fee Related JP3537995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17012497A JP3537995B2 (en) 1997-06-26 1997-06-26 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17012497A JP3537995B2 (en) 1997-06-26 1997-06-26 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JPH1110171A JPH1110171A (en) 1999-01-19
JP3537995B2 true JP3537995B2 (en) 2004-06-14

Family

ID=15899097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17012497A Expired - Fee Related JP3537995B2 (en) 1997-06-26 1997-06-26 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP3537995B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3556515B2 (en) * 1999-03-31 2004-08-18 株式会社タクマ Wastewater treatment method using ozone and hydrogen peroxide
JP4628660B2 (en) * 2003-09-12 2011-02-09 メタウォーター株式会社 Accelerated oxidation treatment method
CN101948163A (en) * 2010-08-27 2011-01-19 陕西科技大学 Process method for improving biochemical property of industrial waste water
KR101035021B1 (en) 2011-01-12 2011-05-19 주식회사 디알티 The method to clear polluted water
CN102336462A (en) * 2011-09-02 2012-02-01 安徽工业大学 Method for treating industrial wastewater through photocatalytic oxidation by honeycomb ceramic O3/TiO2 circular flow

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041999B2 (en) * 1978-10-23 1985-09-19 三菱電機株式会社 Wastewater purification method
JPS55149688A (en) * 1979-05-08 1980-11-21 Mitsubishi Electric Corp Disposal plant for waste water

Also Published As

Publication number Publication date
JPH1110171A (en) 1999-01-19

Similar Documents

Publication Publication Date Title
JP4347908B2 (en) Method and apparatus for the oxidation of water pollutants
US6921476B2 (en) UV-assisted advanced-ozonation water treatment system and advanced-ozonation module
JP3491666B2 (en) Method and apparatus for controlling TOC component removal
JPH11290878A (en) Control method for removing toc component
KR100581746B1 (en) System for treating water
JP3537995B2 (en) Wastewater treatment method
JP5259311B2 (en) Water treatment method and water treatment system used therefor
JP3506171B2 (en) Method and apparatus for removing TOC component
JP3598022B2 (en) Water treatment method using ozone and hydrogen peroxide
JP3547573B2 (en) Water treatment method
JPH11347576A (en) Method and apparatus for treating water
JP3697933B2 (en) Water treatment method and apparatus using ozone
JP2001239280A (en) Method of processing polluted water containing hardly biodegradable organic substance
JP2000117274A (en) Water treatment and device therefor
JP3803590B2 (en) Hydrogen peroxide residual concentration controller
JP3556515B2 (en) Wastewater treatment method using ozone and hydrogen peroxide
JP2001017995A (en) Treatment of volatile organochlorine compound and device therefor
JPH08267077A (en) High degree treating method of waste water
JP4628660B2 (en) Accelerated oxidation treatment method
JP3859866B2 (en) Water treatment method
JPH09234474A (en) Water treatment and device therefor
JP2002263670A (en) Sewage treatment method
JPH06254577A (en) Device for treating difficult-to-decompose substance
JP2004275969A (en) Apparatus and method for treating wastewater
JPH05277473A (en) Treatment method and treatment apparatus for reducing agent-containing wastewater

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees