JP4522302B2 - Detoxification method of organic arsenic - Google Patents

Detoxification method of organic arsenic Download PDF

Info

Publication number
JP4522302B2
JP4522302B2 JP2005100289A JP2005100289A JP4522302B2 JP 4522302 B2 JP4522302 B2 JP 4522302B2 JP 2005100289 A JP2005100289 A JP 2005100289A JP 2005100289 A JP2005100289 A JP 2005100289A JP 4522302 B2 JP4522302 B2 JP 4522302B2
Authority
JP
Japan
Prior art keywords
ozone
decomposition
arsenic
treated water
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005100289A
Other languages
Japanese (ja)
Other versions
JP2006280999A (en
Inventor
安雄 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2005100289A priority Critical patent/JP4522302B2/en
Publication of JP2006280999A publication Critical patent/JP2006280999A/en
Application granted granted Critical
Publication of JP4522302B2 publication Critical patent/JP4522302B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、有機ヒ素の無害化方法に関し、産業廃水,下水,上水,埋立浸出水,地下水,河川水、池水、湖沼水、不法投棄現場の地下水や浸出水等の廃水に含まれる有機ヒ素を無害化する技術に係るものである。   The present invention relates to a method for detoxifying organic arsenic, and includes organic arsenic contained in wastewater such as industrial wastewater, sewage, clean water, landfill leachate, groundwater, river water, pond water, lake water, and illegal dumping groundwater and leachate. This is related to technology for detoxification.

はじめに、環境中の有機ヒ素について説明する。環境中に存在する有機ヒ素としては、例えばモノフェニルアルソン酸がある。これは化1式に示すように、あか剤(ジフェニルシアノアルシンおよびジフェニルクロロアルシン)が環境中で段階的に分解し、ジフェニルシアノアルシン酸を経てモノフェニルアルソン酸となると考えれており、モノフェニルアルソン酸は生物分解により無機ヒ素となる。   First, organic arsenic in the environment will be described. An example of organic arsenic present in the environment is monophenylarsonic acid. As shown in the chemical formula 1, it is considered that the reddening agent (diphenylcyanoarsine and diphenylchloroarsine) decomposes stepwise in the environment to monophenylarsonic acid via diphenylcyanoarsinic acid. Acid becomes inorganic arsenic by biodegradation.

Figure 0004522302
また、土壌中では生物分解・反応の一つとして、有機化合物がメチル化する反応が知られており、化2式に示すように、フェニルメチルアルシン酸についてもモノフェニルアルソン酸がメチル化した可能性がある。
Figure 0004522302
In addition, the reaction of methylation of organic compounds is known as one of the biodegradation / reactions in soil. As shown in Chemical Formula 2, monophenylarsonic acid can be methylated with respect to phenylmethylarsinic acid. There is sex.

Figure 0004522302
次に、既に提案されている有機金属化合物の除去方法を図3において説明する。図3において、除去設備は、産業廃水、下水、上水、埋立浸出水、地下水、河川水、池水、湖沼水、不法投棄現場の地下水や浸出水等の被処理水に含まれる有機金属化合物を除去するものであり、酸化処理工程を行う反応槽1と、無機金属除去工程を行う活性アルミナ吸着処理塔からなる無機金属除去装置2と、処理水貯槽3とからなる。
Figure 0004522302
Next, an already proposed method for removing an organometallic compound will be described with reference to FIG. In Fig. 3, the removal equipment is an organic metal compound contained in treated water such as industrial wastewater, sewage, clean water, landfill leachate, groundwater, river water, pond water, lake water, illegal dumping groundwater and leachate. It consists of a reaction tank 1 that performs an oxidation treatment step, an inorganic metal removal device 2 that includes an activated alumina adsorption treatment tower that performs an inorganic metal removal step, and a treated water storage tank 3.

反応槽1には紫外線を照射する紫外線照射装置4(ランプ等)と、オゾンを注入するオゾン供給装置5と、pH調整剤を注入するpH調整装置6とを設けている。
反応槽1において有機金属化合物を含んだ被処理水に紫外線照射装置4で紫外線を照射すると共に、オゾン供給装置5からオゾンを吹き込み、生成するヒドロキシラジカルによって有機金属化合物を酸化分解して無機金属化合物となす。先行技術文献としては特許文献1又は2がある。
特開平9−75957号公報 特開2000−176468号公報
The reaction tank 1 is provided with an ultraviolet irradiation device 4 (lamp or the like) for irradiating ultraviolet rays, an ozone supply device 5 for injecting ozone, and a pH adjusting device 6 for injecting a pH adjusting agent.
In the reaction tank 1, the water to be treated containing the organic metal compound is irradiated with ultraviolet rays by the ultraviolet irradiation device 4, and ozone is blown from the ozone supply device 5. And As prior art documents, there are Patent Documents 1 and 2.
JP-A-9-75957 JP 2000-176468 A

ところで、上述した処理においては、被処理水にAsO、Asのヒ素酸化物の形態で存在する無機ヒ素はその除去が困難であり、無機ヒ素の除去レベルを安定的にT−As0.01mg/L以下とする処理を行えない問題があった。また、有機ヒ素が0.001mg/L(ヒ素換算値)以下の不検出値の除去レベルまで処理できない問題があった。さらに、被処理水中の溶存酸素、溶存オゾンがキレートや活性アルミナを劣化させるので、装置の運転に要するランニングコストが高くなる問題があった。 By the way, in the above-described treatment, it is difficult to remove inorganic arsenic present in the form of arsenic oxides of AsO and As 2 O 3 in the water to be treated, and the removal level of inorganic arsenic is stably adjusted to T-As0. There was a problem that the treatment to make it 01 mg / L or less could not be performed. Moreover, there was a problem that organic arsenic could not be processed to a removal level of an undetected value of 0.001 mg / L (arsenic conversion value) or less. Furthermore, since dissolved oxygen and dissolved ozone in the water to be treated deteriorate the chelate and activated alumina, there is a problem that the running cost required for operating the apparatus is increased.

本発明は上記した課題を解決するものであり、キレートや活性アルミナの劣化を抑制し、有機ヒ素の分解除去および無機ヒ素の除去を促進できる有機ヒ素の無害化方法を提供することを目的とする。   This invention solves the above-mentioned subject, and it aims at providing the detoxification method of organic arsenic which can suppress degradation of a chelate and activated alumina, and can promote decomposition and removal of organic arsenic and removal of inorganic arsenic. .

上記課題を解決するために、本発明の有機ヒ素の無害化方法は、被処理水を光化学分解工程、溶存オゾン分解工程、吸着工程において処理するものであり、光化学分解工程において被処理水をpH5〜9に維持してオゾンの存在下で紫外線を照射し、生成するヒドロキシラジカルによって被処理水中の有機ヒ素を酸化、脱塩化して分解除去し、溶存オゾン分解工程において光化学分解工程から供給するオゾン処理水中の溶存オゾンを分解除去し、吸着工程において溶存オゾン分解工程から供給するオゾン除去処理水中の無機ヒ素を吸着除去するものである。 In order to solve the above problems, the method of detoxifying the organic arsenic present invention, photochemical decomposition step the water to be treated, the dissolved ozone decomposing step is intended for processing in the adsorption step, the water to be treated in a photochemical decomposition step pH5 The ozone supplied by the photochemical decomposition process in the dissolved ozone decomposition process by irradiating ultraviolet rays in the presence of ozone while maintaining at -9, oxidizing and dechlorinating the organic arsenic in the water to be treated by the generated hydroxyl radicals It dissolves and removes dissolved ozone in the treated water, and adsorbs and removes inorganic arsenic in the ozone removed treated water supplied from the dissolved ozone decomposing process in the adsorption process.

上記した構成により、光化学分解工程では酸化と脱塩化により有機ヒ素の無機化が促進される。光化学分解工程を経たオゾン処理水中の溶存オゾンは溶存オゾン分解工程において分解除去することでオゾンの悪影響をなくし、吸着工程でのオゾンならびにヒドロキシラジカルによるキレートや活性アルミナの劣化を防止することができ、無機ヒ素を吸着除去する吸着工程を安定して行うことができる。   With the above-described configuration, inorganicization of organic arsenic is promoted by oxidation and dechlorination in the photochemical decomposition step. Dissolved ozone in the ozone-treated water that has undergone the photochemical decomposition process can be eliminated by decomposing and removing in the dissolved ozone decomposition process, preventing the deterioration of chelates and activated alumina due to ozone and hydroxy radicals in the adsorption process, The adsorption process for adsorbing and removing inorganic arsenic can be performed stably.

本発明の有機ヒ素の無害化方法は、被処理水を光化学分解工程、分解・還元工程、吸着工程において処理するものであり、光化学分解工程において被処理水をpH5〜9に維持してオゾンの存在下で紫外線を照射し、生成するヒドロキシラジカルによって被処理水中の有機ヒ素を酸化、脱塩化して分解除去し、分解・還元工程において光化学分解工程から供給するオゾン処理水中の溶存オゾンを分解除去するとともに、ヒ素酸化物を還元し、吸着工程において分解・還元工程から供給するオゾン除去処理水中のヒ素を吸着除去するものである。 The organic arsenic detoxification method of the present invention treats treated water in a photochemical decomposition step, decomposition / reduction step, and adsorption step, and maintains the treated water at a pH of 5 to 9 in the photochemical decomposition step. Irradiate ultraviolet rays in the presence, and oxidize, dechlorinate, decompose and remove organic arsenic in the treated water by the generated hydroxy radicals, and decompose and remove dissolved ozone in the ozone treated water supplied from the photochemical decomposition process in the decomposition and reduction process At the same time, the arsenic oxide is reduced, and the arsenic in the ozone removal treated water supplied from the decomposition / reduction process is adsorbed and removed in the adsorption process.

上記した構成により、光化学分解工程では酸化と脱塩化により有機ヒ素の無機化が促進される。分解・還元工程でオゾン処理水中の溶存オゾンの分解除去によりオゾンの悪影響をなくすとともに、ヒ素酸化物を還元してイオン化することで、吸着工程でのオゾンならびにヒドロキシラジカルよるキレートや活性アルミナの劣化を防止しつつ、ヒ素を吸着除去する吸着工程を安定して行って無機ヒ素の除去率をT−As0.01mg/L以下にまで高めることができる。   With the above-described configuration, inorganicization of organic arsenic is promoted by oxidation and dechlorination in the photochemical decomposition step. Decomposition and removal of dissolved ozone in the ozone-treated water in the decomposition and reduction process eliminates the adverse effects of ozone, and reduces and ionizes arsenic oxide, thereby reducing chelate and activated alumina due to ozone and hydroxy radicals in the adsorption process. In addition, the adsorption process of adsorbing and removing arsenic can be performed stably while preventing the removal rate of inorganic arsenic to T-As 0.01 mg / L or less.

以上のように本発明によれば、有機ヒ素を酸化、脱塩化する工程と無機化されたヒ素を吸着する工程とを非直列的に行い、両工程の間で溶存オゾンならびにヒドロキシラジカルを除去することで、吸着工程のキレートや活性アルミナの劣化を防止できる。また、光化学分解工程での酸化と脱塩化により実質的に有機ヒ素の完全無機化を達成できる。さらに、還元によってヒ素酸化物の除去が可能となる。   As described above, according to the present invention, the process of oxidizing and dechlorinating organic arsenic and the process of adsorbing mineralized arsenic are performed non-serially, and dissolved ozone and hydroxy radicals are removed between the two processes. Thus, it is possible to prevent deterioration of the chelate and activated alumina in the adsorption process. In addition, the organic arsenic can be completely mineralized by oxidation and dechlorination in the photochemical decomposition step. Further, arsenic oxide can be removed by reduction.

以下、本発明の実施の形態を図面に基づいて説明する。図1に示す実施の形態は、被処理水として有機ヒ素の含有濃度がT−As50mg/L以下の地下水等に適する構成である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiment shown in FIG. 1 has a configuration suitable for groundwater having a concentration of organic arsenic of T-As 50 mg / L or less as water to be treated.

図1において、被処理水21が流入する密閉構造の光化学分解塔2は内部に紫外線照射装置をなす紫外線ランプ23を配置し、底部に散気装置24を配置している。散気装置24にはオゾン発生装置25が接続しており、オゾン発生装置25はオゾン濃度5〜50g/Nmのオゾン含有気体を散気装置24に供給する。また、光化学分解塔22には循環系26を介してpH調整槽27が連通しており、pH調整槽27はpH調整剤のNaOHを供給する薬剤供給系28および攪拌装置29を有している。 In FIG. 1, a photochemical decomposition tower 2 having a sealed structure into which water to be treated 21 flows has an ultraviolet lamp 23 serving as an ultraviolet irradiation device disposed therein, and an air diffuser 24 disposed at the bottom. An ozone generator 25 is connected to the diffuser 24, and the ozone generator 25 supplies an ozone-containing gas having an ozone concentration of 5 to 50 g / Nm 3 to the diffuser 24. The photochemical decomposition tower 22 communicates with a pH adjusting tank 27 through a circulation system 26, and the pH adjusting tank 27 has a chemical supply system 28 for supplying NaOH as a pH adjusting agent and a stirring device 29. .

光化学分解塔22を経たオゾン処理水が流入する溶存オゾン分解塔30は、ポンプ31を有するオゾン処理水供給系32を介してpH調整槽27に連通しており、内部に触媒としての活性炭を充填した触媒充填層33を有し、オゾン処理水を下降流で触媒充填層33に通水する。   The dissolved ozone decomposition tower 30 into which the ozone treated water that has passed through the photochemical decomposition tower 22 flows is communicated with the pH adjusting tank 27 through the ozone treated water supply system 32 having the pump 31 and filled with activated carbon as a catalyst. The ozone-treated water is passed through the catalyst packed bed 33 in a downward flow.

溶存オゾン分解塔30を経たオゾン除去処理水が流入する吸着塔34は、オゾン除去処理水供給系35を介して溶存オゾン分解塔30の下部に連通しており、内部に吸着剤として活性アルミナ(もしくはキレート)を充填した吸着剤充填層36を有し、オゾン除去処理水を下降流で吸着剤充填層36に通水する。吸着塔34は処理水供給系37を介して処理水貯留槽38に連通し、処理水貯留槽38に放流系39を接続している。   The adsorption tower 34 into which the ozone removal treated water that has passed through the dissolved ozone decomposition tower 30 flows is communicated with the lower part of the dissolved ozone decomposition tower 30 through the ozone removal treated water supply system 35 and contains activated alumina (adsorbent) as an adsorbent inside. Or an adsorbent packed bed 36 filled with chelate), and ozone removal treated water is passed through the adsorbent packed bed 36 in a downward flow. The adsorption tower 34 communicates with the treated water storage tank 38 via the treated water supply system 37, and a discharge system 39 is connected to the treated water storage tank 38.

以下、上記した構成における作用を説明する。有機ヒ素を含有する被処理水21は光化学分解塔22、溶存オゾン分解塔30、吸着塔34において順次に処理する。
光化学分解塔22では、オゾン発生装置25から所定オゾン濃度5〜50g/Nmのオゾン含有気体を散気装置24へ供給し、散気装置24からオゾン含有気体を散気してオゾンを被処理水21へ注入する。
Hereinafter, the operation of the above-described configuration will be described. The treated water 21 containing organic arsenic is sequentially treated in a photochemical decomposition tower 22, a dissolved ozone decomposition tower 30, and an adsorption tower 34.
In the photochemical decomposition tower 22, ozone-containing gas having a predetermined ozone concentration of 5 to 50 g / Nm 3 is supplied from the ozone generator 25 to the diffuser 24, and the ozone-containing gas is diffused from the diffuser 24 to treat ozone. Pour into water 21.

このオゾンの存在下で紫外線ランプ23から紫外線を照射してヒドロキシラジカルを生成し、ヒドロキシラジカルによって被処理水21に含まれた有機ヒ素の酸化と脱塩化を行いつつ、被処理水21を光化学分解塔22とpH調整槽27との間で循環してpH5〜9(至適pH7〜8)に維持しながら処理する。この光化学分解塔22では酸化と脱塩化により有機ヒ素の分解除去を促進して、実質的に有機ヒ素の完全無機化を達成できる。   In the presence of ozone, ultraviolet rays are irradiated from the ultraviolet lamp 23 to generate hydroxy radicals, and the organic arsenic contained in the treated water 21 is oxidized and dechlorinated by the hydroxy radicals, and the treated water 21 is photochemically decomposed. It circulates between the tower 22 and the pH adjustment tank 27, and it processes, maintaining at pH 5-9 (optimum pH 7-8). In this photochemical decomposition tower 22, decomposition and removal of organic arsenic can be promoted by oxidation and dechlorination, and the organic arsenic can be substantially completely mineralized.

溶存オゾン分解塔30では、オゾン処理水供給系32を通して光化学分解塔22から供給するオゾン処理水を触媒充填層33に通水し、活性炭の触媒作用によって溶存オゾンを分解除去して酸素となす。触媒充填層33の活性炭は吸着作用ではなく触媒作用を果たすので破過することがなく、長期にわたる使用が可能である。   In the dissolved ozone decomposition tower 30, the ozone treated water supplied from the photochemical decomposition tower 22 through the ozone treated water supply system 32 is passed through the catalyst packed bed 33, and the dissolved ozone is decomposed and removed by the catalytic action of activated carbon into oxygen. The activated carbon in the catalyst packed bed 33 serves not as an adsorption action but as a catalyst, so it does not break through and can be used for a long time.

吸着塔34では、オゾン除去処理水供給系35を通して溶存オゾン分解塔30から供給するオゾン除去処理水を吸着剤充填層36に通水し、活性アルミナの吸着作用によってオゾン除去処理水中の無機ヒ素を吸着除去する。   In the adsorption tower 34, the ozone removal treated water supplied from the dissolved ozone decomposition tower 30 through the ozone removal treated water supply system 35 is passed through the adsorbent packed bed 36, and inorganic arsenic in the ozone removal treated water is removed by the adsorption action of activated alumina. Remove by adsorption.

また、吸着塔34では、流入するオゾン除去処理水が溶存オゾン分解塔30で溶存オゾンを分解除去したものであるので、オゾンの悪影響を受けず、オゾンならびにヒドロキシラジカルによる活性アルミナの劣化を防止することができ、無機ヒ素を吸着除去する吸着工程を安定して行うことができる。   In addition, in the adsorption tower 34, the inflowing ozone removal treated water is obtained by decomposing and removing dissolved ozone in the dissolved ozone decomposition tower 30, so that it is not adversely affected by ozone and prevents deterioration of activated alumina by ozone and hydroxy radicals. In addition, the adsorption step of adsorbing and removing inorganic arsenic can be performed stably.

この結果、処理水中のT−Asは検出限界以下(T−As≦0.001mg/L)となる。処理水は処理水供給系37を通して処理水貯留槽38へ供給し、放流系39から河川等へ放流する。   As a result, T-As in the treated water is below the detection limit (T-As ≦ 0.001 mg / L). The treated water is supplied to the treated water storage tank 38 through the treated water supply system 37 and discharged from the discharge system 39 to the river or the like.

図2は本発明の他の実施の形態を示すものであり、被処理水として有機ヒ素の含有濃度がT−As50mg/L以上の廃水等に適する構成である。先の実施の形態と同様の作用を行う構成要素には同符号を付して説明を省略する。   FIG. 2 shows another embodiment of the present invention, which is a configuration suitable for wastewater having an organic arsenic content concentration of T-As 50 mg / L or more as water to be treated. Constituent elements that perform the same operations as those of the previous embodiment are denoted by the same reference numerals and description thereof is omitted.

図2において、光化学分解塔22を経たオゾン処理水が流入する分解・還元設備50は、溶存オゾン分解塔30と還元処理槽51とを循環系52で連通したものである。還元処理槽51は還元剤のNaSO等を供給する還元剤供給系53および攪拌装置54を有している。還元剤の使用に替えて溶存オゾン分解塔30に窒素ガス等の不活性ガスを供給する不活性ガス供給系(図中に破線で示す)55を設けることも可能である。この場合に還元処理槽51は不要であり、循環系52のみの構成とする。 In FIG. 2, a decomposition / reduction facility 50 into which ozone-treated water flows through the photochemical decomposition tower 22 has a dissolved ozone decomposition tower 30 and a reduction treatment tank 51 communicated with each other through a circulation system 52. The reduction treatment tank 51 has a reducing agent supply system 53 for supplying a reducing agent such as Na 2 SO 3 and a stirring device 54. It is also possible to provide an inert gas supply system (indicated by a broken line in the figure) 55 for supplying an inert gas such as nitrogen gas to the dissolved ozonolysis tower 30 instead of using a reducing agent. In this case, the reduction treatment tank 51 is unnecessary, and only the circulation system 52 is used.

還元処理槽51は凝集槽56に連通し、凝集槽56は凝集剤としてFeClを供給する凝集剤供給系57および膜分離装置58を有し、膜分離装置58は膜透過液を供給する膜処理水供給系59を介して吸着塔34に連通している。吸着塔34の後段には、図示を省略するが先の実施の形態と同様に処理水貯留槽を設ける。 The reduction treatment tank 51 communicates with the agglomeration tank 56, and the agglomeration tank 56 has a flocculant supply system 57 for supplying FeCl 3 as a flocculant and a membrane separation device 58, and the membrane separation device 58 is a membrane for supplying a membrane permeate. It communicates with the adsorption tower 34 via the treated water supply system 59. Although not shown, a treated water storage tank is provided at the rear stage of the adsorption tower 34 as in the previous embodiment.

以下、上記した構成における作用を説明する。有機ヒ素を含有する被処理水21は光化学分解塔22、分解・還元設備50、吸着塔34において順次に処理する。
光化学分解塔22では、オゾン発生装置25から所定オゾン濃度5〜50g/Nmのオゾン含有気体を散気装置24へ供給し、散気装置24からオゾン含有気体を散気してオゾンを被処理水21へ注入する。
Hereinafter, the operation of the above-described configuration will be described. The treated water 21 containing organic arsenic is sequentially processed in the photochemical decomposition tower 22, the decomposition / reduction facility 50, and the adsorption tower 34.
In the photochemical decomposition tower 22, ozone-containing gas having a predetermined ozone concentration of 5 to 50 g / Nm 3 is supplied from the ozone generator 25 to the diffuser 24, and the ozone-containing gas is diffused from the diffuser 24 to treat ozone. Pour into water 21.

このオゾンの存在下で紫外線ランプ23から紫外線を照射してヒドロキシラジカルを生成し、ヒドロキシラジカルによって被処理水21に含まれた有機ヒ素の酸化と脱塩化を行いつつ、被処理水21を光化学分解塔22とpH調整槽27との間で循環してpH5〜9(至適pH7〜8)に維持しながら処理する。この光化学分解塔22では酸化と脱塩化により有機ヒ素の分解除去を促進して、実質的に有機ヒ素の完全無機化を達成できる。   In the presence of ozone, ultraviolet rays are irradiated from the ultraviolet lamp 23 to generate hydroxy radicals, and the organic arsenic contained in the treated water 21 is oxidized and dechlorinated by the hydroxy radicals, and the treated water 21 is photochemically decomposed. It circulates between the tower 22 and the pH adjustment tank 27, and it processes, maintaining at pH 5-9 (optimum pH 7-8). In the photochemical decomposition tower 22, the decomposition and removal of organic arsenic can be promoted by oxidation and dechlorination, so that the organic arsenic can be completely mineralized.

分解・還元設備51では、溶存オゾン分解塔30においてオゾン処理水供給系32を通して光化学分解塔22から供給するオゾン処理水を触媒充填層33に通水し、活性炭の触媒作用によって溶存オゾンを分解除去する。さらに、オゾン処理水は循環系52を通して還元処理槽51との間で循環し、還元処理槽51において還元剤供給系53から供給する還元剤の還元作用によってヒ素酸化物のAsO、As等を還元してAs、As2+等にイオン化する。 In the decomposition / reduction facility 51, the ozone treatment water supplied from the photochemical decomposition tower 22 through the ozone treatment water supply system 32 in the dissolved ozone decomposition tower 30 is passed through the catalyst packed bed 33, and the dissolved ozone is decomposed and removed by the catalytic action of activated carbon. To do. Furthermore, the ozone-treated water circulates between the reduction treatment tank 51 through the circulation system 52, and arsenic oxide AsO, As 2 O 3 by the reducing action of the reducing agent supplied from the reducing agent supply system 53 in the reduction treatment tank 51. Are ionized to As + , As 2+, and the like.

分解・還元設備50において溶存オゾンを除去し、ヒ素酸化物を還元したオゾン処理水は、凝集槽56において凝集膜分離処理して後に膜透過液として吸着塔34へ供給する。
吸着塔34では、膜処理水供給系59を通して還元処理槽51から供給する膜透過液を吸着剤充填層36に通水し、活性アルミナの吸着作用によって膜透過液中のイオン化したヒ素を吸着除去する。この吸着塔34では、流入する膜透過液が溶存オゾン分解塔30で溶存オゾンを分解除去したものであるので、オゾンの悪影響を受けず、オゾンならびにヒドロキシラジカルによる活性アルミナの劣化を防止することができ、ヒ素を吸着除去する吸着工程を安定して行うことができる。
The ozone-treated water from which dissolved ozone is removed by the decomposition / reduction facility 50 and arsenic oxide is reduced is subjected to the agglomeration membrane separation treatment in the agglomeration tank 56 and then supplied to the adsorption tower 34 as a membrane permeate.
In the adsorption tower 34, the membrane permeate supplied from the reduction treatment tank 51 through the membrane treated water supply system 59 is passed through the adsorbent packed bed 36, and the ionized arsenic in the membrane permeate is adsorbed and removed by the adsorption action of activated alumina. To do. In this adsorption tower 34, the inflowing membrane permeate is obtained by decomposing and removing dissolved ozone in the dissolved ozone decomposition tower 30, so that it is not adversely affected by ozone and can prevent deterioration of activated alumina due to ozone and hydroxy radicals. In addition, the adsorption process for adsorbing and removing arsenic can be performed stably.

この結果、ヒ素酸化物を還元して吸着除去することで処理水中の無機ヒ素はT−As0.01mg/L以下となり、有機ヒ素は検出限界以下(T−As≦0.001mg/L)となる。還元剤の使用に替えて窒素ガス等の不活性ガスを使用する場合にあっても同様の効果を得ることができる。   As a result, by reducing and adsorbing arsenic oxide, inorganic arsenic in the treated water is T-As 0.01 mg / L or less, and organic arsenic is below the detection limit (T-As ≦ 0.001 mg / L). . Similar effects can be obtained even when an inert gas such as nitrogen gas is used instead of the reducing agent.

本発明の実施の形態における装置構成を示す模式図The schematic diagram which shows the apparatus structure in embodiment of this invention 本発明の他の実施の形態における装置構成を示す模式図The schematic diagram which shows the apparatus structure in other embodiment of this invention. 従来の装置構成を示す模式図Schematic diagram showing a conventional device configuration

符号の説明Explanation of symbols

21 被処理水
22 光化学分解塔
23 紫外線ランプ
24 散気装置
25 オゾン発生装置
26 循環系
27 pH調整槽
28 薬剤供給系
29 攪拌装置
30 溶存オゾン分解塔
31 ポンプ
32 オゾン処理水供給系
33 触媒充填層
34 吸着塔
35 オゾン除去処理水供給系
36 吸着剤充填層
37 処理水供給系
38 処理水貯留槽
39 放流系
50 分解・還元設備
51 還元処理槽
52 循環系
53 還元剤供給系
54 攪拌装置
55 不活性ガス供給系
56 凝集槽
57 凝集剤供給系
58 膜分離装置
59 膜処理水供給系
21 Water to be treated 22 Photochemical decomposition tower 23 Ultraviolet lamp 24 Air diffuser 25 Ozone generator 26 Circulation system 27 pH adjustment tank 28 Drug supply system 29 Stirrer 30 Dissolved ozone decomposition tower 31 Pump 32 Ozone treated water supply system 33 Catalyst packed bed 34 Adsorption tower 35 Ozone-removed treated water supply system 36 Adsorbent packed bed 37 Treated water supply system 38 Treated water storage tank 39 Discharge system 50 Decomposition / reduction equipment 51 Reduction treatment tank 52 Circulation system 53 Reductant supply system 54 Stirrer 55 Not Active gas supply system 56 Coagulation tank 57 Coagulant supply system 58 Membrane separation device 59 Membrane treated water supply system

Claims (2)

被処理水を光化学分解工程、溶存オゾン分解工程、吸着工程において処理するものであり、光化学分解工程において被処理水をpH5〜9に維持してオゾンの存在下で紫外線を照射し、生成するヒドロキシラジカルによって被処理水中の有機ヒ素を酸化、脱塩化して分解除去し、溶存オゾン分解工程において光化学分解工程から供給するオゾン処理水中の溶存オゾンを分解除去し、吸着工程において溶存オゾン分解工程から供給するオゾン除去処理水中の無機ヒ素を吸着除去することを特徴とする有機ヒ素の無害化方法。 Hydroxy to be generated by treating the water to be treated in the photochemical decomposition step, dissolved ozonolysis step, and adsorption step, maintaining the water to be treated at pH 5-9 in the photochemical decomposition step and irradiating with ultraviolet rays in the presence of ozone. Organic arsenic in treated water is oxidized, dechlorinated and decomposed and removed by radicals, dissolved ozone in ozone-treated water supplied from the photochemical decomposition process in the dissolved ozone decomposition process is decomposed and supplied from the dissolved ozone decomposition process in the adsorption process An organic arsenic detoxification method comprising adsorbing and removing inorganic arsenic in ozone-depleted treated water. 被処理水を光化学分解工程、分解・還元工程、吸着工程において処理するものであり、光化学分解工程において被処理水をpH5〜9に維持してオゾンの存在下で紫外線を照射し、生成するヒドロキシラジカルによって被処理水中の有機ヒ素を酸化、脱塩化して分解除去し、分解・還元工程において光化学分解工程から供給するオゾン処理水中の溶存オゾンを分解除去するとともに、ヒ素酸化物を還元し、吸着工程において分解・還元工程から供給するオゾン除去処理水中のヒ素を吸着除去することを特徴とする有機ヒ素の無害化方法。 Hydroxy is produced by treating the water to be treated in the photochemical decomposition step, decomposition / reduction step, and adsorption step, and maintaining the water to be treated at pH 5-9 in the photochemical decomposition step and irradiating with ultraviolet rays in the presence of ozone. Organic radicals are oxidized, dechlorinated and decomposed and removed by radicals, and dissolved ozone in the ozone-treated water supplied from the photochemical decomposition process is decomposed and removed in the decomposition and reduction process, and arsenic oxide is reduced and adsorbed. An organic arsenic detoxification method characterized by adsorbing and removing arsenic in ozone-removed treated water supplied from a decomposition / reduction process in the process.
JP2005100289A 2005-03-31 2005-03-31 Detoxification method of organic arsenic Active JP4522302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005100289A JP4522302B2 (en) 2005-03-31 2005-03-31 Detoxification method of organic arsenic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005100289A JP4522302B2 (en) 2005-03-31 2005-03-31 Detoxification method of organic arsenic

Publications (2)

Publication Number Publication Date
JP2006280999A JP2006280999A (en) 2006-10-19
JP4522302B2 true JP4522302B2 (en) 2010-08-11

Family

ID=37403458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005100289A Active JP4522302B2 (en) 2005-03-31 2005-03-31 Detoxification method of organic arsenic

Country Status (1)

Country Link
JP (1) JP4522302B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4934569B2 (en) * 2007-11-02 2012-05-16 日本板硝子株式会社 Methods for detoxifying harmful compounds
JP5908767B2 (en) * 2012-03-21 2016-04-26 日本板硝子株式会社 Method for treating an object to be treated containing harmful compounds
CN115159659B (en) * 2022-07-05 2024-06-21 西部黄金伊犁有限责任公司 Arsenic removal device and method for ozone treatment of waste acid stock solution

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158622A (en) * 1999-11-30 2001-06-12 Jgc Corp Method of treating organoarsenic compound
JP2002361269A (en) * 2001-06-06 2002-12-17 Nippon Gosei Alcohol Kk Method for treating water containing phosphorus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168191A (en) * 1984-09-11 1986-04-08 Hitachi Plant Eng & Constr Co Ltd Treatment of waste water containing arsenic and organic material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158622A (en) * 1999-11-30 2001-06-12 Jgc Corp Method of treating organoarsenic compound
JP2002361269A (en) * 2001-06-06 2002-12-17 Nippon Gosei Alcohol Kk Method for treating water containing phosphorus

Also Published As

Publication number Publication date
JP2006280999A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
US8562828B2 (en) Wastewater treatment apparatus
JP3440313B2 (en) Method and apparatus for treating contaminated water
JP2825081B2 (en) Ultraviolet ray decomposition treatment method and apparatus for wastewater containing organic matter
JP3805245B2 (en) Method and apparatus for decomposing persistent organic substances
JP2006341229A (en) Advanced treating method of cyanide compound-containing drain
JP3795268B2 (en) Method and apparatus for treating wastewater containing organochlorine compounds
JP2007083171A (en) Method and apparatus for treating water
JP4522302B2 (en) Detoxification method of organic arsenic
JP2008049305A (en) Volatile organic chlorine compound decomposition system and volatile organic chlorine compound decomposition method
JP2005279409A (en) Treatment method of organometallic compound-containing waste water
JP3766298B2 (en) Wastewater treatment method and apparatus
JPH1199394A (en) Method for removing organic matter in water
JPH10337579A (en) Method and apparatus for treatment of wastewater
JP4277736B2 (en) Method for treating water containing organic arsenic compound
JP2000325971A (en) Polluted water treatment method and apparatus
US20230322595A1 (en) Wastewater Ozone Treatment
JP3826580B2 (en) Brominated acid decomposition method using photocatalyst and apparatus therefor
JP3573322B2 (en) Method and apparatus for treating dioxin-containing wastewater
JP2005103391A (en) Wastewater treatment method and apparatus
JP2003181474A (en) Method and equipment for degrading persistent organic matter
JP4230675B2 (en) Treatment of bromic acid-containing wastewater
JP3859866B2 (en) Water treatment method
JP3556515B2 (en) Wastewater treatment method using ozone and hydrogen peroxide
JP3997949B2 (en) Purification method of contaminated water
JP2001104996A (en) Water treatment method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

R150 Certificate of patent or registration of utility model

Ref document number: 4522302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140604

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350