JP4230675B2 - Treatment of bromic acid-containing wastewater - Google Patents

Treatment of bromic acid-containing wastewater Download PDF

Info

Publication number
JP4230675B2
JP4230675B2 JP2001058768A JP2001058768A JP4230675B2 JP 4230675 B2 JP4230675 B2 JP 4230675B2 JP 2001058768 A JP2001058768 A JP 2001058768A JP 2001058768 A JP2001058768 A JP 2001058768A JP 4230675 B2 JP4230675 B2 JP 4230675B2
Authority
JP
Japan
Prior art keywords
activated carbon
iron
bromate
ions
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001058768A
Other languages
Japanese (ja)
Other versions
JP2002254087A (en
Inventor
圭介 舩石
博子 宮前
隆亮 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiki Ataka Engineering Co Ltd
Original Assignee
Daiki Ataka Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiki Ataka Engineering Co Ltd filed Critical Daiki Ataka Engineering Co Ltd
Priority to JP2001058768A priority Critical patent/JP4230675B2/en
Publication of JP2002254087A publication Critical patent/JP2002254087A/en
Application granted granted Critical
Publication of JP4230675B2 publication Critical patent/JP4230675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、臭素酸イオンを含有する臭素酸含有汚水の臭素酸イオンを除去する臭素酸含有汚水の処理方法に関する。
【0002】
【従来の技術】
従来、埋立地から浸出する埋立浸出水などの汚水中の生物難分解性有機物を、オゾンや過酸化水素を添加するとともに紫外線を照射して生成するヒドロキシラジカルにより分解する促進酸化処理が採られている。
【0003】
ところで、埋立浸出水は、臭素イオンが数mg/リットルと比較的多く含有している。そして、この臭素イオンは、促進酸化処理の際に添加されるオゾンにより臭素酸イオンに酸化されるとともに、別途特別な処理を施さないと通常は酸化されずに残留することが知られている。そして、この臭素酸イオンは、発ガン性が指摘されており、世界保健機構(WHO:the World Health Organization)でも10μg/リットル以下に規制されている。
【0004】
そこで、従来の臭素酸を含有する汚水を処理する方法として、例えば特開平10−85764号公報、特開平10−323663号公報および特表平10−504999号公報などに記載の臭素酸イオンを除去する臭素酸含有汚水の処理方法が知られている。
【0005】
そして、特開平10−85764号公報に記載のものは、臭素酸含有汚水のpHを2〜4程度の酸性に調整し、この酸性に調整した臭素酸含有汚水を活性炭と接触させて臭素酸イオンを臭素イオンに分解する構成が採られている。
【0006】
しかしながら、この特開平10−85764号公報に記載のものは、活性炭と接触させて分解するので、活性炭の吸着破過による臭素酸イオンの除去率の低下および活性炭の置換基の消費による臭素酸イオンの分解性の低下などを生じる。このことにより、活性炭を頻繁に交換しなければならなず、処理効率の向上が望めない。
【0007】
また、特開平10−323663号公報に記載のものは、臭素酸含有汚水にピーク波長が190〜200nmのエキシマ紫外線を照射して臭素酸イオンを除去する構成が採られている。
【0008】
しかしながら、この特開平10−323663号公報に記載のものは、ピーク波長が短く人体に害を及ぼすおそれのあるエキシマ紫外線を照射するので、エキシマ紫外線が外部に漏洩しない構造の装置を設計する必要があり、装置が複雑大型化するおそれがある。
【0009】
さらに、特表平10−504999号公報に記載のものは、臭素酸含有汚水を水素存在下で貴金属と接触させ、貴金属の触媒作用により臭素酸イオンを臭素イオンに還元するものである。この触媒作用を示す貴金属として、白金やパラジウム、イリジウム、ロジウムなどの周期律第8亜族の貴金属またはこれら貴金属と銅族の金属との組み合わせたものが用いられる。そして、貴金属の触媒用により、水素と臭素酸イオンとを反応させて臭素イオンに還元する構成が採られている。
【0010】
しかしながら、この特表平10−504999号公報に記載のものでは、例えば埋立浸出水などを促進酸化処理した二次処理水など、臭素酸イオンが比較的多く含有されたものでは、十分に還元できず、処理に時間を要し、効率よく処理できないおそれがある。
【0011】
【発明が解決しようとする課題】
上述したように、特開平10−85764号公報に記載のものでは、活性炭の吸着破過による臭素酸イオンの除去率の低下および活性炭の置換基の消費による臭素酸イオンの分解性の低下などを生じ、活性炭を頻繁に交換しなければならなず、処理効率の向上が望めない。
【0012】
また、特開平10−323663号公報に記載のものでは、使用するエキシマ紫外線が外部に漏洩しない構造の装置を設計する必要があり、装置が複雑大型化するおそれがある。
【0013】
さらに、特表平10−504999号公報に記載のものでは、例えば臭素酸イオンを比較的多く含有する汚水では、十分に還元できず、処理に時間を要し、効率よく処理できないおそれがある問題がある。
【0014】
本発明は、上記問題点に鑑みなされたもので、簡単な構成で効率よく容易に臭素酸イオンを除去できる臭素酸含有汚水の処理方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
請求項1記載の臭素酸含有汚水の処理方法は、臭素酸イオンを含有する臭素酸含有汚水をpHが中性から弱酸性の範囲に調整し、このpHが調整された前記臭素酸含有汚水を鉄と接触させ、この鉄と接触した前記臭素酸含有汚水を中和し、この中和した前記臭素酸含有汚水を活性炭と接触させるものである。
【0016】
そして、pHを中性から弱酸性の範囲に調整した臭素酸含有汚水を鉄と接触させ、中和した後に活性炭と接触させることにより、中性から弱酸性に調整された臭素酸含有汚水中の臭素酸イオンの少なくとも一部が鉄との接触により臭素イオンに還元される。また、未還元の臭素酸イオンは、活性炭による吸着除去、活性炭表面の還元基による臭素イオンへの還元、および、前工程から溶出する微量の鉄イオンによる活性炭表面での臭素イオンへの還元などにより、確実に臭素イオンに還元される。このため、活性炭の吸着破過や活性炭の還元基の消費が抑制され、長期間安定して効率よく臭素酸イオンが還元され、活性炭の交換頻度が低下して容易に処理する。
【0017】
請求項2記載の臭素酸含有汚水の処理方法は、請求項1記載の臭素酸含有汚水の処理方法において、活性炭と接触させる前に臭素酸含有汚水に過酸化水素を添加するものである。
【0018】
そして、臭素酸含有汚水に活性炭と接触させる前に過酸化水素を添加することにより、過酸化水素が鉄イオンとにより臭素酸含有汚水中の有機物を酸化分解し、有機物も除去される。
【0019】
請求項3記載の臭素酸含有汚水の処理方法は、請求項1記載の臭素酸含有汚水の処理方法において、臭素酸含有汚水は、過酸化水素が添加されて含有する有機物が分解処理された排水の二次処理水であるものである。
【0020】
そして、過酸化水素が添加されて含有する有機物が分解処理された排水の二次処理水を臭素酸含有汚水として処理することにより、排水の処理で使用した二次処理水中の残留する過酸化水素が鉄イオンとにて残留する有機物を酸化分解し、別途添加物を加えることなく残留する有機物を除去し、二次処理水を高度に処理する。
【0021】
請求項4記載の臭素酸含有汚水の処理方法は、請求項1記載の臭素酸含有汚水の処理方法において、臭素酸含有汚水は、オゾンが添加されて含有する有機物が分解処理された排水の二次処理水であるものである。
【0022】
そして、オゾンが添加されて含有する有機物が分解処理された排水の二次処理水を臭素酸含有汚水として処理することにより、排水中の有機物を分解処理するために添加したオゾンにより酸化された二次処理水中の臭素酸イオンが臭素イオンに無害化されるので、オゾンを用いた処理でも臭素酸イオンが除去され、二次処理水が高度に浄化処理される。
【0023】
請求項5記載の臭素酸含有汚水の処理方法は、請求項1ないし4いずれか一記載の臭素酸含有汚水の処理方法において、臭素酸含有汚水は、鉄と10分以上接触させるものである。
【0024】
そして、臭素酸含有汚水を鉄と10分以上接触させることにより、臭素酸含有汚水中の臭素酸イオンの濃度が確実に低下し、後段での活性炭による臭素酸イオンを除去する負荷が低減し、活性炭の臭素酸イオンの除去性能が確実に長期に亘って得られる。
【0025】
【発明の実施の形態】
以下、本発明の実施の一形態を示す臭素酸含有汚水の処理装置の構成について図面を参照して説明する。
【0026】
図1において、1は促進酸化槽で、この促進酸化槽1は、排水を貯留可能に形成されている。そして、促進酸化槽1には、排水を促進酸化槽1内に流入する原水管2が接続されている。ここで、排水は、臭素や臭素化物、アンモニアなどの汚染物質や、ダイオキシン類、ビスフェノールAなどのいわゆる環境ホルモン、PCB(Polyclorinated Biphenyl)など塩素基を有した生物難分解性で化学的酸素要求量(Chemical Oxygen Demand:COD)に起因する生物難分解性有機塩素化合物などの有機物とを含有するものである。そして、この促進酸化槽1には、底部に位置してオゾンを含有する空気を曝気する図示しないオゾン曝気手段が配設されている。さらに、促進酸化槽1には、貯留する排水に過酸化水素を添加する図示しない過酸化水素添加手段が設けられている。なお、この過酸化水素添加手段は、原水管2に設けて流通する排水に添加する構成としてもできる。また、促進酸化槽1には、排水に紫外線を照射しヒドロキシラジカルを生成させる図示しない紫外線照射手段である紫外線ランプが配設されている。さらに、促進酸化槽1には、ヒドロキシラジカルにて排水中の有機物が分解処理された臭素酸含有汚水としての二次処理水を流出する流出管3が接続されている。
【0027】
また、流出管3には、臭素酸処理装置10が接続されている。この臭素酸処理装置10は、流出管3に接続され流通する二次処理水のpHを例えば中性から弱酸性に調整する第1のpH調整手段11が設けられている。そして、流出管3には、鉄接触槽12が接続されている。この鉄処理槽12は、pHが調整された二次処理水が流通する図示しないカラムと、このカラム内に充填された図示しない粉粒状の鉄とを備えている。さらに、この鉄接触槽12には、カラム内を流通した二次処理水が流出する送水管13が接続されている。
【0028】
そして、送水管13には、流通する二次処理水を中和、すなわちpHを中性に調整する第2のpH調整手段14が設けられている。また、送水管13には、活性炭槽15が接続されている。この活性炭槽15は、中和された二次処理水が流通する図示しないカラムと、このカラム内に充填された図示しない粒状の活性炭とを備えている。そして、この活性炭槽15には、活性炭と接触し処理された二次処理水である処理水を系外に流出する放流管16が接続されている。
【0029】
次に、上記実施の形態の動作について説明する。
【0030】
まず、原水管2を介して汚染物質や有機物を含有する排水を促進酸化槽1に流入させる。そして、促進酸化槽1に流入した排水は、オゾン曝気手段からオゾンを含有する空気が曝気されるとともに、紫外線ランプから紫外線が照射される。この紫外線の照射によりヒドロキシラジカルが生成し、この生成したヒドロキシラジカルにより排水中の有機物が分解されて排水は促進酸化処理される。なお、排水中に臭素イオンやアンモニアイオンが存在する場合、臭素イオンは臭素酸イオンに酸化され、アンモニアイオンは硝酸イオンに酸化される。
【0031】
そして、排水の有機物が分解された促進酸化処理後の二次処理水は、流出管3を介して臭素酸処理装置10に流入する。この流出管3を流通する二次処理水は、第1のpH調整手段11によりpHが中性から弱酸性の範囲で調整されて鉄接触槽12に流入する。ここで、二次処理水のpHがアルカリ性となると鉄による臭素酸イオンを臭素イオンに還元する触媒作用が得られなくなる。一方、二次処理水のpHが強酸性となると、鉄との接触の際に鉄が酸化溶出して、二次処理水を鉄により汚染したり、鉄による臭素酸の還元が十分にできなくなる。このため、鉄と接触させる前に、中性から弱酸性の範囲に調整する。
【0032】
そして、鉄接触槽12に流入した二次処理水は、鉄と接触しつつカラム内を流通する。なお、二次処理水は、鉄との接触時間が約10分以上となるように流通される。ここで、鉄との接触時間が10分より短くなると臭素酸イオンの除去が十分に進行せず、後段での活性炭の処理負荷が増大するおそれがある。一方、鉄との接触時間が余り長くなっても臭素酸イオンの除去率の増大は望めず、処理効率の低下や送水の際の圧損などにより処理運転のコストの増大や装置の大型化を生じるおそれがある。このため、鉄との接触時間を10分以上、好ましくは10分以上60分以下とする。そして、この二次処理水の鉄との接触により、二次処理水中の臭素酸イオンが鉄の触媒作用により臭素イオンに還元される。また、促進酸化処理後の二次処理水中に残留する過酸化水素が溶出する鉄イオンとにより、フェントン(Fenton)の酸化反応により残留する有機物をさらに酸化分解する。
【0033】
さらに、鉄接触槽12を流通した二次処理水は、送水管13を介して活性炭槽15に流入する。この送水管13を流通する二次処理水は、第2のpH調整手段14によりpHが中性に調整されて中和されて活性炭槽15に流入する。なお、第1のpH調整手段11により中性となるようにpHを調整した場合には、第2のpH調整手段14にて中和する動作をしなくてもよい。
【0034】
そして、活性炭槽15に流入した二次処理水は、活性炭と接触しつつカラム内を流通する。なお、二次処理水は、活性炭との接触時間が約5分以上、好ましくは10分以上30分以下となるように流通される。ここで、活性炭との接触時間が5分より短くなると残留する臭素酸イオンが十分に除去されなくなる。一方、30分以上活性炭と接触させても臭素酸イオンの除去率の増大は望めず、処理効率の低下や送水の際の圧損などにより処理運転のコストの増大や装置の大型化を生じるおそれがある。このため、活性炭との接触時間を5分以上、好ましくは10分以上30分以下とする。そして、この二次処理水と活性炭との接触により、二次処理水中の残留する臭素酸イオンは一部活性炭に吸着されるとともに、活性炭表面の置換基により臭素イオンに還元される。この後、活性炭との接触により処理された二次処理水は、処理水として放流管16から系外に放流される。
【0035】
次に、上記実施の形態の臭素酸含有汚水の処理装置の作用を実験例を参照して説明する。
【0036】
まず、実験装置としては、容量が10mlのカラムに鉄粉(キシダ化学製 商品名:鉄粉)を充填した鉄接触槽12と、この鉄接触槽12に容量が50mlのカラムに粒状の活性炭(カルゴン製 商品名:F-400)を充填した活性炭槽15とを直列に接続したものを用いた。また、臭素酸含有汚水として、水道水に臭素酸カリウムを臭素酸イオン濃度が10mg/リットルとなるように添加し、pH7に調整した実験用汚水を用いた。そして、実験用汚水を鉄接触槽12に鉄との接触時間が10分となるように流通させ、この鉄接触槽12を流通した実験用汚水の臭素酸イオン濃度を測定した。また、鉄接触槽12を流通した後に活性炭槽15に活性炭との接触時間が2.5分〜50分の間で設定した時間で流通させた実験用汚水の臭素酸イオン濃度を測定した。これら実験結果を図2に示す。
【0037】
この図2に示す結果から、鉄と接触させるのみでも臭素酸イオンの除去率が約20%であった。また、鉄との接触後に活性炭と接触させることにより、臭素酸イオンの除去率が約90%であった。これらのことから、鉄と活性炭との併用によりほとんどの臭素酸イオンが除去されることがわかった。さらに、鉄との接触により、後段の活性炭で臭素酸イオンを処理する負荷が低減することが認められ、活性炭の臭素酸イオンの除去性能が長期に亘って得られることがわかる。また、数ヶ月間に亘って長期間処理を継続しても、臭素酸イオンが高度に除去されていた。これは、活性炭が単に吸着により臭素酸イオンを除去するのではなく、活性炭の表面における臭素酸イオンを臭素イオンに還元する還元基の作用や、鉄接触槽12から微量に溶出する鉄イオンが後段での活性炭の表面での還元基の消費分を補完しているためと思われる。
【0038】
上述したように、上記実施の形態によれば、中性から弱酸性に調整した二次処理水を鉄と接触させ、二次処理水中の臭素酸イオンの少なくとも一部を鉄により臭素イオンに還元する。さらに、鉄と接触した二次処理水を活性炭と接触させ、残留する臭素酸イオンを活性炭による吸着除去、活性炭表面の還元基による臭素イオンへの還元、および、前工程から溶出する微量の鉄イオンによる活性炭表面での臭素イオンへの還元などにより確実に臭素イオンに還元する。このため、活性炭にて除去する臭素酸イオンの量が減少して負荷が低減し、活性炭の吸着破過や活性炭の還元基の消費が抑制され、鉄および活性炭と接触させる簡単な構成で長期間安定した臭素酸イオンの除去が得られ、活性炭の交換頻度が低下して効率よく容易に処理できる。
【0039】
そして、二次処理水を鉄と10分以上接触させる。このため、二次処理水中の臭素酸イオンの臭素イオンへの還元率が増大し、確実に活性炭の臭素酸イオンを除去する負荷が低減し、長期間安定した臭素酸イオンの除去が確実に得られる。
【0040】
また、過酸化水素およびオゾンを添加して有機物を分解する促進酸化処理後の二次処理水を処理する。このため、二次処理水中に残留する過酸化水素が、鉄接触槽12の鉄から溶出する微量の鉄イオンとにより二次処理水中の残留する有機物をさらに酸化分解するので、より高度に二次処理水を浄化処理できる。
【0041】
さらに、促進酸化処理後の二次処理水を用いるので、前段での促進酸化処理により添加された残留する過酸化水素が有機物の分解に利用される。このため、二次処理水中に混入する有機物を処理するために別途過酸化水素を添加して処理する必要がなく、有機物がさらに除去できるとともに過酸化水素を別途除去するための工程が不要となり、効率よく高度な浄化処理ができる。
【0042】
また、有機物を分解除去するためにオゾンを添加して促進酸化処理することにより臭素イオンが臭素酸イオンに酸化された二次処理水を処理する。このため、有機物が促進酸化処理で高度に処理された二次処理水中の臭素酸イオンが除去、すなわち臭素イオンに無害化され、別途浄化処理せずに放流しても有機物や臭素酸イオンによる汚染を生じない処理水に排水を高度に浄化処理できる。
【0043】
なお、上記実施の形態において、排水を促進酸化処理した二次処理水を処理して説明したが、例えば水道水や地下水などの上水や下水、工場排水など、臭素酸イオンを含有するいずれの臭素酸含有汚水でも対応でき、有機物を含有しないものでもよい。
【0044】
そして、鉄との接触時間を10分以上としたが、10分以上に限られることはなく、処理する臭素酸イオンの濃度が低い場合などではより短い接触時間でも対応できる。
【0045】
また、臭素酸含有汚水を鉄と接触させる構成としては、鉄粉を充填したカラムを備えた鉄接触槽12に限らず、いずれの構成でも対応できる。
【0046】
さらに、臭素酸含有汚水を活性炭と接触させる構成としては、粒状の活性炭を充填したカラムを備えた活性炭槽15に限らず、いずれの構成でも対応できる。
【0047】
【発明の効果】
請求項1記載の臭素酸含有汚水の処理方法によれば、中性から弱酸性に調整した臭素酸含有汚水を鉄と接触させて臭素酸イオンの少なくとも一部を臭素イオンに還元した後、未還元の臭素酸イオンを活性炭による吸着除去、活性炭表面の還元基による臭素イオンへの還元、および、前工程から溶出する微量の鉄イオンによる活性炭表面での臭素イオンへの還元などにより、確実に臭素イオンに還元するため、活性炭の吸着破過や活性炭の還元基の消費が抑制され、鉄と活性炭とを接触させる簡単な構成で長期間安定して効率よく高度に臭素酸イオンを還元でき、活性炭の交換頻度が低下して容易に効率よく処理できる。
【0048】
請求項2記載の臭素酸含有汚水の処理方法によれば、請求項1記載の臭素酸含有汚水の処理方法の効果に加え、臭素酸含有汚水に活性炭と接触させる前に過酸化水素を添加するため、過酸化水素が鉄イオンとにより臭素酸含有汚水中の有機物を酸化分解するので、有機物も除去できる。
【0049】
請求項3記載の臭素酸含有汚水の処理方法によれば、請求項1記載の臭素酸含有汚水の処理方法の効果に加え、過酸化水素の添加にて排水中の有機物を分解処理した二次処理水を臭素酸含有汚水として処理するため、排水の処理で使用した二次処理水中の残留する過酸化水素が鉄イオンとにて残留する有機物を酸化分解し、別途添加物を加えることなく残留する有機物を除去できるとともに残留する過酸化水素を別途除去する工程が不要で、二次処理水を高度に効率よく処理できる。
【0050】
請求項4記載の臭素酸含有汚水の処理方法によれば、請求項1記載の臭素酸含有汚水の処理方法の効果に加え、オゾンの添加にて排水中の有機物を分解処理した二次処理水を臭素酸含有汚水として処理するため、排水中の有機物を高度に分解処理するために添加したオゾンにより酸化された二次処理水中の臭素酸イオンが臭素イオンに無害化でき、別途浄化処理せずに放流しても有機物や臭素酸イオンによる汚染を生じない処理水に排水を高度に浄化処理できる。
【0051】
請求項5記載の臭素酸含有汚水の処理方法によれば、請求項1ないし4いずれか一記載の臭素酸含有汚水の処理方法の効果に加え、臭素酸含有汚水を鉄と10分以上接触させるため、臭素酸含有汚水中の臭素酸イオンの濃度を確実に低下でき、後段での活性炭による臭素酸イオンを除去する負荷が低減して、活性炭の臭素酸イオンの除去性能を確実に長期に亘って得ることができる。
【図面の簡単な説明】
【図1】本発明の臭素酸含有汚水の処理方法の実施の一形態を示す処理装置のブロック図である。
【図2】同上実験例における活性炭との接触時間と臭素酸イオン濃度との関係を示すグラフである。
【符号の説明】
1 促進酸化槽
10 臭素酸処理装置
11 第1のpH調整手段
12 鉄接触槽
14 第2のpH調整手段
15 活性炭槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating bromate-containing wastewater that removes bromate ions containing bromate-containing wastewater containing bromate ions.
[0002]
[Prior art]
Conventionally, accelerated oxidation treatment has been adopted in which biologically degradable organic substances in wastewater such as landfill leachate leached from landfill sites are decomposed by hydroxyl radicals generated by adding ozone and hydrogen peroxide and irradiating ultraviolet rays. Yes.
[0003]
By the way, landfill leachate contains a relatively large amount of bromide ions, such as several mg / liter. It is known that this bromine ion is oxidized to bromate ion by ozone added during the accelerated oxidation treatment, and usually remains without being oxidized unless special treatment is applied. This bromate ion has been pointed out to be carcinogenic, and is regulated to 10 μg / liter or less by the World Health Organization (WHO).
[0004]
Therefore, as a conventional method for treating sewage containing bromic acid, for example, removal of bromate ions described in JP-A-10-85764, JP-A-10-323663, JP-T-10-504999, etc. A method for treating brominated acid-containing wastewater is known.
[0005]
And the thing of Unexamined-Japanese-Patent No. 10-85764 adjusts the pH of bromic acid containing wastewater to the acidity of about 2-4, this bromine acid containing wastewater adjusted to this acid is made to contact activated carbon, and bromate ion The structure which decomposes | disassembles into a bromine ion is taken.
[0006]
However, since the one described in JP-A-10-85764 is decomposed by contact with activated carbon, the reduction of bromate ion removal rate due to adsorption breakthrough of activated carbon and bromate ion due to consumption of the substituent of activated carbon This will cause degradation of degradability. As a result, the activated carbon must be frequently replaced, and improvement in processing efficiency cannot be expected.
[0007]
Moreover, the thing of Unexamined-Japanese-Patent No. 10-323663 employ | adopts the structure which removes bromate ion by irradiating excimer ultraviolet rays with a peak wavelength of 190-200 nm to bromic acid containing wastewater.
[0008]
However, since the device described in Japanese Patent Laid-Open No. 10-323663 irradiates excimer ultraviolet rays that have a short peak wavelength and may cause harm to the human body, it is necessary to design an apparatus having a structure in which excimer ultraviolet rays do not leak to the outside. There is a risk that the apparatus becomes complicated and large.
[0009]
Furthermore, what is described in Japanese Patent Publication No. 10-504999 is a technique in which bromic acid-containing wastewater is brought into contact with a noble metal in the presence of hydrogen, and bromate ions are reduced to bromine ions by the catalytic action of the noble metal. As the noble metal exhibiting this catalytic action, a noble metal belonging to Group 8 of the periodic table such as platinum, palladium, iridium and rhodium, or a combination of these noble metals and copper group metals is used. And the structure which makes hydrogen and bromate ion react and reduces it to bromine ion is used for the catalyst of a noble metal.
[0010]
However, the one described in Japanese Patent Publication No. 10-504999 can be sufficiently reduced if it contains a relatively large amount of bromate ions, such as secondary treated water obtained by promoting oxidation treatment of landfill leachate. Therefore, there is a possibility that processing takes time and processing cannot be performed efficiently.
[0011]
[Problems to be solved by the invention]
As described above, according to the method described in JP-A-10-85764, reduction in bromate ion removal rate due to adsorption breakthrough of activated carbon and reduction in bromate ion decomposability due to consumption of substituents on activated carbon, etc. As a result, the activated carbon must be frequently replaced, and improvement in the treatment efficiency cannot be expected.
[0012]
In addition, in the apparatus described in Japanese Patent Laid-Open No. 10-323663, it is necessary to design an apparatus having a structure in which excimer ultraviolet light to be used does not leak to the outside, which may increase the size of the apparatus.
[0013]
Furthermore, in the case of the one described in JP-T-10-504999, for example, sewage containing a relatively large amount of bromate ions cannot be sufficiently reduced, takes time for treatment, and may not be efficiently treated. There is.
[0014]
This invention is made | formed in view of the said problem, and it aims at providing the processing method of bromic acid containing wastewater which can remove a bromate ion efficiently and easily with a simple structure.
[0015]
[Means for Solving the Problems]
The method for treating brominated acid-containing sewage according to claim 1, wherein the brominated acid-containing sewage containing bromate ions is adjusted to a pH range from neutral to weakly acidic, and the brominated acid-containing sewage whose pH is adjusted is adjusted. The brominated acid-containing sewage in contact with iron is neutralized, and the neutralized bromic acid-containing sewage is brought into contact with activated carbon.
[0016]
Then, the bromic acid-containing sewage whose pH is adjusted to a range from neutral to weakly acidic is brought into contact with iron, neutralized, and then brought into contact with activated carbon. At least some of the bromate ions are reduced to bromine ions by contact with iron. Unreduced bromate ions are removed by adsorption with activated carbon, reduction to bromine ions by reducing groups on the activated carbon surface, and reduction to bromine ions on the activated carbon surface by a small amount of iron ions eluted from the previous process. It is reliably reduced to bromine ions. For this reason, adsorption breakthrough of activated carbon and consumption of reducing groups of activated carbon are suppressed, bromate ions are reduced stably and efficiently for a long period of time, and the frequency of replacement of activated carbon is reduced and the treatment is easily performed.
[0017]
The method for treating brominated acid-containing sewage according to claim 2 is the method for treating brominated acid-containing sewage according to claim 1, wherein hydrogen peroxide is added to the brominated acid-containing sewage before contacting with activated carbon.
[0018]
Then, by adding hydrogen peroxide before bringing the bromic acid-containing wastewater into contact with the activated carbon, the hydrogen peroxide oxidizes and decomposes organic matter in the bromic acid-containing wastewater with iron ions, and the organic matter is also removed.
[0019]
The bromic acid-containing sewage treatment method according to claim 3 is the bromate-containing sewage treatment method according to claim 1, wherein the bromate-containing sewage is a wastewater in which an organic substance containing hydrogen peroxide is decomposed. Secondary treated water.
[0020]
Then, by treating the secondary treated water of the wastewater that has been decomposed by adding hydrogen peroxide and treating it as brominated acid-containing wastewater, the remaining hydrogen peroxide in the secondary treated water used in the treatment of the wastewater Oxidizes and decomposes the remaining organic matter with iron ions, removes the remaining organic matter without adding additional additives, and highly treats the secondary treated water.
[0021]
The bromic acid-containing sewage treatment method according to claim 4 is the bromate-containing sewage treatment method according to claim 1, wherein the bromate-containing sewage is a wastewater obtained by decomposing organic matter containing ozone added thereto. It is the next treated water.
[0022]
Then, by treating the secondary treated water of the wastewater in which the organic matter contained by adding ozone is decomposed as brominated acid-containing sewage, it is oxidized by the ozone added to decompose the organic matter in the wastewater. Since bromate ions in the next treated water are rendered harmless by bromine ions, bromate ions are removed even by treatment with ozone, and the secondary treated water is highly purified.
[0023]
The bromic acid-containing wastewater treatment method according to claim 5 is the bromate-containing wastewater treatment method according to any one of claims 1 to 4, wherein the bromate-containing wastewater is brought into contact with iron for 10 minutes or more.
[0024]
And by bringing the bromic acid-containing sewage into contact with iron for 10 minutes or more, the concentration of bromate ions in the bromic acid-containing sewage is surely reduced, and the load for removing bromate ions by activated carbon in the subsequent stage is reduced. The bromate ion removal performance of activated carbon can be reliably obtained over a long period of time.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the configuration of a treatment apparatus for bromic acid-containing sewage showing an embodiment of the present invention will be described with reference to the drawings.
[0026]
In FIG. 1, reference numeral 1 denotes an accelerated oxidation tank, and this accelerated oxidation tank 1 is formed so as to be able to store waste water. And the raw | natural water pipe 2 which flows in wastewater into the promotion oxidation tank 1 is connected to the promotion oxidation tank 1. FIG. Here, wastewater is pollutant such as bromine, bromide, and ammonia, so-called environmental hormones such as dioxins, bisphenol A, PCBs (Polyclorinated Biphenyl), bio-degradable and chemical oxygen demand. It contains organic substances such as biologically indegradable organochlorine compounds resulting from (Chemical Oxygen Demand: COD). The accelerated oxidation tank 1 is provided with an ozone aeration means (not shown) that is located at the bottom and aerates air containing ozone. Further, the accelerated oxidation tank 1 is provided with a hydrogen peroxide addition means (not shown) for adding hydrogen peroxide to the wastewater to be stored. In addition, this hydrogen peroxide addition means can also be set as the structure added to the waste_water | drain which distribute | circulates provided in the raw | natural water pipe 2. Further, the accelerated oxidation tank 1 is provided with an ultraviolet lamp that is an ultraviolet irradiation means (not shown) that irradiates the wastewater with ultraviolet rays to generate hydroxy radicals. Furthermore, the accelerating oxidation tank 1 is connected to an outflow pipe 3 for discharging secondary treated water as bromic acid-containing sewage obtained by decomposing organic substances in wastewater with hydroxy radicals.
[0027]
In addition, a bromate treatment apparatus 10 is connected to the outflow pipe 3. This bromic acid treatment apparatus 10 is provided with a first pH adjusting means 11 for adjusting the pH of the secondary treated water that is connected to the outflow pipe 3 and circulates, for example, from neutral to weakly acidic. An iron contact tank 12 is connected to the outflow pipe 3. The iron treatment tank 12 includes a column (not shown) through which the secondary treated water whose pH is adjusted flows, and powdered iron (not shown) filled in the column. Further, the iron contact tank 12 is connected with a water pipe 13 through which the secondary treated water flowing through the column flows out.
[0028]
The water supply pipe 13 is provided with second pH adjusting means 14 that neutralizes the secondary treated water that is circulated, that is, adjusts the pH to neutral. An activated carbon tank 15 is connected to the water pipe 13. The activated carbon tank 15 includes a column (not shown) through which neutralized secondary treated water flows and granular activated carbon (not shown) filled in the column. The activated carbon tank 15 is connected to a discharge pipe 16 through which treated water, which is secondary treated water that has been treated in contact with activated carbon, flows out of the system.
[0029]
Next, the operation of the above embodiment will be described.
[0030]
First, wastewater containing pollutants and organic substances is caused to flow into the accelerated oxidation tank 1 through the raw water pipe 2. The waste water that has flowed into the accelerated oxidation tank 1 is aerated with air containing ozone from the ozone aeration means and is irradiated with ultraviolet rays from an ultraviolet lamp. Hydroxy radicals are generated by the irradiation of the ultraviolet rays, and organic substances in the waste water are decomposed by the generated hydroxy radicals, and the waste water is subjected to accelerated oxidation treatment. When bromine ions or ammonia ions are present in the waste water, bromine ions are oxidized to bromate ions and ammonia ions are oxidized to nitrate ions.
[0031]
Then, the secondary treated water after the accelerated oxidation treatment in which the organic matter in the waste water is decomposed flows into the bromic acid treatment apparatus 10 through the outflow pipe 3. The secondary treated water flowing through the outflow pipe 3 is adjusted in the pH range from neutral to weakly acidic by the first pH adjusting means 11 and flows into the iron contact tank 12. Here, when the pH of the secondary treated water becomes alkaline, the catalytic action of reducing bromate ions by iron to bromine ions cannot be obtained. On the other hand, when the pH of the secondary treated water becomes strongly acidic, the iron is oxidized and eluted upon contact with iron, and the secondary treated water is contaminated with iron, and the reduction of bromic acid by iron cannot be sufficiently performed. . For this reason, before making it contact with iron, it adjusts to the range of neutrality to weak acidity.
[0032]
Then, the secondary treated water flowing into the iron contact tank 12 flows through the column while being in contact with iron. The secondary treated water is circulated so that the contact time with iron is about 10 minutes or longer. Here, if the contact time with iron is shorter than 10 minutes, removal of bromate ions does not proceed sufficiently, and the treatment load of activated carbon in the subsequent stage may increase. On the other hand, even if the contact time with iron becomes too long, an increase in the removal rate of bromate ions cannot be expected, resulting in an increase in the cost of processing operation and an increase in the size of the apparatus due to a decrease in processing efficiency or pressure loss during water supply. There is a fear. For this reason, the contact time with iron is 10 minutes or more, preferably 10 minutes or more and 60 minutes or less. And the bromate ion in secondary treated water is reduced to bromine ion by the catalytic action of iron by contact with iron of this secondary treated water. Further, the remaining organic matter is further oxidatively decomposed by Fenton's oxidation reaction with iron ions from which hydrogen peroxide remaining in the secondary treated water after the accelerated oxidation treatment is eluted.
[0033]
Further, the secondary treated water that has circulated through the iron contact tank 12 flows into the activated carbon tank 15 through the water supply pipe 13. The secondary treated water flowing through the water supply pipe 13 is neutralized by adjusting the pH to neutral by the second pH adjusting means 14 and flows into the activated carbon tank 15. Note that when the pH is adjusted to be neutral by the first pH adjusting unit 11, the second pH adjusting unit 14 does not need to perform the neutralization operation.
[0034]
Then, the secondary treated water flowing into the activated carbon tank 15 circulates in the column while being in contact with the activated carbon. The secondary treated water is circulated so that the contact time with the activated carbon is about 5 minutes or longer, preferably 10 minutes or longer and 30 minutes or shorter. Here, when the contact time with the activated carbon is shorter than 5 minutes, the remaining bromate ions are not sufficiently removed. On the other hand, even if it is contacted with activated carbon for 30 minutes or more, an increase in the removal rate of bromate ions cannot be expected, and there is a risk of increasing the cost of processing operation and increasing the size of the apparatus due to a decrease in processing efficiency or pressure loss during water supply. is there. For this reason, the contact time with activated carbon is 5 minutes or longer, preferably 10 minutes or longer and 30 minutes or shorter. Then, due to the contact between the secondary treated water and the activated carbon, bromate ions remaining in the secondary treated water are partially adsorbed on the activated carbon and reduced to bromine ions by the substituent on the activated carbon surface. Thereafter, the secondary treated water treated by contact with activated carbon is discharged out of the system from the discharge pipe 16 as treated water.
[0035]
Next, the operation of the treatment apparatus for bromic acid-containing wastewater of the above embodiment will be described with reference to experimental examples.
[0036]
First, as an experimental device, an iron contact tank 12 filled with iron powder (trade name: iron powder manufactured by Kishida Chemical Co., Ltd.) in a column having a capacity of 10 ml, and a granular activated carbon ( An activated carbon tank 15 filled with Calgon product name: F-400) was connected in series. Further, as brominated acid-containing wastewater, experimental wastewater adjusted to pH 7 by adding potassium bromate to tap water so as to have a bromate ion concentration of 10 mg / liter was used. Then, the experimental sewage was circulated through the iron contact tank 12 so that the contact time with iron was 10 minutes, and the bromate ion concentration of the experimental sewage circulated through the iron contact tank 12 was measured. In addition, the bromate ion concentration of the experimental sewage that was circulated in the activated carbon tank 15 after passing through the iron contact tank 12 for a time set between 2.5 minutes and 50 minutes was measured. The results of these experiments are shown in FIG.
[0037]
From the results shown in FIG. 2, the removal rate of bromate ions was about 20% only by contacting with iron. Moreover, the removal rate of bromate ion was about 90% by making it contact with activated carbon after contact with iron. From these results, it was found that most bromate ions were removed by the combined use of iron and activated carbon. Furthermore, it is recognized that the load of treating bromate ions with the activated carbon in the latter stage is reduced by contact with iron, and the removal performance of bromate ions from the activated carbon can be obtained over a long period of time. Moreover, even when the treatment was continued for several months over a long period of time, bromate ions were highly removed. This is because activated carbon does not simply remove bromate ions by adsorption, but acts as a reducing group that reduces bromate ions to bromine ions on the surface of the activated carbon, and iron ions eluted in a trace amount from the iron contact tank 12 This is probably because it supplements the consumption of reducing groups on the surface of activated carbon.
[0038]
As described above, according to the above embodiment, the secondary treated water adjusted from neutral to weakly acidic is brought into contact with iron, and at least a part of bromate ions in the secondary treated water is reduced to bromine ions by iron. To do. Furthermore, the secondary treated water that has come into contact with iron is brought into contact with activated carbon, and residual bromate ions are removed by adsorption with activated carbon, reduced to bromine ions by a reducing group on the activated carbon surface, and a small amount of iron ions eluted from the previous step. Reducing to bromine ions reliably by reduction to bromine ions on the activated carbon surface by using For this reason, the amount of bromate ion to be removed by activated carbon is reduced, the load is reduced, the adsorption breakthrough of activated carbon and the consumption of reducing groups of activated carbon are suppressed, and the simple configuration of contacting with iron and activated carbon for a long time Stable removal of bromate ions can be obtained, and the replacement frequency of activated carbon can be reduced, so that it can be processed efficiently and easily.
[0039]
Then, the secondary treated water is brought into contact with iron for 10 minutes or more. This increases the reduction rate of bromate ions to bromine ions in the secondary treated water, reduces the load of removing activated carbon bromate ions reliably, and ensures stable removal of bromate ions for a long period of time. It is done.
[0040]
Moreover, the secondary treated water after the accelerated oxidation treatment that decomposes organic substances by adding hydrogen peroxide and ozone is treated. For this reason, the hydrogen peroxide remaining in the secondary treated water further oxidizes and decomposes the remaining organic matter in the secondary treated water with a small amount of iron ions eluted from the iron in the iron contact tank 12, so that the secondary water is more highly secondary. Treated water can be purified.
[0041]
Further, since the secondary treated water after the accelerated oxidation treatment is used, the remaining hydrogen peroxide added by the accelerated oxidation treatment in the previous stage is used for the decomposition of the organic matter. For this reason, it is not necessary to add and treat hydrogen peroxide separately in order to treat the organic matter mixed in the secondary treated water, and the organic matter can be further removed and a step for removing hydrogen peroxide is unnecessary. Efficient and advanced purification can be performed.
[0042]
Further, secondary treatment water in which bromine ions are oxidized to bromate ions is treated by adding ozone and promoting oxidation treatment to decompose and remove organic substances. For this reason, bromate ions in secondary treated water that has been treated with accelerated oxidation treatment of organic matter are removed, that is, detoxified by bromine ions, and contaminated with organic matter and bromate ions even if discharged without separate purification treatment. Wastewater can be highly purified in treated water that does not cause any problems.
[0043]
In the above-described embodiment, the secondary treated water that has been subjected to accelerated oxidation treatment of waste water has been described. For example, any water containing bromate ions such as tap water, ground water, and other sewage, and factory waste water. Even brominated acid-containing sewage can be used, and it may not contain organic substances.
[0044]
And although the contact time with iron was 10 minutes or more, it is not limited to 10 minutes or more, and even when the concentration of bromate ions to be processed is low, a shorter contact time can be dealt with.
[0045]
Moreover, as a structure which makes bromic acid containing wastewater contact with iron, not only the iron contact tank 12 provided with the column filled with iron powder but any structure can respond.
[0046]
Furthermore, the configuration for bringing bromic acid-containing sewage into contact with the activated carbon is not limited to the activated carbon tank 15 having a column filled with granular activated carbon, and any configuration can be used.
[0047]
【The invention's effect】
According to the method for treating bromic acid-containing sewage according to claim 1, after the bromic acid-containing sewage adjusted from neutral to weak acid is brought into contact with iron to reduce at least a part of bromate ions to bromine ions, Reducing bromate ions by adsorption with activated carbon, reduction to bromine ions by reducing groups on the activated carbon surface, and reduction to bromine ions on the activated carbon surface by a small amount of iron ions eluted from the previous process Because it is reduced to ions, the adsorption breakthrough of activated carbon and the consumption of reducing groups of activated carbon are suppressed, and it is possible to reduce bromate ions stably and efficiently for a long period of time with a simple structure that contacts iron and activated carbon. Can be processed easily and efficiently.
[0048]
According to the method for treating brominated acid-containing sewage according to claim 2, in addition to the effect of the method for treating brominated acid-containing sewage according to claim 1, hydrogen peroxide is added to the brominated acid-containing sewage before contacting with activated carbon. Therefore, since hydrogen peroxide oxidizes and decomposes organic matter in brominated acid-containing wastewater with iron ions, the organic matter can also be removed.
[0049]
According to the method for treating brominated acid-containing sewage according to claim 3, in addition to the effect of the method for treating brominated acid-containing sewage according to claim 1, the secondary material obtained by decomposing the organic matter in the wastewater by adding hydrogen peroxide. Since treated water is treated as brominated acid-containing wastewater, the remaining hydrogen peroxide in the secondary treated water used in the treatment of wastewater oxidizes and decomposes the remaining organic matter with iron ions, and remains without adding any additional additives. This eliminates the need for a separate step of removing the remaining hydrogen peroxide, and enables highly efficient treatment of the secondary treated water.
[0050]
According to the method for treating brominated acid-containing sewage according to claim 4, in addition to the effect of the method for treating brominated acid-containing sewage according to claim 1, secondary treated water obtained by decomposing organic matter in waste water by adding ozone. Is treated as brominated acid-containing sewage, so bromate ions in secondary treated water oxidized by ozone added to highly decompose organic matter in wastewater can be detoxified by bromine ions and are not separately purified. The wastewater can be highly purified to treated water that does not cause contamination by organic matter or bromate ions even if it is discharged into the water.
[0051]
According to the treatment method of bromic acid-containing wastewater according to claim 5, in addition to the effect of the treatment method of bromate-containing wastewater according to any one of claims 1 to 4, the bromate-containing wastewater is brought into contact with iron for 10 minutes or more. Therefore, the concentration of bromate ions in bromate-containing wastewater can be reliably reduced, the load of removing bromate ions by activated carbon in the subsequent stage is reduced, and the removal performance of bromate ions from activated carbon is ensured over a long period of time. Can be obtained.
[Brief description of the drawings]
FIG. 1 is a block diagram of a treatment apparatus showing an embodiment of a treatment method for bromic acid-containing wastewater of the present invention.
FIG. 2 is a graph showing the relationship between contact time with activated carbon and bromate ion concentration in the experimental example.
[Explanation of symbols]
1 Accelerated oxidation tank
10 Bromate treatment equipment
11 First pH adjusting means
12 Iron contact tank
14 Second pH adjusting means
15 Activated carbon tank

Claims (5)

臭素酸イオンを含有する臭素酸含有汚水をpHが中性から弱酸性の範囲に調整し、
このpHが調整された前記臭素酸含有汚水を鉄と接触させ、
この鉄と接触した前記臭素酸含有汚水を中和し、
この中和した前記臭素酸含有汚水を活性炭と接触させる
ことを特徴とする臭素酸含有汚水の処理方法。
Adjust pH of bromate-containing sewage containing bromate ions from neutral to weakly acidic,
Bringing the bromic acid-containing sewage whose pH is adjusted with iron,
Neutralize the bromic acid-containing sewage in contact with this iron,
A method for treating brominated acid-containing wastewater, wherein the neutralized bromic acid-containing wastewater is brought into contact with activated carbon.
活性炭と接触させる前に臭素酸含有汚水に過酸化水素を添加する
ことを特徴とする請求項1記載の臭素酸含有汚水の処理方法。
The method for treating brominated acid-containing wastewater according to claim 1, wherein hydrogen peroxide is added to the brominated acid-containing wastewater before contacting with the activated carbon.
臭素酸含有汚水は、過酸化水素が添加されて含有する有機物が分解処理された排水の二次処理水である
ことを特徴とする請求項1記載の臭素酸含有汚水の処理方法。
The method for treating brominated acid-containing sewage according to claim 1, wherein the brominated acid-containing sewage is secondary treated water of wastewater in which hydrogen peroxide is added and organic substances contained therein are decomposed.
臭素酸含有汚水は、オゾンが添加されて含有する有機物が分解処理された排水の二次処理水である
ことを特徴とする請求項1記載の臭素酸含有汚水の処理方法。
The method for treating brominated acid-containing sewage according to claim 1, wherein the brominated acid-containing sewage is a secondary treated water of wastewater in which organic substances contained by adding ozone are decomposed.
臭素酸含有汚水は、鉄と10分以上接触させる
ことを特徴とする請求項1ないし4いずれか一記載の臭素酸含有汚水の処理方法。
The method for treating brominated acid-containing wastewater according to any one of claims 1 to 4, wherein the brominated acid-containing wastewater is brought into contact with iron for 10 minutes or more.
JP2001058768A 2001-03-02 2001-03-02 Treatment of bromic acid-containing wastewater Expired - Fee Related JP4230675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001058768A JP4230675B2 (en) 2001-03-02 2001-03-02 Treatment of bromic acid-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001058768A JP4230675B2 (en) 2001-03-02 2001-03-02 Treatment of bromic acid-containing wastewater

Publications (2)

Publication Number Publication Date
JP2002254087A JP2002254087A (en) 2002-09-10
JP4230675B2 true JP4230675B2 (en) 2009-02-25

Family

ID=18918442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001058768A Expired - Fee Related JP4230675B2 (en) 2001-03-02 2001-03-02 Treatment of bromic acid-containing wastewater

Country Status (1)

Country Link
JP (1) JP4230675B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5334148B2 (en) * 2006-09-01 2013-11-06 住友精密工業株式会社 Wastewater treatment method

Also Published As

Publication number Publication date
JP2002254087A (en) 2002-09-10

Similar Documents

Publication Publication Date Title
EP1234802B1 (en) Improved method and apparatus for water treatment
JP3440313B2 (en) Method and apparatus for treating contaminated water
JP2001205277A (en) Method and apparatus for removing hardly decomposable organic compound in water
JP2003181473A (en) Method and equipment for degrading persistent organic matter
JP3795268B2 (en) Method and apparatus for treating wastewater containing organochlorine compounds
JP2005246109A (en) Treating method of cyanide-containing waste water containing ammonia nitrogen
JP4230675B2 (en) Treatment of bromic acid-containing wastewater
JP4522302B2 (en) Detoxification method of organic arsenic
JP3766298B2 (en) Wastewater treatment method and apparatus
JP2000176468A (en) Sewage treatment and device therefor
US20230322595A1 (en) Wastewater Ozone Treatment
JPH10337579A (en) Method and apparatus for treatment of wastewater
JP2000102794A (en) Treatment of harmful material and device therefor
JP3826580B2 (en) Brominated acid decomposition method using photocatalyst and apparatus therefor
JP2005334761A (en) Method for treating water containing organic arsenic compound
JP3573322B2 (en) Method and apparatus for treating dioxin-containing wastewater
JP2001017995A (en) Treatment of volatile organochlorine compound and device therefor
JP3300852B2 (en) Method and apparatus for treating contaminated water
JPH11347576A (en) Method and apparatus for treating water
JP2003181474A (en) Method and equipment for degrading persistent organic matter
JP2883009B2 (en) Organic wastewater treatment method and apparatus
JP3859866B2 (en) Water treatment method
JP3529284B2 (en) Decomposition method of persistent organic matter
JP3610996B2 (en) Organic wastewater treatment method
JP2001104996A (en) Water treatment method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141212

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees