JP4641131B2 - Water treatment apparatus and method - Google Patents

Water treatment apparatus and method Download PDF

Info

Publication number
JP4641131B2
JP4641131B2 JP2001291683A JP2001291683A JP4641131B2 JP 4641131 B2 JP4641131 B2 JP 4641131B2 JP 2001291683 A JP2001291683 A JP 2001291683A JP 2001291683 A JP2001291683 A JP 2001291683A JP 4641131 B2 JP4641131 B2 JP 4641131B2
Authority
JP
Japan
Prior art keywords
ozone
raw water
mixed fluid
gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001291683A
Other languages
Japanese (ja)
Other versions
JP2003094075A (en
Inventor
卓 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Environment Co Ltd
Original Assignee
Sumitomo Heavy Industries Environment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Environment Co Ltd filed Critical Sumitomo Heavy Industries Environment Co Ltd
Priority to JP2001291683A priority Critical patent/JP4641131B2/en
Publication of JP2003094075A publication Critical patent/JP2003094075A/en
Application granted granted Critical
Publication of JP4641131B2 publication Critical patent/JP4641131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、水処理装置及び方法に関するものであり、詳しくは、ダイオキシン類等の難分解性有機物を含有する原水を処理するのに好適な水処理装置及び方法に関するものである。
【0002】
【従来の技術】
従来、排水中に含まれるダイオキシン類等の難分解性有機物を分解するために、排水にオゾンを溶解させ、これに紫外線を照射してOHラジカルを生じさせて当該有機物を酸化分解する促進酸化処理が考えられている(特開2001−70962号公報等)。
【0003】
例えば、砂ろ過塔、活性炭塔、生物活性炭塔を通して処理された原水に、PSAを用いたオゾン発生機で発生するオゾンガスを溶解させ、紫外線照射装置により紫外線を照射することによって、原水中に含まれる難分解性有機物を酸化分解することができる。このとき、オゾン添加圧力はオゾン発生器のオゾンガス供給圧力(最大0.1MPa程度)で制限されており、オゾン添加はこれ以下の圧力で行うか又はエジェクター等の装置を用いて行う。
【0004】
ここで、処理される原水には、通常、オゾン/紫外線による有機物の酸化分解における反応阻害物質であるラジカルスカベンジャーが含まれるため、促進酸化処理の前に予め原水にオゾンを添加してラジカルスカベンジャーを除去するプレオゾン処理が行われることが多い。
【0005】
また、水中の有機物濃度をより低減するために、これらの装置を循環ラインに配設すると共に当該流路の所定の位置に背圧弁を設け、促進酸化処理を繰り返し行う場合もある。
【0006】
【発明が解決しようとする課題】
ところで、上記の促進酸化処理においては、原水に供給されたオゾンガスの全量が紫外線照射によりOHラジカルに変化するわけではなく、紫外線照射後の排オゾン/処理水混合流体には、通常、供給オゾン量の10〜20%程度の未反応オゾンが残存する。この未反応オゾンは、通常、大気圧又は微負圧状態で大気中に放出されるが、コストダウンを目的として、未反応オゾンを回収して促進酸化処理やプレオゾン処理などに再利用する試みがなされている。
【0007】
しかしながら、回収したオゾンを促進酸化処理やプレオゾン処理に再利用するにはオゾンを加圧状態にしなければならないため、十分なコストダウン効果を達成することができないのが実情である。すなわち、オゾンの加圧手段としては加圧ファンが一般的であるが、オゾンの化学的性質上、加圧ファンに防爆対策を施す必要があるため却ってコストがかかってしまう。また、排オゾンガスラインにブロワーを設けたり、オゾンの再利用先にエジェクターを設けてポンプで供給する方法も考えられるが、これらの方法ではいずれも加圧のための動力が必要であり、動力手段の設置や装置へのエネルギー供給によりコストが増加してしまう。
【0008】
また、従来の方法では、促進酸化処理における処理条件が不安定となりやすい。特に、循環ラインにおいて促進酸化処理を繰り返し行う場合、原水及び処理水はその圧力がなりゆきのまま循環経路内を循環するため、原水に供給されるオゾンや未反応オゾンの影響により処理条件が変動して、促進酸化処理を安定的に行うことが非常に困難となる。
【0009】
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、オゾン/紫外線を利用した促進酸化処理によって水中の難分解性有機物を分解するに際し、当該促進酸化処理の安定的な実施と、処理後の未反応オゾンの効率的且つ安価な再利用とを可能とする水処理装置及び方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明の水処理装置は、
難分解性有機物を含有する原水にオゾンを添加してオゾン/原水混合流体を得るオゾン添加手段と、
オゾン/原水混合流体に紫外線を照射して排オゾン/処理水混合流体を得る紫外線照射手段と、
圧力調整手段及び液位調整手段を有し、排オゾン/処理水混合流体を、未反応オゾンを含有するガスと処理水とに分離すると共に、ガスの圧力及び処理水の液位を調整することにより紫外線照射手段におけるオゾン/原水混合流体の圧力を安定化する気液分離槽と、
を備えることを特徴とする。
【0011】
また、本発明の水処理方法は、
難分解性有機物を含有する原水にオゾンを加圧状態で添加してオゾン/原水混合流体を得るオゾン添加工程と、
オゾン原水混合流体に紫外線を照射して排オゾン/処理水混合流体を得る紫外線照射工程と、
排オゾン/処理水混合流体を、未反応オゾンを含有するガスと処理水とに分離すると共に、ガスの圧力及び処理水の液位を調整することにより紫外線照射工程におけるオゾン/原水混合流体の圧力を安定化する気液分離工程と、
を含むことを特徴とする。
【0012】
本発明においては、難分解性有機物を含有する原水にオゾンを添加し、これに紫外線を照射して当該有機物を分解するに際し、紫外線照射後の排オゾン/処理水混合流体から分離されるガスの圧力及び処理水の液位を調整して紫外線照射の際のオゾン/原水混合流体の圧力を安定化することによって、オゾン/紫外線処理における処理条件が十分に安定化され、原水中のオゾン溶解率が高水準に維持されるので、原水中に含まれる難分解性有機物を効率よく且つ確実に酸化分解することができる。
【0013】
また、このようにして排オゾン/処理水混合流体から分離された未反応オゾンは十分に高い圧力を有しているため、防爆対策が施された加圧ファン等を用いずとも加圧状態で再利用することができ、十分なコストダウンが達成される。
【0014】
従って、本発明により、オゾン/紫外線を利用した促進酸化処理の安定的な実施と、処理後の未反応オゾンの効率的且つ安価な再利用とを可能とする水処理装置及び方法が実現される。
【0015】
また、本発明の水処理装置は、オゾン添加手段に供給される前の原水に、気液分離槽からの未反応オゾンを添加して、原水に含まれるラジカルスカベンジャーを除去するプレオゾン処理手段を更に備えることを特徴としてもよい。
【0016】
また、本発明の水処理方法は、オゾン添加工程に供給される前の原水に、気液分離工程からの未反応オゾンを添加して、原水に含まれるラジカルスカベンジャーを除去するプレオゾン処理工程を更に含むことを特徴としてもよい。
【0017】
このように促進酸化処理により得られる処理水から分離された未反応オゾンを用いてプレオゾン処理を行うことによって、オゾン/紫外線による難分解性有機物の酸化分解における反応阻害物質であるラジカルスカベンジャーが除去されるので、促進酸化処理における当該有機物の分解効率をより高めることができる。また、装置全体で必要とされる新鮮オゾン(オゾン供給手段で製造されるオゾン)の所要量を従来に比べて十分に低減することができるので、オゾン発生手段の小型化及び使用電力量の低減が実現される。
【0018】
【発明の実施の形態】
以下、図面と共に本発明の好適な実施形態について詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していない。
【0019】
図1は、本発明の水処理装置の好適な一実施形態を示す概略構成図である。図1において、プレオゾン処理装置11は、難分解性有機物を含有する原水にオゾンを添加し、原水中に含まれるラジカルスカベンジャー(COD、BOD、Caイオン、Feイオン、Mnイオン、Alイオンなど)を除去するためのものであり、プレオゾン処理が施された原水は処理原水槽1に送られて貯留される。なお、本実施形態において、プレオゾン処理装置11で用いられるオゾンは、後述する気液分離槽5から供給される。
【0020】
処理原水槽1には循環ライン10が接続され、処理原水槽1内の原水が循環ポンプ2により循環ライン10に引き出されて再び処理原水槽1に戻るように構成されている。また、循環ライン10には、エジェクター3、紫外線照射装置4及び気液分離槽5が原水の流れに沿ってこの順で配設されている。
【0021】
エジェクター3には、オゾン発生用電源(図示せず)を内蔵するオゾン発生器8が接続されており、この電源の電圧に応じてオゾン発生量を増減することができる。これにより、エジェクター3において、処理原水槽1から引き出された原水に所定量のオゾンが添加された後、オゾン/原水混合流体が紫外線照射装置4に送られる。
【0022】
紫外線照射装置4は、紫外線照射槽4a及び紫外線ランプ4bを備えるもので、紫外線照射槽4aに滞留するオゾン/原水混合流体に紫外線ランプ4bからの紫外線が照射される。これにより当該混合流体中にOHラジカルが発生するため、難分解性有機物がOHラジカルにより酸化分解される。なお、図1中の紫外線ランプ4bの数は3本となっているが、これに限定されるものではなく、1本でも2本でもよく、4本以上でも構わない。
【0023】
紫外線照射装置4を通った混合流体は、気液分離槽5に収容され、液相と気相とに分離される。気液分離槽5の上部には圧力調整装置6、下部には液位調整装置7が設けられている。圧力調整装置6には、圧力測定装置(差圧電送機など)、指示調節計及び調節弁で構成されるPIC(圧力指示調節システム)が接続されており、圧力測定値により測定される圧力に見合う出力を指示調節計から調節弁に自動的に且つ連続的に与えることにより(PID制御)、一定の圧力に制御することができる。また、液位調整装置7には、液位測定装置(圧力を液位に換算可能な差圧電送機など)、指示調節計及び調節弁で構成されるLIC(液位指示調節システム)が接続されており、液位測定装置により測定される液位(圧力からの換算値)に見合う出力を指示調節計から調節弁に自動的に且つ連続的に与えることにより(PID制御)、一定の液位に制御することができる。このように、圧力調整装置6及び液位調整装置7によって、気液分離槽5の気相部分から紫外線照射装置4までの領域を液相により水封して、圧力調整装置6により気液分離槽5内の気相の圧力を調整すると共に液位調整装置7により液相の液位を調整することができ、その結果、紫外線照射装置4におけるオゾン/原水混合流体の圧力を所望の値に調整することができる。
【0024】
気液分離槽5において分離された未反応オゾンを含有するガスは、圧力調整装置6により所定の圧力に加圧された状態でプレオゾン処理装置11に供給される。他方、処理水は、気液分離槽5から処理原水槽1へ戻され、再び循環ライン10を循環するか、又は処理水ポンプ9から装置外部に排出される。
【0025】
次に、上記の構成を有する水処理装置を用いて難分解性有機物を含有する原水を処理する方法について説明する。
【0026】
本発明において処理される原水は、前述の通り難分解性有機物を含有するものであり、かかる難分解性有機物としては、具体的には、ダイオキシン類、トリクロロエチレンなどの有機ハロゲン化合物、TOC(トータルオーガニックカーボン;全有機的炭素物)などが挙げられる。
【0027】
このような原水には、通常、オゾン/紫外線による促進酸化処理において、難分解性有機物の酸化分解の反応阻害物質であるラジカルスカベンジャーが含まれるので、プレオゾン処理装置11において、予め原水にオゾンを添加してラジカルスカベンジャーを除去するプレオゾン処理を施すことが好ましい。これにより、促進酸化処理における有機物の分解効率をより高めることができる。また、プレオゾン処理の際に、後述する気液分離工程で得られる未反応オゾンを用いることは、装置全体で必要とされる新鮮オゾン(オゾン供給手段で製造されるオゾン)の所要量が従来に比べて十分に低減される点で好ましい。このようにラジカルスカベンジャーが除去された原水は処理原水槽1に送られて貯留される。
【0028】
処理原水槽1内の原水は、循環ポンプ2により循環ライン10に引き出され、エジェクター3においてオゾン発生器8からのオゾンと混合されてオゾン/原水混合流体となる(オゾン添加工程)。なお、オゾン発生器8からのオゾン供給圧力は、通常、循環ポンプ2により引き出される原水の圧力よりも低いが、エジェクター3を用いることによって、原水の方がオゾンよりも高圧であっても両者を混合することができる。例えば、オゾンの供給圧力が0.1MPaであり、原水の圧力が0.3〜0.4MPaである場合、0.2〜0.3MPaに加圧されたオゾン/原水混合流体を得ることができ、当該混合流体におけるオゾン溶解率80〜90%を達成することができる。なお、原水の圧力が前記上限値を超えると、オゾン供給圧力との差が大きすぎて両者を十分に混合することができなくなる傾向にある。
【0029】
次に、オゾン/原水混合流体が紫外線照射装置4に送られ、紫外線照射槽4aに滞留する当該混合流体に紫外線ランプ4bからの紫外線が照射される(紫外線照射工程)。これにより、当該混合流体中のオゾンからOHラジカルが発生し、OHラジカルの酸化力により難分解性有機物が酸化分解される。
【0030】
紫外線照射工程後の混合流体は、有機物の酸化分解により浄化された処理水と、紫外線照射装置4で消費されなかった未反応オゾンを含むガス(排オゾンガス)との混合流体(排オゾン/処理水混合流体)であり、これらは気液分離槽5に収容され、液相と気相とに分離される(気液分離工程)。
【0031】
このとき、気液分離槽5の気相部分から紫外線照射装置4までの領域は液相(処理水)により水封されており、また、圧力調整装置6により気液分離槽5内の気相(排オゾンガス)の圧力、液位調整装置7により液相の液位がそれぞれ調整される。これにより、紫外線照射装置4におけるオゾン/原水混合流体の圧力を所望の値(好ましくは0.2〜0.3MPa)に調整し、処理条件を安定化することができる。
【0032】
また、気液分離槽5において分離される未反応オゾンを含有するガスは、圧力調整装置6により所定の圧力に加圧され、加圧状態のままプレオゾン処理装置11に供給される。これにより、プレオゾン処理において未反応オゾンを効率よく且つ安価に再利用することができる。他方、処理水は、気液分離槽5から処理原水槽1へ戻され、再び循環ライン10を循環するか、又は処理水ポンプ9から装置外部に排出される。
【0033】
このように本実施形態では、難分解性有機物を含有する原水にオゾンを添加し、これに紫外線を照射して当該有機物を分解するに際し、紫外線照射後の排オゾン/処理水混合流体から分離されたガスの圧力及び処理水の液位を調整して紫外線照射の際のオゾン/原水混合流体の圧力を安定化することによって、処理条件が十分に安定化され、オゾン溶解率が高水準に維持されるので、原水中に含まれる難分解性有機物を効率よく且つ確実に酸化分解することができる。
【0034】
また、このようにして排オゾン/処理水混合流体から分離される未反応オゾンは十分に高い圧力を有しているため、防爆対策が施された加圧ファン等を用いずとも加圧状態で再利用することができ、十分なコストダウンが達成される。
【0035】
更に、促進酸化処理により得られる処理水から分離された未反応オゾンを用いてプレオゾン処理を行うことによって、オゾン/紫外線による難分解性有機物の酸化分解における反応阻害物質であるラジカルスカベンジャーが除去されて、当該有機物の分解効率をより高めることができるだけでなく、装置全体で必要とされる新鮮オゾン(オゾン供給手段で製造されるオゾン)の所要量を従来に比べて十分に低減することができるので、オゾン発生手段の小型化及び使用電力量の低減が実現される。
【0036】
なお、本発明は上記の実施形態に限られるものではない。例えば、図1に示した装置において、気液分離槽5で分離された未反応オゾンはプレオゾン処理装置11に供給されて再利用されるが、当該未反応オゾンをエジェクター3に供給して促進酸化処理用のオゾンとして再利用してもよく、また、前段オゾン処理、汚泥オゾン処理などに用いられるオゾンとして再利用してもよい。なお、ここでいう前段オゾン処理とは、原水中に含まれるCOD、BOD、SS(懸濁固形分)を除去する前工程として、SSに吸着しているダイオキシン類をオゾンにより分解する処理をいい、また、汚泥オゾン処理とは、汚泥中に濃縮されたダイオキシン類をオゾンにより分解する処理をいう。
【0037】
【発明の効果】
以上説明した通り、本発明においては、難分解性有機物を含有する原水にオゾンを添加し、これに紫外線を照射して当該有機物を分解するに際し、紫外線照射後の排オゾン/処理水混合流体から分離されたガスの圧力及び処理水の液位を調整して紫外線照射の際のオゾン/原水混合流体の圧力を安定化することによって、促進酸化処理における処理条件が十分に安定化され、オゾン溶解率が高水準に維持されるので、原水中に含まれる難分解性有機物を効率よく且つ確実に酸化分解することができる。
【0038】
また、このようにして排オゾン/処理水混合流体から分離された未反応オゾンは十分に高い圧力を有しているため、この未反応オゾンは、防爆対策が施された加圧ファン等を用いずとも加圧状態で再利用することができ、十分なコストダウンが達成される。
【0039】
従って、本発明により、促進酸化処理の安定的な実施と、処理後の未反応オゾンの効率的且つ安価な再利用とを可能とする水処理装置及び方法が実現される。
【図面の簡単な説明】
【図1】本発明の水処理装置の好適な一実施形態を概略的に示すフロー図である。
【符号の説明】
1…処理原水槽、2…循環ポンプ、3…エジェクター、4…紫外線照射装置、4a…紫外線照射槽、4b…紫外線ランプ、5…気液分離槽、6…圧力調整装置、7…液位調整装置、8…オゾン発生器、9…処理水ポンプ、10…循環ライン、11…プレオゾン処理装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water treatment apparatus and method, and more particularly to a water treatment apparatus and method suitable for treating raw water containing a hardly decomposable organic substance such as dioxins.
[0002]
[Prior art]
Conventionally, in order to decompose difficult-to-decompose organic substances such as dioxins contained in wastewater, ozone is dissolved in the wastewater, and this is irradiated with ultraviolet rays to generate OH radicals, which promotes oxidative decomposition of the organic matter. (Japanese Patent Laid-Open No. 2001-70962, etc.).
[0003]
For example, ozone gas generated by an ozone generator using PSA is dissolved in raw water treated through a sand filtration tower, an activated carbon tower, or a biological activated carbon tower, and is contained in the raw water by irradiating ultraviolet rays with an ultraviolet irradiation device. Refractory organic substances can be oxidatively decomposed. At this time, the ozone addition pressure is limited by the ozone gas supply pressure (about 0.1 MPa at the maximum) of the ozone generator, and the ozone addition is performed at a pressure lower than this or using an apparatus such as an ejector.
[0004]
Here, since the raw water to be treated usually contains a radical scavenger that is a reaction inhibitor in the oxidative decomposition of organic matter by ozone / ultraviolet rays, ozone is added to the raw water in advance before the accelerated oxidation treatment to remove the radical scavenger. The pre-ozone treatment to remove is often performed.
[0005]
In order to further reduce the concentration of organic substances in the water, these devices may be provided in the circulation line and a back pressure valve may be provided at a predetermined position in the flow path to repeatedly perform the accelerated oxidation treatment.
[0006]
[Problems to be solved by the invention]
By the way, in the above-described accelerated oxidation treatment, the total amount of ozone gas supplied to the raw water does not change to OH radicals by ultraviolet irradiation, and the amount of supplied ozone is usually used for the waste ozone / treated water mixed fluid after ultraviolet irradiation. About 10 to 20% of unreacted ozone remains. This unreacted ozone is normally released into the atmosphere at atmospheric pressure or slightly negative pressure. However, for the purpose of cost reduction, there is an attempt to collect unreacted ozone and reuse it for accelerated oxidation treatment or pre-ozone treatment. Has been made.
[0007]
However, in order to recycle the recovered ozone for the accelerated oxidation treatment or the pre-ozone treatment, the ozone must be in a pressurized state, so that a sufficient cost reduction effect cannot be achieved. That is, as a means for pressurizing ozone, a pressure fan is generally used. However, because of the chemical nature of ozone, it is necessary to take an explosion-proof measure on the pressure fan, which increases costs. In addition, a method of providing a blower in the exhaust ozone gas line or supplying an ejector at a destination where ozone is reused and supplying it with a pump can be considered, but these methods all require power for pressurization, and power means The cost increases due to the installation and supply of energy to the device.
[0008]
Further, in the conventional method, the processing conditions in the accelerated oxidation treatment tend to become unstable. In particular, when the accelerated oxidation treatment is repeatedly performed in the circulation line, the raw water and the treated water circulate in the circulation path with the pressure gradually changing. Therefore, it becomes very difficult to perform the accelerated oxidation treatment stably.
[0009]
The present invention has been made in view of the above-mentioned problems of the prior art, and stable decomposition of the accelerated oxidation treatment in decomposing the hardly decomposable organic matter in water by the accelerated oxidation treatment using ozone / ultraviolet rays. Another object of the present invention is to provide a water treatment apparatus and method that enables efficient and inexpensive reuse of unreacted ozone after treatment.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the water treatment device of the present invention is:
Ozone adding means for adding ozone to raw water containing hardly decomposable organic matter to obtain an ozone / raw water mixed fluid;
An ultraviolet irradiation means for irradiating the ozone / raw water mixed fluid with ultraviolet rays to obtain a waste ozone / treated water mixed fluid;
Having pressure adjusting means and liquid level adjusting means, separating the waste ozone / treated water mixed fluid into a gas containing unreacted ozone and treated water, and adjusting the gas pressure and the treated water level A gas-liquid separation tank that stabilizes the pressure of the ozone / raw water mixed fluid in the ultraviolet irradiation means,
It is characterized by providing.
[0011]
Moreover, the water treatment method of the present invention comprises:
An ozone addition step of adding ozone in a pressurized state to raw water containing a hardly decomposable organic substance to obtain an ozone / raw water mixed fluid;
An ultraviolet irradiation process of irradiating the ozone raw water mixed fluid with ultraviolet rays to obtain a waste ozone / treated water mixed fluid;
The waste ozone / treated water mixed fluid is separated into a gas containing unreacted ozone and treated water, and the pressure of the ozone / raw water mixed fluid in the ultraviolet irradiation process is adjusted by adjusting the pressure of the gas and the level of the treated water. A gas-liquid separation process that stabilizes
It is characterized by including.
[0012]
In the present invention, ozone is added to raw water containing a hardly decomposable organic substance, and when the organic substance is decomposed by irradiating it with ultraviolet rays, the gas separated from the waste ozone / treated water mixed fluid after the ultraviolet irradiation is used. By adjusting the pressure and the level of the treated water to stabilize the pressure of the ozone / raw water mixed fluid during UV irradiation, the treatment conditions in the ozone / ultraviolet treatment are sufficiently stabilized, and the ozone dissolution rate in the raw water Is maintained at a high level, it is possible to efficiently and reliably oxidatively decompose the hardly decomposable organic substances contained in the raw water.
[0013]
In addition, since the unreacted ozone separated from the waste ozone / treated water mixed fluid in this way has a sufficiently high pressure, it can be used in a pressurized state without using a pressure fan or the like that is provided with an explosion-proof measure. It can be reused and a sufficient cost reduction is achieved.
[0014]
Therefore, according to the present invention, a water treatment apparatus and method that enable stable implementation of accelerated oxidation treatment using ozone / ultraviolet light and efficient and inexpensive reuse of unreacted ozone after treatment are realized. .
[0015]
The water treatment apparatus of the present invention further includes a pre-ozone treatment means for removing radical scavengers contained in the raw water by adding unreacted ozone from the gas-liquid separation tank to the raw water before being supplied to the ozone addition means. It is good also as providing.
[0016]
Further, the water treatment method of the present invention further includes a pre-ozone treatment step of adding unreacted ozone from the gas-liquid separation step to the raw water before being supplied to the ozone addition step to remove radical scavengers contained in the raw water. It may be characterized by including.
[0017]
By performing pre-ozone treatment using unreacted ozone separated from the treated water obtained by the accelerated oxidation treatment in this way, radical scavengers, which are reaction inhibitors in the oxidative degradation of persistent organic substances by ozone / ultraviolet rays, are removed. Therefore, the decomposition efficiency of the organic matter in the accelerated oxidation treatment can be further increased. In addition, the required amount of fresh ozone (ozone produced by the ozone supply means) required for the entire apparatus can be sufficiently reduced compared to the conventional system, so the ozone generation means can be reduced in size and the amount of power used can be reduced. Is realized.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the dimensional ratios in the drawings do not necessarily match those described.
[0019]
FIG. 1 is a schematic configuration diagram showing a preferred embodiment of the water treatment apparatus of the present invention. In FIG. 1, a pre-ozone treatment apparatus 11 adds ozone to raw water containing a hardly decomposable organic substance, and converts radical scavengers (COD, BOD, Ca ions, Fe ions, Mn ions, Al ions, etc.) contained in the raw water. The raw water that has been subjected to the pre-ozone treatment is sent to the treated raw water tank 1 and stored. In the present embodiment, ozone used in the pre-ozone treatment apparatus 11 is supplied from a gas-liquid separation tank 5 described later.
[0020]
A circulation line 10 is connected to the treated raw water tank 1, and the raw water in the treated raw water tank 1 is drawn to the circulation line 10 by the circulation pump 2 and returned to the treated raw water tank 1 again. In the circulation line 10, an ejector 3, an ultraviolet irradiation device 4, and a gas-liquid separation tank 5 are arranged in this order along the flow of raw water.
[0021]
The ejector 3 is connected with an ozone generator 8 having a built-in ozone generation power source (not shown), and the amount of ozone generation can be increased or decreased according to the voltage of the power source. Thereby, in the ejector 3, after a predetermined amount of ozone is added to the raw water drawn from the treated raw water tank 1, the ozone / raw water mixed fluid is sent to the ultraviolet irradiation device 4.
[0022]
The ultraviolet irradiation device 4 includes an ultraviolet irradiation tank 4a and an ultraviolet lamp 4b, and the ozone / raw water mixed fluid staying in the ultraviolet irradiation tank 4a is irradiated with ultraviolet rays from the ultraviolet lamp 4b. As a result, OH radicals are generated in the mixed fluid, so that the hardly decomposable organic substance is oxidized and decomposed by the OH radicals. In addition, although the number of the ultraviolet lamps 4b in FIG. 1 is three, it is not limited to this, One or two may be sufficient and four or more may be sufficient.
[0023]
The mixed fluid that has passed through the ultraviolet irradiation device 4 is accommodated in a gas-liquid separation tank 5 and separated into a liquid phase and a gas phase. A pressure adjusting device 6 is provided in the upper part of the gas-liquid separation tank 5, and a liquid level adjusting device 7 is provided in the lower part. Connected to the pressure adjusting device 6 is a pressure measuring device (differential piezoelectric transmitter or the like), a PIC (pressure indicating control system) including an indicating controller and a control valve. By applying a suitable output from the indicating controller to the control valve automatically and continuously (PID control), the pressure can be controlled to be constant. Also connected to the liquid level adjusting device 7 is a liquid level measuring device (such as a differential piezoelectric transmitter capable of converting pressure into a liquid level), an LIC (liquid level indicating and adjusting system) comprising an indicating controller and a control valve. By applying an output that corresponds to the liquid level (converted value from pressure) measured by the liquid level measuring device automatically and continuously from the indicating controller to the control valve (PID control), a constant liquid Can be controlled. Thus, the region from the gas phase portion of the gas-liquid separation tank 5 to the ultraviolet irradiation device 4 is sealed with a liquid phase by the pressure adjusting device 6 and the liquid level adjusting device 7, and the gas-liquid separation is performed by the pressure adjusting device 6. The pressure of the gas phase in the tank 5 can be adjusted and the liquid level of the liquid phase can be adjusted by the liquid level adjusting device 7. As a result, the pressure of the ozone / raw water mixed fluid in the ultraviolet irradiation device 4 can be set to a desired value. Can be adjusted.
[0024]
The gas containing unreacted ozone separated in the gas-liquid separation tank 5 is supplied to the pre-ozone treatment device 11 while being pressurized to a predetermined pressure by the pressure adjusting device 6. On the other hand, the treated water is returned from the gas-liquid separation tank 5 to the treated raw water tank 1 and circulated through the circulation line 10 again or discharged from the treated water pump 9 to the outside of the apparatus.
[0025]
Next, a method for treating raw water containing a hardly decomposable organic substance using the water treatment apparatus having the above-described configuration will be described.
[0026]
The raw water to be treated in the present invention contains a hardly decomposable organic substance as described above. Specific examples of the hardly decomposable organic substance include dioxins, organic halogen compounds such as trichlorethylene, TOC (total organic Carbon; all-organic carbon material).
[0027]
Such raw water usually contains a radical scavenger which is a reaction inhibitor of oxidative decomposition of a hardly decomposable organic substance in the accelerated oxidation treatment by ozone / ultraviolet rays. Therefore, in the pre-ozone treatment apparatus 11, ozone is added to the raw water in advance. Thus, it is preferable to perform a pre-ozone treatment for removing the radical scavenger. Thereby, the decomposition | disassembly efficiency of the organic substance in an accelerated oxidation process can be improved more. In addition, the use of unreacted ozone obtained in the gas-liquid separation step, which will be described later, in the pre-ozone treatment requires a conventional amount of fresh ozone (ozone produced by the ozone supply means) required for the entire apparatus. This is preferable in that it is sufficiently reduced. The raw water from which the radical scavenger has been removed is sent to the treated raw water tank 1 and stored.
[0028]
The raw water in the treated raw water tank 1 is drawn out to the circulation line 10 by the circulation pump 2 and mixed with ozone from the ozone generator 8 in the ejector 3 to become an ozone / raw water mixed fluid (ozone adding step). The ozone supply pressure from the ozone generator 8 is usually lower than the pressure of the raw water drawn out by the circulation pump 2, but by using the ejector 3, both of the raw water are higher than ozone. Can be mixed. For example, when the supply pressure of ozone is 0.1 MPa and the pressure of raw water is 0.3 to 0.4 MPa, an ozone / raw water mixed fluid pressurized to 0.2 to 0.3 MPa can be obtained. The ozone dissolution rate in the mixed fluid can be 80 to 90%. In addition, when the pressure of raw | natural water exceeds the said upper limit, it exists in the tendency for the difference with an ozone supply pressure to be too large and to fully mix both.
[0029]
Next, the ozone / raw water mixed fluid is sent to the ultraviolet irradiation device 4, and the mixed fluid staying in the ultraviolet irradiation tank 4a is irradiated with ultraviolet rays from the ultraviolet lamp 4b (ultraviolet irradiation step). As a result, OH radicals are generated from ozone in the mixed fluid, and the hardly decomposable organic matter is oxidatively decomposed by the oxidizing power of the OH radicals.
[0030]
The mixed fluid after the ultraviolet irradiation process is a mixed fluid (exhaust ozone / treated water) of treated water purified by oxidative decomposition of organic matter and a gas containing unreacted ozone that has not been consumed by the ultraviolet irradiation device 4 (exhaust ozone gas). These are accommodated in the gas-liquid separation tank 5 and separated into a liquid phase and a gas phase (gas-liquid separation step).
[0031]
At this time, the region from the gas phase portion of the gas-liquid separation tank 5 to the ultraviolet irradiation device 4 is sealed with the liquid phase (treated water), and the gas phase in the gas-liquid separation tank 5 by the pressure adjusting device 6. The liquid level is adjusted by the pressure of the (exhaust ozone gas) and the liquid level adjusting device 7. Thereby, the pressure of the ozone / raw water mixed fluid in the ultraviolet irradiation device 4 can be adjusted to a desired value (preferably 0.2 to 0.3 MPa), and the processing conditions can be stabilized.
[0032]
The gas containing unreacted ozone separated in the gas-liquid separation tank 5 is pressurized to a predetermined pressure by the pressure adjusting device 6 and supplied to the pre-ozone treatment device 11 in a pressurized state. Thereby, unreacted ozone can be efficiently and inexpensively reused in the pre-ozone treatment. On the other hand, the treated water is returned from the gas-liquid separation tank 5 to the treated raw water tank 1 and circulated through the circulation line 10 again or discharged from the treated water pump 9 to the outside of the apparatus.
[0033]
As described above, in the present embodiment, ozone is added to raw water containing a hardly decomposable organic substance, and when the organic substance is decomposed by irradiating it with ultraviolet rays, it is separated from the waste ozone / treated water mixed fluid after the ultraviolet irradiation. By adjusting the pressure of the gas and the level of the treated water to stabilize the pressure of the ozone / raw water mixed fluid during UV irradiation, the treatment conditions are sufficiently stabilized and the ozone dissolution rate is maintained at a high level. Therefore, the hardly decomposable organic substance contained in the raw water can be efficiently and reliably oxidatively decomposed.
[0034]
In addition, since the unreacted ozone separated from the waste ozone / treated water mixed fluid in this way has a sufficiently high pressure, it can be used in a pressurized state without using a pressure fan or the like that has been subjected to explosion-proof measures. It can be reused and a sufficient cost reduction is achieved.
[0035]
Furthermore, by performing pre-ozone treatment using unreacted ozone separated from treated water obtained by accelerated oxidation treatment, radical scavengers, which are reaction inhibitors in the oxidative degradation of persistent organic substances by ozone / ultraviolet rays, are removed. In addition to improving the decomposition efficiency of the organic matter, the required amount of fresh ozone (ozone produced by the ozone supply means) required for the entire apparatus can be sufficiently reduced compared to the conventional case. In addition, the ozone generating means can be reduced in size and the amount of power used can be reduced.
[0036]
The present invention is not limited to the above embodiment. For example, in the apparatus shown in FIG. 1, unreacted ozone separated in the gas-liquid separation tank 5 is supplied to the pre-ozone treatment apparatus 11 and reused. However, the unreacted ozone is supplied to the ejector 3 to promote oxidation. It may be reused as ozone for treatment, or it may be reused as ozone used for pre-stage ozone treatment, sludge ozone treatment, and the like. The pre-stage ozone treatment here refers to a treatment for decomposing dioxins adsorbed on SS with ozone as a pre-process for removing COD, BOD and SS (suspended solids) contained in raw water. The sludge ozone treatment refers to a treatment for decomposing dioxins concentrated in the sludge with ozone.
[0037]
【The invention's effect】
As described above, in the present invention, ozone is added to raw water containing a hardly decomposable organic substance, and when the organic substance is decomposed by irradiating it with ultraviolet light, the waste ozone / treated water mixed fluid after ultraviolet irradiation is used. By adjusting the pressure of the separated gas and the liquid level of the treated water to stabilize the pressure of the ozone / raw water mixed fluid during UV irradiation, the treatment conditions in the accelerated oxidation treatment are sufficiently stabilized, and ozone dissolution Since the rate is maintained at a high level, it is possible to efficiently and reliably oxidatively decompose the hardly decomposable organic substances contained in the raw water.
[0038]
Further, since the unreacted ozone separated from the waste ozone / treated water mixed fluid in this way has a sufficiently high pressure, this unreacted ozone uses a pressurized fan or the like that has been subjected to explosion-proof measures. At least, it can be reused in a pressurized state, and a sufficient cost reduction is achieved.
[0039]
Therefore, according to the present invention, a water treatment apparatus and method that enable stable execution of accelerated oxidation treatment and efficient and inexpensive reuse of unreacted ozone after treatment are realized.
[Brief description of the drawings]
FIG. 1 is a flowchart schematically showing a preferred embodiment of a water treatment apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Treatment raw water tank, 2 ... Circulation pump, 3 ... Ejector, 4 ... Ultraviolet irradiation apparatus, 4a ... Ultraviolet irradiation tank, 4b ... Ultraviolet lamp, 5 ... Gas-liquid separation tank, 6 ... Pressure adjustment apparatus, 7 ... Liquid level adjustment Device: 8 ... Ozone generator, 9 ... Treated water pump, 10 ... Circulation line, 11 ... Pre-ozone treatment device.

Claims (4)

難分解性有機物を含有する原水にオゾンを添加してオゾン/原水混合流体を得るオゾン添加手段と、
前記オゾン/原水混合流体に紫外線を照射して排オゾン/処理水混合流体を得る紫外線照射手段と、
圧力調整手段及び液位調整手段を有し、前記排オゾン/処理水混合流体を、未反応オゾンを含有するガスと処理水とに分離すると共に、前記ガスの圧力及び前記処理水の液位を調整することにより前記紫外線照射手段における前記オゾン/原水混合流体の圧力を安定化する気液分離槽と、
を備えることを特徴とする水処理装置。
Ozone adding means for adding ozone to raw water containing hardly decomposable organic matter to obtain an ozone / raw water mixed fluid;
UV irradiation means for irradiating the ozone / raw water mixed fluid with ultraviolet rays to obtain a waste ozone / treated water mixed fluid;
A pressure adjusting means and a liquid level adjusting means, separating the waste ozone / treated water mixed fluid into a gas containing unreacted ozone and treated water, and adjusting the pressure of the gas and the liquid level of the treated water. A gas-liquid separation tank that stabilizes the pressure of the ozone / raw water mixed fluid in the ultraviolet irradiation means by adjusting;
A water treatment apparatus comprising:
前記オゾン添加手段に供給される前の前記原水に、前記気液分離槽からの未反応オゾンを添加して、前記原水に含まれるラジカルスカベンジャーを除去するプレオゾン処理手段を更に備えることを特徴とする、請求項1に記載の水処理装置。  The apparatus further comprises pre-ozone treatment means for adding unreacted ozone from the gas-liquid separation tank to the raw water before being supplied to the ozone addition means to remove radical scavengers contained in the raw water. The water treatment apparatus according to claim 1. 難分解性有機物を含有する原水にオゾンを加圧状態で添加してオゾン/原水混合流体を得るオゾン添加工程と、
前記オゾン原水混合流体に紫外線を照射して排オゾン/処理水混合流体を得る紫外線照射工程と、
前記排オゾン/処理水混合流体を、未反応オゾンを含有するガスと処理水とに分離すると共に、前記ガスの圧力及び前記処理水の液位を調整することにより前記紫外線照射工程における前記オゾン/原水混合流体の圧力を安定化する気液分離工程と、
を含むことを特徴とする水処理方法。
An ozone addition step of adding ozone in a pressurized state to raw water containing a hardly decomposable organic substance to obtain an ozone / raw water mixed fluid;
An ultraviolet irradiation step of irradiating the ozone raw water mixed fluid with ultraviolet rays to obtain a waste ozone / treated water mixed fluid;
The waste ozone / treated water mixed fluid is separated into a gas containing unreacted ozone and treated water, and the ozone / treated water in the ultraviolet irradiation step is adjusted by adjusting the pressure of the gas and the liquid level of the treated water. A gas-liquid separation process that stabilizes the pressure of the raw water mixed fluid;
A water treatment method comprising:
前記オゾン添加工程に供給される前の前記原水に、前記気液分離工程からの未反応オゾンを添加して、前記原水に含まれるラジカルスカベンジャーを除去するプレオゾン処理工程を更に含むことを特徴とする、請求項3に記載の水処理方法The method further comprises a pre-ozone treatment step of adding unreacted ozone from the gas-liquid separation step to the raw water before being supplied to the ozone addition step to remove radical scavengers contained in the raw water. The water treatment method according to claim 3.
JP2001291683A 2001-09-25 2001-09-25 Water treatment apparatus and method Expired - Fee Related JP4641131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001291683A JP4641131B2 (en) 2001-09-25 2001-09-25 Water treatment apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001291683A JP4641131B2 (en) 2001-09-25 2001-09-25 Water treatment apparatus and method

Publications (2)

Publication Number Publication Date
JP2003094075A JP2003094075A (en) 2003-04-02
JP4641131B2 true JP4641131B2 (en) 2011-03-02

Family

ID=19113784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001291683A Expired - Fee Related JP4641131B2 (en) 2001-09-25 2001-09-25 Water treatment apparatus and method

Country Status (1)

Country Link
JP (1) JP4641131B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814357B1 (en) 2006-07-25 2008-03-18 심종섭 Wastewayer treatment method using high pressure advanced oxidation processHPAOP with unreacted ozone reusing
US8926842B2 (en) 2007-08-30 2015-01-06 Jong Seob Shim Water treatment system and method using high pressure advanced oxidation process with unreacted ozone reusing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274408A (en) * 1987-05-07 1988-11-11 Mitsubishi Heavy Ind Ltd Separator control apparatus
JP2001149964A (en) * 1999-11-30 2001-06-05 Mitsubishi Electric Corp Water treating method
JP2001187389A (en) * 1999-12-28 2001-07-10 Sumitomo Heavy Ind Ltd Equipment and process for decomposing organic substance difficult to be decomposed

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274408A (en) * 1987-05-07 1988-11-11 Mitsubishi Heavy Ind Ltd Separator control apparatus
JP2001149964A (en) * 1999-11-30 2001-06-05 Mitsubishi Electric Corp Water treating method
JP2001187389A (en) * 1999-12-28 2001-07-10 Sumitomo Heavy Ind Ltd Equipment and process for decomposing organic substance difficult to be decomposed

Also Published As

Publication number Publication date
JP2003094075A (en) 2003-04-02

Similar Documents

Publication Publication Date Title
JPH1199395A (en) Treatment of organic matter containing water
JPH05228480A (en) Device for processing hardly biodegradable substance
JP2825081B2 (en) Ultraviolet ray decomposition treatment method and apparatus for wastewater containing organic matter
JP2005058854A (en) Method and apparatus for waste water treatment
JPH05228481A (en) Device for processing hardly biodegradable substance
JP4641131B2 (en) Water treatment apparatus and method
JPH1199394A (en) Method for removing organic matter in water
JP4040788B2 (en) Waste water treatment method and apparatus
JP5004313B2 (en) Treatment method and apparatus for wastewater containing persistent substances
JP3466083B2 (en) Decomposition method of organic chlorine compounds such as dioxins in landfill leachate
JP3941293B2 (en) Method and apparatus for treating harmful substances in sewage
JP2003080274A (en) Treatment method and equipment for sewage
JP2001017995A (en) Treatment of volatile organochlorine compound and device therefor
JP2000153294A (en) Waste water treating method and device therefor
JPH11300345A (en) Decomposing method of organic chlorine compound such as dioxins or the like in reclamation leachate
JP2001054798A (en) Method and apparatus for treating harmful material in sewage
JP3963533B2 (en) Water treatment method
JP2002166275A (en) Method and equipment for treating drainage containing thermally degradable organic compound
JP2004024964A (en) Waste ozone gas treatment method in water treatment
JP2001104996A (en) Water treatment method and apparatus
JP3556515B2 (en) Wastewater treatment method using ozone and hydrogen peroxide
JP3529284B2 (en) Decomposition method of persistent organic matter
JP2006280999A (en) Method for detoxifying organic arsenical compound
JP4700859B2 (en) HAZARDOUS SUBSTANCE TREATMENT METHOD, ITS DEVICE, AND WASTEWATER TREATMENT SYSTEM
JPH047082A (en) Method and apparatus for treating contaminated water

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070628

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071011

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20080115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101126

R150 Certificate of patent or registration of utility model

Ref document number: 4641131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees