JPH0137996B2 - - Google Patents

Info

Publication number
JPH0137996B2
JPH0137996B2 JP56090330A JP9033081A JPH0137996B2 JP H0137996 B2 JPH0137996 B2 JP H0137996B2 JP 56090330 A JP56090330 A JP 56090330A JP 9033081 A JP9033081 A JP 9033081A JP H0137996 B2 JPH0137996 B2 JP H0137996B2
Authority
JP
Japan
Prior art keywords
water
treatment
ultrasonic
chlorine
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56090330A
Other languages
Japanese (ja)
Other versions
JPS57204295A (en
Inventor
Hiromoto Uejima
Tomonari Kakishita
Nobuaki Takagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP56090330A priority Critical patent/JPS57204295A/en
Publication of JPS57204295A publication Critical patent/JPS57204295A/en
Publication of JPH0137996B2 publication Critical patent/JPH0137996B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、水道用水の浄水方法に関するもので
ある。 従来、水道用水の一般的浄水方法として、中
和・凝集処理、前塩素処理、濾過処理を行ない、
さらに後塩素処理した後、送水されている。この
工程は、無機有害金属成分の除去と殺菌が主体の
浄水工程であり、有機有害成分の除去がなされて
いない。そのため、近年、河川の汚染とともに臭
気を持つ水道水が供給されたり、有機ハロゲン化
物さらには発癌性が疑われている低分子ハロゲン
化物であるトリハロゲン化メタン(以下THMと
略称する。)が混入したり、浄水工程における塩
素殺菌で有機物との反応でTHMが発生すること
が明らかになりつつある。すなわち、現行の前塩
素処理は、塩素が殺菌殺そう作用をもつとともに
強力な酸化力を持ち、原水水質汚染の進行ととも
に必要不可欠の工程となつている。さらに詳述す
れば、前塩素処理は濾過前の水中の細菌を減少さ
せて安全性を高め、沈殿池や濾過池の内部を衛生
的に保持でき、藻類、小形動物、鉄バクテリアを
死滅繁殖を防止し、アンモニア性窒素、亜硝酸性
窒素、硫化水素、フエノール類等有機物を酸化す
るとともに溶存している鉄、マンガンを不溶性の
酸化物として除去する等有用である。然るに、数
年前より河川中の有機成分、特に、微量の可溶性
有機成分であるたとえば、フルボ酸、ハイマトメ
ラン酸、フミン酸、多糖類等が前塩素処理時の塩
素と反応してクロロホルムを形成し、さらにブロ
ムイオンが存在すればジクロルブロムメタン、ク
ロムジブロムメタン、ブロムホルム等THMが容
易に形成される。これらの形成反応は、時間の経
過並びに温度上昇とともに進行し、その上前塩素
処理では存在有機物を多く、いつそう形成が促進
される。それに対し、これらTHMは、従来の凝
沈処理、濾過処理では除去し得ない物質である。
また、吸着剤で処理する場合、前記の残留塩素に
よつて吸着剤の消耗が生じるなどの欠点があつ
た。 そこで、本発明者らは、これらの欠点を解消し
て現在の前塩素処理の利点をそのまま生かした水
道用水の浄水方法を提供することを目的として鋭
意研究した結果、超音波エアレーシヨンで処理す
ると、THMなどの有機物質が容易に揮散除去し
うると同時に、残留塩素をも除去し、吸着剤の残
留有機物の吸着能が向上しうることを見い出し、
本発明を完成した。 すなわち、本発明は、水道用原水を中和・凝集
処理、前塩素処理及び濾過処理して浄水し、次い
で浄水した水を超音波エアレーシヨン処理した
後、塩素剤で消毒することを特徴とする水道用水
の浄水方法である。 本発明にいう超音波エアレーシヨン処理とは、
気泡が破壊されるときに発生する超音波で処理す
ること、又は気泡を発生させながら超音波で処理
することをいい、その際、気泡を発生させるに
は、たとえば、槽底に多孔板を設置し、その下部
に空気流入口を設けたデイフユーザー方式でもよ
いし、細孔のノズルを有したインジエクター方式
でもよい。また、超音波と気泡を併用する場合の
多孔板並びにノズルの口径としては、たとえば、
0.01mmから20mm、好ましくは1mm〜10mmであり、
前記の気泡により超音波を発生させる場合には、
たとえば、0.01mmから2mm、好ましくは0.03mmか
ら0.5mmである。孔径が0.01mm以下では、圧力損
失が大きく、20mm以上になると気泡効果が減少す
る傾向があり、また、2mm以上でも超音波の発生
が減少する傾向がある。さらに空気量としては、
たとえば水量1m2に対し、0.3m3/min以上、好
ましくは0.5m3/min以上である。 本発明にいう超音波とは、振動数10KHz以上の
ものをいい、振動数が高ければ高いほど、除去効
率は大きくなるが、処理コストが高くなるため、
超音波の発生方法、水の流量及びTHMなど有機
物質の濃度により最適の振動数を選択することが
望まれる。 本発明で水道用水を浄水するには、まず、通常
の中和・凝集処理、前塩素処理及び濾過処理し、
次いで超音波エアレーシヨンで処理する。そのた
めには、たとえば、浄水池に超音波エアレーシヨ
ンで処理するための前記装置を設置し、少なくと
も5分以上滞留させるが、水道施設設計指針の1
時間以上でもよい。特に本発明において、未反応
の有機物が残留することがあり、これを活性炭な
どの吸着剤で除去することが好ましい。このとき
に、上記の超音波エアレーシヨンによつて残留塩
素も除去されているので、残留有機物は酸化さ
れ、有機物の吸着能が向上するとともに塩素によ
る吸着剤の消耗を生じることがない。次にこのよ
うにして処理した水を次亜塩素酸ナトリウムなど
の塩素剤で消毒すればよい。 本発明によれば、THMを発生する有機物が除
去された状態で後塩素による消毒を行なうため
に、水道法による残留遊離塩素0.1ppm以上を保
持した状態でTHM等有害な有機化合物を含有し
ない浄水を得ることができる。そのうえ、浄水池
に超音波エアレーシヨンを設置するだけでよく立
地的には現行状態を変更する必要がない。さらに
本発明によれば、臭気物質も除去されるととも
に、水中の溶存酸素も高まり、清涼なる味覚の水
を得ることができる。 以下、実施例により本発明を具体的に説明す
る。 実施例 1 表−1に示すような水質を有する河川水(注
1)を使用して浄水処理能力10m3/Dの凝集沈
殿、濾過プラントにて浄水処理を実施した。この
ときに添加した薬剤は、有効塩素12%の次亜塩素
酸ナトリウム(規格JWWAK120−1972)
50ppm、酸化アルミニウム含有率8%の液体硫酸
アルミニウム(規格JISK−1450−1977)20ppm、
濃度45%の水酸化ナトリウム(規格JWWAK122
−1976)10ppmであつた。 この処理水(超音波前)の水質は表−1に示
す。 この処理水を底面積400cm2、高さ1mで、槽底
部全面に平均孔径0.1mmの多孔板をもつ、デイフ
ユーザー方式の超音波エアーレーシヨン槽に導入
し、流通処理を行なつた。この時の滞留時間を5
分、空気量を12/minとした。次に超音波エア
レーシヨン後、24hr後の残留遊離塩素が0.1ppm
になるよう、前記の次亜塩素酸ナトリウムで消毒
した。 この結果の水質を表−1に示す。 表−1より、超音波エアレーシヨン前後の水質
を比較すると超音波エアーレーシヨンの効果の大
きいことが明白である。また本処理は、1カ月継
続して行ない、水質はそれらの平均値を示した。
The present invention relates to a method for purifying tap water. Traditionally, common water purification methods for tap water include neutralization/coagulation, pre-chlorination, and filtration.
The water is then sent after further chlorination treatment. This process is a water purification process that mainly involves the removal of inorganic toxic metal components and sterilization, and does not remove organic toxic components. As a result, in recent years, rivers have been contaminated and tap water has been supplied with a foul odor, and has been contaminated with organic halides and even trihalogenated methane (hereinafter referred to as THM), a low-molecular-weight halide suspected of being carcinogenic. It is becoming clear that THM is generated by reactions with organic matter during chlorine sterilization in the water purification process. In other words, the current pre-chlorination process, in which chlorine has a sterilizing effect and a strong oxidizing power, has become an indispensable process as raw water pollution progresses. More specifically, pre-chlorination reduces bacteria in the water before filtration, increasing safety, keeping the interior of sedimentation basins and filtration basins sanitary, and killing algae, small animals, and iron bacteria and preventing their reproduction. It is useful for preventing and oxidizing organic substances such as ammonia nitrogen, nitrite nitrogen, hydrogen sulfide, and phenols, as well as removing dissolved iron and manganese as insoluble oxides. However, several years ago, organic components in rivers, especially trace amounts of soluble organic components such as fulvic acid, hymatomelanic acid, humic acid, and polysaccharides, reacted with chlorine during pre-chlorination treatment to form chloroform. Furthermore, if bromine ions are present, THMs such as dichlorobromomethane, chromium dibromomethane, and bromoform are easily formed. These formation reactions progress with the passage of time and an increase in temperature, and in addition, the pre-chlorine treatment increases the amount of organic matter present, which accelerates the formation. On the other hand, these THMs are substances that cannot be removed by conventional coagulation treatment and filtration treatment.
Furthermore, when treating with an adsorbent, there are drawbacks such as the adsorbent being consumed due to the residual chlorine. Therefore, the present inventors conducted extensive research with the aim of providing a water purification method for tap water that eliminates these drawbacks and takes full advantage of the advantages of current pre-chlorination treatment.As a result, when treated with ultrasonic aeration, We discovered that while organic substances such as THM can be easily volatilized and removed, residual chlorine can also be removed, and the adsorption ability of the adsorbent for residual organic substances can be improved.
The invention has been completed. That is, the present invention provides a water supply characterized in that raw water for tap water is purified by neutralization/coagulation treatment, pre-chlorination treatment, and filtration treatment, and then the purified water is subjected to ultrasonic aeration treatment and then disinfected with a chlorine agent. This is a method of purifying drinking water. The ultrasonic aeration treatment referred to in the present invention is
It refers to treatment with ultrasonic waves generated when air bubbles are destroyed, or treatment with ultrasonic waves while generating air bubbles.In this case, to generate air bubbles, for example, a perforated plate is installed at the bottom of the tank. However, it may be a diffuser type in which an air inlet is provided at the bottom thereof, or an injector type having a fine-hole nozzle. In addition, when using ultrasonic waves and bubbles together, the diameter of the perforated plate and nozzle is, for example,
0.01mm to 20mm, preferably 1mm to 10mm,
When generating ultrasonic waves using the bubbles mentioned above,
For example, from 0.01 mm to 2 mm, preferably from 0.03 mm to 0.5 mm. When the pore diameter is 0.01 mm or less, the pressure loss is large; when the pore diameter is 20 mm or more, the bubble effect tends to decrease; and even when the pore diameter is 2 mm or more, the generation of ultrasonic waves tends to decrease. Furthermore, the amount of air is
For example, the flow rate is 0.3 m 3 / min or more, preferably 0.5 m 3 /min or more per 1 m 2 of water. The ultrasonic waves referred to in the present invention refer to those with a frequency of 10 KHz or higher, and the higher the frequency, the higher the removal efficiency, but the higher the processing cost.
It is desirable to select the optimum vibration frequency depending on the method of generating ultrasonic waves, the flow rate of water, and the concentration of organic substances such as THM. In order to purify tap water using the present invention, first, ordinary neutralization/coagulation treatment, pre-chlorination treatment, and filtration treatment are carried out.
It is then treated with ultrasonic aeration. For this purpose, for example, the above-mentioned device for treatment using ultrasonic aeration is installed in a water purification pond and the water is allowed to stay there for at least 5 minutes.
It may take more than an hour. Particularly in the present invention, unreacted organic matter may remain, and it is preferable to remove this with an adsorbent such as activated carbon. At this time, since the residual chlorine is also removed by the ultrasonic aeration, the residual organic matter is oxidized, the ability to adsorb organic matter is improved, and the adsorbent is not consumed by chlorine. The water thus treated can then be disinfected with a chlorine agent such as sodium hypochlorite. According to the present invention, in order to carry out post-chlorine disinfection after organic matter that generates THM has been removed, purified water that does not contain harmful organic compounds such as THM while retaining residual free chlorine of 0.1 ppm or more according to the Water Supply Law is used. can be obtained. Furthermore, simply installing ultrasonic aeration in the water purification pond does not require any changes to the current location. Furthermore, according to the present invention, odor substances are also removed, and dissolved oxygen in the water is increased, making it possible to obtain water with a refreshing taste. Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 River water (Note 1) having the water quality shown in Table 1 was used for water purification in a coagulation sedimentation and filtration plant with a water purification capacity of 10 m 3 /D. The chemical added at this time was sodium hypochlorite with 12% available chlorine (standard JWWAK120-1972).
50ppm, liquid aluminum sulfate with aluminum oxide content of 8% (standard JISK-1450-1977) 20ppm,
Sodium hydroxide with a concentration of 45% (standard JWWAK122
-1976) was 10ppm. The quality of this treated water (before ultrasound) is shown in Table 1. This treated water was introduced into a differential user type ultrasonic air ration tank having a bottom area of 400 cm 2 and a height of 1 m, and having a perforated plate with an average pore diameter of 0.1 mm on the entire bottom of the tank, and was subjected to circulation treatment. The residence time at this time is 5
The air flow rate was set to 12/min. Next, after ultrasonic aeration, the residual free chlorine after 24 hours is 0.1ppm.
Disinfected with sodium hypochlorite as described above. The resulting water quality is shown in Table 1. From Table 1, when comparing the water quality before and after ultrasonic aeration, it is clear that ultrasonic aeration is highly effective. This treatment was continued for one month, and the water quality showed the average value.

【表】 実施例 2 実施例1と同様な装置、条件にて凝集沈殿処
理、濾過処理並びに超音波エアーレーシヨン処理
後、活性炭による吸着処理をLV=5m/hr(SV
=5hr-1)にて実施した。そのときに使用した活
性炭は、カルゴン社製フイルトラソーブ400粒状
活性炭である。 この処理を継続して1カ月行なつた。その時の
原水、濾過水、活性炭処理水の平均の水質を表−
2に示す。 表2から超音波エアレーシヨンと活性炭吸着の
併用処理の効果は多大であつたことが明らかであ
る。
[Table] Example 2 After coagulation-precipitation treatment, filtration treatment, and ultrasonic air ration treatment using the same equipment and conditions as Example 1, adsorption treatment with activated carbon was performed at LV = 5 m/hr (SV
=5hr -1 ). The activated carbon used at that time was Filtrasorb 400 granular activated carbon manufactured by Calgon. This treatment was continued for one month. The average water quality of raw water, filtered water, and activated carbon-treated water at that time is shown below.
Shown in 2. It is clear from Table 2 that the combined treatment of ultrasonic aeration and activated carbon adsorption had a great effect.

【表】【table】

Claims (1)

【特許請求の範囲】 1 水道用原水を中和・凝集処理、前塩素処理及
び濾過処理して浄水し、次いで浄水した水を超音
波エアレーシヨン処理した後、塩素剤で消毒する
ことを特徴とする水道用水の浄水方法。 2 超音波エアーレーシヨン処理した後、吸着剤
で処理する特許請求の範囲第1項記載の浄水方
法。
[Scope of Claims] 1. A method characterized in that raw water for tap water is purified by neutralization/coagulation treatment, pre-chlorination treatment, and filtration treatment, and then the purified water is subjected to ultrasonic aeration treatment and then disinfected with a chlorine agent. Water purification method for tap water. 2. The water purification method according to claim 1, wherein the water is treated with an adsorbent after the ultrasonic air ration treatment.
JP56090330A 1981-06-09 1981-06-09 Purification of city water Granted JPS57204295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56090330A JPS57204295A (en) 1981-06-09 1981-06-09 Purification of city water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56090330A JPS57204295A (en) 1981-06-09 1981-06-09 Purification of city water

Publications (2)

Publication Number Publication Date
JPS57204295A JPS57204295A (en) 1982-12-14
JPH0137996B2 true JPH0137996B2 (en) 1989-08-10

Family

ID=13995503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56090330A Granted JPS57204295A (en) 1981-06-09 1981-06-09 Purification of city water

Country Status (1)

Country Link
JP (1) JPS57204295A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1010407A4 (en) * 1996-07-04 1998-07-07 Undatim Ultrasonics Method and installation of water treatment.
JP3795268B2 (en) * 1999-08-17 2006-07-12 アタカ工業株式会社 Method and apparatus for treating wastewater containing organochlorine compounds
JP4523671B1 (en) * 2008-12-02 2010-08-11 昭三 片倉 Sewage treatment system and fine bubble generator

Also Published As

Publication number Publication date
JPS57204295A (en) 1982-12-14

Similar Documents

Publication Publication Date Title
CA2439927C (en) Methods of treating water using combinations of chlorine dioxide, chlorine and ammonia
Duguet et al. Improvement in the effectiveness of ozonation of drinking water through the use of hydrogen peroxide
CN101987764B (en) Method and treatment device for purifying water of micro polluted water source
JPH06226272A (en) Method of reducing content of organic chemical substance in waste liquid
JP3323040B2 (en) Ultrapure water production equipment
JPH11114596A (en) Production of ultrapure water and ultrapure water producing device
JPH0975993A (en) Treatment of organic matter-containing waste water and device therefor
CN113003845B (en) Zero-emission treatment process and system for sewage with high sulfate content and high COD (chemical oxygen demand)
JPH10277568A (en) Treatment of organic matter-containing waste water
Schulhof An evolutionary approach to activated carbon treatment
JPS6336890A (en) Apparatus for producing high-purity water
Sontheimer Applying oxidation and adsorption techniques: a summary of progress
CN204644026U (en) A kind of device adopting PhotoelectrochemicalTechnique Technique to remove ammonia nitrogen in water
JP5217883B2 (en) Method and apparatus for treating phosphoric acid, nitric acid and water containing organic acid
JPH0137996B2 (en)
CN212269808U (en) Reverse osmosis strong brine processing system
JP3433601B2 (en) Wastewater recovery and purification equipment
JPS6344989A (en) Treatment of washing waste water containing oxidizing agent
KR100297928B1 (en) Method of nitrogen removal in wastewater with photocatalytic technology
JP3526143B2 (en) Advanced wastewater treatment method
Faber et al. Super-chlorination practice in North America [with discussion]
JP3913843B2 (en) Coagulation sedimentation processing equipment
JP2554687B2 (en) Biological nitrogen removal method
JP3467234B2 (en) How to remove nitrate nitrogen from tap water
JPS5939384A (en) Treatment of raw water for service water