JPH07290071A - Method for removing organic matter and device therefor - Google Patents

Method for removing organic matter and device therefor

Info

Publication number
JPH07290071A
JPH07290071A JP10592394A JP10592394A JPH07290071A JP H07290071 A JPH07290071 A JP H07290071A JP 10592394 A JP10592394 A JP 10592394A JP 10592394 A JP10592394 A JP 10592394A JP H07290071 A JPH07290071 A JP H07290071A
Authority
JP
Japan
Prior art keywords
water
treated
oxidative decomposition
ion exchange
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10592394A
Other languages
Japanese (ja)
Inventor
Fumio Yokoyama
史夫 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP10592394A priority Critical patent/JPH07290071A/en
Publication of JPH07290071A publication Critical patent/JPH07290071A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To improve the efficiency in removing org. matter in the device to oxidize and decompose the org. matter in the water to be treated by irradiating the water with UV by heating the water to a specified temp. to oxidize and decompose the org. matter. CONSTITUTION:A mercury lamp 5 is set in the water tank 2 of a UV oxidation device, and an aerator 6 is provided at the lower part of the tank. The aerator 6 has a diffuser pipe 7 pierced with many holes, and air or nitrogen is introduced from a gas pipe 8 into the tank through the holes to agitate the water to be treated. UV rays mainly with 365nm wavelength are emitted when a high-pressure mercury-vapor lamp is used as the lamp 5, however the light is insufficient to dissociate the interatomic bond of the org. matter. Accordingly, an appropriate amt. of oxidizing agent is added to the water to be treated in the tank 2 from an oxidizing agent tank 12, the water is heated to 50-80 deg.C in the presence of the agent to oxidize and decompose the org. matter by irradiating the water with UV rays, and the decomposing rate is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体製造、液晶ディス
プレイ製造等に用いられる超純水等を製造するための有
機物の除去方法及びそれに用いる装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing organic substances for producing ultrapure water and the like used in the production of semiconductors and liquid crystal displays, and an apparatus used therefor.

【0002】[0002]

【従来の技術】半導体製造用水として用いられる超純水
は年々その使用量が増大していると共にLSI集積度の
増加に伴って更なる水質の向上が要求されている。超純
水製造に当たって、被処理水(原水)に含まれる無機塩
及び有機物の除去処理が行なわれるが、なかでも有機物
の除去は超純水の水質を向上させる上で極めて重要な処
理である。
2. Description of the Related Art The amount of ultrapure water used as semiconductor manufacturing water is increasing year by year, and further improvement in water quality is required as the degree of LSI integration increases. In the production of ultrapure water, the inorganic salts and organic substances contained in the water to be treated (raw water) are removed. Among them, the removal of organic substances is an extremely important process for improving the quality of ultrapure water.

【0003】被処理水に含まれる有機物を除去するには
種々の単位操作の組み合わせによっている。例えば凝集
沈澱、活性炭による吸着、イオン交換、逆浸透膜やUF
膜を用いた分離等の処理が行なわれ、これらの処理によ
って大部分の有機物を除去した後、残存する有機物につ
いては紫外線酸化装置によって酸化分解し、除去するこ
とが行なわれている。
The removal of organic substances contained in the water to be treated depends on the combination of various unit operations. For example, coagulation precipitation, adsorption by activated carbon, ion exchange, reverse osmosis membrane and UF
Treatments such as separation using a membrane are performed, and after most of the organic substances are removed by these treatments, the remaining organic substances are oxidatively decomposed by an ultraviolet oxidizer and removed.

【0004】[0004]

【発明が解決しようとする課題】紫外線酸化装置は、水
銀ランプより特定波長の紫外線を照射して、被処理水に
含まれる有機物を酸化分解する機構を有するものであ
り、水銀ランプとして低圧水銀ランプ及び高圧水銀ラン
プがある。
The ultraviolet oxidizer has a mechanism of irradiating ultraviolet rays of a specific wavelength from a mercury lamp to oxidize and decompose organic substances contained in the water to be treated. As a mercury lamp, a low-pressure mercury lamp is used. And there is a high pressure mercury lamp.

【0005】一般に、超純水を半導体製造時の洗浄用水
として使用した後の排水の一部を回収して循環使用する
ための排水回収システムにおける上記洗浄排水の如き有
機物濃度が高い被処理水において有機物分解処理を行な
うに当たっては高圧水銀ランプが用いられ、また前記排
水回収システムにおける有機物除去後の被処理水或いは
原水に対し無機塩除去及び有機物除去処理を施した後の
被処理水の如き有機物濃度が極めて低い被処理水におい
て有機物分解処理を行なうに当たっては低圧水銀ランプ
が用いられる。いずれの場合にあっても有機物分解処理
は従来、室温で行なわれていた。
Generally, in treated water having a high concentration of organic substances, such as the above-mentioned cleaning waste water in a waste water recovery system for recovering a part of waste water after using ultrapure water as cleaning water during semiconductor manufacturing and recycling it. A high-pressure mercury lamp is used to perform the organic substance decomposition treatment, and the concentration of organic substances such as the treated water after the removal of inorganic salts and the removal of organic substances from the treated water or raw water after the removal of organic substances in the wastewater recovery system is performed. A low-pressure mercury lamp is used for the decomposition treatment of organic matter in the water to be treated having a very low water content. In either case, the organic substance decomposition treatment has conventionally been performed at room temperature.

【0006】上記の如き紫外線酸化装置を用いた有機物
分解処理においては有機物除去効率が従来から問題とさ
れていた。例えば通常の紫外線酸化装置においては、有
機物源としてのメタノール濃度が約10mg・TOC/
リットルのとき、有機物の分解速度は1〜2g・TOC
/KWHにすぎず、有機物除去効率の低いものであった
(ここで、TOCは有機物濃度の測定に当たって用いら
れる全有機炭素を表わす)。
In the organic substance decomposing process using the above-mentioned ultraviolet oxidizer, the organic substance removing efficiency has conventionally been a problem. For example, in a normal UV oxidizer, the concentration of methanol as an organic source is about 10 mg TOC /
When it is liter, the decomposition rate of organic matter is 1-2g TOC
/ KWH, which had a low organic matter removal efficiency (where TOC represents the total organic carbon used in the measurement of the organic matter concentration).

【0007】従って、上記濃度のメタノールを含む水を
流速10m3 /hrで処理しようとすると、50〜10
0kwの水銀ランプを必要とし、電力費の高騰化を招く
という問題がある。
Therefore, if water containing the above concentration of methanol is treated at a flow rate of 10 m 3 / hr, 50 to 10
There is a problem in that a mercury lamp of 0 kW is required, which causes an increase in power cost.

【0008】また、一般に有機物濃度が高くなると紫外
線の照射量を多くする必要があり、それにより電力コス
トの増大を招き、他方において有機物濃度が低い場合に
は、反応の効率が低下するため、いきおい有機物の分解
速度も小さくなり、そのため所定の分解速度で処理を行
なうためには紫外線の照射量を多くしなければならず、
従ってこの場合も同様に電力コストの増大という問題を
抱えることになる。
Further, generally, when the organic substance concentration is high, it is necessary to increase the irradiation amount of ultraviolet rays, which leads to an increase in electric power cost. On the other hand, when the organic substance concentration is low, the reaction efficiency is lowered, so that it is important The decomposition rate of organic matter also becomes small, so in order to perform processing at a predetermined decomposition rate, the irradiation dose of ultraviolet rays must be increased,
Therefore, in this case as well, there is a problem in that the power cost also increases.

【0009】紫外線酸化装置を用いた有機物分解処理に
要するコストは大部分が水銀ランプの電力費であるか
ら、この電力費を節減することは超純水製造等における
製造コスト並びに排水回収システムにおける回収コスト
を低減することにつながる。従って、いかにして紫外線
照射による有機物の分解速度を大ならしめ、その除去効
率を増大させるかが重要な技術課題として従来から検討
されてきた。
Since most of the cost required for the decomposition treatment of organic substances using the ultraviolet oxidation device is the electric power cost of the mercury lamp, it is necessary to reduce the electric power cost by the manufacturing cost in the ultrapure water production and the recovery in the waste water recovery system. It leads to cost reduction. Therefore, how to increase the decomposition rate of organic substances by ultraviolet irradiation and increase the removal efficiency thereof has been studied as an important technical problem.

【0010】本発明者は上記の点につき種々研究を行な
ったところ、被処理水を40℃以上に加温して紫外線酸
化処理を行なうと、有機物の分解速度が顕著に増大し、
この40℃以上の水温が、有機物の除去効率を向上する
上で極めて重要な温度であるという知見を得た。
The present inventor has conducted various studies on the above points. When the water to be treated is heated to 40 ° C. or higher and subjected to an ultraviolet oxidation treatment, the decomposition rate of organic substances remarkably increases,
It was found that the water temperature of 40 ° C. or higher is a very important temperature for improving the removal efficiency of organic substances.

【0011】本発明はかかる知見に基づき完成したもの
で、有機物の分解速度を増大し、その除去効率を向上せ
しめて電力コストの低減に寄与できる有機物の除去方法
を提供することを目的とする。
The present invention has been completed based on such findings, and an object of the present invention is to provide a method for removing organic substances which can increase the decomposition rate of organic substances and improve their removal efficiency to contribute to the reduction of electric power cost.

【0012】また本発明は上記方法を実施するための有
機物の除去装置を提供することを目的とする。
Another object of the present invention is to provide an organic substance removing apparatus for carrying out the above method.

【0013】[0013]

【課題を解決するための手段】本発明は、(1)紫外線
を照射して被処理水中の有機物を酸化分解して除去する
に当たり、被処理水を40℃以上に加温して上記酸化分
解処理を行なうことを特徴とする有機物の除去方法、
(2)酸化分解処理終了後の加温状態にある酸化分解処
理水を熱交換器に流入せしめ、該熱交換器内で被処理水
との間で熱交換を行なわせて被処理水を加温すると共
に、補助加熱手段を用いて更に被処理水を加温して40
℃以上の水温とすることを特徴とする上記(1)記載の
有機物の除去方法、(3)酸化分解処理終了後の加温状
態にある酸化分解処理水を熱交換器に流入せしめ、該熱
交換器内で被処理水との間で熱交換を行なわせて酸化分
解処理水を冷却し、この冷却された酸化分解処理水を少
なくともアニオン交換樹脂を使用してなるイオン交換装
置に通して酸化分解生成物を除去することを特徴とする
上記(1)又は(2)記載の有機物の除去方法、(4)
イオン交換装置に用いるイオン交換樹脂が外部で再生し
た再生済イオン交換樹脂であることを特徴とする上記
(3)記載の有機物の除去方法、(5)被処理水に紫外
線を照射して被処理水中の有機物を酸化分解する紫外線
酸化装置と、該紫外線酸化装置内に設けられるか或いは
該紫外線酸化装置の被処理水流入側に設けられる被処理
水加熱装置とから構成されることを特徴とする有機物の
除去装置、(6)被処理水加熱装置が、酸化分解処理終
了後の加温状態にある酸化分解処理水を流入せしめた熱
交換器と補助加熱手段との組み合わせから構成されるこ
とを特徴とする上記(5)記載の有機物の除去装置を要
旨とする。
Means for Solving the Problems In the present invention, (1) when irradiating ultraviolet rays to oxidatively decompose and remove organic matter in water to be treated, the water to be treated is heated to 40 ° C. or higher to oxidize and decompose. A method for removing organic substances, characterized by performing a treatment,
(2) The oxidative decomposition treated water in a heated state after the completion of the oxidative decomposition treatment is caused to flow into the heat exchanger, and heat is exchanged with the treated water in the heat exchanger to add the treated water. While warming, the water to be treated is further heated by using an auxiliary heating means to 40
The method for removing organic matter according to (1) above, wherein the water temperature is at least ℃, (3) the oxidative decomposition water in a heated state after completion of the oxidative decomposition treatment is caused to flow into a heat exchanger, and the heat The oxidative decomposition treated water is cooled by performing heat exchange with the water to be treated in the exchanger, and the cooled oxidatively decomposed treated water is passed through an ion exchange device using at least an anion exchange resin to oxidize. (4) A method for removing an organic substance according to the above (1) or (2), characterized in that a decomposition product is removed.
The method for removing organic substances according to (3) above, wherein the ion exchange resin used in the ion exchange apparatus is an externally regenerated ion exchange resin, and (5) the treated water is irradiated with ultraviolet rays to be treated. An ultraviolet oxidizer for oxidizing and decomposing organic matter in water, and a treated water heating device provided in the ultraviolet oxidizer or on the treated water inflow side of the ultraviolet oxidizer. The organic matter removing device, (6) the treated water heating device is composed of a combination of a heat exchanger into which oxidative decomposition treated water in a heated state after completion of oxidative decomposition treatment is introduced and an auxiliary heating means. The feature is the organic substance removing device described in (5) above.

【0014】本発明の方法及び装置は超純水製造に好適
に用いられるが、それに限定されず例えば医薬用水製造
にも用いることができる。超純水製造の場合における超
純水としては、半導体製造用水、液晶ディスプレイ製造
用水等の態様が挙げられる。この超純水製造工程は以下
に述べるように幾つかのシステムに分かれており、本発
明は有機物の酸化分解処理を工程中に含むどのシステム
にも適用できる。
The method and apparatus of the present invention are preferably used for ultrapure water production, but are not limited thereto and can be used, for example, for pharmaceutical water production. Examples of ultrapure water in the case of ultrapure water production include water for semiconductor production and water for liquid crystal display production. This ultrapure water production process is divided into several systems as described below, and the present invention can be applied to any system including oxidative decomposition treatment of organic substances in the process.

【0015】即ち、超純水製造工程は、原水中に含まれ
る不純物の大部分を除去し、特に有機物濃度については
ppbのオーダーにまで低減せしめる一次純水システム
と、一次純水に含まれる少量の不純物を完全に除去して
理論純水に近い不純物濃度にまで水質を向上した超純水
を製造するサブシステムと、製造された超純水を半導体
製造用水(洗浄水)等として使用した後の排水(洗浄排
水)の一部を回収して再利用するための排水回収システ
ムとからなっている。
That is, in the ultrapure water production process, most of the impurities contained in the raw water are removed, and in particular, the organic matter concentration is reduced to the order of ppb, and a small amount of primary pure water contained in the primary pure water. After the ultrapure water is manufactured by completely removing the impurities in the product and improving the water quality to an impurity concentration close to that of theoretical pure water, and after using the manufactured ultrapure water as semiconductor manufacturing water (cleaning water), etc. It consists of a wastewater recovery system for recovering and reusing a part of the wastewater (washing wastewater).

【0016】一次純水システムでは原水を、凝集・濾過
装置、逆浸透膜装置、脱気装置、再生設備を備えたイオ
ン交換装置等に通し、原水中の無機塩及び有機物、更に
は微粒子等の大部分を除去する。サブシステムにおいて
は、一次純水システムで得られた一次純水を紫外線酸化
装置、再生設備を有しないカートリッジタイプのイオン
交換装置、限外濾過装置等に通し、一次純水中の有機物
や無機塩、微粒子等の濃度を極限まで低減せしめ、目的
とする純水を得る。
In the primary pure water system, the raw water is passed through an aggregating / filtering device, a reverse osmosis membrane device, a degassing device, an ion exchange device equipped with a regenerator, and the like to remove inorganic salts and organic substances in the raw water, and further fine particles. Remove most. In the subsystem, the primary pure water obtained from the primary pure water system is passed through an ultraviolet oxidation device, a cartridge type ion exchange device without a regeneration facility, an ultrafiltration device, etc. , The concentration of fine particles is reduced to the utmost, and the desired pure water is obtained.

【0017】また排水回収システムにおいては、洗浄排
水を活性炭ろ過装置、紫外線酸化装置、イオン交換装置
等に通し、排水中の酸、アルカリ、有機物を除去する。
Further, in the waste water recovery system, the washing waste water is passed through an activated carbon filtration device, an ultraviolet oxidation device, an ion exchange device, etc. to remove acids, alkalis and organic substances in the waste water.

【0018】上記サブシステム及び排水回収システムに
おいて紫外線酸化装置が用いられ、それにより有機物の
酸化分解が行なわれるが、サブシステムにおける紫外線
酸化装置には通常、低圧水銀ランプが用いられ、一方、
排水回収システムにおける紫外線酸化装置には通常、高
圧水銀ランプが用いられる。本発明はこのようなサブシ
ステム及び排水回収システムにおいて実施される紫外線
照射による有機物の酸化分解処理に適用することが可能
である。即ち本発明は、上記サブシステム、排水回収シ
ステムのいずれのシステムにも適用でき、従ってまた低
圧水銀ランプを用いる紫外線酸化装置或いは高圧水銀ラ
ンプを用いる紫外線酸化装置のいずれにも本発明を適用
することが可能である。
An ultraviolet oxidizer is used in the above-mentioned subsystem and waste water recovery system to oxidize and decompose organic substances, but a low pressure mercury lamp is usually used in the ultraviolet oxidizer in the subsystem.
A high pressure mercury lamp is usually used for the ultraviolet oxidation device in the waste water recovery system. INDUSTRIAL APPLICABILITY The present invention can be applied to the oxidative decomposition treatment of organic matter by ultraviolet irradiation carried out in such a subsystem and wastewater recovery system. That is, the present invention can be applied to any of the above-mentioned subsystems and waste water recovery systems. Therefore, the present invention can also be applied to any of an ultraviolet oxidation device using a low pressure mercury lamp or an ultraviolet oxidation device using a high pressure mercury lamp. Is possible.

【0019】本発明は被処理水を40℃以上に加温する
が、この加温のための加熱手段は公知の手段が採用さ
れ、例えば図1に示すように紫外線酸化装置1の水槽2
内に電気加熱方式のヒーター3を設置する方法や、特に
図示しないが水槽2に蒸気加熱通路を設けて蒸気加熱を
施す方法等が採用される。また上記加温のための加熱装
置は紫外線酸化装置1内に設けられる態様に限定され
ず、図2に示すように紫外線酸化装置1の被処理水流入
側に、電気加熱方式、蒸気加熱方式、その他公知の加熱
方式を採用した加熱装置4を設置し、該装置4にて所定
温度に加温された被処理水を紫外線酸化装置1に導くよ
うにしてもよい。
In the present invention, the water to be treated is heated to 40 ° C. or higher, and known heating means is used for this heating. For example, as shown in FIG. 1, the water tank 2 of the ultraviolet oxidation apparatus 1 is used.
A method of installing an electric heating type heater 3 therein, a method of providing steam heating by providing a steam heating passage in the water tank 2, which is not particularly shown, and the like are adopted. Further, the heating device for heating is not limited to the mode provided in the ultraviolet oxidation device 1, and as shown in FIG. Alternatively, a heating device 4 adopting a known heating method may be installed, and the water to be treated heated to a predetermined temperature by the device 4 may be guided to the ultraviolet oxidation device 1.

【0020】更に後述するように、熱交換器に通すこと
による加温と補助加熱手段による加温とを組み合わせた
加熱方法を採用することもできる。
Further, as will be described later, it is possible to employ a heating method in which heating by passing through a heat exchanger and heating by an auxiliary heating means are combined.

【0021】本発明を超純水製造に適用した場合は、一
次純水システムにて処理された一次純水又は該一次純水
に排水回収システムにて処理された排水回収処理水を混
合した水が通常、本発明における被処理水として用いら
れることになるが、もとよりこれらに限定されるもので
はない。
When the present invention is applied to the production of ultrapure water, the primary pure water treated by the primary pure water system or water obtained by mixing the primary pure water with the wastewater recovered treated water by the wastewater recovery system. Is usually used as the water to be treated in the present invention, but is not limited to these.

【0022】図1に示す紫外線酸化装置は本発明装置の
基本的な構成例を表わすものであり、水槽2内には水銀
ランプ5が設置され且つ槽下方部には曝気装置6が設け
られている。曝気装置6は多数の空孔を備えた散気管7
を有し、ガス管8より空気や窒素ガスを槽内に導入し、
被処理水を攪拌する作用を有する。水銀ランプ5の設置
本数は被処理水中の有機物濃度等に応じて適宜決定され
る。
The ultraviolet oxidation device shown in FIG. 1 represents a basic configuration example of the device of the present invention. A mercury lamp 5 is installed in the water tank 2 and an aerator 6 is installed in the lower part of the tank. There is. The aeration device 6 is an air diffuser 7 having a large number of holes.
And introducing air or nitrogen gas into the tank from the gas pipe 8,
It has the effect of stirring the water to be treated. The number of mercury lamps 5 installed is appropriately determined according to the concentration of organic substances in the water to be treated.

【0023】9は水銀ランプ5に電気的に接続されたス
タビライザー、10は被処理水の流入管、11は酸化分
解処理水の流出管である。
Reference numeral 9 is a stabilizer electrically connected to the mercury lamp 5, 10 is an inflow pipe for the water to be treated, and 11 is an outflow pipe for the oxidative decomposition treated water.

【0024】12は酸化剤槽で、流入管10に連通して
設けた供給管13を通して該酸化剤槽12から水槽2内
に酸化剤を供給することができるように構成されてい
る。水銀ランプ5として高圧水銀ランプを用いる場合に
は主に365nmの波長の紫外線を発生するが、この波
長の光のエネルギーは有機物の原子間結合を解離させる
には不充分であり、そのため酸化剤の併用が必要とな
る。従ってこの場合、酸化剤槽12より適当量の酸化剤
を水槽2内の被処理水に添加し、この酸化剤併用状態に
おいて紫外線照射による有機物の酸化分解を行なう。酸
化剤としては過酸化水素、次亜塩素酸ナトリウム、塩
素、オゾン等が用いられるが過酸化水素が最も好まし
い。酸化剤の添加量は、被処理水中の有機物の濃度によ
って決定される。
Reference numeral 12 denotes an oxidizer tank, which is constructed so that the oxidizer can be supplied from the oxidizer tank 12 into the water tank 2 through a supply pipe 13 provided in communication with the inflow pipe 10. When a high-pressure mercury lamp is used as the mercury lamp 5, ultraviolet rays having a wavelength of 365 nm are mainly generated, but the energy of the light having this wavelength is insufficient to dissociate the interatomic bond of the organic substance, and therefore the oxidizer Combination is required. Therefore, in this case, an appropriate amount of the oxidizing agent is added to the water to be treated in the water tank 2 from the oxidizing agent tank 12, and the organic matter is oxidatively decomposed by the irradiation of ultraviolet rays in the combined use state of the oxidizing agent. Hydrogen peroxide, sodium hypochlorite, chlorine, ozone and the like are used as the oxidizing agent, and hydrogen peroxide is most preferable. The amount of the oxidizing agent added is determined by the concentration of organic substances in the water to be treated.

【0025】一方、水銀ランプ5として低圧水銀ランプ
を用いる場合は、波長265nmの紫外線の他に波長1
85nmの紫外線を発生し、この波長185nmの紫外
線は有機物の原子間結合を解離させるに充分な光エネル
ギーを有しており、従って低圧水銀ランプを用いる場合
は酸化剤の併用が不要であり、単独で有機物の酸化分解
を行なうことができる。
On the other hand, when a low-pressure mercury lamp is used as the mercury lamp 5, a wavelength of 1
It emits 85 nm UV light, and this 185 nm UV light has enough light energy to dissociate the interatomic bonds of organic substances. Therefore, when a low pressure mercury lamp is used, it is not necessary to use an oxidizing agent together. It is possible to oxidize and decompose organic substances.

【0026】上述したように、本発明は被処理水を40
℃以上に加温して有機物の酸化分解を行なうが、この被
処理水の水温を40℃以上としたのは、40℃未満では
有機物の分解速度をあまり増大できないからである。即
ち40℃以上の水温としたとき前記分解速度は急激に増
大する傾向を示し、従って前記分解速度を効果的に向上
せしめるためには水温を40℃以上としなければならな
い。水温は高ければ高い程、前記分解速度の増大効果も
大きくなるが、該水温が100℃に達すると沸騰が起こ
り、取り扱いが面倒となるので水温は100℃未満が好
ましい。本発明において好ましい水温は50℃以上、8
0℃未満である。50℃以上とすることにより有機物の
分解速度を充分に大きくでき、電力費を低減する上で極
めて効果的である。また80℃以上となると熱的コスト
が高くなり、経済的に得策でない。
As described above, according to the present invention, the water to be treated is 40
The organic substance is oxidatively decomposed by heating it to a temperature of not lower than 40 ° C. The water temperature of the water to be treated is set to 40 ° C. or higher because the decomposition rate of the organic substance cannot be increased so much at a temperature lower than 40 ° C. That is, when the water temperature is 40 ° C. or higher, the decomposition rate tends to rapidly increase. Therefore, in order to effectively improve the decomposition rate, the water temperature must be 40 ° C. or higher. The higher the water temperature, the greater the effect of increasing the decomposition rate, but when the water temperature reaches 100 ° C., boiling occurs and handling becomes troublesome, so the water temperature is preferably less than 100 ° C. In the present invention, the preferred water temperature is 50 ° C. or higher, 8
It is less than 0 ° C. By setting the temperature to 50 ° C. or higher, the decomposition rate of organic substances can be sufficiently increased, which is extremely effective in reducing the power cost. Further, if the temperature is higher than 80 ° C., the thermal cost becomes high, which is not economically advantageous.

【0027】上述したように、水銀ランプ5として低圧
水銀ランプ又は高圧水銀ランプが用いられるが、いずれ
の水銀ランプを用いるかは被処理水の水質によって決定
される。例えば上記した超純水製造工程における一次純
水の如く、有機物濃度が低く、ppbオーダーにまで有
機物濃度が低減せしめられている被処理水の場合には通
常、低圧水銀ランプが使用され、また上記超純水製造工
程中の排水回収システムにおける洗浄排水の如く、有機
物濃度が比較的高く、その濃度がppmオーダーの値を
示す被処理水の場合には通常、高圧水銀ランプが使用さ
れる。
As described above, the low-pressure mercury lamp or the high-pressure mercury lamp is used as the mercury lamp 5. Which mercury lamp is used is determined by the quality of the water to be treated. For example, in the case of water to be treated that has a low organic matter concentration and is reduced to the ppb order, such as primary pure water in the ultrapure water production process described above, a low-pressure mercury lamp is usually used. A high-pressure mercury lamp is usually used for water to be treated which has a relatively high concentration of organic substances and a concentration of the order of ppm, such as cleaning wastewater in a wastewater recovery system during the ultrapure water production process.

【0028】上記構成において、流入管10を通して被
処理水を紫外線酸化装置1の水槽2内に流入せしめ、ま
た必要に応じて酸化剤槽12より酸化剤を水槽2内に供
給する。
In the above structure, the water to be treated is caused to flow into the water tank 2 of the ultraviolet oxidation device 1 through the inflow pipe 10, and the oxidant is supplied from the oxidant tank 12 into the water tank 2 as necessary.

【0029】曝気装置6より空気や窒素ガス等の気体を
水槽2内に送り込んで被処理水を攪拌し、同時にヒータ
ー3により被処理水を加温して水温を40℃以上とす
る。水温を40℃以上に保持したまま水銀ランプ5より
紫外線を照射して、被処理水中に含まれる有機物を酸化
分解する。酸化分解処理終了後、処理水(酸化分解処理
水)を流出管11より流出せしめる。
A gas such as air or nitrogen gas is sent into the water tank 2 from the aeration device 6 to stir the water to be treated, and at the same time, the water to be treated is heated by the heater 3 to bring the water temperature to 40 ° C. or higher. While maintaining the water temperature at 40 ° C. or higher, ultraviolet rays are radiated from the mercury lamp 5 to oxidize and decompose organic substances contained in the water to be treated. After the oxidative decomposition treatment is completed, treated water (oxidative decomposition treated water) is caused to flow out from the outflow pipe 11.

【0030】有機物としてメタノールを例にとり、紫外
線照射による酸化分解を説明すると、紫外線酸化反応は
以下の通り行なわれる。 CH3 OH + 1/2O2 → HCHO + H2 O・・・・(1) HCHO + 1/2O2 → HCOOH・・・・・・・・・(2) HCOOH + 1/2O2 → CO2 + H2 O・・・・(3)
Taking methanol as an organic substance as an example, the oxidative decomposition by ultraviolet irradiation will be described. The ultraviolet oxidation reaction is carried out as follows. CH 3 OH + 1 / 2O 2 → HCHO + H 2 O ··· (1) HCHO + 1 / 2O 2 → HCOOH ··· (2) HCOOH + 1 / 2O 2 → CO 2 + H 2 O ... ・ (3)

【0031】本発明は反応時の被処理水の水温を40℃
以上とすることによって、上記(1)〜(3)式のいず
れの反応においてもその反応速度を著しく増大できる。
In the present invention, the water temperature of the water to be treated during the reaction is 40 ° C.
By the above, the reaction rate can be significantly increased in any of the reactions of the above formulas (1) to (3).

【0032】上記酸化反応は必要に応じて(2)式の反
応で止めるようにしてもよい。この場合、酸化分解生成
物として生じる有機酸(HCOOH)は通常、後工程と
しての脱イオン処理によって除去される。この脱イオン
処理としては一般的にはイオン交換樹脂によるイオン交
換処理が行なわれ、酸化分解生成物である有機物はアニ
オン交換樹脂に吸着されて除去される。尚、反応が
(3)式まで進んだ場合においても、酸化分解生成物で
あるCO2 を同様にアニオン交換樹脂により除去するこ
とができる。
The above oxidation reaction may be stopped by the reaction of the formula (2) if necessary. In this case, the organic acid (HCOOH) generated as an oxidative decomposition product is usually removed by a deionization treatment as a post process. As the deionization treatment, an ion exchange treatment is generally performed with an ion exchange resin, and an organic substance which is an oxidative decomposition product is adsorbed by the anion exchange resin and removed. Even when the reaction proceeds to the formula (3), CO 2 which is an oxidative decomposition product can be similarly removed by the anion exchange resin.

【0033】後工程としてイオン交換処理を行なうとき
の工程図は図2に示されている。この工程図に示すよう
に紫外線酸化装置1の後段にイオン交換装置14が設置
される。この場合、紫外線酸化装置1より流出する酸化
分解処理水は40℃以上の水温を保有しており、このよ
うな高い温度の酸化分解処理水を直接イオン交換装置1
4に導くとイオン交換樹脂、特にアニオン交換樹脂の熱
劣化を招く虞れがある。そこで図2に示す如く、イオン
交換装置14の前段に冷却装置15を設置し、この冷却
装置15によって上記処理水を所定温度以下に冷却した
後、イオン交換装置14に導くようにすることが好まし
い。図中、35は処理水流出管を示す。
FIG. 2 shows a process diagram when the ion exchange process is performed as a post process. As shown in this process diagram, an ion exchange device 14 is installed at the subsequent stage of the ultraviolet oxidation device 1. In this case, the oxidative decomposition treated water flowing out from the ultraviolet oxidizer 1 has a water temperature of 40 ° C. or higher, and the oxidative decomposition treated water having such a high temperature is directly transferred to the ion exchange device 1.
If it is brought to 4, the ion exchange resin, particularly the anion exchange resin, may be thermally deteriorated. Therefore, as shown in FIG. 2, it is preferable to install a cooling device 15 in front of the ion exchange device 14, cool the treated water to a predetermined temperature or lower by the cooling device 15, and then guide the treated water to the ion exchange device 14. . In the figure, 35 indicates a treated water outflow pipe.

【0034】また酸化分解処理水を冷却する手段として
図3に示すように熱交換器16を用いてもよい。同図に
示す態様においては、熱交換器16は紫外線酸化装置1
の前段、即ち被処理水流入側に設けられ、紫外線酸化装
置1より流出した酸化分解処理水は流出管11を経て上
記熱交換器16の本体ケーシング17内に流入する。一
方、第1流入管18より供給された被処理水は本体ケー
シング17内に設けられた蛇管19に流入する。
A heat exchanger 16 as shown in FIG. 3 may be used as a means for cooling the oxidative decomposition treated water. In the embodiment shown in the figure, the heat exchanger 16 is the ultraviolet oxidation device 1
The oxidative decomposition treatment water which is provided in the previous stage, that is, on the inflow side of the water to be treated and which has flowed out from the ultraviolet oxidation device 1 flows into the main casing 17 of the heat exchanger 16 through the outflow pipe 11. On the other hand, the water to be treated supplied from the first inflow pipe 18 flows into the flexible pipe 19 provided in the main body casing 17.

【0035】酸化分解処理水が熱交換器16内で蛇管1
9を介して被処理水と接触することにより熱交換が行な
われ、それにより酸化分解処理水は冷却され、反対に被
処理水は加温される。このようにして冷却された酸化分
解処理水は本体ケーシング17の出口より流出し、送水
管20を経てイオン交換装置14に導かれる。イオン交
換樹脂の熱劣化を防ぐため、酸化分解処理水は20℃〜
30℃に冷却することが好ましい。
The oxidatively decomposed water is mixed in the heat exchanger 16 with the flexible pipe 1.
By contacting with the water to be treated via 9, heat exchange is carried out, whereby the oxidative decomposition treated water is cooled and, conversely, the water to be treated is heated. The oxidatively decomposed water thus cooled flows out from the outlet of the main body casing 17, and is guided to the ion exchange device 14 via the water supply pipe 20. In order to prevent thermal deterioration of the ion exchange resin, the oxidative decomposition treated water is 20 ° C ~
It is preferable to cool to 30 ° C.

【0036】この図3に示す実施例は、上記したように
被処理水を熱交換器16に通して加温する態様をも示し
ている。このような方法によって被処理水を或る温度に
まで加温することは可能であるが、上記熱交換による加
温だけでは目的とする40℃以上の水温に加温すること
は困難である。そのため、同図に示すように、補助加熱
手段としてのヒーター等の加熱装置21を紫外線酸化装
置1内に設置し、熱交換器16による加温と補助加熱手
段による加温とを組み合わせることが必要である。この
図3に示す態様によれば、熱交換器16により或る温度
にまで加温された被処理水は第2流入管22を通して紫
外線酸化装置1に流入し、該装置内の加熱装置21によ
って更に加温され、所定温度(40℃以上)の水温にま
で高められる。
The embodiment shown in FIG. 3 also shows a mode in which the water to be treated is heated through the heat exchanger 16 as described above. Although it is possible to heat the water to be treated to a certain temperature by such a method, it is difficult to heat the water to a target water temperature of 40 ° C. or higher only by the heat exchange. Therefore, as shown in the figure, it is necessary to install a heating device 21 such as a heater as an auxiliary heating means in the ultraviolet oxidation device 1 and combine the heating by the heat exchanger 16 and the heating by the auxiliary heating means. Is. According to the embodiment shown in FIG. 3, the water to be treated, which has been heated to a certain temperature by the heat exchanger 16, flows into the ultraviolet oxidation device 1 through the second inflow pipe 22, and is heated by the heating device 21 in the device. It is further heated and raised to a water temperature of a predetermined temperature (40 ° C. or higher).

【0037】補助加熱手段は紫外線酸化装置1内に設置
する場合に限定されず、図4に示すように、熱交換器1
6と紫外線酸化装置1との間に補助加熱手段としての加
熱装置23を設けてもよい。
The auxiliary heating means is not limited to the case where it is installed in the ultraviolet oxidation device 1, and as shown in FIG.
A heating device 23 as an auxiliary heating means may be provided between 6 and the ultraviolet oxidation device 1.

【0038】また補助加熱手段は図5に示すように熱交
換器であってもよい。即ち、同図には紫外線酸化装置1
の被処理水流入側に2つの熱交換器24、25を設置
し、第1の熱交換器24を被処理水の加温及び酸化分解
処理水の冷却用として用い、また第2の熱交換器25を
被処理水の補助加熱用として用いる態様が示されてい
る。同図において、被処理水は第1流入管26より第1
熱交換器24の蛇管27に流入する。一方、紫外線酸化
装置1より流出した酸化分解処理水は流出管11を経て
第1熱交換器24の本体ケーシング28内に流入し、蛇
管27内を流れる被処理水との間で熱交換が行なわれ、
これにより被処理水は或る温度にまで加温される。酸化
分解処理水は熱交換により冷却され本体ケーシング28
の出口より流出し、送水管20を経てイオン交換装置1
4に導かれる。
Further, the auxiliary heating means may be a heat exchanger as shown in FIG. That is, the figure shows the ultraviolet oxidation device 1
Two heat exchangers 24, 25 are installed on the inflow side of the untreated water, and the first heat exchanger 24 is used for heating the untreated water and for cooling the oxidative decomposition treated water, and also for the second heat exchange. A mode in which the vessel 25 is used for auxiliary heating of the water to be treated is shown. In the same figure, the water to be treated is fed from the first inflow pipe 26 to the first
It flows into the flexible pipe 27 of the heat exchanger 24. On the other hand, the oxidative decomposition treated water flowing out from the ultraviolet oxidizer 1 flows into the main body casing 28 of the first heat exchanger 24 via the outflow pipe 11, and heat exchange is performed with the water to be treated flowing in the flexible pipe 27. And
As a result, the water to be treated is heated to a certain temperature. The oxidatively decomposed water is cooled by heat exchange and is cooled by the body casing 28.
Out of the outlet of the ion exchange device 1 through the water pipe 20
Guided to 4.

【0039】加温された被処理水は連結管29を通して
第2熱交換器25の蛇管30に流入する。この第2熱交
換器25の本体ケーシング31内には熱水流入管32よ
り熱水が供給され、該熱水は蛇管30を介して被処理水
と接触し、熱水流出管33を経て本体ケーシング31外
に流出する。このときの熱交換により被処理水は更に高
い温度にまで加温され、目的とする40℃以上の水温と
なる。このように第2熱交換器25は被処理水を40℃
以上の水温となる温度にまで高めるための補助加熱手段
として機能している。第2熱交換器25により所定の温
度にまで高められた被処理水は第2流入管34を経て紫
外線酸化装置1に流入する。
The heated water to be treated flows into the flexible pipe 30 of the second heat exchanger 25 through the connecting pipe 29. Hot water is supplied from a hot water inflow pipe 32 into the main body casing 31 of the second heat exchanger 25, the hot water comes into contact with the water to be treated through the flexible pipe 30, and the main body passes through the hot water outflow pipe 33. It flows out of the casing 31. Due to the heat exchange at this time, the water to be treated is heated to a higher temperature and reaches the target water temperature of 40 ° C. or higher. In this way, the second heat exchanger 25 treats the water to be treated at 40 ° C.
It functions as an auxiliary heating means for raising the temperature to the above water temperature. The water to be treated which has been raised to a predetermined temperature by the second heat exchanger 25 flows into the ultraviolet oxidation device 1 through the second inflow pipe 34.

【0040】上記の如く、有機物の酸化分解処理終了後
の加温状態にある酸化分解処理水を熱交換器に供給し、
該熱交換器内で被処理水との間で熱交換を行なうように
構成すれば、熱エネルギーの有効な回収を図ることがで
き、処理コストを低減できる効果がある。
As described above, the oxidative decomposition treated water in a heated state after the completion of the oxidative decomposition treatment of the organic substance is supplied to the heat exchanger,
If the heat exchanger is configured to exchange heat with the water to be treated, the heat energy can be effectively recovered and the treatment cost can be reduced.

【0041】而して、本発明において紫外線酸化装置1
の後段に少なくともアニオン交換樹脂を使用してなるイ
オン交換装置14を設置した場合には、有機物分解処理
終了後の処理水(酸化分解処理水)中から酸化分解生成
物を除去することができ、水質に優れた処理水を得るこ
とができ、得られた処理水は例えば超純水としての利用
が可能である。ここにおいて、イオン交換樹脂として外
部で再生した再生済イオン交換樹脂を用いることも可能
である。当該再生済イオン交換樹脂とは、予め再生した
イオン交換樹脂を塔に充填してカートリッジタイプとし
たものをいい、その取り扱い方法は概略次のようなもの
である。即ち、このカートリッジタイプのイオン交換樹
脂(再生済イオン交換樹脂)を複数用意しておき、使用
中のイオン交換樹脂がイオン飽和状態になったときその
場で再生処理は行なわず、他の予め用意してある再生済
イオン交換樹脂と交換する。カートリッジタイプである
から交換作業は容易である。再生処理は別の場所に持ち
帰って行なう。該カートリッジタイプのイオン交換装置
は、不純物イオン量の少ないサブシステムで好適に用い
られる。
Thus, in the present invention, the ultraviolet oxidation device 1
When the ion exchange device 14 including at least an anion exchange resin is installed in the subsequent stage, the oxidative decomposition product can be removed from the treated water after the organic substance decomposition treatment (oxidative decomposition treated water), Treated water with excellent water quality can be obtained, and the obtained treated water can be used as, for example, ultrapure water. Here, it is also possible to use a regenerated ion exchange resin that is regenerated outside as the ion exchange resin. The regenerated ion exchange resin is a cartridge type in which the ion exchange resin regenerated in advance is packed in a tower, and the handling method thereof is roughly as follows. That is, a plurality of cartridge type ion exchange resins (regenerated ion exchange resins) are prepared, and when the ion exchange resin in use is in an ion saturated state, the regeneration process is not performed on the spot, and other prepared in advance. Replace with the regenerated ion exchange resin. Since it is a cartridge type, replacement work is easy. The reproduction process is carried back to another place. The cartridge type ion exchange device is preferably used in a subsystem having a small amount of impurity ions.

【0042】尚、イオン交換装置14に用いる再生済イ
オン交換樹脂としては、少なくともアニオン交換樹脂を
含むものであればいかなるものでもよく、例えば再生済
カチオン交換樹脂及び再生済アニオン交換樹脂の混合
品、或いは再生済アニオン交換樹脂単品、更には該混合
品と該単品との組み合わせからなるものでもよい。
The regenerated ion exchange resin used in the ion exchange device 14 may be any one as long as it contains at least an anion exchange resin, for example, a mixture of a regenerated cation exchange resin and a regenerated anion exchange resin, Alternatively, the regenerated anion exchange resin may be a single product, or a combination of the mixed product and the single product.

【0043】[0043]

【実施例】以下、本発明の実施例を説明する。 実施例 ステンレス製の水槽に被処理水を42リットル入れ、水
銀ランプを水中に位置するように設置した。水銀ランプ
としては主波長365〜366nm(90%)の紫外線
を発生できる400Wの高圧水銀ランプを使用した。被
処理水として、メタノール濃度が約100mg・TOC
/リットルの水(メタノールを超純水で希釈して調製し
た)を用いた。この被処理水にメタノール濃度1mg・
TOC/リットル当たり20mg/リットルの過酸化水
素を加えた。
EXAMPLES Examples of the present invention will be described below. EXAMPLE 42 liters of water to be treated was placed in a water tank made of stainless steel, and a mercury lamp was installed so as to be located in the water. As the mercury lamp, a 400 W high-pressure mercury lamp capable of generating ultraviolet rays having a main wavelength of 365 to 366 nm (90%) was used. The water to be treated has a methanol concentration of approximately 100 mg TOC
/ Liter of water (prepared by diluting methanol with ultrapure water) was used. Methanol concentration of 1 mg
20 mg / l hydrogen peroxide per TOC / l was added.

【0044】水槽内に設置したヒーターにて被処理水を
加温すると共に、水槽内に曝気装置を設置して空気を導
入し、被処理水を攪拌した。高圧水銀ランプより紫外線
を照射してメタノールの酸化分解処理を行なった。この
とき被処理水の水温を表1に示す通り種々変化させ、各
水温下において、メタノール濃度が5mg・TOC/リ
ットルになるまでの時間を測定した。結果を表1に示
す。
The water to be treated was heated by a heater installed in the water tank, and an aerator was installed in the water tank to introduce air to stir the water to be treated. Ultraviolet rays were irradiated from a high pressure mercury lamp to oxidize and decompose methanol. At this time, the water temperature of the water to be treated was variously changed as shown in Table 1, and the time until the methanol concentration reached 5 mg · TOC / liter was measured under each water temperature. The results are shown in Table 1.

【0045】また上記時間の測定結果から各水温におけ
る有機物分解速度を計算により求め、更に水温20℃に
おける有機物分解速度を1としたときの他の水温におけ
る有機物分解速度を相対値として求めた。これを有機物
分解速度の相対比率として表1に示す。またこの有機物
分解速度の相対比率の数値と水温との関係をグラフ化し
たものを図6に示す。
The organic substance decomposition rate at each water temperature was calculated from the measurement result of the above time, and the organic substance decomposition rate at other water temperatures was calculated as a relative value when the organic substance decomposition rate at the water temperature of 20 ° C. was set to 1. This is shown in Table 1 as a relative ratio of the organic substance decomposition rate. FIG. 6 is a graph showing the relationship between the numerical value of the relative rate of the decomposition rate of organic matter and the water temperature.

【0046】[0046]

【表1】 [Table 1]

【0047】上記結果によれば、水温40℃のときの有
機物分解速度は水温20℃のときの有機物分解速度の
1.6倍となり、同様に水温80℃では11倍となって
いる。このことから被処理水を40℃以上に加温するこ
とにより、有機物の分解速度を大幅に増大できることが
判る。また図6のグラフによれば、水温40℃を境に、
有機物分解速度が急激に増大することが判り、水温40
℃以上という温度範囲に臨界的な意義があることが裏付
けられた。
According to the above results, the organic substance decomposition rate at a water temperature of 40 ° C. is 1.6 times that at a water temperature of 20 ° C., and similarly, at a water temperature of 80 ° C., it is 11 times. From this, it is understood that the rate of decomposition of organic substances can be greatly increased by heating the water to be treated to 40 ° C. or higher. Moreover, according to the graph of FIG.
It was found that the decomposition rate of organic matter increased rapidly, and the water temperature was 40
This proves that the temperature range of ℃ or above has a critical significance.

【0048】[0048]

【発明の効果】以上の如く、本発明方法は被処理水を4
0℃以上に加温して紫外線照射による有機物の酸化分解
を行なうので、有機物の分解速度を著しく増大でき、そ
の結果、有機物の除去効率を飛躍的に向上できる効果が
ある。
As described above, according to the method of the present invention, the treated water is
Since the organic substances are oxidatively decomposed by being heated to 0 ° C. or higher and irradiated with ultraviolet rays, the decomposition rate of the organic substances can be remarkably increased, and as a result, the removal efficiency of the organic substances can be dramatically improved.

【0049】而して本発明方法によれば、有機物の除去
効率を向上できる結果、特に水銀ランプのワット数や設
置本数を増やさずに所望の速度で処理を行なうことがで
き、電力費の節減に寄与でき、延いては処理コストの低
減化を実現できる。
Thus, according to the method of the present invention, the efficiency of removing organic substances can be improved, and as a result, it is possible to perform the treatment at a desired rate without increasing the wattage and the number of mercury lamps to be installed, thus reducing the power consumption. It is possible to contribute to the reduction of the processing cost.

【0050】また本発明装置は被処理水加熱装置を備え
ているので、被処理水の温度管理や温度調節を容易に行
なうことができ、酸化分解処理を行なっている途中で設
定温度を変更する等、自由な温度コントロールを行なえ
る利点がある。
Further, since the apparatus of the present invention is provided with the treated water heating apparatus, it is possible to easily control the temperature of the treated water and adjust the temperature, and change the set temperature during the oxidative decomposition treatment. Etc., there is an advantage that free temperature control can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の基本的構成例を示す略図である。FIG. 1 is a schematic diagram showing a basic configuration example of a device of the present invention.

【図2】イオン交換処理工程を含む本発明の処理工程を
示す図である。
FIG. 2 is a diagram showing a treatment process of the present invention including an ion exchange treatment process.

【図3】酸化分解処理水の熱回収工程を含む本発明の処
理工程を示す図である。
FIG. 3 is a diagram showing a treatment process of the present invention including a heat recovery process of oxidative decomposition treated water.

【図4】熱回収工程の他の態様における本発明の処理工
程を示す図である。
FIG. 4 is a diagram showing a processing step of the present invention in another aspect of the heat recovery step.

【図5】熱回収工程の他の態様における本発明の処理工
程を示す図である。
FIG. 5 is a diagram showing a processing step of the present invention in another aspect of the heat recovery step.

【図6】有機物分解速度の相対比率と水温との関係を示
すグラフである。
FIG. 6 is a graph showing the relationship between the relative ratio of the decomposition rate of organic matter and the water temperature.

【符号の説明】[Explanation of symbols]

1 紫外線酸化装置 2 水槽 3 ヒーター 4 加熱装置 5 水銀ランプ 1 UV oxidizer 2 Water tank 3 Heater 4 Heating device 5 Mercury lamp

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 紫外線を照射して被処理水中の有機物を
酸化分解して除去するに当たり、被処理水を40℃以上
に加温して上記酸化分解処理を行なうことを特徴とする
有機物の除去方法。
1. Removal of organic matter by irradiating ultraviolet rays to oxidatively decompose and remove organic matter in the water to be treated, wherein the water to be treated is heated to 40 ° C. or higher to perform the oxidative decomposition treatment. Method.
【請求項2】 酸化分解処理終了後の加温状態にある酸
化分解処理水を熱交換器に流入せしめ、該熱交換器内で
被処理水との間で熱交換を行なわせて被処理水を加温す
ると共に、補助加熱手段を用いて更に被処理水を加温し
て40℃以上の水温とすることを特徴とする請求項1記
載の有機物の除去方法。
2. The oxidative decomposition treated water in a heated state after completion of the oxidative decomposition treatment is caused to flow into a heat exchanger, and heat is exchanged with the water to be treated in the heat exchanger to obtain the treated water. The method for removing organic substances according to claim 1, wherein the water to be treated is further heated by using an auxiliary heating means to bring the water temperature to 40 ° C. or higher.
【請求項3】 酸化分解処理終了後の加温状態にある酸
化分解処理水を熱交換器に流入せしめ、該熱交換器内で
被処理水との間で熱交換を行なわせて酸化分解処理水を
冷却し、この冷却された酸化分解処理水を少なくともア
ニオン交換樹脂を使用してなるイオン交換装置に通して
酸化分解生成物を除去することを特徴とする請求項1又
は2記載の有機物の除去方法。
3. Oxidative decomposition treatment by causing oxidative decomposition treatment water in a heated state after completion of oxidative decomposition treatment to flow into a heat exchanger, and causing heat exchange with water to be treated in the heat exchanger. 3. The organic substance according to claim 1 or 2, wherein water is cooled and the cooled oxidative decomposition treated water is passed through an ion exchange device using at least an anion exchange resin to remove oxidative decomposition products. Removal method.
【請求項4】 イオン交換装置に用いるイオン交換樹脂
が外部で再生した再生済イオン交換樹脂であることを特
徴とする請求項3記載の有機物の除去方法。
4. The method for removing organic substances according to claim 3, wherein the ion exchange resin used in the ion exchange apparatus is a regenerated ion exchange resin regenerated outside.
【請求項5】 被処理水に紫外線を照射して被処理水中
の有機物を酸化分解する紫外線酸化装置と、該紫外線酸
化装置内に設けられるか或いは該紫外線酸化装置の被処
理水流入側に設けられる被処理水加熱装置とから構成さ
れることを特徴とする有機物の除去装置。
5. An ultraviolet oxidizer for irradiating the water to be treated with ultraviolet rays to oxidize and decompose organic matter in the water to be treated, and an ultraviolet oxidizer provided inside the ultraviolet oxidizer or on the inflow side of the ultraviolet oxidizer to the water to be treated. An apparatus for removing organic matter, comprising:
【請求項6】 被処理水加熱装置が、酸化分解処理終了
後の加温状態にある酸化分解処理水を流入せしめた熱交
換器と補助加熱手段との組み合わせから構成されること
を特徴とする請求項5記載の有機物の除去装置。
6. The treated water heating apparatus is configured by a combination of a heat exchanger into which warmed oxidative decomposition treated water after completion of oxidative decomposition treatment is introduced and an auxiliary heating means. The organic matter removing device according to claim 5.
JP10592394A 1994-04-21 1994-04-21 Method for removing organic matter and device therefor Pending JPH07290071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10592394A JPH07290071A (en) 1994-04-21 1994-04-21 Method for removing organic matter and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10592394A JPH07290071A (en) 1994-04-21 1994-04-21 Method for removing organic matter and device therefor

Publications (1)

Publication Number Publication Date
JPH07290071A true JPH07290071A (en) 1995-11-07

Family

ID=14420390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10592394A Pending JPH07290071A (en) 1994-04-21 1994-04-21 Method for removing organic matter and device therefor

Country Status (1)

Country Link
JP (1) JPH07290071A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336887A (en) * 2001-05-11 2002-11-26 Kurita Water Ind Ltd Extrapure water making device and extrapure water making method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002336887A (en) * 2001-05-11 2002-11-26 Kurita Water Ind Ltd Extrapure water making device and extrapure water making method

Similar Documents

Publication Publication Date Title
US20050263458A1 (en) Process for removing organics from ultrapure water
JPH0647105B2 (en) Purification method and device for pure water or ultrapure water
JPH0790219B2 (en) Pure water production apparatus and production method
JPH1199395A (en) Treatment of organic matter containing water
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
JP5750236B2 (en) Pure water production method and apparatus
JP5512357B2 (en) Pure water production method and apparatus
JPH0818040B2 (en) Purification method and device for pure water or ultrapure water
JP2006192354A (en) Non-regenerative type ion exchange vessel and ultrapure water production apparatus
JPH11226569A (en) Apparatus for removing organic substance in water and apparatus for producing ultrapure water
JP2018038943A (en) Washing machine of non-regeneration type ion exchange resin and ultrapure water production system
JP4534766B2 (en) Ultrapure water production apparatus and ultrapure water production method
JPH07290071A (en) Method for removing organic matter and device therefor
JPH10277572A (en) Removal of organic matter in water
JPH0929251A (en) Ultrapure water preparing apparatus
JP5512358B2 (en) Pure water production method and apparatus
JP3645007B2 (en) Ultrapure water production equipment
JPH07241598A (en) Water treatment apparatus
JP4447126B2 (en) Ultrapure water production equipment
JPH09192658A (en) Manufacturing device of ultrapure water
JP2000308815A (en) Producing device of ozone dissolved water
JPH0889976A (en) Method for removing organic matter in water
JPH0639366A (en) Method and equipment for producing ultrapure water
TWI240701B (en) Process for removing organics from ultrapure water
WO2022239314A1 (en) Pure water production apparatus and pure water production method