JPH0994585A - Method for producing ultrapure water and apparatus therefor - Google Patents

Method for producing ultrapure water and apparatus therefor

Info

Publication number
JPH0994585A
JPH0994585A JP8194729A JP19472996A JPH0994585A JP H0994585 A JPH0994585 A JP H0994585A JP 8194729 A JP8194729 A JP 8194729A JP 19472996 A JP19472996 A JP 19472996A JP H0994585 A JPH0994585 A JP H0994585A
Authority
JP
Japan
Prior art keywords
water
urea
treated
ultrapure water
ultrapure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8194729A
Other languages
Japanese (ja)
Other versions
JP3919259B2 (en
Inventor
Takeshi Murakami
健 村上
Noriko Uchiyama
紀子 内山
Sakae Kaneko
栄 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP19472996A priority Critical patent/JP3919259B2/en
Publication of JPH0994585A publication Critical patent/JPH0994585A/en
Application granted granted Critical
Publication of JP3919259B2 publication Critical patent/JP3919259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce highly purified ultrapure water reduced in the concn. of org. matter inclusive of urea by adding hypochlorite or alkali bromide and zincate to water to be treated under a specific pH value condition to decompose urea in the water to be treated. SOLUTION: Raw water is introduced into a pH adjusting tank 101 to be adjusted to 4-8 in pH by the injection of chemicals from a hydrochloric acid storage tank 102 and a caustic soda storage tank 103 and sent to a flocculation filter 105 and, on the way of a water sending pipe 106, a flocculant is injected into the raw water from a flocculant storage tank 104 and, if necessary, sodium bromide being one of urea decomposing agents is injected in and added to raw water from a sodium bromide soln. storage tank 130 by an injection pump 131. By this constitution, suspended fine particles in raw water become flocs and the raw water is subjected to solid-liquid separation by the flocculation filter 105 to be sent to a reaction tank 107 and, on the way of a water sending pipe 108, sodium hypochlorlte being other agent as a urea decomposing agent is injected and added if necessary from a sodium hypochlorite storage tank 140 by an injection pump 141 to decompose urea.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、一般に超純水と呼
ばれる高純度水の製造方法及び装置、詳しくは尿素除去
能を備えた超純水の製造方法及び装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing high-purity water generally called ultrapure water, and more particularly to an apparatus and an apparatus for producing ultrapure water capable of removing urea.

【0002】[0002]

【従来技術】超純水(以下、一般に純水,超純水,超々
純水と呼称される高純度水を総称して「超純水」と称す
る)は、半導体工業、原子力工業、医薬・製薬製造業、
微生物工学,化学分析等の種々の分野で用水として利用
され、要求水質は分野毎に一律ではないが、市水,地下
水,工業用水等を原水としてこれに含まれる微粒子,イ
オン,有機物,細菌,ガス等(以下「不純物等」とい
う)を除去する多段階精製処理を行って製造されてい
る。そしてこのうち半導体,集積回路製造用水や医薬品
等の製造用水に代表される超純水では、含まれる有機物
の除去が特に重要なものの一つとされている。なお、有
機物に関する超純水の水質評価については、上記のよう
な多段階の精製処理が行われた超純水中の有機物は極く
微量であって化学種別に定量することは困難であること
から、一般的には有機物を構成する炭素を指標としたT
OC(全有機態炭素)の定量測定により行われている。
2. Description of the Related Art Ultrapure water (hereinafter, high-purity water generally referred to as pure water, ultrapure water, and ultrapure water is generally referred to as "ultrapure water") is used in the semiconductor industry, nuclear industry, pharmaceutical industry, Pharmaceutical manufacturing,
It is used as water in various fields such as microbial engineering and chemical analysis, and the required water quality is not uniform in each field, but fine particles, ions, organic substances, bacteria contained in it as city water, groundwater, industrial water, etc. It is manufactured by performing a multi-step purification process for removing gases and the like (hereinafter referred to as "impurities and the like"). Of these, in ultrapure water represented by water for manufacturing semiconductors, integrated circuits, and water for manufacturing pharmaceuticals, removal of contained organic substances is one of the most important things. Regarding the water quality evaluation of ultrapure water related to organic substances, it is difficult to quantify the organic substances in the ultrapure water that has undergone the above-described multi-step purification treatment, because the amount is very small. Therefore, in general, T using carbon that constitutes an organic substance as an index
It is performed by quantitative measurement of OC (total organic carbon).

【0003】従来の超純水製造設備で一般に採用されて
いる有機物除去の精製処理プロセスとしては、イオン交
換装置なども一定程度の除去は可能であるものの、主な
プロセスとして、逆浸透膜や限外ろ過膜等による膜処
理、酸化剤を併用した紫外線による分解処理、酸化剤を
併用しない紫外線による分解処理などがある。
As a purification treatment process for removing organic substances, which is generally adopted in conventional ultrapure water production equipment, ion exchange equipment and the like can be removed to a certain extent, but as a main process, a reverse osmosis membrane and There are membrane treatments such as outer filtration membranes, decomposition treatment by ultraviolet rays combined with an oxidizing agent, and decomposition treatments by ultraviolet rays not combined with an oxidizing agent.

【0004】ところで、このような有機物除去のための
精製処理プロセスを有する従来の超純水製造設備にあっ
ても、製造された超純水のTOC濃度が経時的に変動す
ることや特殊な例ではTOCの濃度低減に限界があるこ
とが知られ、またこの問題は特開平6−86997号公
報にも記載されているように原水に含まれる分解し難い
有機物である尿素に原因していることが知られている。
すなわち、低分子量で化学的に安定な尿素((NH2
2 CO)は、膜処理では除去することが困難であるし、
紫外線を用いた分解除去法では、高圧水銀灯に比べてエ
ネルギーの大きい短波長(主に254nm)の紫外線を
照射できる大容量の低圧水銀灯が得難いために分解が容
易でなく、結果的に超純水中への漏洩を防ぐことが難し
いからである。なお尿素は原水に恒常的に含まれている
というよりも、一時的,短期的に含まれる場合が殆どで
ある。
By the way, even in the conventional ultrapure water production facility having such a purification treatment process for removing organic substances, the TOC concentration of the produced ultrapure water changes with time and a special example. It is known that there is a limit to the reduction of TOC concentration, and this problem is caused by urea, which is an organic substance that is difficult to decompose and is contained in raw water, as described in JP-A-6-86997. It has been known.
That is, low molecular weight and chemically stable urea ((NH 2 )
2 CO) is difficult to remove by membrane treatment,
In the decomposition and removal method using ultraviolet rays, it is difficult to obtain a large-capacity low-pressure mercury lamp capable of irradiating short-wavelength ultraviolet rays (mainly 254 nm), which has a larger energy than high-pressure mercury lamps, and therefore decomposition is not easy, resulting in ultrapure water. This is because it is difficult to prevent leakage into the inside. In most cases, urea is contained in the raw water in a short-term, rather than in a constant manner.

【0005】しかし、より高度に精製された用水が要求
されるようになっている近時の上記種々の工業分野にあ
っては、従来から超純水中に極く微量しか含まれずまた
恒常的でなくて短い期間に一時的に含まれる場合が殆ど
であるとはいえ該当時にはTOC濃度のうちでかなりの
部分を占めることになる尿素の除去は、これを用水とし
て用いる工業設備の操業停止を防ぐなどのために必要性
が高くなっている。
However, in the recent various industrial fields in which more highly purified water is required, ultrapure water has always been contained in a very small amount and constantly. However, the removal of urea, which is a large part of the TOC concentration at that time, although it is mostly contained temporarily for a short period of time, requires the shutdown of industrial equipment using this as water. There is a growing need to prevent it.

【0006】従来、このような尿素除去の手段として
は、上記した特開平6−86997号により、前処理装
置、一次純水製造装置、二次純水製造装置を備える超純
水製造装置の該前処理装置に、尿素分解酵素であるウレ
アーゼを適宜の担体に担持させた酵素分解装置を設置す
るという提案がされている。
Conventionally, as means for removing such urea, according to the above-mentioned JP-A-6-86997, an ultrapure water producing apparatus equipped with a pretreatment apparatus, a primary pure water producing apparatus, and a secondary pure water producing apparatus is used. It has been proposed to install an enzyme decomposing device in which urease, which is a urea degrading enzyme, is supported on an appropriate carrier in the pretreatment device.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
酵素を用いる従来方式では、長期の連続的な操業期間に
渡って酵素の活性を維持することが容易でないし、また
殆どの超純水製造設備では、経時的に極短期間の一時
的,短期的な原水尿素濃度の上昇に対処すれば足りる
が、上記方式ではこのためにも酵素分解装置を常設しな
ければならないという設備的な不利益がある。更にま
た、酵素担持体の構造などにもよるがSSの目詰まりを
考えて一定期間毎に逆洗をしなければならないという運
転管理上の煩雑さを伴う難点がある。
However, in the conventional method using the above enzyme, it is not easy to maintain the activity of the enzyme over a long continuous operation period, and most ultrapure water production facilities Then, it is sufficient to deal with the temporary and short-term increase in raw water urea concentration for a very short period of time. However, the above-mentioned method has a facility disadvantage that the enzyme decomposition apparatus must be permanently installed for this purpose. is there. Furthermore, although depending on the structure of the enzyme carrier and the like, there is a problem in that the backwash must be performed at regular intervals in consideration of the clogging of SS, which complicates operation management.

【0008】本発明者は、以上のような上記の種々の工
業分野において、尿素を含め有機物濃度を一層低減した
高度に精製された用水が求められるようになっている近
時の状況に鑑み、また上記の生化学的手法を用いた従来
技術の問題点を解消できる新規な尿素除去法を提供すべ
く種々研究を重ねた。
In view of the recent situation in which the highly purified water in which the concentration of organic substances including urea is further reduced has been demanded in the above various industrial fields as described above, Further, various studies have been repeated to provide a novel urea removal method that can solve the problems of the conventional techniques using the above biochemical methods.

【0009】そして、不純物等の除去のための多段階処
理装置を設けている超純水製造設備では、重要な除去対
象の一つであるイオン性物質を系外から添加することは
塩類負荷のむやみな増加を招く結果になるため従来考え
られていないが、微量に含まれる尿素の分解除去のため
に次亜ハロゲン酸イオンを所定条件を満足する管理下で
利用すれば尿素を分解除去した超清純な高純度用水を製
造するのに適した構成をとり得ることを本発明者は見出
し、しかもこの方法によれば、上述した酵素を用いる従
来法の難点を解決できることを見出して本発明をなすに
至った。
In an ultrapure water production facility equipped with a multi-stage treatment device for removing impurities and the like, adding an ionic substance, which is one of the important removal targets, from outside the system causes a salt load. Although this has not been considered in the past because it will result in an unreasonable increase in the amount of urea, if the hypohalite ion is used under the control that satisfies predetermined conditions for the decomposition and removal of trace amounts of urea, it will decompose and remove urea. The present inventor has found that a constitution suitable for producing pure high-purity water can be adopted, and further, according to this method, the drawbacks of the conventional method using the enzyme described above can be solved to form the present invention. Came to.

【0010】かかる観点からなされた本発明の目的の一
つは、尿素を含め、有機物濃度を一層低減した高度に精
製された超純水を製造することができる方法及び装置を
提供するところにある。
One of the objects of the present invention made from this point of view is to provide a method and an apparatus capable of producing highly purified ultrapure water containing urea and having a further reduced organic matter concentration. .

【0011】また本発明の他の目的は、生化学的手法を
用いた従来技術に代わり、化学的手法により短期間の一
時的,短期的な原水尿素濃度の上昇に容易に対処でき、
また化学薬品添加手段等の構成も操作も簡易な付帯設備
の設置のみで尿素除去能を備えることができる超純水製
造方法及び装置を提供するところにある。
Another object of the present invention is to replace the conventional technique using a biochemical method with a chemical method and easily deal with a temporary short-term increase in the raw water urea concentration,
Another object of the present invention is to provide a method and apparatus for producing ultrapure water, which is capable of removing urea simply by installing auxiliary equipment that is simple in structure and operation such as chemical addition means.

【0012】更にまた本発明の他の目的は、従来技術に
おける酵素担持体やこれに対する通水装置などが不要
で、しかも目詰まりに対する逆洗処理なども不要であ
り、設備の運転や管理が容易な、尿素除去能を備えた超
純水製造方法及び装置を提供するところにある。
Still another object of the present invention is that the enzyme carrier in the prior art and a water passage device therefor are not required, and backwashing treatment for clogging is not necessary, and the operation and management of the equipment are easy. Another object of the present invention is to provide a method and an apparatus for producing ultrapure water having a urea removing ability.

【0013】また本発明の別の目的は、原水の尿素濃度
が上昇した場合に迅速に尿素除去処理を実施することが
でき、したがって多段階の精製処理をして製造した超純
水中に万一にも尿素が漏洩することを確実に防止でき、
超純水を用水として使用する工業設備の操業停止を防ぐ
ことができる超純水製造システムを構築するのに有効な
監視システム、及びこの監視システムを利用した設備運
転方法を提供するところにある。このような原水尿素濃
度の上昇の監視は上記の尿素分解酵素を通水路中に常設
した従来方式では必要ないが、本発明のように一時的に
化学薬品を添加して尿素分解処理を実施する方法では極
めて重要であり、従来有効な尿素モニターが知られてい
ない現状において本発明の監視システム提供の意義は極
めて大きい。
Another object of the present invention is to enable the urea removal treatment to be carried out quickly when the urea concentration of the raw water rises, so that the ultrapure water produced by performing the multi-stage purification treatment can be used in many cases. First of all, it is possible to reliably prevent urea from leaking,
An object of the present invention is to provide a monitoring system that is effective in constructing an ultrapure water production system that can prevent the operation stop of industrial equipment that uses ultrapure water as water, and an equipment operating method using this monitoring system. Monitoring of such an increase in the urea concentration of raw water is not necessary in the conventional method in which the urea decomposing enzyme is permanently installed in the water passage, but the urea decomposing treatment is carried out by temporarily adding a chemical as in the present invention. It is extremely important for the method, and the significance of the provision of the monitoring system of the present invention is extremely large in the present situation where no effective urea monitor is known.

【0014】[0014]

【課題を解決するための手段及び作用】上記した種々の
目的は、上記特許請求の範囲の各請求項に記載した発明
により達成される。
The above-mentioned various objects can be achieved by the invention described in each of the claims.

【0015】本願により提供する発明の特徴の一つは、
被処理水中の微粒子,イオン,有機物,細菌,ガスを除
去するための多段階精製処理を行って超純水を製造する
方法において、被処理水pH4〜8の条件下で、次亜臭
素酸塩を添加して、該被処理水中の尿素を分解すること
を特徴とする超純水の製造方法にある。
One of the features of the invention provided by the present application is that
A method for producing ultrapure water by performing a multi-step purification process for removing fine particles, ions, organic substances, bacteria, and gas in water to be treated, wherein hypobromite is used under the condition of water to be treated pH 4 to 8. Is added to decompose urea in the water to be treated, which is a method for producing ultrapure water.

【0016】被処理水pH4〜8という条件下で上記の
処理を行うのは、超純水という特別な高純度水中に含ま
れる微量な尿素を除去するためには必須の条件である。
すなわち、pH4未満では、上記した剤の添加に起因し
て次亜臭素酸イオンがガス化する弊害があるため工業的
な実施に供し難く、他方pH8を越えると次亜臭素酸イ
オンの酸化力が低下し反応が停滞するため実施に供し難
いからである。これらの理由から、より好ましくは上記
被処理水pHは5.5〜7.5、最適にはpH6.0〜
6.5とされることがよい。このpH条件を満足するた
めに原水に対し系外からpH調整物質を添加する操作を
行ってもよい。ただし、超純水製造のための設備中での
反応であることからすればイオン除去装置の塩類負荷を
必要以上に増加させないように、一般の超純水処理中に
おいて当該pH条件となる位置で上述の尿素分解処理を
行うようにすることが、塩類負荷を増大させないのでよ
り好ましい。
Performing the above treatment under the condition that the water to be treated has a pH of 4 to 8 is an essential condition for removing a very small amount of urea contained in special high-purity water called ultrapure water.
That is, when the pH is less than 4, it is difficult to industrially implement it because the hypobromite ion is gasified due to the addition of the above-mentioned agent. On the other hand, when the pH is more than 8, the oxidizing power of the hypobromite ion is high. It is difficult to put it into practice because it decreases and the reaction stagnates. For these reasons, the pH of the water to be treated is more preferably 5.5 to 7.5, most preferably pH 6.0 to 6.0.
It is preferably 6.5. In order to satisfy this pH condition, an operation of adding a pH adjusting substance to the raw water from outside the system may be performed. However, since it is a reaction in equipment for producing ultrapure water, at a position where the pH condition is satisfied during general ultrapure water treatment, in order not to increase the salt load of the ion removing device more than necessary. It is more preferable to perform the above-mentioned urea decomposition treatment because the salt load is not increased.

【0017】尿素分解のために添加される上記次亜臭素
酸塩としては、限定されるものではないが代表的には次
亜臭素酸ナトリウムが用いられる。被処理水に添加する
この次亜臭素酸塩の添加量は、該被処理水中の尿素に対
しモル比3〜90、好ましくはモル比3〜15とされる
のがよい。被処理水に次亜臭素酸塩を添加することで尿
素と次亜臭素酸イオンを反応させる場合の反応は次式に
より示される。
The above-mentioned hypobromite added for the decomposition of urea is not limited, but sodium hypobromite is typically used. The addition amount of this hypobromite to be added to the water to be treated is 3 to 90, preferably 3 to 15 molar ratio to urea in the water to be treated. The reaction in the case of reacting urea and hypobromite ions by adding hypobromite to the water to be treated is shown by the following formula.

【0018】 (NH22 CO+3BrO- →N2 +CO2 +2H2 O+3Br・・(1) この反応式(1) からわかるように、被処理水中に含まれ
る尿素を分解するのに必要な次亜臭素酸塩の理論値はモ
ル比3であるが、実際の工業的な実施においては予想さ
れる含有尿素を出来るだけ迅速な分解処理を行わせるた
めにモル比3以上とすることが好ましい。すなわち、尿
素に対する次亜臭素酸イオンのモル比を大きくすれば上
記式(1) の反応機会が大きくなって処理時間が短縮する
からである。しかし、予想される尿素量に対し次亜臭素
酸塩の添加量がモル比15を越えるようになるとその処
理速度の増加傾向は小さくなり、超純水製造というプロ
セスにおいてはむやみに塩類負荷を大きくすることはイ
オン交換装置等の負担を増す結果となるから、最大でも
モル比90を越えることは好ましくない。これらのこと
から次亜臭素酸塩の添加量は上記範囲とされる。
(NH 2 ) 2 CO + 3BrO → N 2 + CO 2 + 2H 2 O + 3Br .. (1) As can be seen from this reaction formula (1), the hypochlorous acid necessary for decomposing urea contained in the water to be treated is shown. The theoretical value of bromate is 3 but the molar ratio is preferably 3 or more in order to perform the decomposition treatment of the contained urea which is expected in actual industrial practice as quickly as possible. That is, if the molar ratio of hypobromite ion to urea is increased, the reaction chance of the above formula (1) increases and the processing time is shortened. However, when the amount of hypobromite added exceeds the expected amount of urea in a molar ratio of 15 or more, the increasing tendency of the treatment rate becomes small, and the salt load becomes unnecessarily large in the process of ultrapure water production. Doing so will increase the load on the ion exchange apparatus and the like, so it is not preferable that the molar ratio exceeds 90 at the maximum. Therefore, the amount of hypobromite added is in the above range.

【0019】本発明はまた、上記の次亜臭素酸塩に代え
て、pH4〜8の条件下で次亜塩素酸塩と臭化アルカリ
を用いることができる。この場合の臭化アルカリとして
は、臭化カリウム,臭化ナトリウムが代表的に用いら
れ、また次亜塩素酸塩としては、次亜塩素酸ナトリウム
が代表的に用いられる。被処理水に添加する次亜塩素酸
塩の添加量は、該被処理水中の尿素に対しモル比10〜
2000、好ましくは30〜600である。モル比10
未満では尿素を分解する速度が遅いという問題があり、
反対にモル比600を越えると分解時間は十分短くなる
が、塩類負荷が大きくなる傾向を招くから、最大でもモ
ル比2000を越えることは好ましくない。臭化アルカ
リの理論添加量は下記式で示す通り被処理水中の尿素に
対しモル比3である。すなわち、超純水を製造する被処
理水に次亜塩素酸塩として、次亜塩素酸ソーダ、及び臭
化アルカリとして臭化ナトリウムを反応させた場合の反
応は次のように示され、 Br- +ClO → BrO- +Cl- ・・(2) (NH22 CO+3BrO- →N2 +CO2 +2H2 O+3Br- ・・(3) この反応式(2),(3) による物質収支は下記式(4) とな
る。
In the present invention, instead of the above hypobromite, hypochlorite and alkali bromide can be used under the condition of pH 4-8. In this case, potassium bromide and sodium bromide are typically used as the alkali bromide, and sodium hypochlorite is typically used as the hypochlorite. The addition amount of hypochlorite to be added to the water to be treated is 10 to a molar ratio with respect to urea in the water to be treated.
It is 2000, preferably 30 to 600. Molar ratio 10
If less than, there is a problem that the rate of decomposition of urea is slow,
On the other hand, when the molar ratio exceeds 600, the decomposition time becomes sufficiently short, but the salt load tends to increase, so that it is not preferable that the molar ratio exceeds 2000 even at the maximum. The theoretical amount of alkali bromide added is, as shown by the following formula, a molar ratio of 3 to urea in the water to be treated. That is, the reaction when water to be treated for producing ultrapure water is reacted with sodium hypochlorite as sodium hypochlorite and sodium bromide as alkali bromide is shown as follows: Br + ClO → BrO + Cl ・ (2) (NH 2 ) 2 CO + 3BrO → N 2 + CO 2 + 2H 2 O + 3Br ・ (3) The substance balance according to the reaction formulas (2) and (3) is represented by the following formula (4) ).

【0020】 (NH22 CO+3NaBr+3NaClO → N2 +CO2 +2H2 O+6Na+ +3Br- +3Cl- ・・(4) 上記式(3) からわかるように、臭化物イオンは尿素と次
亜臭素酸の反応により還元副生されてこれが次亜塩素酸
と更に反応することになるため、臭化物イオンが繰り返
し反応に有効に利用できるフローである場合には、実際
に添加すべき臭化ナトリウムの量は上記式(4) で示され
るモル比3であることを要しない場合もある。なお、被
処理水中の尿素濃度が100〜500ppbというよう
に低濃度の場合は、希薄なため上記反応が理論的に進ま
ないため、臭化アルカリの添加量を多くすること、例え
ば被処理水中の尿素に対してモル比30〜60とするの
が好ましい場合が多い。
(NH 2 ) 2 CO + 3NaBr + 3NaClO → N 2 + CO 2 + 2H 2 O + 6Na + + 3Br + 3Cl −. Since this is a by-product and further reacts with hypochlorous acid, when the bromide ion has a flow that can be effectively utilized for the repeated reaction, the amount of sodium bromide to be actually added is determined by the above formula (4). In some cases, it is not necessary that the molar ratio be 3). When the urea concentration in the water to be treated is as low as 100 to 500 ppb, the above reaction does not proceed theoretically because it is dilute, and therefore the amount of alkali bromide added should be increased, for example, in the water to be treated. It is often preferred to have a molar ratio of 30 to 60 with respect to urea.

【0021】本願は上記の方法に代えて、請求項8記載
のように、被処理水中の不純物等を除去する多段階精製
処理を行って超純水を製造する方法において、被処理水
pHが4〜10、好ましくはpH6〜8の条件下で、臭
化アルカリとオゾンを添加して該被処理水中の尿素を分
解し超純水を製造することもできる。
In the method of producing ultrapure water by performing a multi-step purification treatment for removing impurities and the like in the water to be treated as described in claim 8, instead of the above method, the pH of the water to be treated is It is also possible to produce ultrapure water by adding alkali bromide and ozone under the conditions of pH 4 to 10, preferably pH 6 to 8, to decompose urea in the water to be treated.

【0022】上記において被処理水pH4未満では上記
次亜臭素酸イオンがガス化する弊害がある。反対にpH
10を越えてもオゾンは高い酸化力を示すが、被処理水
pHが10を越えるように調整することはむしろ塩類負
荷を増す結果となるので好ましくないので上記範囲とさ
れる。上記pH条件を満足するために原水に対し系外か
らpH調整物質を添加する操作をおこなってもよいが、
設備中に設けられるイオン除去装置の塩類負荷を必要以
上に増加させないように従来通常の超純水処理に伴って
当該pH条件となる位置において上述の尿素分解処理を
行うことが好ましい。
If the pH of the water to be treated is less than 4, the hypobromite ion may be gasified. On the contrary, pH
Ozone shows a high oxidizing power even if it exceeds 10, but it is not preferable to adjust the pH of the water to be treated to exceed 10 because it results in an increased salt load, and therefore is in the above range. In order to satisfy the above pH conditions, the pH adjusting substance may be added to the raw water from outside the system,
It is preferable to perform the above-mentioned urea decomposition treatment at a position where the pH condition is accompanied by the conventional ordinary ultrapure water treatment so that the salt load of the ion removing device provided in the facility is not increased more than necessary.

【0023】臭化アルカリとオゾンを尿素分解剤として
用いる方法は、上記の次亜臭素酸塩、あるいは臭化アル
カリ及び次亜塩素酸塩を用いる方法に比べて、被処理水
中の塩類負荷を増大させることがない点、及び反応に寄
与せずに気相に放出された排ガスオゾンを回収して循環
再利用できる点で有利であるため、超純水に含まれる尿
素の分解方法としてより好ましく採用される。この方法
では、臭化アルカリは上記の場合と同様に臭化カリウム
又は臭化ナトリウムを用いることができる。なお上述の
場合と同様に臭化アルカリの添加量は臭化物イオンが繰
り返し反応に有効に利用できるフローである場合には、
実際に添加すべき臭化ナトリウムの量はモル比3よりも
少なくてよいが、被処理水中の尿素濃度が100〜50
0ppbというように低濃度の場合は希薄なために上記
反応が理論的に進まない場合があるから、例えば被処理
水中の尿素に対してモル比30〜60のように臭化アル
カリの添加量を多くするのが好ましい場合が多い。
The method using alkali bromide and ozone as the urea decomposer increases the salt load in the water to be treated, as compared with the method using hypobromite, or alkali bromide and hypochlorite. It is more preferable to use as a method for decomposing urea contained in ultrapure water because it is advantageous in that it does not cause it and that exhaust gas ozone released in the gas phase without contributing to the reaction can be recovered and recycled. To be done. In this method, as the alkali bromide, potassium bromide or sodium bromide can be used as in the above case. As in the case described above, when the amount of alkali bromide added is such that the bromide ion can be effectively utilized for the repeated reaction,
The actual amount of sodium bromide to be added may be less than the molar ratio of 3, but the urea concentration in the treated water is 100 to 50.
When the concentration is as low as 0 ppb, the above reaction may not proceed theoretically due to the dilution, and therefore the amount of alkali bromide added should be, for example, a molar ratio of 30 to 60 with respect to urea in the water to be treated. It is often preferable to increase the number.

【0024】オゾンの添加量は、被処理水中の尿素に対
しモル比3〜10、好ましくは3〜6とすることがよ
い。モル比3未満では臭化物イオンの次亜臭素酸イオン
への酸化が十分に進行せず、反対にモル比が10を越え
ると、過剰のオゾンにより尿素分解反応に寄与しない臭
素酸イオンを副生するので好ましくなく、よって上記の
範囲とされる。
The addition amount of ozone is 3 to 10, preferably 3 to 6, in molar ratio with respect to urea in the water to be treated. If the molar ratio is less than 3, the oxidation of bromide ion to hypobromite ion does not proceed sufficiently. On the contrary, if the molar ratio exceeds 10, excess ozone produces bromate ion that does not contribute to the urea decomposition reaction as a by-product. Therefore, it is not preferable, and thus the above range is set.

【0025】本願はまた、上記したいずれかの方法を実
施するための超純水製造装置を提供するものであり、そ
の装置の特徴の一つは、被処理水中の微粒子,イオン,
有機物,細菌,ガスを除去するための各処理手段を多段
階に備えた超純水製造装置のいずれかの位置に尿素分解
処理手段を設け、この尿素分解処理手段を、被処理水中
の尿素を分解する尿素分解剤の添加手段と、該添加手段
の添加位置に続き該被処理水中の全尿素分解に十分な通
水時間を保持できるように設定した槽形式,配管形式の
反応用通水路と、この反応用通水路の後段に設けたイオ
ン除去手段とより構成したところにある。イオン除去手
段は、通常の超純水製造装置に設置されているイオン交
換装置などを兼用,共用してもよいし、これとは別に独
立して設けてもよい。
The present application also provides an apparatus for producing ultrapure water for carrying out any one of the above-mentioned methods, and one of the characteristics of the apparatus is the fine particles, ions,
A urea decomposition treatment means is provided at any position of the ultrapure water producing apparatus equipped with multi-stage treatment means for removing organic substances, bacteria, and gas, and the urea decomposition treatment means is used to remove urea in the water to be treated. A means for adding a urea decomposing agent that decomposes, and a tank-type and piping-type reaction water passage set so as to maintain a sufficient water passage time for decomposition of all urea in the water to be treated following the addition position of the addition means. The ion removing means is provided at the latter stage of this reaction water passage. The ion removing means may be used as a common ion exchange device or the like installed in a normal ultrapure water producing device, or may be separately provided separately.

【0026】上記した尿素分解処理手段を構成するうち
の尿素分解剤の添加手段としては、以下の(1)〜
(3)に列挙したいずれかの分解剤を添加する手段とし
て設けられる。
Among the above-mentioned urea decomposition treatment means, means for adding a urea decomposition agent is as follows (1) to
It is provided as a means for adding any one of the decomposing agents listed in (3).

【0027】(1)次亜臭素酸塩、 (2)臭化アルカリと次亜塩素酸ナトリウム、 (3)臭化アルカリとオゾン、 なお該(2),(3)の場合において2種の剤の添加位
置は同じであってもよいし、異なっていてもよく、更に
添加前に混合するようにしてもよく、また上記いずれの
場合も添加方式が限定されるものではない。
(1) hypobromite, (2) alkali bromide and sodium hypochlorite, (3) alkali bromide and ozone, and in the cases of (2) and (3), two agents The addition positions may be the same or different, and may be mixed before addition, and the addition method is not limited in any of the above cases.

【0028】上記構成を有する本発明の超純水製造装置
は、限定されるものではないが、一般の前処理装置、一
次純水製造装置、2次純水製造装置の組合せで構成され
る従来一般的なものと同様の構成を採用することができ
る。例えば、被処理水中の不純物等を除去して超純水を
製造するために多段階に設けられる各々の処理手段とし
ては、懸濁物質や微粒子除去のためにはいわゆる前処理
設備として設けられる凝集沈澱・ろ過装置、マイクロフ
ロックろ過器などが挙げられ、同様に、イオン除去のた
めにはイオン交換装置,逆浸透膜装置、有機物除去のた
めには逆浸透膜装置,精密フィルター,限外ろ過膜装
置,脱炭酸塔,紫外線酸化装置、細菌等の微生物の除去
のためには逆浸透膜装置,紫外線殺菌装置、ガスの除去
のためには真空脱気塔,脱炭酸塔、膜脱気装置などをそ
れぞれ代表的に例示することができ、原水中に含まれる
不純物等の種類や量、及び製造すべき超純水の水質要求
に応じてこれらのうちから適宜の手段を採択して上記の
超純水製造装置が形成される。
The ultrapure water production system of the present invention having the above-mentioned structure is not limited, but it is conventionally composed of a combination of a general pretreatment system, a primary pure water production system and a secondary pure water production system. A configuration similar to a general one can be adopted. For example, as each treatment means provided in multiple stages to remove impurities and the like in the water to be treated to produce ultrapure water, a coagulation provided as so-called pretreatment equipment for removing suspended substances and fine particles Examples include precipitation / filtration devices and microfloc filters. Similarly, ion removal devices, reverse osmosis membrane devices for removing ions, reverse osmosis membrane devices, precision filters, ultrafiltration membranes for removing organic substances. Equipment, decarbonation tower, ultraviolet oxidation equipment, reverse osmosis membrane equipment for removing microorganisms such as bacteria, ultraviolet sterilization equipment, vacuum degassing tower, decarbonation tower, membrane degassing equipment for gas removal Each of them can be exemplified as a representative example, and appropriate means are selected from these depending on the type and amount of impurities contained in raw water, and the water quality requirement of ultrapure water to be produced. Pure water production equipment is formed That.

【0029】上記した超純水製造装置の特徴は、上述の
ように、多段階の上記各処理手段を有している装置にお
いて、第一に、被処理水中に含まれる尿素の分解処理の
ための尿素分解剤の添加手段を設けたこと、第二に、こ
の尿素分解剤の添加位置の下流に被処理水中の全尿素を
分解するのに十分な通水時間を確保するための反応用通
水路、及びこの反応用通水路で尿素を分解させた後に残
っている臭素イオンやナトリウムイオン、更には尿素分
解により生成するCO2 等を除去するためのイオン交換
装置,逆浸透膜などのイオン除去手段を設けたことにあ
り、このうちの上記通水路は、被処理水を滞留保持する
槽あるいは配管(通水管)等として設けることができ
る。また尿素分解のために特別に設けることももちろん
できるが、従来からある槽,配管等の装置の一部を上記
作用をはたす反応用通水路として利用することも好まし
い。具体的には、上記の二次純水製造装置よりも上流の
いずれかの位置に尿素分解処理手段を設けることが好ま
しい場合が多く、特に前処理装置に設けられる被処理水
の滞留槽,pH調整槽などを上記の反応用通水路として
利用すれば、通常この滞留槽において1〜3時間程度は
被処理水が保持されるので、別途特別な槽,配管を設け
る必要がなく特に好ましい。
As described above, the characteristic feature of the ultrapure water producing apparatus is that, in the apparatus having the above-mentioned multistage treatment means, firstly, the decomposition treatment of urea contained in the water to be treated is performed. Secondly, a means for adding the urea decomposing agent is provided. Secondly, a reaction passage for ensuring a sufficient passage time for decomposing all urea in the water to be treated is provided downstream of the position where the urea decomposing agent is added. Removal of ions such as bromine ions and sodium ions remaining after decomposing urea in the water channel and water channel for this reaction, and further ion exchange device for removing CO 2 generated by urea decomposition, reverse osmosis membrane, etc. Since the means is provided, the water passage among them can be provided as a tank or a pipe (water passage) for retaining and holding the water to be treated. Further, although it can be specially provided for the decomposition of urea, it is also preferable to use a part of a conventional device such as a tank or a pipe as a water passage for reaction which performs the above-mentioned action. Specifically, it is often preferable to provide the urea decomposition treatment means at any position upstream of the secondary pure water producing apparatus, and particularly, the treated water retention tank and pH provided in the pretreatment apparatus. When an adjusting tank or the like is used as the above-mentioned water passage for reaction, the water to be treated is usually retained in this retention tank for about 1 to 3 hours, so that it is not particularly necessary to provide a special tank or pipe, which is particularly preferable.

【0030】尿素分解剤を添加するようにした本発明装
置においては、上記反応用通水路と、尿素を分解させた
後に残っているイオンを除去するためのイオン交換樹脂
や逆浸透膜などとの間に、次亜ハロゲン酸イオンやオゾ
ン等の酸化性の尿素分解剤を分解,除去するための活性
炭槽を設ける構成が好ましく採用され、これにより、イ
オン交換樹脂や逆浸透膜の酸化劣化が防止される。
In the apparatus of the present invention in which the urea decomposing agent is added, the above-mentioned water passage for reaction and an ion exchange resin or a reverse osmosis membrane for removing the ions remaining after decomposing urea are provided. It is preferable to adopt a configuration in which an activated carbon tank for decomposing and removing an oxidative urea decomposing agent such as hypohalite ion or ozone is provided in between, thereby preventing oxidative deterioration of the ion exchange resin and the reverse osmosis membrane. To be done.

【0031】また本発明の超純水製造装置においては、
この尿素分解処理手段の上流位置、すなわち原水の取水
口から尿素分解処理手段に至る通水路の途中に、被処理
水中の尿素濃度を連続的に検出する尿素監視装置を設け
る構成が好ましく採用される。
In the ultrapure water production system of the present invention,
A configuration is preferably adopted in which a urea monitoring device for continuously detecting the urea concentration in the water to be treated is provided at an upstream position of the urea decomposition treatment means, that is, in the middle of the water passage from the raw water intake to the urea decomposition treatment means. .

【0032】この尿素分解手段から尿素監視装置に至る
通水路長は、尿素監視装置において尿素濃度が検出され
るのに要する時間よりも、被処理水がこの通水路を通過
するための所要時間よりも十分長くなるように設定する
ことが特に好ましい。このように構成することで、常時
は尿素分解手段を停止させておき、超純水製造に用いら
れる被処理水中の尿素濃度が一時的に高くなったことが
尿素監視装置により検出されたときに尿素分解手段を稼
働させれば、被処理水中の尿素濃度の変動にかかわら
ず、連続的に製造される超純水の水質をTOC濃度が低
い高純度な状態に維持できる。
The water passage length from the urea decomposition means to the urea monitoring device is longer than the time required for the urea monitoring device to detect the urea concentration, and is longer than the time required for the treated water to pass through this water passage. It is particularly preferable to set so as to be sufficiently long. With this configuration, the urea decomposing means is normally stopped, and when the urea monitoring device detects that the urea concentration in the water to be treated used for ultrapure water production has temporarily increased. By operating the urea decomposition means, it is possible to maintain the water quality of continuously produced ultrapure water in a highly pure state with a low TOC concentration, regardless of fluctuations in the urea concentration in the water to be treated.

【0033】また上記の尿素監視装置を設けた超純水製
造装置においては、尿素監視装置による尿素濃度上昇を
検出して信号を出力する手段と、該信号を受けて上記尿
素分解処理手段の動作を開始させる駆動制御手段とを設
けて、装置の自動化した運転管理を行うことができる。
Further, in the ultrapure water producing system provided with the above urea monitoring device, the means for detecting an increase in the urea concentration by the urea monitoring device and outputting a signal, and the operation of the urea decomposition processing means upon receiving the signal. By providing a drive control means for starting the operation, it is possible to perform automated operation management of the apparatus.

【0034】上記超純水製造装置に用いられる尿素監視
装置としては、通水路から分岐して被処理水を連続的に
取水する分岐管と、該被処理水に含まれるイオンを除去
するイオン除去手段と、イオン除去後の被処理水に含ま
れる全有機態炭素(TOC)を測定するTOC測定手段
とを備えたものを例示することができ、この尿素監視装
置によれば、実質的に尿素以外の有機物は除去されてい
るため尿素のみを検出することができ、しかも尿素を含
む原水が取水された場合にこれを10分程度の時間遅れ
で検出できる。
The urea monitoring apparatus used in the above ultrapure water producing apparatus includes a branch pipe that branches from a water passage to continuously take in the water to be treated, and an ion remover for removing ions contained in the water to be treated. It is possible to exemplify a device provided with a means and a TOC measuring means for measuring the total organic carbon (TOC) contained in the water to be treated after ion removal. Since other organic substances are removed, only urea can be detected, and when raw water containing urea is taken, it can be detected with a time delay of about 10 minutes.

【0035】以上の本発明の超純水の製造方法及び装置
によれば、超純水の製造に用いられる被処理水の含有尿
素濃度が10mg/リットル以下という希薄濃度の領域
において、分解剤の濃度や処理pHの条件等にもよる
が、超純水製造という被処理水の塩類負荷を大きくする
ことは好ましくないという特別な条件の下でも、反応時
間3時間以内で尿素90%以上の分解という優れた作用
が得られる。
According to the above-described method and apparatus for producing ultrapure water of the present invention, the decomposition agent of the decomposing agent can be used in the region where the concentration of urea contained in the water to be treated used for producing ultrapure water is 10 mg / liter or less. Although it depends on the conditions such as concentration and treatment pH, even under the special condition that it is not preferable to increase the salt load of the water to be treated, that is, the production of ultrapure water, decomposition of urea of 90% or more within 3 hours of reaction time That is, an excellent effect is obtained.

【0036】[0036]

【実施例】【Example】

実施例1 図1は本発明を適用した超純水製造装置の実施例1の構
成概要を示したフロー図であり、この図において1は前
処理装置、2は一次純水処理装置を示し、この一次純水
処理装置で製造された一次純水は二次純水処理装置であ
るサブシステム3へ送水されるようになっている。
Example 1 FIG. 1 is a flow chart showing a schematic configuration of Example 1 of an ultrapure water production system to which the present invention is applied, in which 1 is a pretreatment unit, 2 is a primary pure water treatment unit, The primary pure water produced by this primary pure water treatment device is sent to the subsystem 3, which is a secondary pure water treatment device.

【0037】そして本例は、この前処理装置1に尿素分
解処理装置を組み込んだ構成としたところにその特徴が
ある。
The present embodiment is characterized in that the pretreatment device 1 has a urea decomposition treatment device incorporated therein.

【0038】前処理装置1の構成を説明すると、原水
(被処理水)はまずpH調整槽101に導入されて、塩
酸貯槽102,苛性ソーダ貯槽103からの薬注により
pH調整される。pH調整がされた被処理水は凝集ろ過
器105に送水される送水管106の途中で凝集剤貯槽
104から例えば硫酸アルミニウム,ポリ塩化アルミニ
ウム(PAC)等の凝集剤が注入されると共に、本例で
は必要時に尿素分解剤の一剤である臭化ソーダが臭化ソ
ーダ溶液貯槽130から注入ポンプ131により注入添
加されるようになっている。なおこの臭化ソーダの注入
添加制御については後述する。
Explaining the structure of the pretreatment apparatus 1, raw water (water to be treated) is first introduced into the pH adjusting tank 101, and the pH is adjusted by chemical injection from the hydrochloric acid storage tank 102 and the caustic soda storage tank 103. The pH-adjusted water to be treated is fed to the coagulation filter 105, and a coagulant such as aluminum sulfate or polyaluminum chloride (PAC) is injected from the coagulant storage tank 104 in the middle of the water supply pipe 106. However, when necessary, sodium bromide, which is one of the urea decomposition agents, is injected and added from the sodium bromide solution storage tank 130 by the injection pump 131. The injection addition control of this sodium bromide will be described later.

【0039】上記の凝集剤の注入により、被処理水中の
懸濁微粒子等が凝集フロックとなって上記凝集ろ過器1
05で固液分離され、分離された被処理水は、凝集ろ過
器105から反応槽107に送水され、この送水管10
8の途中において尿素分解剤の他剤である次亜塩素酸ソ
ーダが次亜塩素酸ソーダ溶液貯槽140から注入ポンプ
141により必要時に注入添加されるようになってい
る。なお、本例の装置においては上述の如く尿素分解剤
の一剤である臭化ソーダを凝集ろ過器105の上流側で
添加し、尿素分解剤の他剤である次亜塩素酸ソーダを凝
集ろ過器105の下流側で添加するように構成したが、
両分解剤の添加位置,添加順序はこれに限定されるもの
ではなく、例えば両分解剤を凝集ろ過器105の下流側
にてほぼ同時に添加する構成としてもよい。この反応槽
107は、尿素分解のための反応用通水路を槽形式で構
成するものであり、被処理水中に含まれる尿素の分解に
必要な所定の滞留時間を確保できる容量に設けられる。
尿素分解処理を行った被処理水は次いで活性炭塔109
に通されて残余の次亜塩素酸ソーダを分解,除去し、前
処理を終了する。
By injecting the above coagulant, suspended fine particles in the water to be treated become coagulated flocs, and the above coagulated filter 1
The water to be treated is subjected to solid-liquid separation in 05, and the separated water to be treated is sent from the coagulation filter 105 to the reaction tank 107.
In the middle of step 8, sodium hypochlorite, which is another agent of the urea decomposing agent, is injected from the sodium hypochlorite solution storage tank 140 by the injection pump 141 when necessary. In the apparatus of this example, as described above, sodium bromide, which is one agent of the urea decomposing agent, is added on the upstream side of the coagulation filter 105, and sodium hypochlorite, which is another agent of the urea decomposing agent, is coagulated and filtered. Although it was configured to be added downstream of the vessel 105,
The position of addition of both decomposing agents and the order of addition are not limited to this. For example, both decomposing agents may be added almost simultaneously at the downstream side of the coagulation filter 105. The reaction tank 107 has a water passage for reaction for decomposition of urea in a tank form, and is provided with a capacity capable of ensuring a predetermined residence time necessary for decomposition of urea contained in the water to be treated.
The water to be treated that has undergone the urea decomposition treatment is then activated carbon tower 109.
The residual sodium hypochlorite is decomposed and removed by passing through the pretreatment, and the pretreatment is completed.

【0040】以上の前処理装置1で処理された被処理水
は次いで一次純水製造装置2に送られ、本例ではまずイ
オン交換樹脂を充填した例えば2床3塔型のイオン交換
装置201、逆浸透膜装置202においてイオン除去,
有機物除去が行われた後、一次純水タンク203に貯水
され、サブシステム3へ送水される。なお本例では、説
明を簡便にするため一次純水製造装置2を上記のイオン
交換装置201と逆浸透膜装置202の二つだけを図示
して説明したが、これは他に、脱ガス処理のための脱炭
酸塔や真空脱気塔等、あるいは殺菌等のための紫外線照
射装置等を設置してもよいことは言うまでもない。サブ
システムは図示していないが、既知の処理装置を用いて
より高純度な超純水を製造するための処理が行われる。
The water to be treated which has been treated by the above pretreatment apparatus 1 is then sent to the primary pure water producing apparatus 2, and in this example, first, for example, a two-bed, three-column type ion exchange apparatus 201 filled with an ion exchange resin, Ion removal in the reverse osmosis membrane device 202,
After the organic substances are removed, the water is stored in the primary pure water tank 203 and is sent to the subsystem 3. In this example, for the sake of simplicity of explanation, the primary pure water producing apparatus 2 is illustrated by illustrating only two of the above-mentioned ion exchange apparatus 201 and reverse osmosis membrane apparatus 202, but this is not the only case. It goes without saying that a decarbonation tower or a vacuum deaeration tower for the above, or an ultraviolet irradiation device for sterilization or the like may be installed. Although not shown, the subsystem is used to perform a process for producing higher-purity ultrapure water using a known processing apparatus.

【0041】以上の構成を有する本例の超純水製造装置
において、原水に尿素が含まれている場合の処理につき
説明する。
In the ultrapure water production system of the present embodiment having the above-mentioned structure, the treatment when the raw water contains urea will be described.

【0042】本例においては、pH調整槽101に流入
される原水の一部を分岐して尿素監視装置120に常時
流すための分岐配管122が設けられており、この分岐
配管122から取水された原水を、尿素監視装置120
によって連続的にその尿素濃度を測定監視するようにな
っている。本例における尿素監視装置120は、図2に
示したように、原水(被処理水)中のイオン及び尿素を
除く有機物を除去する混床式イオン交換樹脂塔型のイオ
ン除去装置(イオン除去装置では尿素を殆ど除去できな
い)1201に該原水を通した後、既存の炭素を指標と
するTOC測定装置1202に通す形式の装置を用いて
構成される。この構成により、紫外線照射装置(高圧
型)の前後に設置した電気伝導率計の測定値が、尿素の
分解により生成するCO2 あるいはNO3 の高い電気伝
導率によって大きく変化することで原水に尿素が含まれ
ていることが検出される。
In this example, a branch pipe 122 is provided for branching a part of the raw water flowing into the pH adjusting tank 101 and constantly flowing it to the urea monitoring device 120. Water is taken from the branch pipe 122. Raw water is supplied to the urea monitoring device 120.
The urea concentration is continuously measured and monitored by. As shown in FIG. 2, the urea monitoring device 120 in this example is a mixed bed type ion exchange resin tower type ion removing device (ion removing device) for removing ions in raw water (water to be treated) and organic substances other than urea. After that, the raw water is passed through 1201 and the TOC measuring device 1202 using the existing carbon as an index is passed through the raw water. With this configuration, the measured value of the electric conductivity meter installed before and after the ultraviolet irradiation device (high pressure type) is largely changed by the high electric conductivity of CO 2 or NO 3 generated by the decomposition of urea, so that urea is converted into raw water. Is detected.

【0043】尿素監視装置120で測定された測定情報
は、マイクロコンピュータ(MPU)等から構成されて
いる制御装置121に送られ、原水中に尿素が検出され
た場合には、上記注入ポンプ131を駆動して臭化ソー
ダを送水管106に注入添加し、また同様に注入ポンプ
141を駆動して次亜塩素酸ソーダを送水管108に注
入添加するための指令信号が出力される。
The measurement information measured by the urea monitoring device 120 is sent to the control device 121 composed of a microcomputer (MPU) and the like, and when urea is detected in the raw water, the injection pump 131 is operated. A command signal for driving and injecting and adding sodium bromide into the water supply pipe 106, and similarly driving the injection pump 141 to inject and add sodium hypochlorite into the water supply pipe 108 is output.

【0044】そして、これら臭化ソーダ及び次亜塩素酸
ソーダの注入添加により、反応槽107において上述し
た式(2),(3) の反応による被処理水中の尿素分解が行わ
れる。この反応槽107は、注入添加するこれらの剤の
濃度にもよるが尿素分解に要するのに十分な時間(例え
ば1〜3時間)、被処理水を滞留できるようにその槽容
積が設計される。
Then, by injecting and adding the sodium bromide and sodium hypochlorite, urea decomposition in the water to be treated is carried out in the reaction tank 107 by the reactions of the above-mentioned formulas (2) and (3). The reaction tank 107 has a tank volume designed so that the water to be treated can be retained for a sufficient time (for example, 1 to 3 hours) required for urea decomposition depending on the concentration of these agents to be added. .

【0045】試験例1 被処理水として下記のような合成水を用い、これを容量
5リットルのビーカーに入れ、攪拌下に以下の条件で尿
素分解を行った場合の被処理水中の尿素濃度の変化を測
定する試験を行い、その結果を図5に示した。なお尿素
濃度は、被処理水のTOCを測定してその値から換算し
て求めた。
Test Example 1 The following synthetic water was used as the water to be treated, which was placed in a beaker having a capacity of 5 liters, and the urea concentration in the water to be treated when urea decomposition was carried out under the following conditions with stirring: A test for measuring the change was conducted, and the results are shown in FIG. The urea concentration was obtained by measuring the TOC of the water to be treated and converting from that value.

【0046】被処理水:電気伝導率1.0μS/cm、
TOC濃度0.02mg/リットルの純水に試薬の尿素
を濃度5mg/リットルとなるように添加すると共に、
緩衝溶液(中性リン酸塩水溶液)を添加してpH7.0
に調整した。
Water to be treated: electric conductivity 1.0 μS / cm,
The reagent urea was added to pure water with a TOC concentration of 0.02 mg / liter to a concentration of 5 mg / liter, and
PH 7.0 by addition of buffer solution (neutral phosphate solution)
Adjusted to.

【0047】臭化ソーダ注入 注入量:被処理水に対し65mg/リットルとなる量を
注入添加した。
Sodium bromide injection Injection amount: An injection amount of 65 mg / liter was added to the water to be treated.

【0048】次亜塩素酸ソーダ 注入量:被処理水に対し78mg/リットルとなる量を
注入添加した。
Sodium hypochlorite injection amount: An amount of 78 mg / liter was added by injection to the water to be treated.

【0049】試験例2 試験例1の臭化ソーダの注入添加を行わず、次亜塩素酸
ソーダに代えて次亜臭素酸ソーダを60mg/リットル
注入添加した他は、試験例1と同一の条件で尿素分解の
試験を行いその結果を図5に示した。
Test Example 2 The same conditions as in Test Example 1 except that the sodium bromide of Test Example 1 was not injected and added, but sodium hypobromite was added by 60 mg / liter instead of sodium hypochlorite. The urea decomposition test was carried out in Fig. 5 and the results are shown in Fig. 5.

【0050】試験例3 試験例1の臭化ソーダの注入添加を行わず、また次亜塩
素酸ソーダに代えて次亜臭素酸ソーダを125mg/リ
ットル注入添加した他は、試験例1と同一の条件で尿素
分解の試験を行いその結果を図6に示した。
Test Example 3 The same as Test Example 1 except that the injection of sodium bromide in Test Example 1 was not performed, and that 125 mg / liter of sodium hypobromite was added by injection instead of sodium hypochlorite. A urea decomposition test was conducted under the conditions, and the results are shown in FIG.

【0051】試験例4(比較試験例) 試験例1の臭化ソーダの注入添加を行わず、次亜塩素酸
ソーダの注入添加量を150mg/リットルとした他
は、試験例1と同一の条件で尿素分解の試験を行いその
結果を図6に試験例3と併せて示した。
Test Example 4 (Comparative Test Example) The same conditions as in Test Example 1 except that the injection addition of sodium bromide in Test Example 1 was not performed and the injection addition amount of sodium hypochlorite was 150 mg / liter. A urea decomposition test was conducted in Table 1 and the results are shown in FIG. 6 together with Test Example 3.

【0052】これらの試験例1,2,3,4の結果を示
す図5、図6から分かるように、試験例1では、次亜塩
素酸ソーダの注入添加によって時間と共に徐々に尿素濃
度が低下し、120分経過した時点で尿素濃度は0.0
05mg/リットルになって安定した。またこの試験例
2の次亜臭素酸ソーダ60mg/リットルを注入添加し
た場合にも、この試験例1と同等の尿素分解が行われ
た。
As can be seen from FIGS. 5 and 6 showing the results of these test examples 1, 2, 3 and 4, in test example 1, the urea concentration gradually decreased with time due to the injection addition of sodium hypochlorite. Then, after 120 minutes, the urea concentration was 0.0
It became stable at 05 mg / liter. Further, even when 60 mg / liter of sodium hypobromite in Test Example 2 was added by injection, the same urea decomposition as in Test Example 1 was performed.

【0053】また次亜臭素酸ソーダの注入添加量を試験
例に比べて約2倍に増やした試験例3では、次亜臭素酸
ソーダの注入添加によって速やかに尿素濃度が低下し、
60分経過した時点で尿素濃度は0.005mg/リッ
トルになって安定した。
In addition, in Test Example 3 in which the injection amount of sodium hypobromite was increased about twice as much as that in the test example, the urea concentration was rapidly lowered by the injection addition of sodium hypobromite.
After 60 minutes, the urea concentration became 0.005 mg / liter and became stable.

【0054】他方、次亜塩素酸ソーダのみを添加した試
験例4では、被処理水中の尿素濃度は殆ど低下しなかっ
た。
On the other hand, in Test Example 4 in which only sodium hypochlorite was added, the urea concentration in the water to be treated was hardly reduced.

【0055】試験例5 次亜臭素酸ソーダの濃度と尿素分解の速度の関係を調べ
るために、上記試験例2においての被処理水中への次亜
臭素酸ソーダの注入添加量を30,60,125,15
0,200mg/リットルのそれぞれに代えた以外は試
験例2と同一の条件で尿素分解の試験を行い、その結果
を図7に示した。
Test Example 5 In order to investigate the relationship between the concentration of sodium hypobromite and the rate of urea decomposition, the injection amount of sodium hypobromite added to the water to be treated in Test Example 2 was 30, 60, 125,15
A urea decomposition test was conducted under the same conditions as in Test Example 2 except that the amount was changed to 0,200 mg / liter, and the results are shown in FIG. 7.

【0056】この結果から、次亜臭素酸ソーダの添加量
を理論量(モル比3)の30mg/リットルから増加さ
せるに従って尿素の分解速度が速くなることが分かる。
すなわちモル比3の添加量では、被処理水中の尿素の9
0%を分解する(図7において尿素濃度が0.5mg/
リットルに達するまで)のに3時間を要するが、添加量
を増加させるに従って分解速度は速くなり、モル比15
の添加量では約10分で90%分解に達している。ま
た、モル比をこれ以上増加させても分解速度はあまり速
くなっていない。従って次亜臭素酸ソーダの添加量は、
被処理水中の尿素に対しモル比3〜15が望ましい。
From these results, it can be seen that the decomposition rate of urea increases as the amount of sodium hypobromite added increases from the theoretical amount (molar ratio 3) of 30 mg / liter.
That is, when the addition amount of the molar ratio is 3, 9% of urea in the water to be treated is used.
0% is decomposed (in FIG. 7, the urea concentration is 0.5 mg /
It takes 3 hours to reach 1 liter), but the decomposition rate increases with increasing addition amount, and the molar ratio is 15
90% decomposition was reached in about 10 minutes with the addition amount of. Further, even if the molar ratio is further increased, the decomposition rate is not so fast. Therefore, the addition amount of sodium hypobromite is
A molar ratio of 3 to 15 is desirable with respect to urea in the water to be treated.

【0057】試験例6 臭化ソーダと次亜塩素酸ソーダを用いる試験例1の方法
において、臭化ソーダの濃度と尿素分解の速度の関係を
調べるために、上記試験例1においての被処理水中への
臭化ソーダの注入添加量を8.3,25,50mg/リ
ットルのそれぞれに代えた以外は試験例1と同一の条件
で尿素分解の試験を行い、その結果を図8に示した。な
お次亜塩素酸ソーダの注入添加濃度は78mg/リット
ルの一定とした。
Test Example 6 In the method of Test Example 1 using sodium bromide and sodium hypochlorite, in order to investigate the relationship between the concentration of sodium bromide and the rate of urea decomposition, the water to be treated in Test Example 1 above was examined. A urea decomposition test was carried out under the same conditions as in Test Example 1 except that the amounts of sodium bromide added to and were changed to 8.3, 25, and 50 mg / liter, respectively, and the results are shown in FIG. The concentration of sodium hypochlorite added was fixed at 78 mg / liter.

【0058】この結果から、臭化ソーダの濃度が低くて
も尿素分解に大きな影響がないことが分かる。
From these results, it can be seen that even if the concentration of sodium bromide is low, there is no great influence on the decomposition of urea.

【0059】試験例7 臭化ソーダと次亜塩素酸ソーダを用いる試験例1の方法
において、次亜塩素酸ソーダの濃度と尿素分解の速度の
関係を調べるために、上記試験例1においての被処理水
中への次亜塩素酸ソーダの注入添加量を18.6,3
7.3,62.1,93.1,186.3mg/リット
ルのそれぞれに代えた以外は試験例1と同一の条件で尿
素分解の試験を行い、その結果を図9に示した。なお臭
化ソーダの注入添加濃度は25mg/リットルの一定と
した。
Test Example 7 In the method of Test Example 1 using sodium bromide and sodium hypochlorite, in order to investigate the relationship between the concentration of sodium hypochlorite and the rate of urea decomposition, The amount of sodium hypochlorite injected into the treated water was 18.6, 3
A urea decomposition test was conducted under the same conditions as in Test Example 1 except that the respective amounts were changed to 7.3, 62.1, 93.1, and 186.3 mg / liter, and the results are shown in FIG. The concentration of sodium bromide added was fixed at 25 mg / liter.

【0060】この結果から、反応時間が3時間以内で尿
素除去率90%以上を達成するためには、次亜塩素酸ソ
ーダの添加量を被処理水中の尿素に対してモル比10以
上とすることが必要であることが分かる。
From these results, in order to achieve a urea removal rate of 90% or more within a reaction time of 3 hours, the amount of sodium hypochlorite added should be 10 or more with respect to urea in the water to be treated. It turns out that it is necessary.

【0061】試験例8 試験例1の臭化ソーダと次亜塩素酸ソーダを用いる方法
におけるpHと尿素分解の速度との関係を調べるため
に、臭化ソーダ25mg/リットル、次亜塩素酸ソーダ
62mg/リットルの一定とし、被処理水のpHを4,
6,7,8,9のそれぞれに代えた以外は試験例1と同
一の条件で尿素分解の試験を行い、その結果を図10に
示した。
Test Example 8 To examine the relationship between pH and the rate of urea decomposition in the method using sodium bromide and sodium hypochlorite of Test Example 1, 25 mg / liter of sodium bromide and 62 mg of sodium hypochlorite were used. / Liter is constant and the pH of the water to be treated is 4,
A urea decomposition test was carried out under the same conditions as in Test Example 1 except that each of 6, 7, 8, and 9 was replaced, and the results are shown in FIG.

【0062】この結果から、臭化ソーダと次亜塩素酸ソ
ーダを用いる場合の尿素の分解反応はアルカリ側よりも
むしろ酸性側の方が速く、その至適pHは、反応時間3
時間以内で90%以上の尿素文化理率が得られることか
ら、pH8以下が好ましいことが分かる。ただし、反応
pHが4未満では、上記した剤の添加に起因して次亜臭
素酸イオンがガス化する弊害があるため好ましくないこ
とは上述した通りである。
From these results, the decomposition reaction of urea in the case of using sodium bromide and sodium hypochlorite is faster on the acidic side than on the alkaline side, and the optimum pH is at reaction time 3
Since a urea culture ratio of 90% or more can be obtained within the time, it can be seen that pH 8 or less is preferable. However, as described above, when the reaction pH is less than 4, there is an adverse effect that the hypobromite ion is gasified due to the addition of the above-mentioned agent, which is not preferable.

【0063】実施例2 図3に示した本実施例は、臭化アルカリとしての臭化ソ
ーダとオゾンを注入添加することによって被処理水中の
尿素を分解する方式の尿素分解手段を一次純水製造装置
内に設けた超純水製造装置の例を示したものである。
Example 2 In this example shown in FIG. 3, a urea decomposing means of decomposing urea in water to be treated by injecting and adding sodium bromide as an alkali bromide and ozone was used to produce primary pure water. It shows an example of an ultrapure water production system provided in the system.

【0064】本例における前処理装置1は、pH調整槽
101、このpH貯槽内に塩酸を注入するための塩酸貯
槽102、あるいは苛性ソーダを注入するための苛性ソ
ーダ貯槽103、途中で凝集剤貯槽104から凝集剤を
注入して凝集ろ過器105に被処理水を送る送水管10
6、凝集フロックを固液分離する該凝集ろ過器105、
活性炭塔109を備えてなっており、かかる構成は従来
の超純水製造装置における前処理装置として既知のもの
である。
The pretreatment apparatus 1 in this example comprises a pH adjusting tank 101, a hydrochloric acid storage tank 102 for injecting hydrochloric acid into the pH storage tank, a caustic soda storage tank 103 for injecting caustic soda, and a coagulant storage tank 104 from the middle. Water pipe 10 for injecting a coagulant and sending water to be treated to the coagulation filter 105
6, the coagulation filter 105 for solid-liquid separation of coagulation flocs,
An activated carbon tower 109 is provided, and such a configuration is known as a pretreatment device in a conventional ultrapure water production system.

【0065】そして、本例の前処理装置1には、原水の
一部を取水するための分岐配管122を介し取水するこ
とで、原水中に尿素が含まれているか否かを連続的に測
定する尿素監視装置120、この尿素監視装置120か
らの信号により後述する臭化ソーダ及びオゾンの注入添
加を制御する制御装置121が付設されている。
Then, in the pretreatment apparatus 1 of this example, it is continuously measured whether or not urea is contained in the raw water by taking in water through the branch pipe 122 for taking in part of the raw water. A urea monitoring device 120 is provided, and a control device 121 for controlling injection and addition of soda bromide and ozone, which will be described later, is additionally provided by a signal from the urea monitoring device 120.

【0066】なお以上の構成は、前処理装置1内で尿素
分解処理のための尿素分解剤の注入添加手段が設けられ
ていないこと、及び尿素分解のための反応槽107が設
けられていないことを除けば上記実施例1の構成と同じ
である。
In the above-mentioned structure, the pretreatment device 1 is not provided with a urea decomposition agent injection and addition means for urea decomposition treatment, and is not provided with the reaction tank 107 for urea decomposition. The configuration is the same as that of the first embodiment except for.

【0067】また本例の一次純水製造装置2は、前処理
装置1から送水された被処理水中のイオンを除去するイ
オン交換装置207と、このイオン交換装置207から
送水管209を介して被処理水が送られる反応槽(槽形
式の反応用通水路)208と、送水管209の途中で臭
化ソーダ溶液貯槽130から臭化ソーダを注入添加する
ための注入ポンプ131と、オゾン発生器150から上
記反応槽208にオゾンを注入添加する制御弁151
と、尿素分解後の被処理水に含まれている残留オゾンを
分解するための活性炭槽等の排オゾン分解装置210
と、被処理水中のイオンを除去するイオン除去装置21
1とからなっている。
Further, the primary pure water producing apparatus 2 of this example has an ion exchange apparatus 207 for removing ions in the water to be treated fed from the pretreatment apparatus 1, and an ion exchange apparatus 207 from this ion exchange apparatus 207 via a water pipe 209. A reaction tank (tank-type reaction water passage) 208 to which treated water is sent, an injection pump 131 for injecting and adding sodium bromide from a sodium bromide solution storage tank 130 in the middle of a water supply pipe 209, and an ozone generator 150. Control valve 151 for injecting and adding ozone from the above into the reaction tank 208
And an exhaust ozone decomposing device 210 such as an activated carbon tank for decomposing residual ozone contained in water to be treated after urea decomposition
And an ion removing device 21 for removing ions in the water to be treated
It consists of one.

【0068】そして、上記制御装置121は、尿素監視
装置120において原水に尿素が含まれていることを検
出した場合に、上記臭化ソーダの注入ポンプ131、及
びオゾン発生器150、オゾン注入添加用の制御弁15
1を駆動させて、これらの尿素分解剤を注入するように
構成されている。
Then, when the urea monitoring device 120 detects that the raw water contains urea, the control device 121, the soda bromide injection pump 131, the ozone generator 150, and the ozone injection addition device are used. Control valve 15
1 is driven to inject these urea decomposers.

【0069】なお本例における反応槽208で、被処理
水の滞留時間は180分とした。
In the reaction vessel 208 of this example, the residence time of the water to be treated was 180 minutes.

【0070】実施例3 図4に示される本例は、上記実施例2の反応槽208に
高圧紫外線照射ランプ(主波長365nmの紫外線を照
射する紫外線照射ランプ)212を設けたことを特徴と
し、他は実施例2と全く同一の構成である。
Example 3 This example shown in FIG. 4 is characterized in that a high-pressure ultraviolet irradiation lamp (ultraviolet irradiation lamp for irradiating ultraviolet rays having a main wavelength of 365 nm) 212 is provided in the reaction tank 208 of the above-mentioned Example 2, The other configuration is exactly the same as that of the second embodiment.

【0071】このような構成をなす本例の超純水製造装
置にあっては、酸化剤としてオゾンを使用するため、次
亜塩素酸ソーダを使用する場合に比べて後段の機器に対
するイオン負荷が軽減され、また余剰のオゾンと紫外線
との協働によって尿素以外の有機物も同時に分解される
という作用が得られるので好ましい。
In the ultrapure water production system of this example having such a configuration, since ozone is used as the oxidant, the ion load on the equipment in the subsequent stage is higher than that in the case where sodium hypochlorite is used. It is preferable because it is reduced, and the effect that the organic substances other than urea are simultaneously decomposed by the cooperation of the excess ozone and the ultraviolet rays.

【0072】試験例9 試験例1と同じ合成水を用いて以下の条件で尿素分解の
処理を行った場合の被処理水中の尿素濃度の変化を測定
する試験を行い、その結果を図11に示した。また比較
参考のために、上記試験例2の次亜臭素酸ソーダ60m
g/リットルを注入添加した場合の結果を再掲した。
Test Example 9 A test was carried out using the same synthetic water as in Test Example 1 to measure the change in the urea concentration in the water to be treated when the urea decomposition treatment was carried out under the following conditions. The results are shown in FIG. Indicated. Also, for comparison reference, 60 m of sodium hypobromite in the above Test Example 2 was used.
The results of adding g / l by injection are repeated.

【0073】臭化ソーダ注入 注入量:被処理水に対し25mg/リットルとなる量を
注入添加した。
Sodium bromide injection Injection amount: An injection amount of 25 mg / liter was added to the water to be treated.

【0074】オゾン 注入量:被処理水に対し75mg/リットルとなる量を
注入添加した。
Amount of ozone injected: An amount of 75 mg / liter was injected and added to the water to be treated.

【0075】この図11の結果から、臭化アルカリとオ
ゾンを被処理水に注入することによって被処理水に含ま
れる尿素の分解は効率よく行われることが分かり、しか
も図4の構成からも理解できるように余剰オゾンの除去
は簡便に行うことができると共に、超純水製造装置のイ
オン除去手段に対する塩類負荷を増大させる問題もない
ことが分かる。
From the results shown in FIG. 11, it is understood that the urea contained in the water to be treated is efficiently decomposed by injecting alkali bromide and ozone into the water to be treated, and the structure shown in FIG. 4 is also understood. As can be seen, the excess ozone can be removed easily and there is no problem of increasing the salt load on the ion removing means of the ultrapure water production system.

【0076】試験例10 図1の構成の超純水製造装置に、原水として工業用水を
用い、以下の条件で尿素分解を行った場合の反応槽10
7出口における被処理水中の尿素濃度を測定する試験を
行った。
Test Example 10 Reaction tank 10 in the case where urea was decomposed under the following conditions using industrial water as raw water in the ultrapure water production system having the configuration shown in FIG.
A test for measuring the urea concentration in the water to be treated at the 7th outlet was conducted.

【0077】原水 流量:1.0m3 /H 水質:電気伝導率180μS/cm,pH6.0,TO
C 846ppb なお、濃度5mg/リットルとなるように原水に対し外
部から尿素を添加した。
Raw water Flow rate: 1.0 m 3 / H Water quality: Electrical conductivity 180 μS / cm, pH 6.0, TO
C 846 ppb In addition, urea was externally added to the raw water so that the concentration was 5 mg / liter.

【0078】臭化ソーダ注入 注入量:被処理水に対し50mg/リットルとなる量を
注入添加した。
Sodium bromide injection Injection amount: An amount of 50 mg / liter was added to the water to be treated.

【0079】凝集剤添加 凝集剤:PAC(ポリ塩化アルミニウム) 添加量:20mg/リットル 次亜塩素酸ソーダ 注入量:被処理水に対し50mg/リットルとなる量を
注入添加した。
Addition of Flocculant Flocculant: PAC (polyaluminum chloride) Addition amount: 20 mg / liter Sodium hypochlorite Injection amount: 50 mg / liter was added to the water to be treated.

【0080】反応槽 容量:2m3 で被処理水滞留時間120分 なお、尿素添加開始から尿素監視装置120で尿素を検
出して臭化ソーダ及び次亜塩素酸ソーダの注入添加を開
始した。その結果、反応槽出口の尿素濃度は0.1mg
/リットル以下であった。
Reaction tank capacity: 2 m 3 Retention time of treated water: 120 minutes From the start of urea addition, urea was detected by the urea monitoring device 120, and injection and addition of sodium bromide and sodium hypochlorite were started. As a result, the urea concentration at the outlet of the reaction tank was 0.1 mg.
/ Liter or less.

【0081】[0081]

【発明の効果】本発明によれば、特に従来は除去が困難
であった尿素も含めて有機物濃度を一層低減した高度に
精製された超純水の製造を可能とする方法及び装置を提
供できる効果がある。
Industrial Applicability According to the present invention, it is possible to provide a method and an apparatus capable of producing highly purified ultrapure water in which the concentration of organic substances is further reduced, including urea, which has been difficult to remove in the past. effective.

【0082】また本発明は化学的手法を用いるものであ
るから、従来提案されている尿素除去のための生化学的
手法による技術に比べて、短期間の一時的,季節的な原
水尿素濃度の上昇に容易に対処できるという特徴があ
り、しかも、この生化学的尿素除去方法では維持,管理
が容易でない常設装置が必要であることに比べて、化学
薬品添加手段等の付帯設備の設置のみで尿素除去を容易
に実現できるという極めて優れた効果が得られる利点が
ある。
Further, since the present invention uses a chemical method, compared with the conventionally proposed biochemical method for removing urea, the urea concentration of the raw water in a short-term temporary and seasonal This method has the feature that it can easily cope with rises, and this biochemical urea removal method requires only permanent equipment that is not easy to maintain and manage. There is an advantage that an extremely excellent effect that urea can be easily removed can be obtained.

【0083】更にまた本発明は、従来の酵素担持体やこ
れに対する通水装置などが不要であり、しかも目詰まり
に対する逆洗処理なども不要であるため、尿素除去のた
めに設備の運転や管理が極めて容易であるという効果が
ある。
Furthermore, the present invention does not require a conventional enzyme carrier or a water-passing device for the same, and does not require backwashing for clogging. Therefore, operation and management of equipment for urea removal are not required. The effect is that it is extremely easy.

【0084】また本発明は、原水の尿素濃度が上昇した
ことを検出する監視装置を用いることによって、尿素除
去のために付帯設備した装置等によるプロセスを一時
的,短期的に稼働させることができる。
Further, according to the present invention, by using the monitoring device for detecting the increase of the urea concentration in the raw water, the process by the device attached to the urea removal can be operated temporarily and in a short period of time. .

【0085】また更に、尿素濃度の上昇を検出してから
その尿素の除去を行う処理手段を稼働させる構成を採用
することができ、これによって、多段階の処理を経た高
純度水を無駄にすることなく用水として使用する設備を
構築することができるという利点が得られ、特に、この
ようないわゆる超純水と称される高純度水を連続的に製
造できる設備によって、半導体製造分野等で必要不可欠
な洗浄用水を停滞することなく提供できるため、当該半
導体製造の操業を停止することなく連続的に実施できる
という極めて優れた効果が得られる。
Furthermore, it is possible to employ a structure in which the processing means for detecting the increase in the urea concentration and then removing the urea is activated, whereby the high-purity water that has undergone multi-step processing is wasted. The advantage of being able to build equipment to be used as water without needing is obtained in particular in the field of semiconductor manufacturing, etc. by means of equipment that can continuously produce high-purity water called so-called ultrapure water. Since the indispensable cleaning water can be provided without stagnation, there is an extremely excellent effect that the semiconductor manufacturing can be continuously performed without stopping the operation.

【0086】また更に本願の請求項15〜18の発明に
よれば、原水中に含まれる尿素濃度の上昇を迅速に検出
でき、したがって多段階の精製処理をして製造した超純
水中に万一にも尿素が漏洩することを確実に防止できる
という効果が得られる。そして、この監視システムを利
用することで、原水尿素濃度の上昇監視を機械的,自動
的に行うことができ、したがって本発明のように一時
的,短期的に尿素分解剤を添加して尿素分解を実施する
方式では、この監視システムの提供の意義は極めて大き
いものがある。
Further, according to the inventions of claims 15 to 18 of the present application, an increase in the concentration of urea contained in the raw water can be detected rapidly, and therefore, the ultrapure water produced by performing the multi-step purification treatment can be effectively used. In particular, the effect of surely preventing the leakage of urea can be obtained. By using this monitoring system, the increase of the raw water urea concentration can be monitored mechanically and automatically. Therefore, as in the present invention, the urea decomposing agent is added temporarily or in the short term to decompose urea. In the method of implementing, the significance of providing this monitoring system is extremely significant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の超純水製造装置の構成概要
を示したフロー図。
FIG. 1 is a flow chart showing a schematic configuration of an ultrapure water production system according to a first embodiment of the present invention.

【図2】図1の尿素監視装置の構成の詳細を説明するた
めのフロー図。
FIG. 2 is a flowchart for explaining details of the configuration of the urea monitoring device of FIG.

【図3】本発明の実施例2の超純水製造装置の構成概要
を示したフロー図。
FIG. 3 is a flowchart showing an outline of the configuration of an ultrapure water production system according to Example 2 of the present invention.

【図4】本発明の実施例3の超純水製造装置の構成概要
を示したフロー図。
FIG. 4 is a flow chart showing a schematic configuration of an ultrapure water production system of Example 3 of the present invention.

【図5】試験例1,2の結果を示した図。FIG. 5 is a diagram showing the results of Test Examples 1 and 2.

【図6】試験例3,4の結果を示した図。FIG. 6 is a diagram showing the results of Test Examples 3 and 4.

【図7】試験例5の結果を示した図。FIG. 7 is a diagram showing the results of Test Example 5;

【図8】試験例6の結果を示した図。FIG. 8 is a diagram showing the results of Test Example 6;

【図9】試験例7の結果を示した図。FIG. 9 is a diagram showing the results of Test Example 7.

【図10】試験例8の結果を示した図。FIG. 10 is a view showing the results of Test Example 8.

【図11】試験例9の結果を示した図。FIG. 11 is a view showing the results of Test Example 9.

【符号の説明】[Explanation of symbols]

1・・・前処理装置、2・・・一次純水製造装置、3・
・・サブシステム、101・・・pH調整槽、102・
・・塩酸貯槽、103・・・苛性ソーダ貯槽、104・
・・凝集剤貯槽、105・・・凝集ろ過器、106・・
・送水管、107・・・反応槽、108・・・送水管、
109・・・活性炭塔、110・・・、120・・・尿
素監視装置、121・・・制御装置、122・・・分岐
配管、1201・・・イオン除去装置、1202・・・
TOC計、130・・・臭化ソーダ溶液貯槽、131・
・・注入ポンプ、140・・・次亜塩素酸ソーダ溶液貯
槽、141・・・注入ポンプ、150・・・オゾン発生
器、151・・・制御弁、、201・・・イオン交換装
置、202・・・逆浸透膜装置、203・・・一次純水
タンク、207・・・イオン交換装置、208・・・反
応槽、209・・・送水管、210・・・排オゾン分解
装置、211・・・イオン除去装置、212・・・高圧
紫外線照射ランプ。
1 ... Pretreatment device, 2 ... Primary pure water production device, 3 ...
..Subsystem, 101 ... pH adjusting tank, 102 ...
..Hydrochloric acid storage tank, 103 ... caustic soda storage tank, 104 ...
..Coagulant storage tank, 105 ... Coagulation filter, 106 ...
-Water pipe, 107 ... Reaction tank, 108 ... Water pipe,
109 ... Activated carbon tower, 110 ..., 120 ... Urea monitoring device, 121 ... Control device, 122 ... Branch pipe, 1201 ... Ion removal device, 1202 ...
TOC meter, 130 ... Sodium bromide solution storage tank, 131.
..Injection pump, 140 ... Sodium hypochlorite solution storage tank, 141 ... Injection pump, 150 ... Ozone generator, 151 ... Control valve, 201 ... Ion exchange device, 202. ..Reverse osmosis membrane device, 203 ... Primary pure water tank, 207 ... Ion exchange device, 208 ... Reaction tank, 209 ... Water pipe, 210 ... Waste ozone decomposing device, 211 ...・ Ion removal device, 212 ... High-pressure ultraviolet irradiation lamp.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/42 C02F 1/42 A 1/44 1/44 J 1/78 1/78 9/00 502 9/00 502F 502J 502N 502R 503 503B 504 504B 504C 504D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C02F 1/42 C02F 1/42 A 1/44 1/44 J 1/78 1/78 9/00 502 9/00 502F 502J 502N 502R 503 503B 504 504B 504C 504D

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 被処理水中の微粒子,イオン,有機物,
細菌,ガスを除去する多段階精製処理を行って超純水を
製造する方法において、被処理水pHが4〜8の条件下
で、次亜臭素酸塩、あるいは臭化アルカリと次亜塩素酸
塩を添加して該被処理水中の尿素を分解することを特徴
とする超純水の製造方法。
1. Fine particles, ions, organic matter in the water to be treated,
A method for producing ultrapure water by performing a multi-step purification treatment for removing bacteria and gas, wherein hypobromite, alkali bromide and hypochlorous acid are produced under the condition that the pH of the water to be treated is 4-8. A method for producing ultrapure water, which comprises adding salt to decompose urea in the water to be treated.
【請求項2】 請求項1において、次亜臭素酸塩が次亜
臭素酸ナトリウムであることを特徴とする超純水の製造
方法。
2. The method for producing ultrapure water according to claim 1, wherein the hypobromite is sodium hypobromite.
【請求項3】 請求項1において、次亜塩素酸塩が次亜
塩素酸ナトリウムであることを特徴とする超純水の製造
方法。
3. The method for producing ultrapure water according to claim 1, wherein the hypochlorite is sodium hypochlorite.
【請求項4】 請求項1又は2において、被処理水に添
加する次亜臭素酸塩の添加量は、該被処理水中の尿素に
対しモル比3〜90であることを特徴とする超純水の製
造方法。
4. The ultrapure amount according to claim 1, wherein the amount of hypobromite added to the water to be treated is 3 to 90 in molar ratio with respect to urea in the water to be treated. Water production method.
【請求項5】 請求項4において、被処理水に添加する
次亜臭素酸塩の添加量は、該被処理水中の尿素に対しモ
ル比3〜15であることを特徴とする超純水の製造方
法。
5. The ultrapure water according to claim 4, wherein the amount of hypobromite added to the water to be treated is 3 to 15 in terms of molar ratio to urea in the water to be treated. Production method.
【請求項6】 請求項1又は3において、被処理水に添
加する次亜塩素酸塩の添加量は、該被処理水中の尿素に
対しモル比10〜2000であることを特徴とする超純
水の製造方法。
6. The ultra pure material according to claim 1 or 3, wherein the amount of hypochlorite added to the water to be treated is 10 to 2000 with respect to the urea in the water to be treated. Water production method.
【請求項7】 請求項6において、被処理水に添加する
次亜塩素酸塩の添加量は、該被処理水中の尿素に対しモ
ル比30〜600であることを特徴とする超純水の製造
方法。
7. The ultrapure water according to claim 6, wherein the amount of hypochlorite added to the water to be treated is 30 to 600 molar ratio to urea in the water to be treated. Production method.
【請求項8】 被処理水中の微粒子,イオン,有機物,
細菌,ガスを除去する多段階精製処理を行って超純水を
製造する方法において、被処理水pHが4〜10の条件
下で、臭化アルカリとオゾンを添加して該被処理水中の
尿素を分解することを特徴とする超純水の製造方法。
8. Fine particles, ions, organic matter in the water to be treated,
A method for producing ultrapure water by performing a multi-step purification process for removing bacteria and gas, wherein urea in the water to be treated is added by adding alkali bromide and ozone under the condition that the pH of the water to be treated is 4 to 10. A method for producing ultrapure water, which comprises decomposing.
【請求項9】 請求項1、3、5〜8のいずれかにおい
て、臭化アルカリが臭化カリウム又は臭化ナトリウムで
あることを特徴とする超純水の製造方法。
9. The method for producing ultrapure water according to claim 1, wherein the alkali bromide is potassium bromide or sodium bromide.
【請求項10】 被処理水中の微粒子,イオン,有機
物,細菌,ガスを除去するための各処理手段を多段階に
備えた超純水製造装置のいずれかの位置に尿素分解処理
手段を設け、この尿素分解処理手段は、被処理水中の尿
素を分解する尿素分解剤の添加手段と、該添加手段の添
加位置に続き該被処理水中の全尿素分解に十分な通水時
間を保持できるように設定した反応用通水路とを備え、
この反応用通水路の後段にイオン除去手段を設けたこと
を特徴とする超純水製造装置。
10. A urea decomposition treatment means is provided at any position of an ultrapure water production system equipped with multi-stage treatment means for removing fine particles, ions, organic substances, bacteria and gases in the water to be treated, The urea decomposition treatment means is configured to add a urea decomposition agent addition means for decomposing urea in the water to be treated, and a water passage time sufficient to decompose all urea in the water to be treated following the addition position of the addition means. Equipped with a set water passage for reaction,
An apparatus for producing ultrapure water, characterized in that an ion removing means is provided at a stage subsequent to the water passage for reaction.
【請求項11】 請求項10において、上記添加手段に
より添加する尿素分解剤が、(1)次亜臭素酸塩、
(2)臭化アルカリと次亜塩素酸ナトリウム、(3)臭
化アルカリとオゾン、のいずれかであることを特徴とす
る超純水製造装置。
11. The urea decomposing agent added by the adding means according to claim 10, (1) hypobromite,
(2) Alkali bromide and sodium hypochlorite, and (3) Alkali bromide and ozone.
【請求項12】 請求項10又は11において、イオン
除去手段がイオン交換装置又は逆浸透膜処理装置である
ことを特徴とする超純水製造装置。
12. The ultrapure water production system according to claim 10, wherein the ion removing means is an ion exchange device or a reverse osmosis membrane treatment device.
【請求項13】 請求項10ないし12のいずれかにお
いて、添加手段の添加位置に続く上記反応用通水路と上
記イオン除去手段との間に、尿素分解剤を除去する活性
炭槽を設けたことを特徴とする超純水の製造装置。
13. The activated carbon tank for removing a urea decomposing agent according to claim 10, wherein an activated carbon tank for removing a urea decomposing agent is provided between the reaction water passage that follows the addition position of the adding means and the ion removing means. Characteristic ultrapure water production equipment.
【請求項14】 原水の前処理装置、一次純水製造装
置、二次純水製造装置を備えた超純水製造装置におい
て、 二次純水製造装置よりも上流のいずれかの位置に、請求
項10に記載の尿素分解処理手段を設けたことを特徴と
する超純水製造装置。
14. An ultrapure water production apparatus comprising a raw water pretreatment apparatus, a primary pure water production apparatus, and a secondary pure water production apparatus, wherein the ultrapure water production apparatus is provided at any position upstream of the secondary pure water production apparatus. Item 10. An ultrapure water production system provided with the urea decomposition treatment means according to Item 10.
【請求項15】 被処理水中の微粒子,イオン,有機
物,細菌,ガスを除去するための各処理手段を多段階に
備えた超純水製造装置のいずれかの位置に尿素分解処理
手段を設けると共に、該尿素分解処理手段の上流位置に
被処理水中の尿素濃度を連続的に検出する尿素監視装置
を設けたことを特徴とする超純水製造装置。
15. A urea decomposition treatment means is provided at any position of an ultrapure water production system equipped with multi-stage treatment means for removing fine particles, ions, organic substances, bacteria, and gases in the water to be treated. An apparatus for producing ultrapure water, comprising a urea monitoring device for continuously detecting the urea concentration in the water to be treated at an upstream position of the urea decomposition treatment means.
【請求項16】 請求項15において、尿素監視装置
は、通水路から分岐して被処理水を連続的に取水する分
岐管と、該被処理水に含まれるイオンを除去するイオン
除去手段と、イオン除去後の被処理水に含まれる全有機
態炭素(TOC)を測定するTOC測定手段を備えたこ
とを特徴とする超純水製造装置。
16. The urea monitoring device according to claim 15, wherein the branch pipe branches from the water passage to continuously take in the water to be treated, and an ion removing means for removing ions contained in the water to be treated. An ultrapure water production system comprising TOC measuring means for measuring total organic carbon (TOC) contained in water to be treated after removal of ions.
【請求項17】 請求項15または16の尿素監視装置
を、原水の取水口から、上記請求項11ないし15のい
ずれかに記載した尿素分解処理手段に至る通水路の途中
に設け、かつ尿素分解手段から尿素監視装置に至る通水
路長を、上記尿素監視装置による尿素濃度の検出に要す
る時間長よりも被処理水が通水路を通過する所要時間よ
りも長くなるように設定したことを特徴とする超純水製
造装置。
17. The urea monitoring device according to claim 15 or 16 is provided in the middle of a water passage extending from the raw water intake to the urea decomposition treatment means according to any one of claims 11 to 15, and the urea decomposition device is provided. The water passage length from the means to the urea monitoring device is set to be longer than the time required for the treated water to pass through the water passage, longer than the time required for detecting the urea concentration by the urea monitoring device. Ultrapure water production equipment that does.
【請求項18】 請求項17において、尿素監視装置に
よる尿素濃度上昇を検出して信号を出力する手段と、該
信号を受けて上記尿素分解処理手段の動作を開始させる
駆動制御手段と、を設けたことを特徴とする超純水製造
装置。
18. The device according to claim 17, further comprising means for detecting an increase in urea concentration by the urea monitoring device and outputting a signal, and drive control means for receiving the signal and starting the operation of the urea decomposition processing means. An ultrapure water production system characterized in that
JP19472996A 1995-07-24 1996-07-24 Ultrapure water production equipment Expired - Fee Related JP3919259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19472996A JP3919259B2 (en) 1995-07-24 1996-07-24 Ultrapure water production equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-187002 1995-07-24
JP18700295 1995-07-24
JP19472996A JP3919259B2 (en) 1995-07-24 1996-07-24 Ultrapure water production equipment

Publications (2)

Publication Number Publication Date
JPH0994585A true JPH0994585A (en) 1997-04-08
JP3919259B2 JP3919259B2 (en) 2007-05-23

Family

ID=26504093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19472996A Expired - Fee Related JP3919259B2 (en) 1995-07-24 1996-07-24 Ultrapure water production equipment

Country Status (1)

Country Link
JP (1) JP3919259B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360535B1 (en) * 2000-05-15 2002-11-13 새한환경기술 (주) Apparatus for wastewater treatment
JP2002336887A (en) * 2001-05-11 2002-11-26 Kurita Water Ind Ltd Extrapure water making device and extrapure water making method
JP2008086854A (en) * 2006-09-29 2008-04-17 Kurita Water Ind Ltd Pure water production apparatus
JP2008246439A (en) * 2007-03-30 2008-10-16 Kurita Water Ind Ltd Adsorbent for organic urea based compound, adsorption device for organic urea based compound, and treatment method for organic urea based compound
DE102007031113A1 (en) 2007-06-29 2009-01-02 Christ Water Technology Ag Treatment of water with hypobromite solution
JP4488396B2 (en) * 2000-09-11 2010-06-23 オルガノ株式会社 Wastewater treatment method
JP2011183274A (en) * 2010-03-05 2011-09-22 Kurita Water Ind Ltd Water treatment method and process for producing ultrapure water
JP2011183245A (en) * 2010-03-04 2011-09-22 Kurita Water Ind Ltd Method and apparatus for producing ultrapure water
JP2011230093A (en) * 2010-04-30 2011-11-17 Kurita Water Ind Ltd Water treatment method and method for producing ultrapure water
CN102781849A (en) * 2010-03-05 2012-11-14 栗田工业株式会社 Water treatment method and ultrapure water production method
JP2013034962A (en) * 2011-08-09 2013-02-21 Nippon Rensui Co Ltd Manufacturing method of ultrapure water
CN103332807A (en) * 2013-06-28 2013-10-02 浙江大学 Degradation method for bisphenol A in water in tap water pipeline network
US8916048B2 (en) 2010-03-05 2014-12-23 Kurita Water Industries Ltd. Water treatment method and method for producing ultrapure water
JP2015073923A (en) * 2013-10-07 2015-04-20 野村マイクロ・サイエンス株式会社 Ultrapure water production method and system
JP2015100733A (en) * 2013-11-22 2015-06-04 野村マイクロ・サイエンス株式会社 Ultrapure water production system and method
JP2018118253A (en) * 2018-05-11 2018-08-02 野村マイクロ・サイエンス株式会社 Ultrapure water production method and ultrapure water production system
US10351444B2 (en) 2014-05-08 2019-07-16 Organo Corporation Filtration treatment system and filtration treatment method
US10420344B2 (en) 2013-08-28 2019-09-24 Organo Corporation Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane
JP2019191099A (en) * 2018-04-27 2019-10-31 栗田工業株式会社 Urea monitoring device and pure water production device
CN111517507A (en) * 2019-02-01 2020-08-11 兆联实业股份有限公司 Water treatment system
WO2021261145A1 (en) * 2020-06-23 2021-12-30 オルガノ株式会社 Water treatment apparatus and water treatment method
WO2022030234A1 (en) * 2020-08-06 2022-02-10 オルガノ株式会社 Pure water production device and pure water production method
WO2022054649A1 (en) * 2020-09-10 2022-03-17 オルガノ株式会社 Water treatment system, pure water production method, and water treatment method
WO2022107451A1 (en) * 2020-11-20 2022-05-27 オルガノ株式会社 Urea treatment method and device
WO2022176477A1 (en) * 2021-02-17 2022-08-25 オルガノ株式会社 Urea treatment apparatus and urea treatment method

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360535B1 (en) * 2000-05-15 2002-11-13 새한환경기술 (주) Apparatus for wastewater treatment
JP4488396B2 (en) * 2000-09-11 2010-06-23 オルガノ株式会社 Wastewater treatment method
JP2002336887A (en) * 2001-05-11 2002-11-26 Kurita Water Ind Ltd Extrapure water making device and extrapure water making method
JP2008086854A (en) * 2006-09-29 2008-04-17 Kurita Water Ind Ltd Pure water production apparatus
JP2008246439A (en) * 2007-03-30 2008-10-16 Kurita Water Ind Ltd Adsorbent for organic urea based compound, adsorption device for organic urea based compound, and treatment method for organic urea based compound
US8496830B2 (en) 2007-06-29 2013-07-30 Christ Water Technology Ag Treatment of water with hypobromite solution
DE102007031113A1 (en) 2007-06-29 2009-01-02 Christ Water Technology Ag Treatment of water with hypobromite solution
JP2010531724A (en) * 2007-06-29 2010-09-30 クリスト ウォーター テクノロジー アクチェン ゲゼルシャフト Water treatment with hypobromite
KR20100028052A (en) * 2007-06-29 2010-03-11 크라이스트 워터 테크놀러지 아게 Treatment of water with hypobromite solution
JP2011183245A (en) * 2010-03-04 2011-09-22 Kurita Water Ind Ltd Method and apparatus for producing ultrapure water
US8916048B2 (en) 2010-03-05 2014-12-23 Kurita Water Industries Ltd. Water treatment method and method for producing ultrapure water
US20130048558A1 (en) * 2010-03-05 2013-02-28 Kurita Water Industries Ltd. Water treatment method and ultrapure water producing method
JP2011183274A (en) * 2010-03-05 2011-09-22 Kurita Water Ind Ltd Water treatment method and process for producing ultrapure water
CN102781849A (en) * 2010-03-05 2012-11-14 栗田工业株式会社 Water treatment method and ultrapure water production method
JP2011230093A (en) * 2010-04-30 2011-11-17 Kurita Water Ind Ltd Water treatment method and method for producing ultrapure water
JP2013034962A (en) * 2011-08-09 2013-02-21 Nippon Rensui Co Ltd Manufacturing method of ultrapure water
CN103332807A (en) * 2013-06-28 2013-10-02 浙江大学 Degradation method for bisphenol A in water in tap water pipeline network
US10420344B2 (en) 2013-08-28 2019-09-24 Organo Corporation Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane
JP2015073923A (en) * 2013-10-07 2015-04-20 野村マイクロ・サイエンス株式会社 Ultrapure water production method and system
JP2015100733A (en) * 2013-11-22 2015-06-04 野村マイクロ・サイエンス株式会社 Ultrapure water production system and method
US10351444B2 (en) 2014-05-08 2019-07-16 Organo Corporation Filtration treatment system and filtration treatment method
JP2019191099A (en) * 2018-04-27 2019-10-31 栗田工業株式会社 Urea monitoring device and pure water production device
JP2018118253A (en) * 2018-05-11 2018-08-02 野村マイクロ・サイエンス株式会社 Ultrapure water production method and ultrapure water production system
CN111517507A (en) * 2019-02-01 2020-08-11 兆联实业股份有限公司 Water treatment system
WO2021261145A1 (en) * 2020-06-23 2021-12-30 オルガノ株式会社 Water treatment apparatus and water treatment method
WO2022030234A1 (en) * 2020-08-06 2022-02-10 オルガノ株式会社 Pure water production device and pure water production method
WO2022054649A1 (en) * 2020-09-10 2022-03-17 オルガノ株式会社 Water treatment system, pure water production method, and water treatment method
WO2022107451A1 (en) * 2020-11-20 2022-05-27 オルガノ株式会社 Urea treatment method and device
WO2022176477A1 (en) * 2021-02-17 2022-08-25 オルガノ株式会社 Urea treatment apparatus and urea treatment method

Also Published As

Publication number Publication date
JP3919259B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
JPH0994585A (en) Method for producing ultrapure water and apparatus therefor
KR100687361B1 (en) Apparatus for producing water containing dissolved ozone
US5651894A (en) Water purification system and method
KR101464022B1 (en) Method and apparatus for treating water containing organic matter
WO2000027756A1 (en) Water treating method
JPH09192661A (en) Ultrapure water producing device
WO2012146324A1 (en) Method for treatment of sludge from water and wastewater treatment plants with chemical treatment
JPH0938670A (en) Apparatus for producing ultrapure water
JP3552580B2 (en) Method and apparatus for treating human wastewater
JPH09122690A (en) Method for decomposing organic nitrogen and water treatment apparatus
JP3221801B2 (en) Water treatment method
TWI499562B (en) Wastewater treatment process of semiconductor manufacturing method
Toran et al. Membrane-based processes to obtain high-quality water from brewery wastewater
JP3858359B2 (en) How to remove organic matter
JPH10202296A (en) Ultrapure water producer
CN112777718A (en) Treatment method of high-salinity wastewater
JP3998997B2 (en) Disinfection method of ultrapure water supply pipe
JP2000350997A (en) Method and apparatus for treating sewage
JPH05138167A (en) Ultra pure water supplying equipment
JP3565083B2 (en) Method and apparatus for treating human wastewater
JP2018153749A (en) Water treatment method and water treatment system using reverse osmosis membrane
WO2022259599A1 (en) Pure water production method and pure water production apparatus
WO2023047732A1 (en) Method for treating raw water for producing purified water
WO2022176477A1 (en) Urea treatment apparatus and urea treatment method
JP6860648B1 (en) Water treatment system and water treatment method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees