JPH02131187A - Removal process for suspended impurities by mixed bed type filter desalting device - Google Patents

Removal process for suspended impurities by mixed bed type filter desalting device

Info

Publication number
JPH02131187A
JPH02131187A JP28127788A JP28127788A JPH02131187A JP H02131187 A JPH02131187 A JP H02131187A JP 28127788 A JP28127788 A JP 28127788A JP 28127788 A JP28127788 A JP 28127788A JP H02131187 A JPH02131187 A JP H02131187A
Authority
JP
Japan
Prior art keywords
resin
exchange resin
mixed bed
crosslinking
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28127788A
Other languages
Japanese (ja)
Other versions
JPH0445230B2 (en
Inventor
Hideo Kawazu
秀雄 河津
Masahiro Hagiwara
正弘 萩原
Takeshi Izumi
丈志 出水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP28127788A priority Critical patent/JPH02131187A/en
Publication of JPH02131187A publication Critical patent/JPH02131187A/en
Publication of JPH0445230B2 publication Critical patent/JPH0445230B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To strengthen condensation treatment capacity of a power plant by forming a mixed bed by means of resin of divinyl benzene containing ratio in the given range in which resin crosslinking degree is set lower than the standard value of existing gel type resin in the filter desalting process by means of the mixed bed composed of cation-anion exchange resin. CONSTITUTION:When condensation of a thermoelectric power plant is treated, a mixed bed is formed by means of resin of in the range of 7.5%-3% divinyl benzene containing ratio lower than the standard value (8%) of crosslinking degree of cation exchange resin and/or anion exchange resin for the existing gel type resin in the filter desalting process by means of the mixed bed composed of grain or powder-like cation exchange resin and anion exchange side. Because of the reasons such as crosslinking degree of anion-cation exchange resin is lower compared with the existing mixed bed filter desalting process, pores in resin phases are large and the diffusion speed into the resin grains of clad is fast and also resin not rigid comparatively and clad adsorption effect generated by elastic deformation of resin surface at the time of applying water, water of low clad concentration and high purity can be prepared at the time of filter desalting operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、火力発電プラントの復水の処理における混床
式f過脱塩方法に関し、特に従来品よりも架橋度を低下
させた陽イオン交換樹脂と陰イオン交換樹脂を混合して
なる混床式P過脱塩方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a mixed-bed f over-desalination method for treating condensate in a thermal power plant, and in particular to a method using cations with a lower degree of crosslinking than conventional products. This invention relates to a mixed bed P over-desalination method in which an exchange resin and an anion exchange resin are mixed.

〔従来の技術〕[Conventional technology]

従来から火力発電所では、給水中の不純物を極力低く抑
えなければならないので、復水器からボイラヘ流入する
仮水を復水脱塩塔によって浄化処理し、高度に浄化した
後、ホイラ給水として利用している。
Conventionally, in thermal power plants, it is necessary to keep impurities in the water supply as low as possible, so temporary water that flows from the condenser to the boiler is purified by a condensate desalination tower, and after being highly purified, it is used as boiler water supply. are doing.

この復水脱塩塔は陰イオン交換樹脂と陽イオン交換樹脂
とが混合して充填された所謂混床式脱塩塔であって、復
水中のイオン成分と懸濁固形成分(クラツドと通称され
る)とをイオン交換及び吸着によって分離し、復水を浄
化するものである。
This condensate demineralization tower is a so-called mixed bed demineralization tower packed with a mixture of anion exchange resin and cation exchange resin, and contains ionic components and suspended solid components (commonly known as cladding) in the condensate. This method separates the condensate by ion exchange and adsorption to purify the condensate.

そして陽イオン交換樹脂と陰イオン交換樹脂とを混合し
て混床を形成する方法としては、■従米架橋品のゲル型
陽イオン交換樹脂(DVB含率8%)と従来架橋品のゲ
ル型陰イオン交換樹脂( DVB含率8%)を用いる方
法、■従来架橋品のボーラス型陽イオン交換樹脂(DV
B含率8%)と従来架橋品のボーラス型陰イオン交換樹
脂(DVB含率8%)を用いる方法、が提案されていた
The method of mixing a cation exchange resin and an anion exchange resin to form a mixed bed is as follows: 1. A gel type cation exchange resin (DVB content 8%) of a traditional crosslinked product and a gel type anion exchange resin of a conventional crosslinked product. Method using ion exchange resin (DVB content 8%), ■ method using conventional crosslinked bolus type cation exchange resin (DV
A method using a conventional crosslinked bolus type anion exchange resin (DVB content 8%) was proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

最近、混床式P過脱塩技術において、復水からイオン成
分及びクラツドの分離効果のうち、クラツドの分離効果
を強化することにより、復水からボイラヘ持ち込まれる
クラツドを低減しスケール生成速度を抑制する傾向があ
る。そして、前述の粒状イオン交換樹脂を用いる方法で
は、クランド捕捉能力がイオン交換樹脂表面におけるク
ラツドの吸着領域の大きさとイオン交換樹脂表面から粒
内への拡散速度とに支配されることから、従来品の架橋
度の比較的高いイオン交換樹脂では、樹脂相内の細孔(
ミクロボアー)が比較的小さくクランドの樹脂粒内への
拡散速度が遅いこと及び樹脂が硬く弾性に乏しく、通水
時樹脂表面の弾注変形によるクラツド吸着効果が小さい
ことよシ、クラツドの分離効果の高度化要求に十分な対
応ができなかった。
Recently, in mixed-bed P over-desalination technology, the effect of separating ionic components and crud from condensate has been strengthened, thereby reducing the amount of crud brought into the boiler from condensate and suppressing the rate of scale formation. There is a tendency to In addition, in the method using the granular ion exchange resin described above, the crud trapping ability is controlled by the size of the crud adsorption area on the ion exchange resin surface and the diffusion rate from the ion exchange resin surface into the granules. In ion exchange resins with a relatively high degree of crosslinking, the pores (
The diffusion rate of the crud into the resin particles is relatively small, and the resin is hard and has little elasticity, so the crud adsorption effect due to bullet deformation of the resin surface during water flow is small, and the crud separation effect is small. It was not possible to adequately respond to demands for sophistication.

そこで、本発明は、復水の処理操作においてクランドの
分離能力が大きい混床式f過脱塩方法を提供することを
目的とする。
Therefore, an object of the present invention is to provide a mixed bed type f over-desalination method that has a large capacity for separating crunds in a condensate treatment operation.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、鋭意研究の結果、使用するイオン交換樹
脂の架橋度を従米品のものよりも低下させたものを用い
ることによって、本発明の目的を達成しうろことを見い
出し、本発明を完成したものである。
As a result of intensive research, the present inventors discovered that the object of the present invention could be achieved by using an ion exchange resin with a lower degree of crosslinking than that of conventional American products. It is completed.

すなわち本発明は、火力発電プラントの復水の処理の際
に、粒状又は粉末状陽イオン交換樹脂及び陰イオン交換
樹脂からなる混床によってfJ:I過脱塩する方法にお
いて、陽イオン交換樹脂及び/又は陰イオン交換樹脂の
架橋度を従米品ゲル型樹脂の標準値(ジビニルベンゼン
(DVB)含率表示で陽イオン交換樹脂、陰イオン交換
樹脂ともに8%)よりも低下させた範囲のDVB含率Z
5%〜3%の州脂によシ混床を形成し、火力発電プラン
トの復水処理時の懸濁不純物の除去能力を強化させたこ
とを特徴とする混床式f5過脱塩方法にある。
That is, the present invention provides a method for fJ:I excessive desalination using a mixed bed consisting of a granular or powdered cation exchange resin and an anion exchange resin when treating condensate from a thermal power plant. /or DVB content in which the degree of crosslinking of the anion exchange resin is lower than the standard value of conventional gel type resins (8% for both cation exchange resin and anion exchange resin in terms of divinylbenzene (DVB) content) Rate Z
A mixed bed type F5 over-desalination method characterized by forming a mixed bed with 5% to 3% state fat and enhancing the ability to remove suspended impurities during condensate treatment in thermal power plants. be.

また、本発明は、火力発電プラントの復水の処理の際に
、粒状又は粉末状陽イオン父換樹脂及び陰イオン交換樹
脂からなる混床によってP過脱塩する方法において、従
来品のイオン交換樹脂による混床上層部に、従米品ゲル
型樹脂の標準匝よりも架橋度を低下させた範囲のDVB
含率7.5〜6%の陽イオン交換樹脂を積層させた樹脂
床を形成し、火力発電プラントの復水処理時の懸濁不純
物の除去能力を強化させたことを特徴とする温床式f過
脱塩方法にもある。
Furthermore, the present invention provides a method for over-desalinating P using a mixed bed consisting of a granular or powdered cationic father-exchanging resin and anionic exchange resin when treating condensate from a thermal power plant. In the upper layer of the resin mixed bed, DVB is used with a lower degree of crosslinking than the standard gel-type resin.
A hotbed type f characterized by forming a resin bed in which cation exchange resins with a content of 7.5 to 6% are laminated to enhance the ability to remove suspended impurities during condensate treatment in thermal power plants. There is also an over-desalination method.

次に、本発明を従来技術と対比しながら更に詳しく説明
する。
Next, the present invention will be explained in more detail while comparing it with the prior art.

第1図は、強酸性ゲル型陽イオン交換樹脂の架橋度( 
DVB%)を横軸に、細孔の平均直径[A]を縦軸に表
わした架橋度と細孔の大きさの関係を示すクラフであり
、これによれば架橋度( DVB%)を低下させるほど
細孔の平均直径[A]は大きくなる。
Figure 1 shows the degree of crosslinking (
This is a graph showing the relationship between the degree of crosslinking and the size of the pores, with the horizontal axis representing the average pore diameter [A] and the vertical axis representing the degree of crosslinking (DVB%). The average diameter [A] of the pores increases as the temperature increases.

たとえば、DVB含率8%の標準品と、DVB含率6%
品の細孔平均直径を比軟すると8%品(H型) : 7
. 8 A 6%品(H型) : 9. 5 A となシ、細孔は6%品の方が20%程度大きくなる。又
、陰イオン交換樹脂についても同様の傾向が見られる。
For example, a standard product with a DVB content of 8% and a DVB content of 6%
The average pore diameter of the product is 8% (H type): 7
.. 8 A 6% product (H type): 9. 5 A The pores of the 6% product are approximately 20% larger. A similar tendency is also observed for anion exchange resins.

第2図は、強酸性ゲル型陽イオン交換樹脂及び強塩基性
ゲル型陰イオン父換樹脂の架橋度(DVB%)を横軸に
樹脂の破砕強度( 17粒ノを縦軸に表わしたグラフで
あ勺、これによれば架橋度を低下させるほど樹脂の破砕
強度(+/粒)は低下し、それに伴ない樹脂の弾性は増
加する。
Figure 2 is a graph in which the degree of crosslinking (DVB%) of a strongly acidic gel type cation exchange resin and a strongly basic gel type anion father exchange resin is plotted on the horizontal axis, and the crushing strength of the resin (17 grains is plotted on the vertical axis). According to this, as the degree of crosslinking decreases, the crushing strength (+/particle) of the resin decreases, and the elasticity of the resin increases accordingly.

第6図は強酸性陽イオン交換樹脂の架橋度(DVB%)
を横軸に総交換容量を縦軸に表わしたグラフであシこれ
によれば架橋ff(Dvn%)を低下させるほど総交換
容量( meq / 11Lt−R)は低下する。
Figure 6 shows the degree of crosslinking (DVB%) of strongly acidic cation exchange resin.
This is a graph in which the horizontal axis represents the total exchange capacity and the vertical axis represents the total exchange capacity. According to this graph, the lower the crosslinking ff (Dvn%), the lower the total exchange capacity (meq/11Lt-R).

第4図は強塩基性陰イオン交換樹脂の架橋度( DVB
%)と総交換容量の関係を示したグラフであシ、第3図
と同様の傾向が見られる。
Figure 4 shows the degree of crosslinking (DVB) of strongly basic anion exchange resin.
%) and the total exchange capacity, the same trend as in Figure 3 can be seen.

以上よりイオン交換樹脂の架橋度(DVB%)を低下さ
せることによシ、破砕強度総交換容量等の性質が劣化す
る傾向にあり、実運用の際の架橋度(DVB%)ハ、ク
ラツド分離効果とf過脱塩操作時必要なその他の諸性質
の限界値を伴せて決める必要があシ、本発明においては
、陽イオン交換樹脂及び陰イオン交換樹脂の架橋度( 
DVB%)を75%〜3%、望ましくは6X〜4%の範
囲にすることが適当と考えられる。
From the above, by reducing the degree of crosslinking (DVB%) of ion exchange resin, properties such as crushing strength and total exchange capacity tend to deteriorate. It is necessary to determine the effectiveness and the limit values of other properties required during over-desalination operation.In the present invention, the degree of crosslinking of the cation exchange resin and the anion exchange resin (
DVB%) in the range of 75% to 3%, preferably 6X to 4%, is considered appropriate.

〔実施例〕〔Example〕

以下に、本発明の実施例を記載するが、本発明はこれら
の実施例に限定されるものではない。
Examples of the present invention are described below, but the present invention is not limited to these Examples.

実施例1 陽イオン交換樹脂の架橋度を変化させて、単床ミニカラ
ム試験及び温床実機長力ラム試験によ夛、クラツド分離
効果を比較する。
Example 1 The degree of crosslinking of the cation exchange resin was changed and the cladding separation effect was compared using a single-bed mini-column test and a hot-bed actual long-force ram test.

(単床ミニ力ラム試験) ■ 試験条件 第5図の試験装置を使用し原水を原水人口1から、充横
力ラム3全通して、以下の試験条件によ夛試験を行った
(Single bed mini force ram test) ■Test conditions Using the testing apparatus shown in Figure 5, raw water was passed through the full horizontal force ram 3 from raw water population 1, and a collection test was conducted under the following test conditions.

O樹脂仕様二強酸性ゲル型陽イオン交換樹脂(H型)の
架橋度( DVBκ) 4%、6%、8%、10%、12 %のものを使用 0耐圧カラム:内径12gX2001110樹脂量:陽
イオン交換樹脂15ILIVO樹脂層高=156關 0通水線流速: L V = 1 0 8m / hO
通水期間:各試験約2週間 ■ 試験結果 陽イオン交換樹脂のみの単床ミニ力ラム試験の結果を第
6図に示す。第6図は、横軸に架橋度(DVB%)を、
縦軸に従来品の架橋度DVB 8%品を1とした時のク
ラツド捕捉比率を示したグラフである。これによれば架
橋度( DVB%)を低下させた方がクラツド分離効果
が向上することが確認できる。
O Resin specifications: Double strongly acidic gel type cation exchange resin (H type) with crosslinking degree (DVBκ) of 4%, 6%, 8%, 10%, 12%. Ion exchange resin 15ILIVO resin layer height = 156 0 water line flow rate: L V = 108 m / hO
Water flow period: Approximately 2 weeks for each test Test results The results of the single-bed mini force ram test using only the cation exchange resin are shown in Figure 6. In Figure 6, the degree of crosslinking (DVB%) is plotted on the horizontal axis.
It is a graph showing the clad capture ratio when the vertical axis is a conventional product with a degree of crosslinking of DVB of 8% as 1. According to this, it can be confirmed that the cladding separation effect is improved by lowering the degree of crosslinking (DVB%).

(混床実機長カラム試験) ■ 試験条件 第7図の試験装置を使用して試験を行った。(Mixed bed actual length column test) ■ Test conditions The test was conducted using the test apparatus shown in FIG.

第7図において、原水人口1から導入された原水は、樹
脂充填力ラム6で浄化されて、主流量計4を通勺、一部
はサンプリングラインに入り、フィルタ5、流it#f
6、積算流量計7、導電率計8を経て、ドレンライン9
から排出される。2は洗浄用純水の入口である。
In FIG. 7, the raw water introduced from the raw water population 1 is purified by the resin filling force ram 6, passes through the main flow meter 4, and a part enters the sampling line, passes through the filter 5, and flows through the flow #f.
6. Drain line 9 via integrated flowmeter 7 and conductivity meter 8
is discharged from. 2 is an inlet for pure water for cleaning.

試験は、以下の試験条件により行った。The test was conducted under the following test conditions.

O樹脂仕様:強酸性ゲル型陽イオン父換樹脂(H型)の
架橋度( DVB%) 4%、6%、8%、10%、12 %のもの並びに強塩基性ゲル型 陰イオン交換樹脂(OR型)の 架橋度CDVB%)85Aのもの を組合せて温床状態で使用 O樹脂量:陽イオン/陰イオン樹脂比=t66/ ’L
 Oで層高90cIIL相邑分(約2p〕を混合して充
填 O通水線流量:Lv二l08m/h O通水期間=1サイクル14日間で2サイクル実施 ■ 試験結果 陰イオン交換樹脂の架橋度( DVB%)を8%で固定
し、陽イオン交換樹脂の架橋度(DVB%〕を変化させ
た混床による混床実機長力ラム試験の結果は、第8−1
図のサイクル1及び第8−2図のサイクル2の通クであ
シ、これによれば陽イオン交換樹脂の架橋度(DVB%
)を低下させた方がクラツド分離効果(平衡到達時DF
値)が向上することが確認できた。
O resin specifications: Strongly acidic gel type cationic father exchange resin (H type) with crosslinking degree (DVB%) of 4%, 6%, 8%, 10%, 12% and strongly basic gel type anion exchange resin (OR type) crosslinking degree CDVB%) 85A used in a hotbed state O Resin amount: Cation/Anion resin ratio = t66/'L
Mix and fill O with a layer height of 90 cIIL phase (approximately 2p) O water flow line flow rate: Lv 2 l 08 m/h O water flow period = 1 cycle 14 days, 2 cycles performed ■ Test results Crosslinking of anion exchange resin The results of the mixed bed actual machine long force ram test using a mixed bed in which the degree of crosslinking (DVB%) was fixed at 8% and the degree of crosslinking (DVB%) of the cation exchange resin was varied are shown in Section 8-1.
According to this, the degree of crosslinking of the cation exchange resin (DVB%
) is better when the cladding separation effect (DF at equilibrium is reached) is lowered.
It was confirmed that the value) was improved.

第8−1及び8−2図は強酸性ゲル型陽イオン交換樹脂
と強塩基性ゲル型陰イオン交換樹脂との混床実機長力ラ
ムにおいて、陽イオン交換樹脂の架橋度DVBXを変化
させた場合の架橋度とDP値の関係を示すグラフであシ
、ここでDF値とは、入口クラツド濃度(ppb) /
出口クランド濃度(ppb)で表わす。
Figures 8-1 and 8-2 show the results of changing the degree of crosslinking DVBX of the cation exchange resin in a mixed bed actual Nagiri ram of a strongly acidic gel type cation exchange resin and a strongly basic gel type anion exchange resin. This is a graph showing the relationship between the degree of crosslinking and the DP value in the case where the DF value is the inlet cladding concentration (ppb) /
Expressed in outlet crand concentration (ppb).

以上の試験結果は、いずれも、特に陽イオン交換樹脂の
架橋度( DVB%〕を変化させたものであり、本発明
のF過脱塩方法におけるクラツド分離効果は従来のf過
脱塩方法よりも大巾に優れていることが確認され実用上
極めて有利な方法と云える。
The above test results are all based on changes in the degree of crosslinking (DVB%) of the cation exchange resin, and the cladding separation effect of the F over-desalination method of the present invention is greater than that of the conventional F over-desalination method. It has also been confirmed that this method has excellent width, and can be said to be an extremely advantageous method in practice.

実施例2 次に、本発明のもう一つのf過脱塩方法である陰イオン
交換樹脂の架橋度(DVB%)を変化させた場合のクラ
ツド分離効果を単床ミニ力ラム試験により従来のr過脱
塩操作と比較する。
Example 2 Next, we conducted a single-bed mini force ram test to examine the crud separation effect when changing the degree of crosslinking (DVB%) of the anion exchange resin, which is another f over-desalination method of the present invention. Compare with over-desalination operation.

(単床ミニ力ラム試験) ■ 試験条件 第5図の試験装置を使用し、以下の試験条件によシ試験
を行った。
(Single-bed mini force ram test) ■ Test conditions Using the test apparatus shown in Figure 5, a test was conducted under the following test conditions.

0樹脂仕様二強塩基性ゲル型陰イオン交換樹脂(OH型
〕の架橋度(DVB %)6%、7%、7.5%、8% のものを使用 0樹脂量:陰イオン交換樹脂t5mJ O通水線流速:LV=I08m/h O通水期間:各試験約2週間 ■ 試験結果 陰イオン交換樹脂のみの単床ミニ力ラム試験の結果は第
9図の通クでありこれによれば、架橋度( DVB%〕
を低下させた方がクラツド分離効果が向上することがm
gできた。第9図は横軸に架橋度(DVB%)を、縦軸
にDVB8%品を7とした時のクランド捕捉比率を表し
たグラフである。
0 Resin specifications Use a double strong basic gel type anion exchange resin (OH type) with crosslinking degree (DVB%) of 6%, 7%, 7.5%, 8%0 Resin amount: Anion exchange resin t5mJ Linear flow rate of O water: LV=I08m/h O water flow period: Approximately 2 weeks for each test Test results The results of the single-bed mini power ram test using only anion exchange resin are as shown in Figure 9. For example, degree of crosslinking (DVB%)
The cladding separation effect is improved by lowering m.
g I was able to do it. FIG. 9 is a graph showing the degree of crosslinking (DVB%) on the horizontal axis and the crand capture ratio when the 8% DVB product is set to 7 on the vertical axis.

以上の試験結果は、陰イオン交換樹脂の架橋度( DV
B%)を変化させたものであシ、一般にr過脱塩操作に
おける陰イオン交換樹脂のクラツド分離効果に及ぼす影
響は、その性質上陽イオン交換樹脂に比較して小さいが
、特に陽イオン交換樹脂との温床による相乗効果によシ
、本発明のP過脱塩方法におけるクラツド分離効果は従
来のF過脱塩方法よりも大巾に優れていることが確認さ
れ実用上極めて有利な方法と云える。
The above test results are based on the degree of crosslinking (DV) of the anion exchange resin.
In general, the influence of anion exchange resins on the cladding separation effect in over-desalination operations is smaller than that of cation exchange resins due to their nature, but in particular cation exchange resins It has been confirmed that the crud separation effect in the P over-desalination method of the present invention is significantly superior to that of the conventional F over-desalination method due to the synergistic effect of the hot bed with I can do it.

更に本発明のf過脱塩方法である ■ 陽イオン交換樹脂及び陰イオン交換樹脂の架橋度(
 DVB%)を従来品よりも低下させた樹脂の混床によ
るf過脱塩方法 ■ 陰イオン交換樹脂の架橋度(])VB%)を従来品
よりも低下させた樹脂と従来品陽イオン交換樹脂の混床
によるf過脱塩方法■ 従来品イオン交換樹脂による混
床の上層部に従来品よりも架橋度( D’l/B%)を
低下させた陽イオン交換樹脂を積層させた樹脂床による
f過脱塩方法 についても、前述の結果より、優れたクラツド分離効果
が推測されるが最近実施した試験において優れたクラツ
ド分離効果が確認されておシ、いずれも実用上極めて有
利な方法と云える。
Furthermore, in the f-overdesalination method of the present invention, the degree of crosslinking of the cation exchange resin and the anion exchange resin (
Over-desalination method using a mixed bed of resin with a lower DVB%) than conventional products ■ Anion exchange resin with a lower crosslinking degree (]) VB%) of anion exchange resin than conventional products and conventional cation exchange f Excess desalination method using a mixed bed of resin ■ A resin in which a cation exchange resin with a lower degree of crosslinking (D'l/B%) than the conventional product is laminated on the upper layer of a mixed bed made of a conventional ion exchange resin. The above-mentioned results suggest that the over-desalination method using a bed has an excellent crud separation effect, but recent tests have confirmed that it has an excellent crud separation effect, and both methods are extremely advantageous in practical terms. I can say that.

〔発明の効果〕〔Effect of the invention〕

本発明においては、従来の混床式r過脱塩方法に比較し
、陰・陽イオン交換樹脂の架橋度が低いため、樹脂相内
の細孔(ミクロポアー)が比較的大きく、クラツドの樹
脂粒内への拡散速度が速いこと及び樹脂が比較的硬くな
く弾性があシ通水時樹脂表面の弾性変形によるクラツド
吸着効果が大きいことよF)F過脱塩操作に際1よクク
ラツド濃度の低い高純度の水を得ることができる。
In the present invention, since the degree of crosslinking of the anion/cation exchange resin is low compared to the conventional mixed bed type over-desalination method, the pores (micropores) in the resin phase are relatively large, and the resin particles in the cladding are F) F: The concentration of crud is much lower during over-desalination operation. High purity water can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、陽イオン交換樹脂の架橋度と細孔の大きさを
表すグラフであり、第2図は、陽イオン及び陰イオン交
換樹脂の架橋度と破砕強度の関係を表すグラフであり、
第3図は、陽イオン交換樹脂の架橋度と総交換容量の関
係を表すグラフであシ、第4図は、陰イオン交換樹脂の
架橋度と総交換容量の関係を表すグラフである。 第5図はミニ力ラム試験装置の概略系統図でちゃ、第6
図は架橋度とクランド捕捉能の関係を表すグラフであシ
、第7図は混床実機長カラム試験装置の概略系統図であ
り、第8−1図及び1・・・原水入口、2・・・洗浄用
純水入口、3・・・樹脂充填力ラム、4・・一生流量計
、5・・・フィルタ、6・・・流量計、7・・・積算流
量計、8・・・導電率計、9・・・ドレンライン 特許出願人   株式会社荏原製作所
FIG. 1 is a graph showing the degree of crosslinking of cation exchange resins and the size of pores, and FIG. 2 is a graph showing the relationship between the degree of crosslinking and crushing strength of cation and anion exchange resins.
FIG. 3 is a graph showing the relationship between the degree of crosslinking of the cation exchange resin and the total exchange capacity, and FIG. 4 is a graph showing the relationship between the degree of crosslinking of the anion exchange resin and the total exchange capacity. Figure 5 is a schematic system diagram of the mini force ram test device.
The figure is a graph showing the relationship between the degree of crosslinking and the crud trapping ability, and Figure 7 is a schematic system diagram of a mixed bed actual length column test device, and Figure 8-1 and 1... raw water inlet, 2... ...Pure water inlet for cleaning, 3...Resin filling force ram, 4...Lifetime flowmeter, 5...Filter, 6...Flowmeter, 7...Integrated flowmeter, 8...Conductivity Rate meter, 9...Drain line Patent applicant Ebara Corporation

Claims (1)

【特許請求の範囲】 1、火力発電プラントの復水の処理の際に、粒状又は粉
末状陽イオン交換樹脂及び陰イオン交換樹脂からなる混
床によつてろ過脱塩する方法において、陽イオン交換樹
脂及び/又は陰イオン交換樹脂の架橋度を従来品ゲル型
樹脂の標準値(ジビニルベンゼン(DVB)含率表示で
陽イオン交換樹脂、陰イオン交換樹脂ともに8%)より
も低下させた範囲のDVB含率7.5%〜3%の樹脂に
より温床を形成し、火力発電プラントの復水処理時の懸
濁不純物の除去能力を強化させたことを特徴とする混床
式ろ過脱塩方法。 2、火力発電プラントの復水の処理の際に、粒状又は粉
末状陽イオン交換樹脂及び陰イオン交換樹脂からなる混
床によつてろ過脱塩する方法において、従来品のイオン
交換樹脂による温床上層部に、従来品ゲル型樹脂の標準
値よりも架橋度を低下させた範囲のDVB含率7.5%
〜3%の陽イオン交換樹脂を積層させた樹脂床を形成し
、火力発電プラントの復水処理時の懸濁不純物の除去能
力を強化させたことを特徴とする温床式ろ過脱塩方法。
[Scope of Claims] 1. In a method of filtering and desalting using a mixed bed consisting of a granular or powdered cation exchange resin and an anion exchange resin when treating condensate from a thermal power plant, the cation exchange The degree of crosslinking of the resin and/or anion exchange resin is lower than the standard value of conventional gel type resins (8% for both cation exchange resin and anion exchange resin in terms of divinylbenzene (DVB) content). A mixed bed filtration desalination method characterized in that a hot bed is formed with a resin having a DVB content of 7.5% to 3% to enhance the ability to remove suspended impurities during condensate treatment in a thermal power plant. 2. When treating condensate from a thermal power plant, in a method of filtering and desalting using a mixed bed consisting of granular or powdered cation exchange resin and anion exchange resin, the upper layer of the hotbed made of conventional ion exchange resin is used. The DVB content is 7.5%, which is a lower degree of crosslinking than the standard value of conventional gel-type resins.
A hot bed filtration desalination method characterized by forming a resin bed in which ~3% of cation exchange resin is laminated to enhance the ability to remove suspended impurities during condensate treatment in a thermal power plant.
JP28127788A 1988-11-09 1988-11-09 Removal process for suspended impurities by mixed bed type filter desalting device Granted JPH02131187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28127788A JPH02131187A (en) 1988-11-09 1988-11-09 Removal process for suspended impurities by mixed bed type filter desalting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28127788A JPH02131187A (en) 1988-11-09 1988-11-09 Removal process for suspended impurities by mixed bed type filter desalting device

Publications (2)

Publication Number Publication Date
JPH02131187A true JPH02131187A (en) 1990-05-18
JPH0445230B2 JPH0445230B2 (en) 1992-07-24

Family

ID=17636831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28127788A Granted JPH02131187A (en) 1988-11-09 1988-11-09 Removal process for suspended impurities by mixed bed type filter desalting device

Country Status (1)

Country Link
JP (1) JPH02131187A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04244207A (en) * 1991-01-28 1992-09-01 Ebara Corp Treatment of water containing impurity of silica
US5387348A (en) * 1990-11-09 1995-02-07 Ebara Corporation Method of mixed-bed filtration and demineralization with ion-exchange resins
JP2009281875A (en) * 2008-05-22 2009-12-03 Ebara Corp Method and device for condensate demineralization
JP2009279519A (en) * 2008-05-22 2009-12-03 Ebara Corp Condensate demineralization method and condensate demineralizer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387348A (en) * 1990-11-09 1995-02-07 Ebara Corporation Method of mixed-bed filtration and demineralization with ion-exchange resins
JPH04244207A (en) * 1991-01-28 1992-09-01 Ebara Corp Treatment of water containing impurity of silica
JP2009281875A (en) * 2008-05-22 2009-12-03 Ebara Corp Method and device for condensate demineralization
JP2009279519A (en) * 2008-05-22 2009-12-03 Ebara Corp Condensate demineralization method and condensate demineralizer
US20090296873A1 (en) * 2008-05-22 2009-12-03 Takeshi Izumi Method and apparatus for condensate demineralization
US8861670B2 (en) 2008-05-22 2014-10-14 Ebara Corporation Method and apparatus for condensate demineralization

Also Published As

Publication number Publication date
JPH0445230B2 (en) 1992-07-24

Similar Documents

Publication Publication Date Title
US3240699A (en) Upflow regeneration method
JP2670154B2 (en) Separation and purification system of rare earth with reverse osmosis membrane separation process
JPS5952754A (en) Packing material for separation column
JPH0328797A (en) Method for removeing suspensible impurity of condensate by mixed end type condensate desalting device
JPH02131187A (en) Removal process for suspended impurities by mixed bed type filter desalting device
JPH11352283A (en) Condensate processing method and condensate demineralization device
JP4943377B2 (en) Condensate demineralization method and condensate demineralization apparatus
JPH0445231B2 (en)
JP4278211B2 (en) Pre-coating method for pre-coating filtration desalination equipment
JP3183354B2 (en) Method for adsorbing and separating heavy metals using tannin-based adsorbent and method for regenerating the adsorbent
JPH02131189A (en) Removal process for suspended impurities by mixed bed type filter desalting device
JPS5815193B2 (en) How to treat boron-containing water
JPH0569480B2 (en)
JPH02131190A (en) Removal process for suspended impurities by mixed bed type filter desalting device
JP2002361247A (en) Method for manufacturing pure water
RU2205692C2 (en) Ion-exchange treatment method for organics-containing water involving countercurrent regeneration of ion-exchange materials
JPH0512996B2 (en)
JPH1176840A (en) Method for separating mixed resin in mixed bed ion exchange resin tower and method for regenerating mixed bed sucrose refining apparatus
JP2001335315A (en) Apparatus and method for refining boron eluent
CN108083489A (en) A kind of waste water circulatory system
JPH03181385A (en) Removing method for suspendible impurity
RU2151180C1 (en) Method of vodka production
JPH0363439B2 (en)
JP4356987B2 (en) Condensate demineralization treatment method and apparatus and method for forming packed bed thereof
JPS5963200A (en) Selective removal of extractable sulfonic acid resin using acrylic anion exchange resin