JPH0512996B2 - - Google Patents

Info

Publication number
JPH0512996B2
JPH0512996B2 JP62335615A JP33561587A JPH0512996B2 JP H0512996 B2 JPH0512996 B2 JP H0512996B2 JP 62335615 A JP62335615 A JP 62335615A JP 33561587 A JP33561587 A JP 33561587A JP H0512996 B2 JPH0512996 B2 JP H0512996B2
Authority
JP
Japan
Prior art keywords
exchange resin
resin
cation exchange
water content
bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62335615A
Other languages
Japanese (ja)
Other versions
JPH01176491A (en
Inventor
Taku Ootani
Yoshitake Morikawa
Masahiro Hagiwara
Hideo Kawazu
Takeshi Izumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Toshiba Corp
Original Assignee
Ebara Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Toshiba Corp filed Critical Ebara Corp
Priority to JP62335615A priority Critical patent/JPH01176491A/en
Publication of JPH01176491A publication Critical patent/JPH01176491A/en
Publication of JPH0512996B2 publication Critical patent/JPH0512996B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、混床式濾過脱塩装置による懸濁性不
純物除去方法に関し、特に従来品よりも含水率を
増加させた陽イオン交換樹脂及び/又は陰イオン
交換樹脂を使用してなる混床式濾過脱塩装置によ
る懸濁性不純物除去方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for removing suspended impurities using a mixed-bed filtration and desalination apparatus, and particularly relates to a cation exchange resin and The present invention relates to a method for removing suspended impurities using a mixed bed filtration and desalination apparatus using an anion exchange resin.

(従来の技術) BWR型原子力発電所では原子炉の内部を常に
清浄な状態に維持しなければならないので、復水
器から炉内へ流入する復水を復水脱塩器によつて
浄化処理し、高度に浄化した後、炉内への冷却水
として利用している。
(Prior technology) In a BWR type nuclear power plant, the inside of the reactor must always be maintained in a clean state, so the condensate flowing into the reactor from the condenser is purified by a condensate demineralizer. After being highly purified, it is used as cooling water for the inside of the reactor.

この復水脱塩塔は、陽イオン交換樹脂と陰イオ
ン交換樹脂とが混合して充填された、いわゆる混
床式脱塩塔であつて、復水中のイオン成分と懸濁
固形成分(クラツドと通称される)とをイオン交
換及び吸着によつて分離し、復水を浄化するもの
である。
This condensate demineralization tower is a so-called mixed-bed demineralization tower filled with a mixture of cation exchange resin and anion exchange resin, and contains ionic components and suspended solid components (cruds) in condensate. (commonly called) by ion exchange and adsorption to purify condensate.

そして、陽イオン交換樹脂と陰イオン交換樹脂
とを混合して混床を形成する方法としては、従来 含水率(45〜55%)のゲル型陽イオン交換樹
脂とゲル型陰イオン交換樹脂とを用いる方法。
The conventional method of mixing a cation exchange resin and an anion exchange resin to form a mixed bed is to mix a gel type cation exchange resin and a gel type anion exchange resin with a water content (45 to 55%). Method used.

含水率(45〜55%)のポーラス型陽イオン交
換樹脂とポーラス型陰イオン交換樹脂とを用い
る方法が提案されていた。
A method using a porous cation exchange resin and a porous anion exchange resin with a water content (45 to 55%) has been proposed.

(発明が解決しようとする問題点) 前述の粒状イオン交換樹脂を用いる方法にあつ
ては、イオン交換樹脂に捕捉されたクラツドを逆
洗再生により除去し、イオン交換樹脂を清浄化
し、クラツドの分離効果を回復しているが、最
近、復水からのイオン成分及びクラツドの分離効
果のうち、クラツドの分離効果を強化することに
より冷却水から原子炉へ持ち込まれるクラツドを
低減し、プラント定検時の被曝総量を減らす動き
があり、このように、原子力発電所の冷却水に要
求されるクラツドの分離効果への要求が高度化さ
れていると、イオン交換樹脂のクラツド捕捉能力
はイオン交換樹脂とクラツドとの親和力の大きさ
に支配されることから、現在の粒状イオン交換樹
脂を用いる方法では含水率の低いイオン交換樹脂
を用いており、このイオン交換樹脂では比較的親
水性のものを主とするクラツドに対して親和力が
小さく、このクラツドの分離効果が小さいという
ことから、前述のような高度な要求に対応できな
いことが判つた。
(Problems to be Solved by the Invention) In the method using the granular ion exchange resin described above, the crud trapped in the ion exchange resin is removed by backwashing and regeneration, the ion exchange resin is cleaned, and the crud is separated. However, recently, the effect of separating ionic components and crud from condensate has been strengthened to reduce the amount of crud brought into the reactor from the cooling water. There is a movement to reduce the total amount of radiation exposure, and as the requirements for the crud separation effect required for cooling water at nuclear power plants have become more sophisticated, the crud trapping ability of ion exchange resins has improved compared to ion exchange resins. Current methods using granular ion-exchange resins use ion-exchange resins with low water content; It has been found that the above-mentioned high-level requirements cannot be met because the affinity for the cladding is small and the effect of separating this cladding is small.

本発明者らは、このような現状に鑑み鋭意研究
を重ね、本発明に想到したものであつて、本発明
は復水の処理操作においてクラツドの分離能力の
大きい混床式濾過脱塩装置による懸濁性不純物除
去方法を提供することを目的とする。
The inventors of the present invention have conducted intensive research in view of the current situation and have come up with the present invention. The object of the present invention is to provide a method for removing suspended impurities.

(問題点を解決するための手段) 本発明は、BWR型原子力発電プラントの一次
冷却水の処理の際に、粒状又は粉末状陽イオン交
換樹脂及び陰イオン交換手段からなる混床によつ
て濾過脱塩する方法において、 陽イオン交換樹脂及び陰イオン交換樹脂の含
水率を従来品のゲル型樹脂の標準値(45〜55
%)よりも増加させた範囲(55〜75%)の樹脂
により混床を形成する第一の手段、 陽イオン交換樹脂又は陰イオン交換樹脂のど
ちらか一方の含水率を、従来品のゲル型樹脂の
標準値(45〜55%)より増加させた範囲(55〜
75%)の樹脂により混床を形成する第二の手
段、 従来品イオン交換樹脂による混床上層部に従
来品ゲル型樹脂の標準値(45〜55%)より含水
率を増加させた範囲(55〜75%)に陽イオン交
換樹脂を積層させる第三の手段、 のうち、いずれかの手段によつて樹脂床を形成
し、BWR型原子力発電プラントの一次冷却水処
理時の懸濁性不純物除去能力の強化を特徴とする
混床式濾過脱塩装置による懸濁性不純物除去方法
である。
(Means for Solving the Problems) The present invention provides filtration using a mixed bed consisting of a granular or powdered cation exchange resin and an anion exchange means when treating the primary cooling water of a BWR type nuclear power plant. In the desalination method, the water content of the cation exchange resin and anion exchange resin is adjusted to the standard value of conventional gel type resin (45 to 55
The first method is to form a mixed bed with resin in an increased range (55-75%) than the conventional gel-type product. The range increased from the standard value (45 to 55%) of the resin (55 to 55%)
The second method is to form a mixed bed with a conventional gel-type resin (75%). A third method is to form a resin bed by one of the following methods: 55% to 75% of the total amount of cation exchange resin is layered on the cation exchange resin to remove suspended impurities during the treatment of primary cooling water of BWR type nuclear power plants. This is a method for removing suspended impurities using a mixed bed type filtration and desalination equipment, which is characterized by enhanced removal capacity.

本発明においては、従来の混床式濾過脱塩方法
に比較し、使用する陽イオン交換樹脂及び/又は
陰イオン交換樹脂の含水率が高いため、親水性の
高いクラツドとの親和性が高く、クラツド分離効
果が大きいことより濾過脱塩操作に際しよりクラ
ツド濃度の低い高純度の水を得ることができる。
In the present invention, compared to the conventional mixed bed filtration desalination method, the cation exchange resin and/or anion exchange resin used has a higher water content, so it has a higher affinity with the highly hydrophilic cladding. Since the crud separation effect is large, high purity water with a lower crud concentration can be obtained during filtration and desalination.

以下、本発明を従来技術と対比して述べれば、
第2図は強酸性陽イオン交換樹脂の含水率を横軸
に、樹脂破砕強度を縦軸に表わしたものであり、
これによれば含水率を増加させるほど樹脂の破砕
強度は低下し、強塩基性陰イオン交換樹脂でも同
様な傾向が見られる。
Below, the present invention will be described in comparison with the prior art.
Figure 2 shows the moisture content of a strongly acidic cation exchange resin on the horizontal axis and the resin crushing strength on the vertical axis.
According to this, the crushing strength of the resin decreases as the water content increases, and a similar tendency can be seen with strongly basic anion exchange resins.

第3図は、強酸性陽イオン交換樹脂の含水率を
横軸に、総交換客量を縦軸に表わしたものであ
り、これによれば含水率を増加させるほど総交換
客量は低下する。第4図は、強塩基性陰イオン交
換樹脂の含水率と総交換客量の関係であり、第3
図と同様の傾向が見られる。
Figure 3 shows the water content of strongly acidic cation exchange resin on the horizontal axis and the total exchange customer volume on the vertical axis. According to this, as the water content increases, the total exchange customer volume decreases. . Figure 4 shows the relationship between the water content of strongly basic anion exchange resin and the total exchange customer volume.
A similar trend can be seen in the figure.

以上述べたように、イオン交換樹脂の含水率を
増加させることにより、破砕強度、総交換客量等
の性質が劣化する傾向にあり、実際に行うに当た
つては含水率は、クラツド分離硬化と濾過脱塩操
作時に必要なその他の諸性質の限界値を併せて決
める必要があり、本発明においては、陽イオン交
換樹脂及び陰イオン交換樹脂の含水率を望ましく
は60〜70%にすることが適当と考えられる。
As mentioned above, by increasing the water content of ion exchange resin, properties such as crushing strength and total exchange customer volume tend to deteriorate. It is necessary to determine the limit values of other properties necessary for the filtration and desalination operation, and in the present invention, the water content of the cation exchange resin and anion exchange resin is desirably 60 to 70%. is considered appropriate.

本発明の懸濁性不純物除去方法におけるクラツ
ド分離効果を単床ミニカラム試験により従来の濾
過脱塩方法と比較する。
The cladding separation effect of the method for removing suspended impurities of the present invention will be compared with that of the conventional filtration desalting method using a single-bed mini-column test.

単床ミニカラム試験 試験条件 第5図の試験装置を使用し、以下の試験条件
により試験を行なつた。この試験装置では、内
径12mmφ×200mmの通水性耐圧カラムを使用し、
カラム内の樹脂層高さは133mmであつた。
Single-bed mini-column test Test conditions The test was conducted using the test apparatus shown in Figure 5 under the following test conditions. This test equipment uses a water-permeable pressure-resistant column with an inner diameter of 12 mmφ x 200 mm.
The height of the resin layer in the column was 133 mm.

樹脂仕様:強酸性ゲル型陽イオン樹脂(H型)
の含水率47、55、61、70%のものを使用。
Resin specifications: Strong acid gel type cation resin (H type)
Use those with a moisture content of 47, 55, 61, and 70%.

樹脂量:15ml 通水線流速:LV=108m/h 通水期間:各試験 約2週間 試験結果 陽イオン交換樹脂のみの単床ミニカラム試験
の結果は、第6図の通りであり、これによれば
含水率を増加させた方がクラツド分離効果が向
上することが確認できた。
Resin amount: 15 ml Linear water flow rate: LV = 108 m/h Water flow period: Approximately 2 weeks for each test Test results The results of the single-bed mini-column test using only cation exchange resin are shown in Figure 6. It was confirmed that the crud separation effect was improved by increasing the water content.

単床ミニカラム試験 試験条件 第5図の試験装置を使用し、以下の試験条件
により試験を行なつた。
Single-bed mini-column test Test conditions The test was conducted using the test apparatus shown in Figure 5 under the following test conditions.

樹脂仕様:強塩基性ゲル型陰イオン交換樹脂
(OH型)の含水率46、50、56,71%のも
のを使用。
Resin specifications: Strongly basic gel type anion exchange resin (OH type) with water content of 46, 50, 56, and 71% is used.

樹脂量:15ml 通水線流速:LV=108m/h 通水期間:各試験 約2週間 試験結果 陽イオン交換樹脂のみの単床ミニカラム試験
の結果は、第7図の通りであり、これによれば
含水率を増加させた方がクラツド分離効果が向
上することが確認できた。
Resin amount: 15ml Linear water flow rate: LV = 108m/h Water flow period: Approximately 2 weeks for each test Test results The results of the single bed mini column test using only cation exchange resin are shown in Figure 7. It was confirmed that the crud separation effect was improved by increasing the water content.

以上のミニカラム試験では陽イオン交換樹脂又
は陰イオン交換樹脂単独で上記したような効果を
奏するのであるから、それらを併用すればその分
離効果はさらに大きくなる。これが本発明におけ
る第一の手段である。
In the above mini-column test, the cation exchange resin or anion exchange resin alone produces the above effects, so if they are used in combination, the separation effect will be even greater. This is the first means in the present invention.

また、上記したように含水率の大きい陽イオン
交換樹脂又は陰イオン交換樹脂単独でクラツドの
分離効果があるのであるから、混床を形成するさ
いに一方のイオン交換樹脂に含水率の大きい陽イ
オン交換樹脂又は陰イオン交換樹脂を用い、他方
のイオン交換樹脂に含水率が45〜55%の従来品の
陰イオン交換樹脂又は陽イオン交換樹脂を用いて
も、十分その分離効果を奏することができる。こ
れが本発明における第二の手段である。
In addition, as mentioned above, since a cation exchange resin or an anion exchange resin with a high water content alone has the effect of separating cruds, when forming a mixed bed, one ion exchange resin has a cation exchange resin with a high water content. Even if an exchange resin or anion exchange resin is used, and the other ion exchange resin is a conventional anion exchange resin or cation exchange resin with a water content of 45 to 55%, the separation effect can be sufficiently achieved. . This is the second means in the present invention.

さらに、クラツドの分離効果を奏するためには
従来品のイオン交換樹脂による温床の上層部に含
水率の大きい陽イオン交換樹脂を積層させるよう
にしてもよく、これによつてもクラツドを十分分
離することができる。これが本発明における第三
の手段である。
Furthermore, in order to achieve the effect of separating cruds, a cation exchange resin with a high water content may be laminated on the upper layer of the hot bed made of conventional ion exchange resins, and this also allows sufficient separation of cruds. be able to. This is the third means in the present invention.

これらの手段のいずれによつても本発明の目的
を十分に達成することができる。
The objects of the present invention can be fully achieved by any of these means.

(実施例) 以下、実施例によつて本発明を具体的に説明す
る。本発明はこの実施例のみに限定されるもので
はない。
(Examples) Hereinafter, the present invention will be specifically explained using Examples. The present invention is not limited to this example.

実施例 本発明の懸濁性不純物除去方法におけるクラツ
ド分離効果を混床実機長カラム試験により確認し
た。
EXAMPLE The crud separation effect of the method for removing suspended impurities of the present invention was confirmed by a mixed bed actual length column test.

混床実機長カラム試験 試験条件 第8図の試験装置を使用し、以下の試験条件
により試験を行なつた。
Mixed bed actual machine length column test Test conditions The test was conducted under the following test conditions using the test equipment shown in Figure 8.

樹脂仕様:強酸性ゲル型陽イオン交換樹脂(H
型)の含水率47、55、61、70%のもの、並
びに従来含水率の強塩基性ゲル型陰イオン
交換樹脂(OH型)を組み合わせて混床状
態で使用、 樹脂量:陽イオン交換樹脂/陰イオン交換樹脂
比=1.66/1で層高90cm相当分(約2)
を混合して充填、 通水線流速:LV=108m/h 通水期間:2週間 試験結果 陰イオン交換樹脂は従来含水率品を用い、陽
イオン交換樹脂の含水率を変化させた混床によ
る混床実機長カラム試験の結果は第1図の通り
である。第1図は、陽イオン交換樹脂の含水率
を変えた場合の含水率とDF値との関係を示す
ものであつて、DF値とは、入口クラツド濃
度/出口クラツド濃度(ppb)を表わす。
Resin specifications: Strongly acidic gel type cation exchange resin (H
Type) with a water content of 47, 55, 61, and 70%, and a strong basic gel type anion exchange resin (OH type) with a conventional water content are used in a mixed bed state.Resin amount: cation exchange resin /anion exchange resin ratio = 1.66/1, equivalent to layer height 90cm (approximately 2)
Water flow rate: LV = 108 m/h Water flow period: 2 weeks Test results A mixed bed with a conventional water content product was used for the anion exchange resin and the water content of the cation exchange resin was changed. The results of the mixed bed actual length column test are shown in Figure 1. FIG. 1 shows the relationship between the water content and the DF value when the water content of the cation exchange resin is changed, and the DF value represents the inlet cladding concentration/outlet cladding concentration (ppb).

以上の試験結果によれば、本発明の懸濁性不純
物除去方法おけるクラツド分離効果は従来の濾過
脱塩方法よりも大幅に優れていることが確認され
た。
According to the above test results, it was confirmed that the crud separation effect in the method for removing suspended impurities of the present invention is significantly superior to that in the conventional filtration desalination method.

(発明の効果) 本発明は、使用する陽イオン交換樹脂及び/又
は陰イオン交換樹脂の含水率が高いため、親水性
の高いクラツドの親和力が高く、クラツド分離効
果が大きく、したがつて、従来の濾過脱塩方法よ
りもクラツド濃度の低い高純度の水を得ることが
できる。これにより冷却水から原子炉へ持ち込ま
れるクラツドの量を低減し、プラント定検時にお
ける被曝線量を減らすことができる。
(Effects of the Invention) The present invention has a high water content of the cation exchange resin and/or anion exchange resin used, so the affinity of the highly hydrophilic cladding is high, and the cladding separation effect is large. It is possible to obtain highly purified water with a lower crud concentration than the filtration desalination method. This reduces the amount of crud carried into the reactor from the cooling water and reduces the exposure dose during regular plant inspections.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、混床において陽イオン交換樹脂の含
水率を変えた場合の含水率とDF値との関係を示
し、第2図は、強酸性ゲル型陽イオン交換樹脂の
含水率と破砕強度との関係を示し、第3図は、強
酸性ゲル型陽イオン交換樹脂の含水率と総交換客
量との関係を示し、第4図は、強塩基性ゲル型陰
イオン交換樹脂の含水率と総交換客量との関係を
示し、第5図は、通水ミニカラム試験装置を示
し、第6図は、強酸基性ゲル型陽イオン交換樹脂
の含水率とクラツド分離能力との関係を示し、第
7図は、強塩基性ゲル型陰イオン交換樹脂の含水
率とクラツド分離能力との関係を示し、第8図は
混床実機長カラム試験装置を示す。
Figure 1 shows the relationship between the water content and DF value when the water content of the cation exchange resin is changed in a mixed bed, and Figure 2 shows the relationship between the water content and crushing strength of the strongly acidic gel type cation exchange resin. Figure 3 shows the relationship between the water content of the strongly acidic gel type cation exchange resin and the total exchange customer volume, and Figure 4 shows the relationship between the water content of the strongly basic gel type anion exchange resin. Figure 5 shows the water flow mini-column test device, and Figure 6 shows the relationship between the water content of the strongly acidic gel-type cation exchange resin and the crud separation ability. , FIG. 7 shows the relationship between water content and crud separation ability of a strongly basic gel type anion exchange resin, and FIG. 8 shows a mixed bed actual length column test apparatus.

Claims (1)

【特許請求の範囲】 1 BWR型原子力発電プラントの一次冷却水の
処理の際に、粒状又は粉末状陽イオン交換樹脂及
び陰イオン交換樹脂からなる混床によつて濾過脱
塩する方法において、 陽イオン交換樹脂及び陰イオン交換樹脂の含
水率を従来品のゲル型樹脂の標準値(45〜55
%)よりも増加された範囲(55〜75%)の樹脂
により混床を形成する第一の手段、 陽イオン交換樹脂又は陰イオン交換樹脂のど
ちらか一方の含水率を、従来品のゲル型樹脂の
標準値(45〜55%)より増加させた範囲(55〜
75%)の樹脂により混床を形成する第二の手
段、 従来品イオン交換樹脂による混床上層部に従
来品ゲル型樹脂の標準値(45〜55%)より含水
率を増加させた範囲(55〜75%)に陽イオン交
換樹脂を積層させる第三の手段、 のうち、いずれかの手段によつて樹脂床を形成
し、BWR型原子力発電プラントの一次冷却水処
理時の懸濁性不純物除去能力の強化を特徴とする
混床式濾過脱塩装置による懸濁性不純物除去方
法。
[Claims] 1. A method of filtering and desalting using a mixed bed consisting of a granular or powdered cation exchange resin and an anion exchange resin when treating primary cooling water of a BWR type nuclear power plant. The water content of ion exchange resin and anion exchange resin was adjusted to the standard value of conventional gel type resin (45 to 55
The first method is to form a mixed bed with a resin in an increased range (55-75%) than the conventional gel type. The range increased from the standard value (45 to 55%) of the resin (55 to 55%)
The second method is to form a mixed bed with a conventional gel-type resin (75%). A third method is to form a resin bed by one of the following methods: 55% to 75% of the total amount of cation exchange resin is layered on the cation exchange resin to remove suspended impurities during the treatment of primary cooling water of BWR type nuclear power plants. A method for removing suspended impurities using a mixed-bed filtration and desalination device, which is characterized by enhanced removal capacity.
JP62335615A 1987-12-29 1987-12-29 Elimination of suspended impurities by mixed-bed filter desalting device Granted JPH01176491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62335615A JPH01176491A (en) 1987-12-29 1987-12-29 Elimination of suspended impurities by mixed-bed filter desalting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62335615A JPH01176491A (en) 1987-12-29 1987-12-29 Elimination of suspended impurities by mixed-bed filter desalting device

Publications (2)

Publication Number Publication Date
JPH01176491A JPH01176491A (en) 1989-07-12
JPH0512996B2 true JPH0512996B2 (en) 1993-02-19

Family

ID=18290564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62335615A Granted JPH01176491A (en) 1987-12-29 1987-12-29 Elimination of suspended impurities by mixed-bed filter desalting device

Country Status (1)

Country Link
JP (1) JPH01176491A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387348A (en) * 1990-11-09 1995-02-07 Ebara Corporation Method of mixed-bed filtration and demineralization with ion-exchange resins

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559881A (en) * 1978-07-21 1980-05-06 Tokyo Electric Power Co Inc:The Treating method for condensed water
JPS57209643A (en) * 1981-06-19 1982-12-23 Toshiba Corp Method for evaluating precoat condition of powdery ion exchange resin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559881A (en) * 1978-07-21 1980-05-06 Tokyo Electric Power Co Inc:The Treating method for condensed water
JPS57209643A (en) * 1981-06-19 1982-12-23 Toshiba Corp Method for evaluating precoat condition of powdery ion exchange resin

Also Published As

Publication number Publication date
JPH01176491A (en) 1989-07-12

Similar Documents

Publication Publication Date Title
JPH0328797A (en) Method for removeing suspensible impurity of condensate by mixed end type condensate desalting device
US4853130A (en) Method for purifying liquids
JP4467488B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP3687829B2 (en) Condensate treatment method and condensate demineralizer
JP4943377B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP3183354B2 (en) Method for adsorbing and separating heavy metals using tannin-based adsorbent and method for regenerating the adsorbent
JPH0327264B2 (en)
JPH0512996B2 (en)
EP0428868A2 (en) Materials for removing suspended impurities
JPH0569480B2 (en)
US5387348A (en) Method of mixed-bed filtration and demineralization with ion-exchange resins
US4927796A (en) Compositions for purifying liquids
JPS5815193B2 (en) How to treat boron-containing water
JPH0445230B2 (en)
JPH0445231B2 (en)
JPH0445233B2 (en)
JPH0445232B2 (en)
JP4383091B2 (en) Condensate desalination method and apparatus
JP4356987B2 (en) Condensate demineralization treatment method and apparatus and method for forming packed bed thereof
JPH0363439B2 (en)
RU2205692C2 (en) Ion-exchange treatment method for organics-containing water involving countercurrent regeneration of ion-exchange materials
JP2957054B2 (en) How to prevent or eliminate ion exchange resin clamping
JP3599777B2 (en) Ion exchange resin and desalination device filled with the resin
JP2892811B2 (en) Ion exchange resin, condensate desalination tower and condensate purification device using this resin
JPS631494A (en) Mixed bed type filtering and desalting method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term