JPS631494A - Mixed bed type filtering and desalting method - Google Patents

Mixed bed type filtering and desalting method

Info

Publication number
JPS631494A
JPS631494A JP10003587A JP10003587A JPS631494A JP S631494 A JPS631494 A JP S631494A JP 10003587 A JP10003587 A JP 10003587A JP 10003587 A JP10003587 A JP 10003587A JP S631494 A JPS631494 A JP S631494A
Authority
JP
Japan
Prior art keywords
anion
mixed bed
exchange resins
cation exchange
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10003587A
Other languages
Japanese (ja)
Inventor
Masahiro Hagiwara
正弘 萩原
Yasushi Isayama
諌山 保志
Yukio Ikeda
幸雄 池田
Takao Ino
隆夫 猪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP10003587A priority Critical patent/JPS631494A/en
Publication of JPS631494A publication Critical patent/JPS631494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To miniaturize an apparatus, by a method wherein the particle having a specific particle size range in a region where the final speeds of ion exchange resins becomes equal is separated preliminarily, and anion and cation exchange resins are mixed at a ratio for making the final speeds of both resins equal to each other to form a mixed bed. CONSTITUTION:The particle having a specific particle size range in a region where final speeds of anion and cation exchange resins become equal is separated and removed preliminarily from at least one of the populations of both resins. In backwashing separation, the quantity of particles wherein the final speeds in water become equal to each other is reduced to a predetermined ratio of less to perform mixing to form a mixed bed. Then, the particle quantity of a remaining mixed bed is reduced to make it possible to perform separation even when the particles of both ion exchange resins are made fine. By this method, an ion exchange speed can be increased and clad separation capacity can be enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は陰イオン交換樹脂と陽イオン交換樹脂とを混合
してなる混床を用いる混床式炉過脱塩方法に関するもの
である. 〔従来技術〕 BWR型原子力発電所では反応炉の内部を常に清浄な状
態に維持しなければならないので、復水器から炉心へ流
入する復水を復水脱塩塔によって浄化処理し、高度に浄
化したのち炉心への冷却水として利用している. この復水脱塩塔は陰イオン交換樹脂と陽イオン交換樹脂
とが混合して充填された所謂混床式脱塩塔であって復水
中のイオン成分と懸濁固形成分(クラッドと通称される
.)とをイオン交換及び吸着によって分離し復水を浄化
するものである.そして陰イオン交換樹脂と陽イオン交
換樹脂とを混合して混床を形成する方法としては、■陰
イオン交換体及び陽イオン交換体ともにビーズ状のイオ
ン交換樹脂(粒径To(lpm以上)を用いる方法、■
陰イオン交換体及び陽イオン交換体ともに微細な粉末状
のイオン交換樹脂(粒径2QQ〜400メッシュ)を用
いる方法、■陰イオン交換体及び賜イオン交換体のいず
れか一方を微細なイオン交換繊維とし他方を粉末状のイ
オン交換体とする方法等が提案されていた。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a mixed bed furnace over-desalination method using a mixed bed made of a mixture of an anion exchange resin and a cation exchange resin. [Prior art] In a BWR nuclear power plant, the inside of the reactor must always be maintained in a clean state, so the condensate that flows into the reactor core from the condenser is purified by a condensate demineralization tower, and highly purified. After being purified, it is used as cooling water for the reactor core. This condensate demineralization tower is a so-called mixed-bed demineralization tower filled with a mixture of anion exchange resin and cation exchange resin, and is a so-called mixed bed demineralization tower that is filled with a mixture of anion exchange resin and cation exchange resin, and contains ionic components and suspended solid components (commonly called cladding) in the condensate. .) by ion exchange and adsorption to purify condensate. The method of mixing an anion exchange resin and a cation exchange resin to form a mixed bed is as follows: 1) Bead-shaped ion exchange resin (particle size To (lpm or more)) is used for both the anion exchanger and the cation exchanger. How to use, ■
A method using fine powdered ion exchange resin (particle size 2QQ to 400 mesh) for both the anion exchanger and the cation exchanger; ■ Either the anion exchanger or the cation exchanger is replaced with fine ion exchange fibers. A method has been proposed in which the other is a powdered ion exchanger.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

復水からイオン成分及びクラソドを分離する効果の点か
らみれば後二者の粉末イオン交換樹脂同士或いは粉末イ
オン交換樹脂と微細なイオン交換繊維との組合せによる
混床の方が小さな設備で高度に浄化できる利点がある.
然し乍ら、この後二者の方法ではクラソドの蓄積によっ
て通液抵抗が著しく高くなったり或いはイオン交換体の
交換能力が低下した場合におけるイオン交換体の再生方
法がないことから、その全量を廃棄しなければならず必
ずしも全ての面において有利な方法とは云えないもので
あった. 他方前者の粒状イオン交換樹脂を用いる方法にあっては
従来からその再生方法は確立されてはいるが、原子力発
電所の冷却水に要求される水質があまりにも高純度であ
るが故にそのイオ゛ン交換反応の速度はイオン交換樹脂
面における境膜拡敗に支配されることとなり、又、.ク
ラソドの分離能はイオン交換樹脂層の表面炉過或いはイ
オン交換樹脂の吸着によって支配されることから粒径が
大きく単位容積当りの表面積が小さい分だけそのイオン
交換能力及びクラフド分離能力は粉末イオン交換樹脂或
いは微細なイオン交換繊維を用いる方法に比べて低くな
らざるを得なかった.従って粒径を小にしてイオン交換
能力、クラッド分離能力を増大せしめることができなか
った。
From the point of view of the effect of separating ionic components and Clasodes from condensate, the latter two mixed bed combinations of powdered ion exchange resins or a combination of powdered ion exchange resins and fine ion exchange fibers are more effective with smaller equipment. It has the advantage of being purifiable.
However, in both methods, there is no way to regenerate the ion exchanger in the event that the liquid passage resistance becomes extremely high due to the accumulation of Clasodes or the exchange capacity of the ion exchanger decreases, so the entire amount must be discarded. However, it was not necessarily an advantageous method in all aspects. On the other hand, in the former method of using granular ion-exchange resin, the regeneration method has been established for a long time, but the water quality required for cooling water at nuclear power plants is too high in purity. The rate of the ion exchange reaction is controlled by the expansion of the membrane on the ion exchange resin surface, and... The separation ability of Clathod is controlled by the surface furnace filtration of the ion exchange resin layer or the adsorption of the ion exchange resin, so as the particle size is large and the surface area per unit volume is small, its ion exchange ability and Crud separation ability are lower than that of powder ion exchange. Compared to methods using resin or fine ion-exchange fibers, it had to be lower. Therefore, it has not been possible to increase the ion exchange ability and cladding separation ability by reducing the particle size.

さらに、従来の混床法におけるイオン交換樹脂の再生に
ついて述べれば、混床の下方から上方に向って水を供給
し、イオン交換樹脂層全体を流動化せしめ流動層のもつ
比重差分離作用に基づいて同一粒径の陰・陽イオン交換
樹脂の相互の比重差を利用して比重が小さい方のイオン
交換樹脂を上方に、そして他方のイオン交換樹脂を下方
にと分離し、その後陰・陽イオン交換樹脂を別のタンク
に移送し陰イオン交換樹脂に対してはNaOH水溶液で
再生処理し、陽イオン交換樹脂に対しては希硫酸で再生
処理しその後適宜水洗してから、相互に混合すると云う
ものであったが、この再生処理を可能とならしめるには
混床中の陰イオン交換体と陽イオン交換体とを相互に分
離する手段が存在することが必須の条件であった.例え
ば一般的なビーズ状のイオン交換樹脂からなる混床法に
おける陰イオン交換樹脂と陽イオン交換樹脂との分離に
ついてみると、陰・陽イオン交換樹脂の粒度分布はほぼ
対数正規率紙上で直線をなしそのモード値は約700μ
m、幾何標準偏差1.3以上で与えられるものであり、
陽イオン交換樹脂の密度が約1.28g/aJ、陰イオ
ン交換樹脂の密度が約1.07g/aJである.従って
、水中における各々の粒子の終末速度は粒径を700μ
mとすれば陽イオン交換樹脂では3.9CI1/秒、陰
イオン交1^樹脂では1.6cm/秒となり、この終末
速度の差によって陰イオン交喚樹脂を上方に陽イオン交
換樹脂を下方にと分離するものであった. 然しなから、従来の粒状イオン交換樹脂による混床法で
は単に陰・陽イオン交換樹脂の比重差だけに起因する終
末速度の差だけを利用するものであって、前述の如く性
能を向上せしめるために陰・陽イオン交換樹脂の粒径を
小さくしようとする場合には、陽イオン交換樹脂の上部
と陰イオン交換樹脂の下部とにおいて双方のイオン交換
樹脂の混合層が一層多く形成されるものであった.この
混合店の中の粒子は終末速度がほぼ等しく、長時間の通
水を行っても分離することができず、このために粒径を
小さくすることを阻害するものであった. 発明者はこのような現状に鑑み鋭意研究を重ね、本発明
に想到したものであって、本発明は復水などの脱塩操作
において、イオン交換体の粒径を小さくすることができ
、イオン交換速度が大きく、クラソドの分#能力が大き
く、装置を小型となし、しかも陰・陽イオン交換樹脂分
離性能を向上せしめてイオン交換体を再生利用すること
が可能な混床式が過脱塩方法を提供することを目的とす
るものである. 〔問題点を解決するための手段〕 本発明は、粒状の陰イオン交換樹脂及び陽イオン交喚樹
脂からなる混床によって}p過脱塩する方法において、
粒径が対数正規分布をなす陰・陽イオン交換樹脂の少な
くとも一方の母集団から、終末速度が等しくなる領域の
特定の粒径範囲の粒子を予め分離除去し、陰・陽イオン
交換樹脂の水中における終末速度が相互に等しくなる割
合を全樹脂量に対し所定の割合未満とせしめた後に、該
陰及び陽イオン交換樹脂を混合して混床を形成せしめて
ろ過脱塩を行うことを特徴とする混床式炉過脱塩方法で
ある. 〔作 用〕 本発明は、陰・陽イオン交換樹脂の少な《とも一方の母
集団から、終末速度が等しくなる領域の特定の粒径範囲
の粒子を予め分離除去したものを混合して混床を形成す
るようにして、逆洗分離に際して水中における終末速度
が相互に等しくなる粒子の量を減らして或る所定の割合
以下となし、残留混合層の粒子量を少量となし、両イオ
ン交換樹脂の粒径を微小化しても十分分離を行うことを
可能となし、再生が可能となった.このように微小化し
たイオン交換樹脂が実用的に使用できるようになったこ
とにより、イオン交換速度が大となり、クラッドの分離
能力が向上し、7戸過脱水効果が向上し、装置の小型化
をはかることができる,本発明においては比重差のみに
よる従来の方法により再生可能な限度の混床法に比較し
、陰・陽イオン交換樹脂の粒径が小さくなっているので
が過脱塩操作に際し、より高純度の水を得ることができ
、さらに、より多量のクラッドを吸着分離することがで
き、加うるに、従来方法ではとうてい分離できない小さ
な粒径範囲のイオン交換樹脂であっても容易に分離する
ことができるものである.〔実施例〕 本発明の実施例につき説明する。
Furthermore, regarding the regeneration of ion exchange resin in the conventional mixed bed method, water is supplied from the bottom of the mixed bed upwards to fluidize the entire ion exchange resin layer, based on the specific gravity difference separation effect of the fluidized bed. Using the difference in specific gravity between anion and cation exchange resins with the same particle size, the ion exchange resin with the smaller specific gravity is separated upwards and the other ion exchange resin is separated downwards, and then the anions and cations are separated. The exchange resin is transferred to another tank, and the anion exchange resin is regenerated with an aqueous NaOH solution, and the cation exchange resin is regenerated with dilute sulfuric acid, then washed with water as appropriate, and then mixed together. However, in order to make this regeneration process possible, it was essential to have a means to separate the anion exchanger and cation exchanger in the mixed bed. For example, when looking at the separation of an anion exchange resin and a cation exchange resin in a mixed bed method consisting of general bead-shaped ion exchange resins, the particle size distribution of the anion and cation exchange resins almost forms a straight line on lognormal paper. NoneThe mode value is about 700μ
m, which is given by the geometric standard deviation of 1.3 or more,
The density of the cation exchange resin is about 1.28 g/aJ, and the density of the anion exchange resin is about 1.07 g/aJ. Therefore, the terminal velocity of each particle in water is 700μ
If m is 3.9 CI1/sec for the cation exchange resin and 1.6 cm/sec for the anion exchange resin, this difference in terminal velocity causes the anion exchange resin to move upward and the cation exchange resin to move downward. It was to be separated from the However, in the conventional mixed bed method using granular ion exchange resins, only the difference in terminal velocity resulting from the difference in specific gravity between anion and cation exchange resins is utilized, and as mentioned above, in order to improve performance, When attempting to reduce the particle size of the anion/cation exchange resin, more mixed layers of both ion exchange resins are formed at the upper part of the cation exchange resin and the lower part of the anion exchange resin. there were. The particles in this mixing store had almost the same terminal velocity and could not be separated even after a long period of water flow, which hindered the reduction of particle size. In view of the current situation, the inventor conducted extensive research and came up with the present invention.The present invention enables the particle size of the ion exchanger to be reduced in desalting operations such as condensate, and the ion exchanger can be reduced in size. Over desalination is a mixed bed type that has a high exchange rate, a large capacity for Clathod, a compact equipment, and improves the separation performance of anion and cation exchange resins, making it possible to recycle the ion exchanger. The purpose is to provide a method. [Means for Solving the Problems] The present invention provides a method for overdesalination using a mixed bed consisting of a granular anion exchange resin and a cation exchange resin.
Particles in a specific particle size range in the region where the terminal velocity is equal are separated and removed in advance from at least one population of anion and cation exchange resins whose particle sizes form a lognormal distribution, and the particles of the anion and cation exchange resin in water are The anion and cation exchange resins are mixed to form a mixed bed and filter desalination is performed after making the ratio at which the terminal velocities of This is a mixed bed furnace over-desalination method. [Function] The present invention provides a mixed bed in which particles of a specific particle size range in a region where the terminal velocity is equal are separated and removed from at least one population of anion and cation exchange resins. The amount of particles whose terminal velocities in water are equal to each other during backwash separation is reduced to a certain predetermined ratio or less, and the amount of particles in the residual mixed layer is reduced to a small amount. Even if the particle size is reduced, sufficient separation can be achieved, making regeneration possible. With the practical use of miniaturized ion exchange resins, the ion exchange rate has increased, the cladding separation ability has improved, the over-dehydration effect has improved, and the equipment has become more compact. In the present invention, the particle size of the anion/cation exchange resin is smaller than that of the mixed bed method, which uses only the difference in specific gravity to limit regeneration by the conventional method. In addition, it is possible to obtain water of higher purity, and to adsorb and separate a larger amount of crud.In addition, it is possible to easily separate ion exchange resins in the small particle size range, which cannot be easily separated using conventional methods. It can be separated into two parts. [Example] An example of the present invention will be described.

第1図は第1表のXI[及びX[[の陰及び陽イオン交
換樹脂の終末速度分布を示したものであり、従来の方法
では終末速度が1. 5 〜2 m/seeの&alI
Ilで両者の分布が重なり、この部分は逆洗分離ができ
ない範囲であった。しかし、陽イオン交換樹脂XII+
を420μm以下の微粒子を篩分により予め除去すると
、Xl[[のグラフの斜線部分のみ残り、XI[と重な
る部分がなくなるので終末速度は完全に差がつき、分離
を確実に行うことができ、モード値が500um程度に
微小化されたイオン交換樹脂でも実用的に確実に分離可
能となり、再生可能となる. なお、この重なる部分は、ゼロでなくとも、全体に対し
或る割合(例えば5%)未満であればよい。
FIG. 1 shows the terminal velocity distribution of the anion and cation exchange resins of XI[ and X[[ in Table 1. In the conventional method, the terminal velocity was 1. &alI of 5 ~ 2 m/see
The distributions of the two overlapped in Il, and this part was in a range where backwash separation could not be performed. However, cation exchange resin XII+
If fine particles of 420 μm or less are removed in advance by sieving, only the shaded part of the graph of Xl[[ will remain, and there will be no part that overlaps with XI[, so the terminal velocity will be completely different and separation can be performed reliably. Even ion exchange resins with miniaturized mode values of around 500 um can be reliably separated and regenerated. Note that this overlapping portion does not have to be zero, but only needs to be less than a certain percentage (for example, 5%) of the whole.

X■の大粒径側を除去して分布線図の重なる部分をなく
してもよい. 両グループとも重なる部分を除去してもよい。
It is also possible to eliminate the overlapping part of the distribution diagram by removing the large grain size side of X■. The overlapping portions of both groups may be removed.

また、陰イオン交換樹脂x■も併せて、予め420μm
以下の微粒子を篩分にて除去するとx■の斜線部分のみ
残るようになり、逆洗時にキャリーオーバーにより逸流
するのを防ぐことができる.また第2図は第3表XrV
(モード値500μm)とxv(モード値600μm)
の樹脂のそれぞれ420μm以下のものを篩分し除去し
たものであって、篩分によって除去される樹脂t(図中
斜線のない部分)が第3図のものよりも少なくなってい
る。
In addition, the anion exchange resin
When the following particulates are removed by sieving, only the shaded part of x■ remains, which prevents them from escaping due to carryover during backwashing. Also, Figure 2 shows Table 3
(mode value 500μm) and xv (mode value 600μm)
The resins of 420 μm or less were sieved and removed, and the amount of resin t removed by sieving (the area without diagonal lines in the figure) is smaller than that in FIG. 3.

第  1  表 陰・陽イオン交換樹脂の分離は各々の樹脂の粒径分布に
よっても影響を受けるものであって、発明者の実測では
、ほとんど全ての粒状イオン交喚樹脂の粒径分布は対数
正規分布をしており、その幾何標準偏差(シグマ)が1
.30をこえる値では樹脂の分離が不良となり、好まし
くない。従って、幾何標準偏差を1.3以下にすること
を併用すれば、分離性能は一層向上する。
Table 1 Separation of anion and cation exchange resins is also affected by the particle size distribution of each resin, and according to the inventor's actual measurements, the particle size distribution of almost all particulate ion exchange resins is lognormal. distribution, and its geometric standard deviation (sigma) is 1
.. If the value exceeds 30, the separation of the resin will be poor, which is not preferable. Therefore, if the geometric standard deviation is set to 1.3 or less, the separation performance is further improved.

例えば第3図は幾何標準偏差の影古を見るために、これ
を種々変化させた場合の終末速度の分布を示したもので
あり、曲}5 VI〜X+は、各々第2表の■〜XIの
樹脂に対応するものである。
For example, Figure 3 shows the distribution of terminal velocity when varying the geometric standard deviation in order to see the influence of the geometric standard deviation. This corresponds to the resin of XI.

第2表 第3図は陰・陽イオン交換樹脂の粒径がモード値で全て
550μmであるが、たとえ同一粒径(モード値)であ
っても幾何標準偏差が1.23未満であるならば、陰・
陽イオン交換樹脂の効果的な分離は可能となる. 勿論、イオン交換樹脂のこの幾何標準偏差(シグマ)が
1.15未満であるならばより完全な分離が可能となり
、さらに陰・陽イオン交換樹脂の粒径(モード値)に差
をつけることによって陰・陽イオン交換樹脂の分離操作
は容易性を増し、この方法を併用することにより一層確
実なものとなる.このようにして、陰・陽イオン交換樹
脂の水中における終末速度が相互に等しくなる割合を全
樹脂量に対して所定の割合未満とする. 所定の割合としては5%が好ましく、2%が一層好まし
い.これにより確実に分離が行え、分離作業に要する時
間も短縮できる. 第2図の陰・陽イオン交換樹脂の組合せと、従来例とし
て、共にモード値760μm、シグマ1.30の陰・陽
イオン交換樹脂の組合せとで各々900+nの充填層高
でクラッドの濃度1 0 ppbの水のiP過脱塩を行
ったところ、混床出口におけるクランドの濃度は後者が
2ρpbであるのに対し、前者即ち本発明の実施例にお
いてはl  ppbとなり極めて高純度の水を得ること
ができた。しかも陰・陽イオン交換樹脂の粒径の粒径が
小さくなることによるが過抵抗の増加は僅かに35%で
あった。さらにこの混床を逆洗分離したところ従来例と
ほぼ等しい時間で陰イオン交換樹脂と陽イオン交換樹脂
とが分離できた。
Table 2 and Figure 3 show that the particle sizes of the anion and cation exchange resins are all 550 μm in mode value, but even if the particle size (mode value) is the same, if the geometric standard deviation is less than 1.23. ,shadow·
Effective separation of cation exchange resins becomes possible. Of course, if the geometric standard deviation (sigma) of the ion exchange resin is less than 1.15, more complete separation is possible, and by making a difference in the particle size (mode value) of the anion and cation exchange resins, Separation operations for anion and cation exchange resins become easier and more reliable when used in combination with this method. In this way, the proportion at which the terminal velocities of anion and cation exchange resins in water are equal to each other is set to be less than a predetermined proportion of the total amount of resin. The predetermined percentage is preferably 5%, more preferably 2%. This allows for reliable separation and reduces the time required for separation work. The combination of anion and cation exchange resins shown in Figure 2 and the conventional combination of anion and cation exchange resins with a mode value of 760 μm and a sigma of 1.30 each have a packed bed height of 900+n and a cladding concentration of 10. When iP over-desalination of ppb water was carried out, the concentration of crand at the outlet of the mixed bed was 2ρppb in the latter case, whereas it was 1 ppb in the former case, that is, in the embodiment of the present invention, making it possible to obtain water of extremely high purity. was completed. Furthermore, the increase in excessive resistance was only 35% due to the decrease in the particle size of the anion/cation exchange resin. Furthermore, when this mixed bed was backwashed and separated, the anion exchange resin and the cation exchange resin could be separated in approximately the same time as in the conventional example.

〔発明の効果〕〔Effect of the invention〕

本発明により、逆洗に際し、微小粒径であっても陽イオ
ン交換樹脂と陰イオン交換樹脂との分離を確実に効率よ
く行うことができ、両イオン交換樹脂の粒径を微小化す
ることができ、イオン交換速度を高め、クランド分離能
力を高め、高純度の水を得ることができ、装置を小型化
することができる混床式が過脱塩方法を提供することが
でき、実用上極めて大なる効果を奏する。
According to the present invention, during backwashing, it is possible to reliably and efficiently separate the cation exchange resin and anion exchange resin even if the particle size is minute, and it is possible to reduce the particle size of both ion exchange resins. The mixed bed method can provide an over-desalination method that can increase the ion exchange rate, increase the clan separation ability, obtain high purity water, and reduce the size of the equipment, and is extremely practical in practice. It has a great effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の実施例に関し、イオン交換
樹脂の420μm以下の粒径を除去した場合の終末速度
の分布を表わす線図、第3図は粒径の幾何標準偏差の影
響を示す線図である.特許出願人     株式会社 
荏原製作所代理人弁理士    高  木  正  行
代理人弁理士    依 田  孝 次 郎JL&&L
防丙ec) a Lcz <cmtsec > 器Lt&(CrvSec)
Figures 1 and 2 are diagrams showing the distribution of terminal velocity when particles of ion exchange resin with a particle size of 420 μm or less are removed, and Figure 3 is a graph showing the influence of the geometric standard deviation of particle size, regarding the examples of the present invention. This is a line diagram showing . Patent applicant Co., Ltd.
Ebara Corporation's representative patent attorney: Tadashi Takagi Patent attorney's representative: Takajiro Yoda JL&&L
Bohei ec) a Lcz <cmtsec > vessel Lt&(CrvSec)

Claims (1)

【特許請求の範囲】[Claims] (1)粒状の陰イオン交換樹脂及び陽イオン交換樹脂か
らなる混床によって濾過脱塩する方法において、 粒径が対数正規分布をなす陰・陽イオン交換樹脂の少な
くとも一方の母集団から、終末速度が等しくなる領域の
特定の粒径範囲の粒子を予め分離除去し、陰・陽イオン
交換樹脂の水中における終末速度が相互に等しくなる割
合を全樹脂量に対し所定の割合未満とせしめた後に、該
陰及び陽イオン交換樹脂を混合して混床を形成せしめて
ろ過脱塩を行うことを特徴とする混床式濾過脱塩方法。
(1) In a method of filtration and desalination using a mixed bed consisting of granular anion exchange resins and cation exchange resins, the terminal velocity is After preliminarily separating and removing particles in a specific particle size range in the region where the values are equal, and making the ratio at which the terminal velocities of the anion and cation exchange resins in water are equal to each other to be less than a predetermined ratio to the total amount of resin, A mixed bed filtration and desalination method characterized in that the anion and cation exchange resins are mixed to form a mixed bed to perform filtration and desalination.
JP10003587A 1987-04-24 1987-04-24 Mixed bed type filtering and desalting method Pending JPS631494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10003587A JPS631494A (en) 1987-04-24 1987-04-24 Mixed bed type filtering and desalting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10003587A JPS631494A (en) 1987-04-24 1987-04-24 Mixed bed type filtering and desalting method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2203483A Division JPS59147690A (en) 1983-02-15 1983-02-15 Mixed bed filtering and demineralizing method

Publications (1)

Publication Number Publication Date
JPS631494A true JPS631494A (en) 1988-01-06

Family

ID=14263272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10003587A Pending JPS631494A (en) 1987-04-24 1987-04-24 Mixed bed type filtering and desalting method

Country Status (1)

Country Link
JP (1) JPS631494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202119A (en) * 1997-01-28 1998-08-04 Kurita Water Ind Ltd Mixed-bed type ion-exchange resin tower

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202119A (en) * 1997-01-28 1998-08-04 Kurita Water Ind Ltd Mixed-bed type ion-exchange resin tower

Similar Documents

Publication Publication Date Title
JPH0328797A (en) Method for removeing suspensible impurity of condensate by mixed end type condensate desalting device
JPS6136198B2 (en)
JPS631494A (en) Mixed bed type filtering and desalting method
JP3183354B2 (en) Method for adsorbing and separating heavy metals using tannin-based adsorbent and method for regenerating the adsorbent
US3835044A (en) Process for separating neptunium from thorium
EP0428868A2 (en) Materials for removing suspended impurities
US4927796A (en) Compositions for purifying liquids
US5387348A (en) Method of mixed-bed filtration and demineralization with ion-exchange resins
JPH0230313B2 (en)
US6872308B1 (en) Condensate polisher with deep cation bed and powdered resin bed
JPH0569480B2 (en)
JP4502084B2 (en) Mixed bed type ion exchange resin tower and method for forming the mixed bed
JPH0230314B2 (en)
JPH0512996B2 (en)
JP2957054B2 (en) How to prevent or eliminate ion exchange resin clamping
JPS59183398A (en) Maintenance system of condensate desalt tower
JPH0445230B2 (en)
JPH02131188A (en) Removal process for suspended impurities by mixed bed type filter desalting device
JPS6059013B2 (en) How to regenerate mixed ion exchange resin
SU1692935A1 (en) Method of ultimate purification of saturated solutions of potassium dihydrogen and dideuterium phosphates
EP0484984B1 (en) Method of mixed-bed filtration and demineralization with ion-exchange resins
CA1080376A (en) Process for regeneration of mixed anion and cation exchanged resins
JP4356987B2 (en) Condensate demineralization treatment method and apparatus and method for forming packed bed thereof
JPS6140462B2 (en)
JPH0445232B2 (en)