JPH0569480B2 - - Google Patents

Info

Publication number
JPH0569480B2
JPH0569480B2 JP62335614A JP33561487A JPH0569480B2 JP H0569480 B2 JPH0569480 B2 JP H0569480B2 JP 62335614 A JP62335614 A JP 62335614A JP 33561487 A JP33561487 A JP 33561487A JP H0569480 B2 JPH0569480 B2 JP H0569480B2
Authority
JP
Japan
Prior art keywords
exchange resin
degree
crosslinking
resin
dvb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62335614A
Other languages
Japanese (ja)
Other versions
JPH01174998A (en
Inventor
Taku Ootani
Yoshitake Morikawa
Masahiro Hagiwara
Hideo Kawazu
Takeshi Izumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Toshiba Corp
Original Assignee
Ebara Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Toshiba Corp filed Critical Ebara Corp
Priority to JP62335614A priority Critical patent/JPH01174998A/en
Publication of JPH01174998A publication Critical patent/JPH01174998A/en
Publication of JPH0569480B2 publication Critical patent/JPH0569480B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、混床式濾過脱塩装置による懸濁不純
物除去方法に関し、特に従来より架橋度を小さく
した陽イオン交換樹脂と陰イオン交換樹脂を用い
てなる混床式濾過脱塩装置による懸濁不純物除去
方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for removing suspended impurities using a mixed bed filtration and desalination apparatus, and in particular to a method for removing suspended impurities using a mixed bed type filtration and desalination apparatus, and in particular a method for removing suspended impurities using a cation exchange resin and an anion exchange resin that have a lower degree of crosslinking than conventional ones. The present invention relates to a method for removing suspended impurities using a mixed bed type filtration and desalination apparatus.

(従来の技術) BWR型原子力発電所では原子炉の内部を常に
清浄な状態に維持しなければならないので、復水
器から炉内へ流入する復水を復水脱塩塔によつて
浄化処理し高度に浄化したのち炉内への冷却水と
して利用している。この復水脱塩塔は、陰イオン
交換樹脂と陽イオン交換樹脂とが混合して充填さ
れた所謂混床式脱塩塔であつて、復水中のイオン
成分と懸濁固形成分(クラツドと通称される)と
をイオン交換・濾過及び吸着によつて分離し、復
水を浄化するものである。
(Conventional technology) In a BWR type nuclear power plant, the inside of the reactor must always be maintained in a clean state, so the condensate flowing into the reactor from the condenser is purified by a condensate demineralization tower. After being highly purified, it is used as cooling water inside the reactor. This condensate demineralization tower is a so-called mixed bed demineralization tower packed with a mixture of anion exchange resin and cation exchange resin, and contains ionic components and suspended solid components (commonly known as cladding) in condensate. This method purifies the condensate by separating the condensate (condensed water) by ion exchange, filtration, and adsorption.

そして、陽イオン交換樹脂と陰イオン交換樹脂
とを混合して混床を形成する方法としては、ゲ
ル型陽イオン交換樹脂とゲル型陰イオン交換樹脂
とを用いる方法、ポーラス型陽イオン交換樹脂
とポーラス型陰イオン交換樹脂とを用いる方法が
提案され、これらにおいては、先行プラントでの
使用実績、イオン交換能力が比較的大きいこと、
並びに比較的強度が大きいことによる取扱いの容
易さ等から従来の陽イオン交換樹脂及び陰イオン
交換樹脂とも架橋度がDVB含率で約8%と比較
的高いものが使用されている。
Methods of mixing a cation exchange resin and an anion exchange resin to form a mixed bed include a method using a gel type cation exchange resin and a gel type anion exchange resin, a method using a porous type cation exchange resin, and a method using a gel type cation exchange resin and a gel type anion exchange resin. A method using a porous anion exchange resin has been proposed, and these have a track record of use in previous plants, have a relatively large ion exchange capacity,
In addition, because of their relatively high strength and ease of handling, both conventional cation exchange resins and anion exchange resins have a relatively high crosslinking degree of about 8% in terms of DVB content.

最近、復水からのイオン成分及びクラツドの分
離について、クラツドの分離機能を強化すること
により、冷却水から原子炉へ持ち込まれるクラツ
ドの量を低減し、プラント定検時の被曝線量を減
らすことが求められており、従来の粒状イオン交
換樹脂を用いる方法にあつては、イオン交換樹脂
に捕捉されたクラツドを逆洗再生により除去して
イオン交換樹脂を清浄化しイオン交換樹脂のクラ
ツド分離機能を回復していた。
Recently, with regard to the separation of ionic components and crud from condensate, by strengthening the crud separation function, it is possible to reduce the amount of crud brought into the reactor from cooling water and reduce the exposure dose during regular plant inspections. In the conventional method using granular ion exchange resin, the crud trapped in the ion exchange resin is removed by backwashing and regeneration to clean the ion exchange resin and restore the crud separation function of the ion exchange resin. Was.

(発明が解決しようとする問題点) しかしながら、原子力発電所の冷却水に要求さ
れるクラツドの精製度が高度化されたために、イ
オン交換樹脂は高いクラツド捕捉能力を持つこと
が求められるが、イオン交換樹脂におけるその捕
捉能力はイオン交換樹脂におけるクラツド吸着領
域の大きさ、及びイオン交換樹脂表面から粒内へ
の拡散速度に支配されることから、従来より使用
されている架橋度の比較的高いイオン交換樹脂は
樹脂相内の細孔(ミクロポア)が比較的小さく、
クラツドの樹脂粒内への拡散速度が遅いこと及び
樹脂が硬く、弾性に乏しく、通水時樹脂表面の弾
性変形によるクラツド吸着作用が小さいために、
クラツドの分離の高度化要求には対応できない現
状にある。
(Problem to be solved by the invention) However, as the degree of purification of crud required for cooling water in nuclear power plants has become more sophisticated, ion exchange resins are required to have a high crud trapping ability. The capture ability of the ion exchange resin is determined by the size of the cladding adsorption area in the ion exchange resin and the diffusion rate from the surface of the ion exchange resin to the inside of the particles. Exchange resins have relatively small pores (micropores) within the resin phase;
The diffusion rate of the cladding into the resin grains is slow, the resin is hard and has poor elasticity, and the cladding adsorption effect due to elastic deformation of the resin surface during water flow is small.
At present, it is not possible to meet the demand for advanced cladding separation.

本発明者は、このような現状に鑑み鋭意研究を
重ね、本発明に想到したものであつて、本発明
は、復水の処理操作においてクラツドの分離能力
が大きい混床式濾過脱塩装置による懸濁不純物除
去方法を提供することを目的とする。
The present inventor has conducted intensive research in view of the current situation and has come up with the present invention. The purpose of the present invention is to provide a method for removing suspended impurities.

(問題点を解決するための手段) 本発明は、BWR型原子力発電プラントの一次
冷却水の処理の際に、粒状又は粉末状陽イオン交
換樹脂及び陰イオン交換樹脂からなる混床によつ
て濾過脱塩する方法において、 陽イオン交換樹脂及び陰イオン交換樹脂の架
橋度をジビニルベンゼン(DVB)含率7.5%〜
3%と小さくした樹脂により混床を形成する第
一の手段。
(Means for Solving the Problems) The present invention provides filtration using a mixed bed consisting of a granular or powdered cation exchange resin and an anion exchange resin when treating the primary cooling water of a BWR type nuclear power plant. In the desalting method, the degree of crosslinking of the cation exchange resin and anion exchange resin is adjusted to a divinylbenzene (DVB) content of 7.5% or more.
The first method is to form a mixed bed using a resin as small as 3%.

陽イオン交換樹脂又は陰イオン交換樹脂のど
ちらか一方の架橋度をDVB含率7.5%〜3%と
小さくした樹脂により混床を形成する第二の手
段。
A second means of forming a mixed bed using a resin in which the degree of crosslinking of either a cation exchange resin or an anion exchange resin is reduced to a DVB content of 7.5% to 3%.

陽イオン交換樹脂及び陰イオン交換樹脂によ
る混床の上層部に架橋度をDVB含率7.5%〜3
%と小さくした陽イオン交換樹脂を積層させる
第三の手段。
The degree of crosslinking in the upper layer of the mixed bed made of cation exchange resin and anion exchange resin is set to 7.5% to 3 with DVB content.
The third method is to stack cation exchange resins with a small %.

のうちのいずれかの手段によつて樹脂床を形成
し、BWR型原子力発電プラントの一次冷却水処
理時の懸濁不純物を除去することを特徴とする混
床式濾過脱塩装置による懸濁不純物除去方法であ
る。
Suspended impurities by mixed bed filtration and desalination equipment characterized in that a resin bed is formed by any one of the following means and suspended impurities are removed during primary cooling water treatment of a BWR type nuclear power plant. This is a removal method.

本発明においては、従来の混床式濾過脱塩方法
に比較し、使用する陰・陽イオン交換樹脂の架橋
度が低いため、樹脂相内の細孔(ミクロポア)が
比較的大きく、クラツドの樹脂粒内の拡散速度が
速いこと、及び樹脂が比較的硬くなく弾性があ
り、通水時樹脂表面の弾性変形によるクラツド吸
着効果が大きいことより濾過脱塩操作に際し、よ
りクラツド濃度の低い高純度の水を得ることがで
きる。
In the present invention, compared to the conventional mixed bed filtration desalting method, the degree of crosslinking of the anion/cation exchange resin used is low, so the pores (micropores) in the resin phase are relatively large, and the clad resin The diffusion rate within the grains is fast, the resin is relatively not hard and elastic, and the elastic deformation of the resin surface when water is passed through it has a large crud adsorption effect. You can get water.

以下、本発明を従来技術と対比して述べれば、
第1図は、強酸性ゲル型陽イオン交換樹脂の架橋
度(DVB%)を横軸に細孔の平均直径〔Å〕を
縦軸に表わしたものであり、これによれば、架橋
度(DVB%)を低下させるほど細孔の平均直径
〔Å〕は大きくなる。たとえば、架橋度8%の標
準品と、架橋度6%品の細孔平均直径を比較する
と、 8%品 (H型):7.8Å 6%品 (H型):9.5Å となり、細孔は6%品の方が20%程度大きくな
る。また、陰イオン交換樹脂についても同様の傾
向が見られる。
Below, the present invention will be described in comparison with the prior art.
Figure 1 shows the degree of crosslinking (DVB%) of a strongly acidic gel type cation exchange resin on the horizontal axis and the average diameter of pores [Å] on the vertical axis. As the DVB% decreases, the average diameter of the pores [Å] increases. For example, when comparing the average pore diameters of a standard product with a degree of cross-linking of 8% and a product with a degree of cross-linking of 6%, the 8% product (H-type): 7.8 Å, the 6% product (H-type): 9.5 Å, and the pores are The 6% product is about 20% larger. A similar tendency is also observed for anion exchange resins.

第2図は、強酸性ゲル型陽イオン交換樹脂及び
強塩基型ゲル型陰イオン交換樹脂の架橋度
(DVB%)を横軸に、樹脂の破砕強度(g/粒)
を縦軸に表わしたものであり、これによれば架橋
度を低下させるほど樹脂の破砕強度は低下し、そ
れに伴ない樹脂の弾性は増加する。
Figure 2 shows the degree of crosslinking (DVB%) of strongly acidic gel-type cation exchange resins and strongly basic gel-type anion exchange resins on the horizontal axis, and the crushing strength (g/particle) of the resins.
is expressed on the vertical axis, and according to this, as the degree of crosslinking decreases, the crushing strength of the resin decreases, and the elasticity of the resin increases accordingly.

第3図は、強酸性陽イオン交換樹脂の架橋度
(DVB%)を横軸に、総交換容量を縦軸に表わし
たものであり、これによれば架橋度(DVB%)
を低下させるほど総交換容量(meg/ml.R)は
低下する。
Figure 3 shows the degree of crosslinking (DVB%) of a strongly acidic cation exchange resin on the horizontal axis and the total exchange capacity on the vertical axis.
The lower the total exchange capacity (meg/ml.R), the lower the total exchange capacity (meg/ml.R).

第4図は、強塩基性陰イオン交換樹脂の架橋度
(DVB%)と総交換容量の関係であり、第3図と
同様な傾向が見られる。
FIG. 4 shows the relationship between the degree of crosslinking (DVB%) of the strongly basic anion exchange resin and the total exchange capacity, and the same tendency as in FIG. 3 can be seen.

以上によれば、イオン交換樹脂の架橋度
(DVB%)を従来品より低下させると、細孔の平
均直径が増大し、クラツドの除去を十分に行うこ
とができる。しかし、その反面イオン交換樹脂の
架橋度(DVB%)が低下すると、破砕強度、総
交換容量等の性質が劣化する傾向にあり、イオン
交換樹脂の使用が実運用上困難となるため、実際
に適用する際にはその架橋度(DVB%)の大き
さは、クラツドの分離効果と濾過脱塩操作時に必
要とされるその他の諸性質を考慮してその範囲を
定める必要がある。本発明においては使用する陽
イオン交換樹脂、陰イオン交換樹脂は架橋度が
DVB含率で7.5%〜3%とするもので、好ましく
は6%〜4%の範囲がよい。
According to the above, when the degree of crosslinking (DVB%) of the ion exchange resin is lowered than that of conventional products, the average diameter of the pores increases, and the crud can be removed satisfactorily. However, on the other hand, if the degree of crosslinking (DVB%) of the ion exchange resin decreases, properties such as crushing strength and total exchange capacity tend to deteriorate, making it difficult to use the ion exchange resin in actual operation. When applied, the degree of crosslinking (DVB%) needs to be determined by taking into account the separation effect of the cladding and other properties required during filtration and desalting operations. In the present invention, the cation exchange resin and anion exchange resin used have a degree of crosslinking.
The DVB content is 7.5% to 3%, preferably 6% to 4%.

本発明の懸濁不純物除去方法におけるクラツド
分離効果を単床ミニカラム試験により、従来の濾
過脱塩操作におけるクラツド分離効果と比較す
る。
The crud separation effect in the suspended impurity removal method of the present invention will be compared with that in conventional filtration and desalting operations using a single-bed mini-column test.

単床ミニカラム試験 試験条件 第5図の試験装置を使用し、以下の試験条件に
より試験を行つた。
Single-bed mini-column test Test conditions The test was conducted under the following test conditions using the test apparatus shown in Figure 5.

* 樹脂仕様:強酸性ゲル型陽イオン交換樹脂
(H型)の架橋度(DVB)4%,6%,8
%,10%,12%,のものを使用 * 樹脂量:上記陽イオン交換樹脂 15ml * カラム諸元:内径12mmφ×200mm * 通水線流速:LV=108m/hr * 通水期間:各試験 約2週間 試験結果 陽イオン交換樹脂のみの単床ミニカラム試験の
結果は、第6図の通りであり、これによれば架橋
度(DVB%)を低下させた方がクラツド分離効
果が向上することが確認できた。
*Resin specifications: Strongly acidic gel type cation exchange resin (H type) crosslinking degree (DVB) 4%, 6%, 8
%, 10%, and 12% *Resin amount: 15ml of the above cation exchange resin *Column specifications: Inner diameter 12mmφ x 200mm *Water flow linear flow rate: LV=108m/hr *Water flow period: Approximately for each test 2 weeks test results The results of the single-bed mini column test using only cation exchange resin are shown in Figure 6, which shows that lowering the degree of crosslinking (DVB%) improves the cladding separation effect. It could be confirmed.

単床ミニカラム試験 試験条件 第5図の試験装置を使用し、以下の試験条件に
より試験を行つた。
Single-bed mini-column test Test conditions The test was conducted under the following test conditions using the test apparatus shown in Figure 5.

* 樹脂仕様:強塩基性ゲル型陰イオン交換樹
脂(OH型)の架橋度(DVB)6%,7%,
7.5%,8%のものを使用 * 樹脂量:上記陰イオン交換樹脂 15ml * カラム諸元:内径12mmφ×200mm * 通水線流速:LV=108m/hr * 通水期間:各試験 約2週間 試験結果 陰イオン交換樹脂のみの単床ミニカラム試験の
結果は第7図の通りであり、これによれば架橋度
(DVB%)を低下させた方がクラツド分離効果が
向上することが確認できた。
*Resin specifications: Strongly basic gel type anion exchange resin (OH type) crosslinking degree (DVB) 6%, 7%,
7.5% and 8% were used * Resin amount: 15ml of the above anion exchange resin * Column specifications: Inner diameter 12mmφ x 200mm * Water flow rate: LV = 108m/hr * Water flow period: Approximately 2 weeks for each test Test Results The results of the single-bed mini-column test using only anion exchange resin are shown in Figure 7, and it was confirmed that the cladding separation effect was improved by lowering the degree of crosslinking (DVB%).

以上の単床ミニカラム試験及びの試験結果
によれば陽イオン交換樹脂、陰イオン交換樹脂と
もに架橋度(DVB%)を変化させたときに架橋
度が小さくなるにつれてクラツドの分離効果が大
きくなることが認められ、一般に陰イオン交換樹
脂の場合、架橋度のクラツド分離効果に及ぼす影
響は陽イオン交換樹脂の場合に比して小さい傾向
が認められる。また、架橋度の小さい陽イオン交
換樹脂を同様な陰イオン交換樹脂との混床にして
用いれば、濾過脱塩操作におけるクラツド分離効
果は一層向上し、従来の濾過脱塩方法よりも大幅
に優れている。
According to the above single-bed mini-column test and test results, when the degree of crosslinking (DVB%) of both cation exchange resin and anion exchange resin is changed, the clad separation effect increases as the degree of crosslinking decreases. Generally speaking, in the case of anion exchange resins, the influence of the degree of crosslinking on the cladding separation effect tends to be smaller than in the case of cation exchange resins. In addition, if a cation exchange resin with a low degree of crosslinking is used in a mixed bed with a similar anion exchange resin, the crust separation effect in the filtration-desalting operation will be further improved, and it will be significantly superior to the conventional filtration-desalting method. ing.

したがつて、本発明は、以下の態様において実
施することができる。
Therefore, the present invention can be implemented in the following embodiments.

(1) 陽イオン交換樹脂及び陰イオン交換樹脂の架
橋度(DVB%)を従来品よりも低くした樹脂
の混床による濾過脱塩方法。
(1) A filtration desalination method using a mixed bed of resins with a lower crosslinking degree (DVB%) of cation exchange resin and anion exchange resin than conventional products.

(2) 陰イオン交換樹脂の架橋度(DVB%)を従
来品よりも低下させた樹脂と従来品の陽イオン
交換樹脂との混床による濾過脱塩方法。
(2) A filtration desalination method using a mixed bed of an anion exchange resin with a lower degree of crosslinking (DVB%) than conventional products and a conventional cation exchange resin.

(3) 従来品のイオン交換樹脂による混床の上層部
に従来品よりも架橋度(DVB%)を低下させ
た陽イオン交換樹脂を積層させた樹脂床による
濾過脱塩方法。
(3) A filtration desalination method using a resin bed in which a cation exchange resin with a lower degree of crosslinking (DVB%) than the conventional product is laminated on the upper layer of the conventional mixed bed of ion exchange resin.

これらは、いずれも実用上極めて有利な方法で
ある。
All of these methods are extremely advantageous in practice.

(実施例) 以下、実施例により本発明を具体的に説明する
が、本発明はこれにのみ限定されるものではな
い。
(Example) Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

本発明の効果を確認するために混床実機長カラ
ム試験を行つた。
In order to confirm the effects of the present invention, a mixed bed actual machine length column test was conducted.

混床実機長カラム試験 試験条件 第8図の試験装置を使用し、以下の試験条件に
より試験を行つた。
Mixed bed actual machine length column test Test conditions The test was conducted under the following test conditions using the test equipment shown in Figure 8.

* 樹脂仕様:強酸性ゲル型陽イオン交換樹脂
(H型)の架橋度(DVB%)4%,6%,8
%,10%,12%のもの並びに強塩基性ゲル型
陰イオン交換樹脂(OH型)の架橋度(DVB
%)8%のものを組合わせて混床状態で使
用。
*Resin specifications: Strongly acidic gel type cation exchange resin (H type) crosslinking degree (DVB%) 4%, 6%, 8
%, 10%, 12% and the degree of crosslinking (DVB
%) 8% and used in a mixed bed condition.

* 樹脂量:陽イオン交換樹脂/陰イオン交換
樹脂比=1.66/1.0で層高90cm相当分(約2
)を混合して充填。
*Resin amount: cation exchange resin/anion exchange resin ratio = 1.66/1.0, equivalent to a layer height of 90 cm (approximately 2
) and fill.

* 通水線粒量:LV=108m/hr * 通水期間:1サイクル14日間で3サイクル
実施 試験結果 陰イオン交換樹脂の架橋度(DVB%)を8%
で固定し、陽イオン交換樹脂の架橋度(DVB%)
を変化させた混床による混床実機長カラム試験の
結果は第9図のサイクル1及びサイクル2の通り
であり、これによれば陽イオン交換樹脂の架橋度
(DVB%)を7.5%〜3%と低下させた方がクラ
ツド分離効果(平衡到達時DF値)が向上するこ
とを確認した。ここでDF値は入口クラツド濃度
(ppb)/出口クラツド濃度で表わす。
*Water flow line particle amount: LV=108m/hr *Water flow period: 3 cycles performed in 1 cycle of 14 days Test results Crosslinking degree (DVB%) of anion exchange resin was 8%
Fixed and crosslinking degree of cation exchange resin (DVB%)
The results of mixed-bed actual machine length column tests using mixed beds with varying values are as shown in Cycle 1 and Cycle 2 in Figure 9, and according to this, the degree of crosslinking (DVB%) of the cation exchange resin was varied from 7.5% to 3. It was confirmed that the cladding separation effect (DF value when equilibrium is reached) is improved when the cladding separation effect is lowered to %. Here, the DF value is expressed as inlet crud concentration (ppb)/outlet crud concentration.

以上の試験結果は、いずれも陽イオン交換樹脂
の架橋度(DVB%)を変化させたものであり、
本発明の濾過脱塩操作におけるクラツド分離効果
は従来の濾過脱塩方法よりも大幅に優れている。
The above test results were obtained by changing the degree of crosslinking (DVB%) of the cation exchange resin.
The crud separation effect in the filtration-desalting operation of the present invention is significantly superior to that of conventional filtration-desalting methods.

(発明の効果) 本発明はイオン交換樹脂を用いる混床式濾過脱
塩装置で懸濁不純物を除去するさいに、クラツド
を十分に除去することができる。陽イオン交換樹
脂又は陰イオン交換樹脂の架橋度(DVB%)が
小さい方がクラツドの分離効果が大きい。しか
し、架橋度(DVB%)をあまり小さくすると、
樹脂の破砕強度、総交換容量が小さくなつて、取
扱いが困難になるので3%が実用的な下限であ
る。
(Effects of the Invention) According to the present invention, crud can be sufficiently removed when suspended impurities are removed by a mixed bed type filtration and desalination apparatus using an ion exchange resin. The smaller the degree of crosslinking (DVB%) of the cation exchange resin or anion exchange resin, the greater the cladding separation effect. However, if the degree of crosslinking (DVB%) is too small,
The practical lower limit is 3%, since the crushing strength and total exchange capacity of the resin decrease, making handling difficult.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、強酸性ゲル型陽イオン交換樹脂の架
橋度と細孔の大きさの関係を示すものであり、第
2図は、強酸性ゲル型陽イオン交換樹脂及び強塩
基性ゲル型陰イオン交換樹脂の架橋度と破砕強度
との関係を示すものであり、第3図は、強酸性陽
イオン交換樹脂のDVB%と総交換容量との関係
を示すものであり、第4図は、強塩基性陰イオン
交換樹脂(I型)のDVB%と総交換容量との関
係を示すものであり、第5図は、通水ミニカラム
試験装置を示し、第6図は、強酸性ゲル型陽イオ
ン交換樹脂の架橋度とクラツド捕捉能の関係を示
すものであり、第7図は、強塩基性ゲル型陰イオ
ン交換樹脂の架橋度とクラツド捕捉能の関係を示
すものであり、第8図は、混床実機長カラム試験
装置を示し、第9図は、強酸性ゲル型陽イオン交
換樹脂と強塩基性ゲル型陰イオン交換樹脂との混
床実機長カラムにおいて、陽イオン交換樹脂の架
橋度(DVB%)を変化させた場合の架橋度とDF
値との関係を示すものである。
Figure 1 shows the relationship between the degree of crosslinking and pore size of strongly acidic gel type cation exchange resins, and Figure 2 shows the relationship between the degree of crosslinking and pore size of strongly acidic gel type cation exchange resins and strongly basic gel type cation exchange resins. Figure 3 shows the relationship between the degree of crosslinking and crushing strength of the ion exchange resin, and Figure 4 shows the relationship between the DVB% and total exchange capacity of the strongly acidic cation exchange resin. This shows the relationship between DVB% and total exchange capacity of strongly basic anion exchange resin (type I). Figure 5 shows a water-flowing mini-column test device, and Figure 6 shows a strongly acidic gel type anion exchange resin. Figure 7 shows the relationship between the degree of crosslinking of an ion exchange resin and its ability to trap cladding. 9 shows a mixed bed actual length column test device, and Figure 9 shows crosslinking of the cation exchange resin in a mixed bed actual length column of a strongly acidic gel type cation exchange resin and a strongly basic gel type anion exchange resin. Crosslinking degree and DF when changing degree (DVB%)
It shows the relationship with the value.

Claims (1)

【特許請求の範囲】 1 BWR型原子力発電プラントの一次冷却水の
処理の際に、粒状又は粉末状陽イオン交換樹脂及
び陰イオン交換樹脂からなる混床によつて濾過脱
塩する方法において、 陽イオン交換樹脂及び陰イオン交換樹脂の架
橋度をジビニルベンゼン(DVB)含率7.5%〜
3%と小さくした樹脂により混床を形成する第
一の手段。 陽イオン交換樹脂又は陰イオン交換樹脂のど
ちらか一方の架橋度をDVB含率7.5%〜3%と
小さくした樹脂により混床を形成する第二の手
段。 陽イオン交換樹脂及び陰イオン交換樹脂によ
る混床の上層部に架橋度をDVB含率7.5%〜3
%と小さくした陽イオン交換樹脂を積層させる
第三の手段。 のうちのいずれかの手段によつて樹脂床を形成
し、BWR型原子力発電プラントの一次冷却水処
理時の懸濁不純物を除去することを特徴とする混
床式濾過脱塩装置による懸濁不純物除去方法。
[Claims] 1. A method of filtering and desalting using a mixed bed consisting of a granular or powdered cation exchange resin and an anion exchange resin when treating primary cooling water of a BWR type nuclear power plant, The degree of crosslinking of ion exchange resin and anion exchange resin is adjusted to divinylbenzene (DVB) content of 7.5% or more.
The first method is to form a mixed bed using a resin as small as 3%. A second means of forming a mixed bed using a resin in which the degree of crosslinking of either a cation exchange resin or an anion exchange resin is reduced to a DVB content of 7.5% to 3%. The degree of crosslinking in the upper layer of the mixed bed made of cation exchange resin and anion exchange resin is set to 7.5% to 3 with DVB content.
The third method is to stack cation exchange resins with a small %. Suspended impurities by mixed bed filtration and desalination equipment characterized in that a resin bed is formed by any one of the following means and suspended impurities are removed during primary cooling water treatment of a BWR type nuclear power plant. Removal method.
JP62335614A 1987-12-29 1987-12-29 Removal of suspended impurities with mixing floor type filter/desalter Granted JPH01174998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62335614A JPH01174998A (en) 1987-12-29 1987-12-29 Removal of suspended impurities with mixing floor type filter/desalter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62335614A JPH01174998A (en) 1987-12-29 1987-12-29 Removal of suspended impurities with mixing floor type filter/desalter

Publications (2)

Publication Number Publication Date
JPH01174998A JPH01174998A (en) 1989-07-11
JPH0569480B2 true JPH0569480B2 (en) 1993-10-01

Family

ID=18290553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62335614A Granted JPH01174998A (en) 1987-12-29 1987-12-29 Removal of suspended impurities with mixing floor type filter/desalter

Country Status (1)

Country Link
JP (1) JPH01174998A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387348A (en) * 1990-11-09 1995-02-07 Ebara Corporation Method of mixed-bed filtration and demineralization with ion-exchange resins
JP4943376B2 (en) * 2008-05-22 2012-05-30 株式会社荏原製作所 Condensate demineralization method and condensate demineralization apparatus
JP4943378B2 (en) 2008-05-22 2012-05-30 株式会社荏原製作所 Condensate demineralization method and condensate demineralization apparatus
JP5038232B2 (en) * 2008-05-22 2012-10-03 株式会社荏原製作所 Condensate demineralization method and condensate demineralization apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57209643A (en) * 1981-06-19 1982-12-23 Toshiba Corp Method for evaluating precoat condition of powdery ion exchange resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57209643A (en) * 1981-06-19 1982-12-23 Toshiba Corp Method for evaluating precoat condition of powdery ion exchange resin

Also Published As

Publication number Publication date
JPH01174998A (en) 1989-07-11

Similar Documents

Publication Publication Date Title
US4430226A (en) Method and apparatus for producing ultrapure water
US4853130A (en) Method for purifying liquids
JPH0328797A (en) Method for removeing suspensible impurity of condensate by mixed end type condensate desalting device
JP3687829B2 (en) Condensate treatment method and condensate demineralizer
JP2007064646A (en) Method and device for desalting condensate
JP4943377B2 (en) Condensate demineralization method and condensate demineralization apparatus
JPH0569480B2 (en)
JP3183354B2 (en) Method for adsorbing and separating heavy metals using tannin-based adsorbent and method for regenerating the adsorbent
JPH0327264B2 (en)
JPH0445231B2 (en)
JPH0445230B2 (en)
US5387348A (en) Method of mixed-bed filtration and demineralization with ion-exchange resins
US4927796A (en) Compositions for purifying liquids
JPH0512996B2 (en)
JPH0445232B2 (en)
JPH0445233B2 (en)
JP3599777B2 (en) Ion exchange resin and desalination device filled with the resin
JP2940651B2 (en) Pure water production equipment
JP4383091B2 (en) Condensate desalination method and apparatus
JP4356987B2 (en) Condensate demineralization treatment method and apparatus and method for forming packed bed thereof
JP3412455B2 (en) Activated alumina for arsenate ion adsorption and method for adsorbing arsenate ions from aqueous solution using the same
RU2205692C2 (en) Ion-exchange treatment method for organics-containing water involving countercurrent regeneration of ion-exchange materials
CA2055206C (en) Method of mixed-bed filtration and demineralization with ion-exchange resins
JPH0363439B2 (en)
JP2892811B2 (en) Ion exchange resin, condensate desalination tower and condensate purification device using this resin

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 15