JPH0445233B2 - - Google Patents

Info

Publication number
JPH0445233B2
JPH0445233B2 JP63281280A JP28128088A JPH0445233B2 JP H0445233 B2 JPH0445233 B2 JP H0445233B2 JP 63281280 A JP63281280 A JP 63281280A JP 28128088 A JP28128088 A JP 28128088A JP H0445233 B2 JPH0445233 B2 JP H0445233B2
Authority
JP
Japan
Prior art keywords
exchange resin
resin
water content
bed
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63281280A
Other languages
Japanese (ja)
Other versions
JPH02131190A (en
Inventor
Hideo Kawazu
Masahiro Hagiwara
Takeshi Izumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP63281280A priority Critical patent/JPH02131190A/en
Publication of JPH02131190A publication Critical patent/JPH02131190A/en
Publication of JPH0445233B2 publication Critical patent/JPH0445233B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、PWR型原子力発電プラントの二次
系統水の処理における混床式過脱塩方法に関
し、特に、従来品よりも含水率を増加させた陽イ
オン交換樹脂と陰イオン交換樹脂を混合してなる
混床式過脱塩方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a mixed-bed excessive desalination method for treating secondary system water of a PWR type nuclear power plant, and in particular, the present invention relates to a method for increasing water content compared to conventional products. This invention relates to a mixed-bed excessive desalination method in which a cation exchange resin and an anion exchange resin are mixed.

〔従来の技術〕[Conventional technology]

従来から、PWR発電プラントでは給水中の不
純物を極力低く抑えなければならないので、復水
器から蒸気発生器(以下SGと略)へ流入する復
水を復水脱塩塔によつて浄化処理し、高度に浄化
した後、給水として利用している。
Conventionally, in PWR power plants, it is necessary to keep impurities in the water supply as low as possible, so the condensate that flows from the condenser to the steam generator (hereinafter referred to as SG) is purified using a condensate desalination tower. After being highly purified, it is used as a water supply.

この復水脱塩塔は陰イオン交換樹脂と陽イオン
交換樹脂とが混合して充填された所謂混床式脱塩
塔であつて、復水中のイオン成分と懸濁固形成分
(クラツドと通称される)とをイオン交換及び吸
着によつて分離し、復水を浄化するものである。
This condensate demineralization tower is a so-called mixed bed demineralization tower packed with a mixture of anion exchange resin and cation exchange resin, and contains ionic components and suspended solid components (commonly known as cladding) in condensate. This method separates the condensate by ion exchange and adsorption to purify the condensate.

そして陽イオン交換樹脂と陰イオン交換樹脂と
を混合して混床を形成する方法としては、従来
含水率(45〜55%)のゲル型陽イオン交換樹脂と
ゲル型陰イオン交換樹脂を用いる方法、従来含
水率(45〜55%)のポーラス型陽イオン交換樹脂
とポーラス型陰イオン交換樹脂を用いる方法が提
案されていた。
The conventional method of mixing a cation exchange resin and an anion exchange resin to form a mixed bed is to use a gel type cation exchange resin and a gel type anion exchange resin with a water content (45 to 55%). Conventionally, a method using a porous cation exchange resin and a porous anion exchange resin with a water content (45 to 55%) has been proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

最近、混床式過脱塩技術において復水からイ
オン成分及びクラツドの分離効果のうち、クラツ
ドの分離効果を強化することにより、復水から
SGへ持ち込まれるクラツドを低減しSGの健全性
を維持する傾向があり、前述の粒状イオン交換樹
脂を用いる方法では、クラツドの捕捉能力がイオ
ン交換樹脂とクラツドとの親和力の大きさに支配
されることから、現状の含水率の低いイオン交換
樹脂では比較的親水性のものを主とする現状のク
ラツドの分離効果は小さく、装置の高度化要求に
十分な対応ができない。
Recently, in mixed-bed over-desalination technology, the separation effect of ion components and cruds from condensate water has been strengthened.
There is a tendency to maintain the integrity of the SG by reducing the amount of crud brought into the SG, and in the method using the granular ion exchange resin described above, the ability to capture crud is controlled by the affinity between the ion exchange resin and the crud. Therefore, the current ion exchange resins with low water content have a small separation effect on the current cladding, which is mainly relatively hydrophilic, and cannot sufficiently meet the demands for more sophisticated equipment.

そこで、本発明は復水の処理操作において、ク
ラツドの分離能力の大きい混床式過脱塩方法を
提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a mixed-bed over-desalination method that has a large crud separation capacity in a condensate treatment operation.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、鋭意研究の結果、使用するイオ
ン交換樹脂の含水率を従来品のものより増加させ
たものを用いることによつて、本発明の目的を達
成しうることを見い出し、本発明を完成したもの
である。
As a result of intensive research, the present inventors have discovered that the object of the present invention can be achieved by using an ion exchange resin with a higher water content than conventional products. This is the completed version.

すなわち、本発明は、PWR型原子力発電プラ
ントの二次系統水の処理の際に、粒状又は粉末状
陽イオン交換樹脂及び陰イオン交換樹脂からなる
混床によつて過脱塩する方法において、陽イオ
ン交換樹脂及び/又は陰イオン交換樹脂の含水率
を従来品のゲル型樹脂の標準値(45〜55%)より
も増加させた範囲(55〜75%)の樹脂により混床
を形成し、PWR型原子力発電プラントの二次系
統水処理時の懸濁性不純物の除去能力を強化させ
たことを特徴とする混床式過脱塩方法にある。
That is, the present invention provides a method for excessive desalination using a mixed bed consisting of a granular or powdered cation exchange resin and an anion exchange resin when treating secondary system water of a PWR type nuclear power plant. A mixed bed is formed using a resin in which the water content of the ion exchange resin and/or anion exchange resin is increased (55 to 75%) compared to the standard value (45 to 55%) of conventional gel type resins, A mixed bed over-desalination method is characterized by enhanced ability to remove suspended impurities during secondary system water treatment in a PWR nuclear power plant.

また、本発明は、PWR型原子力発電プラント
の二次系統水の処理の際に、粒状又は粉末状陽イ
オン交換樹脂及び陰イオン交換樹脂からなる混床
によつて過脱塩する方法において、従来品のイ
オン交換樹脂による混床上層部に従来品ゲル型樹
脂の標準値(45〜55%)よりも含水率を増加させ
た範囲(55〜75%)の陽イオン交換樹脂を積層さ
せた樹脂床を形成し、PWR型原子力発電プラン
トの二次系統水処理時の懸濁性不純物の除去能力
を強化させることを特徴とする混床式過脱塩方
法にもある。
Furthermore, the present invention provides a method for excessive desalination using a mixed bed consisting of a granular or powdered cation exchange resin and an anion exchange resin when treating secondary system water of a PWR type nuclear power plant. A resin in which a cation exchange resin with an increased water content (55-75%) than the standard value (45-55%) of conventional gel-type resins is laminated on the upper layer of the product's mixed bed of ion-exchange resin. There is also a mixed bed over-desalination method characterized by forming a bed and enhancing the ability to remove suspended impurities during secondary system water treatment in a PWR type nuclear power plant.

次に、本発明を従来技術と対比しながら更に詳
しく説明する。
Next, the present invention will be explained in more detail while comparing it with the prior art.

第1図は強酸性陽イオン交換樹脂の含水率を横
軸に、樹脂の破砕強度を縦軸に示した含水率と破
砕強度の関係を表したグラフであり、これによれ
ば、含水率を増加させるほど、樹脂の破砕強度は
低下し、この傾向は、強塩基性陰イオン交換樹脂
でも同様に見られる。
Figure 1 is a graph showing the relationship between water content and crushing strength, with the water content of a strongly acidic cation exchange resin shown on the horizontal axis and the crushing strength of the resin on the vertical axis. As it increases, the crushing strength of the resin decreases, and this tendency is also seen in strongly basic anion exchange resins.

第2図は強酸性陽イオン交換樹脂の含水率を横
軸に、総交換容量を縦軸に表わしたものであり、
これによれば含水率を増加させるほど総交換容量
は低下する。第3図は強塩基性陰イオン交換樹脂
の含水率と総交換容量の関係であり、第2図と同
様の傾向が見られる。
Figure 2 shows the water content of a strongly acidic cation exchange resin on the horizontal axis and the total exchange capacity on the vertical axis.
According to this, the total exchange capacity decreases as the water content increases. FIG. 3 shows the relationship between the water content and total exchange capacity of strongly basic anion exchange resins, and the same tendency as in FIG. 2 can be seen.

以上より、イオン交換樹脂の含水率を増加させ
ることにより、破砕強度、総交換容量等の性質が
劣化する傾向にあり、実運用の際の含水率は、ク
ラツド分離効果と過脱塩操作時に必要なその他
の諸性質の限界値を併せて決める必要があり、本
発明においては、陽イオン交換樹脂及び陰イオン
交換樹脂の含水率を55〜75%望ましくは60〜70%
の範囲にすることが適当と考えられる。
From the above, by increasing the water content of ion exchange resin, properties such as crushing strength and total exchange capacity tend to deteriorate. In the present invention, the water content of the cation exchange resin and anion exchange resin should be set at 55 to 75%, preferably 60 to 70%.
It is considered appropriate to keep it within the range of .

〔実施例〕〔Example〕

以下に、実施例を記載するが、本発明はこれら
の実施例に限定されるものではない。
Examples are described below, but the present invention is not limited to these examples.

実施例 1 陽イオン交換樹脂の含水率を変化させてクラツ
ド分離効果を単床ミニカラム試験及び混床実機長
カラム試験により従来の過脱塩操作と比較す
る。
Example 1 The water content of the cation exchange resin was varied and the crud separation effect was compared with a conventional over-desalination operation through a single-bed mini-column test and a mixed-bed actual length column test.

(単床ミニカラム試験) 試験条件 第4図の試験装置を使用し、原水を原水入口1
から、充填カラム3を通して以下の試験条件によ
り試験を行なつた。
(Single-bed mini-column test) Test conditions Using the test equipment shown in Figure 4, raw water is injected into raw water inlet 1.
A test was conducted under the following test conditions through packed column 3.

Γ樹脂仕様:強酸性ゲル型陽イオン交換樹脂(H
型)の含水率47、55、61、70%のものを使用 Γ耐圧カラム:内径12mmφ×200mm Γ樹脂量:強酸性ゲル型陽イオン交換樹脂15ml Γ樹脂層高:133mmΓ通水線流速:LV=108m/
h Γ通水期間:各試験約2週間 試験結果 陽イオン交換樹脂のみの単床ミニカラム試験の
結果は第5図の通りである。第5図は横軸に含水
率を、縦軸に含水率55%品を1としたときのクラ
ツド捕捉比率を示したグラフであり、これによれ
ば含水率を増加させた方がクラツド分離効果が向
上することが確認できた。
Γ Resin specifications: Strongly acidic gel type cation exchange resin (H
Type) with water content of 47, 55, 61, or 70%. Γ Pressure-resistant column: Inner diameter 12 mm φ x 200 mm Γ Resin amount: Strongly acidic gel type cation exchange resin 15 ml Γ Resin layer height: 133 mm Γ Linear water flow rate: LV =108m/
h Γ Water flow period: Approximately 2 weeks for each test Test results The results of the single-bed mini-column test using only cation exchange resin are shown in Figure 5. Figure 5 is a graph showing the crud capture ratio when the horizontal axis represents the water content and the vertical axis represents the product with a 55% water content as 1. According to this graph, increasing the water content is more effective in separating the crud. It was confirmed that this improved.

(混床実機長カラム試験) 試験条件 第6図の試験装置を使用して試験を行つた。第
6図において、原水入口1から導入された原水
は、樹脂充填カラム3で浄化されて主流量計4を
通り、一部はサンプリングラインに入り、フイル
タ5、流量計6、積算流量計7、導電率計8を経
て、ドレンライン9から排出される。2は洗浄用
純水の入口である。
(Mixed bed actual machine length column test) Test conditions The test was conducted using the test equipment shown in Figure 6. In FIG. 6, raw water introduced from the raw water inlet 1 is purified by a resin-filled column 3, passes through a main flow meter 4, and part of it enters a sampling line, which includes a filter 5, a flow meter 6, an integrated flow meter 7, It passes through a conductivity meter 8 and is discharged from a drain line 9. 2 is an inlet for pure water for cleaning.

試験は以下の試験条件により行なつた。 The test was conducted under the following test conditions.

Γ樹脂仕様:強酸性ゲル型陽イオン交換樹脂(H
型)の含水率47、55、61、70%のもの並びに
従来含水率の強塩基性ゲル型陰イオン交換樹
脂(OH型)を組み合わせて混床状態で使用 Γ樹脂量:陽イオン/陰イオン樹脂比=1.66/1
で層高90cm相当分(約2)を混合して充填 Γ通水線流速:LV=108m/h Γ通水期間:2週間 試験結果 陰イオン交換樹脂は従来含水率品を用い、陽イ
オン交換樹脂の含水率を変化させた混床による混
床実機長カラム試験の結果は第7図の通りであ
り、これによれば陽イオン交換樹脂の含水率を増
加させた方がクラツド分離効果(DF値)が向上
することが確認できた。なお、第7図は、陽イオ
ン交換樹脂の含水率を変えた場合の含水率とDF
の関係(ここでDF値とは入口クラツド濃度/出
口クラツド濃度(ppb)を表わす)を示すグラフ
である。
Γ Resin specifications: Strongly acidic gel type cation exchange resin (H
Type) with a water content of 47, 55, 61, and 70%, and a strong basic gel type anion exchange resin (OH type) with a conventional water content, used in a mixed bed state. Γ Resin amount: cation/anion Resin ratio = 1.66/1
Mix and fill the amount equivalent to 90cm bed height (approx. 2) with Figure 7 shows the results of a mixed-bed actual length column test using a mixed bed with varying resin water content, which shows that increasing the water content of the cation exchange resin improves the cladding separation effect (DF). It was confirmed that the value) was improved. In addition, Figure 7 shows the water content and DF when the water content of the cation exchange resin is changed.
(here, DF value represents inlet crud concentration/outlet crud concentration (ppb)).

以上の試験結果は、いずれも陽イオン交換樹脂
の含水率を変化させたものであり、本発明の過
脱塩方法におけるクラツド分離効果は従来の過
脱塩方法よりも大巾に優れていることが確認さ
れ、実用上、極めて有利な方法といえる。
The above test results were obtained by changing the water content of the cation exchange resin, and it was found that the crud separation effect of the over-desalination method of the present invention is significantly superior to that of the conventional over-desalination method. was confirmed, and can be said to be an extremely advantageous method in practice.

実施例 2 次に、本発明のもう一つの過脱塩方法である
陰イオン交換樹脂の含水率を変化させた場合のク
ラツド分離効果を単床ミニカラム試験により、従
来の過脱塩操作と比較する。
Example 2 Next, the crust separation effect when changing the water content of the anion exchange resin, which is another over-desalination method of the present invention, is compared with the conventional over-desalination operation using a single-bed mini column test. .

試験条件 第4図の試験装置を使用し、以下の試験条件に
より試験を行なつた。
Test Conditions The test was conducted using the test apparatus shown in Figure 4 under the following test conditions.

Γ樹脂仕様:強塩基性ゲル型陰イオン交換樹脂
(OH型)の含水率46、50、56、71%のもの
を使用 Γ樹脂量:15ml Γ通水線流速:LV=108m/h Γ通水期間:約2週間 試験結果 陰イオン交換樹脂のみの単床ミニカラム試験の
結果は第8図の通りであり、これによれば、含水
率を増加させた方がクラツド分離効果が向上する
ことが確認できた。
Γ resin specifications: Strongly basic gel type anion exchange resin (OH type) with water content of 46, 50, 56, 71% Γ resin amount: 15 ml Γ Linear water flow velocity: LV = 108 m/h Γ through Water period: Approximately 2 weeks Test results The results of the single-bed mini-column test using only anion exchange resin are shown in Figure 8, which shows that increasing the water content improves the crud separation effect. It could be confirmed.

なお、第8図は強塩基性ゲル型陰イオン交換樹
脂の含水率と含水率55%品を1としたときのクラ
ツド捕捉比率の関係を示すグラフである。
Incidentally, FIG. 8 is a graph showing the relationship between the water content of a strongly basic gel type anion exchange resin and the cladding capture ratio when a product with a water content of 55% is taken as 1.

以上の試験結果は、陰イオン交換樹脂の含水率
を変化させたものであり、一般に過脱塩操作に
おける陰イオン交換樹脂のクラツド分離効果に及
ぼす影響は、その性質上陽イオン交換樹脂に比較
して小さいが、特に陽イオン交換樹脂との混床に
よる相乗効果により、本発明の過脱塩方法にお
けるクラツド分離効果は、従来の方法よりも大巾
に優れていることが確認され、実用上極めて有利
な方法といえる。
The above test results were obtained by changing the water content of the anion exchange resin, and in general, the effect of anion exchange resin on the cladding separation effect during over-desalination operation is different from that of cation exchange resin due to its nature. Although small, it has been confirmed that the crud separation effect of the over-desalination method of the present invention is significantly superior to that of conventional methods, particularly due to the synergistic effect of the mixed bed with the cation exchange resin, and is extremely advantageous in practice. This can be said to be a great method.

更に、本発明の過脱塩方法である 陽イオン交換樹脂及び陰イオン交換樹脂の含
水率を従来品よりも増加させた樹脂の混床によ
る過脱塩方法 陰イオン交換樹脂の含水率を従来品よりも増
加させた樹脂と、従来品の陽イオン交換樹脂の
混床による過脱塩方法 従来品イオン交換樹脂による混床の上層部
に、従来品よりも含水率を増加させた陽イオン
交換樹脂を積層させた樹脂床による過脱塩方
法 についても前述の効果より優れたクラツド分離効
果が推測されるが、最近実施した試験において優
れたクラツド分離効果が確認されており、いずれ
も実用上、極めて有利な方法と言える。
Furthermore, the over-desalination method of the present invention is an over-desalination method using a mixed bed of resins in which the water content of the cation exchange resin and anion exchange resin is increased compared to the conventional product. Over-desalination method using a mixed bed of a resin with a higher water content than the conventional ion exchange resin and a conventional cation exchange resin.In the upper layer of the mixed bed of the conventional ion exchange resin, a cation exchange resin with a higher water content than the conventional product is used. It is assumed that the excessive demineralization method using a resin bed laminated with a resin bed has a crud separation effect superior to the above-mentioned effect, but a recent test has confirmed an excellent crud separation effect, and both are extremely effective in practical use. This can be said to be an advantageous method.

〔発明の効果〕〔Effect of the invention〕

本発明においては、従来の混床式過脱塩方法
に比較し、陰・陽イオン交換樹脂の含水率が高い
ため、親水性の高いクラツドとの親和力が高く、
クラツド分離効果が大きいことより過脱塩操作
に際し、よりクラツド濃度の低い高純度の水を得
ることができる。
In the present invention, compared to the conventional mixed bed over-desalination method, the anion/cation exchange resin has a high water content, so it has a high affinity with the highly hydrophilic cladding.
Since the crud separation effect is large, high purity water with a lower crud concentration can be obtained during excessive desalination.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は強酸性ゲル型陽イオン交換樹脂の含水
率と破砕強度の関係を示すグラフであり、第2図
は陽イオン交換樹脂の含水率と総交換容量の関係
を示すグラフであり、第3図は強塩基性ゲル型陰
イオン交換樹脂の含水率と総交換容量の関係を示
すグラフであり、第4図は通水ミニカラム試験装
置の概略系統図であり、第5図は陽イオン交換樹
脂の含水率とクラツド分離能力の関係を示すグラ
フであり、第6図は混床実機長カラム試験装置の
概略系統図であり、第7図は陽イオン交換樹脂の
含水率とDF値の関係を表すグラフであり、第8
図は陰イオン交換樹脂の含水率とクラツドの捕捉
能の関係を表すグラフである。 1……原水入口、2……洗浄用純水入口、3…
…樹脂充填カラム、4……主流量計、5……フイ
ルタ、6……流量計、7……積算流量計、8……
導電率計、9……ドレンライン。
Figure 1 is a graph showing the relationship between water content and crushing strength of a strongly acidic gel type cation exchange resin, Figure 2 is a graph showing the relationship between water content and total exchange capacity of a cation exchange resin, and Figure 2 is a graph showing the relationship between water content and total exchange capacity of a cation exchange resin. Figure 3 is a graph showing the relationship between water content and total exchange capacity of a strongly basic gel-type anion exchange resin, Figure 4 is a schematic diagram of a water-flowing mini-column test device, and Figure 5 is a graph showing the relationship between water content and total exchange capacity of a strongly basic gel-type anion exchange resin. This is a graph showing the relationship between the moisture content of the resin and the crud separation ability, Figure 6 is a schematic diagram of the mixed bed actual length column test device, and Figure 7 is the relationship between the moisture content of the cation exchange resin and the DF value. This is a graph representing the eighth
The figure is a graph showing the relationship between the water content of the anion exchange resin and the trapping ability of the cladding. 1... Raw water inlet, 2... Pure water inlet for cleaning, 3...
... Resin-filled column, 4 ... Main flow meter, 5 ... Filter, 6 ... Flow meter, 7 ... Integrating flow meter, 8 ...
Conductivity meter, 9...Drain line.

Claims (1)

【特許請求の範囲】 1 PWR型原子力発電プラントの二次系統水の
処理の際に、粒状又は粉末状陽イオン交換樹脂及
び陰イオン交換樹脂からなる混床によつて過脱
塩する方法において、陽イオン交換樹脂及び/又
は陰イオン交換樹脂の含水率を従来品のゲル型樹
脂の標準値(45〜55%)よりも増加させた範囲
(55〜75%)の樹脂により混床を形成し、PWR型
原子力発電プラントの二次系統水処理時の懸濁性
不純物の除去能力を強化させたことを特徴とする
混床式過脱塩方法。 2 PWR型原子力発電プラントの二次系統水の
処理の際に、粒状又は粉末状陽イオン交換樹脂及
び陰イオン交換樹脂からなる混床によつて過脱
塩する方法において、従来品のイオン交換樹脂に
よる混床上層部に従来品ゲル型樹脂の標準値(45
〜55%)よりも含水率を増加させた範囲(55〜75
%)の陽イオン交換樹脂を積層させた樹脂床を形
成し、PWR型原子力発電プラントの二次系統水
処理時の懸濁性不純物の除去能力を強化させるこ
とを特徴とする混床式過脱塩方法。
[Claims] 1. A method for excessive desalination using a mixed bed consisting of a granular or powdered cation exchange resin and an anion exchange resin when treating secondary system water of a PWR nuclear power plant, A mixed bed is formed using a cation exchange resin and/or anion exchange resin whose water content is increased (55 to 75%) from the standard value (45 to 55%) of conventional gel-type resins. , a mixed-bed over-desalination method characterized by enhanced ability to remove suspended impurities during secondary system water treatment of PWR nuclear power plants. 2. In the process of excessive desalination using a mixed bed consisting of granular or powdered cation exchange resin and anion exchange resin when treating secondary system water of a PWR type nuclear power plant, conventional ion exchange resin The standard value of conventional gel type resin (45
~55%) with increased moisture content (55~75
%) of cation-exchange resin layered to form a resin bed, which enhances the ability to remove suspended impurities during secondary system water treatment in PWR nuclear power plants. Salt method.
JP63281280A 1988-11-09 1988-11-09 Removal process for suspended impurities by mixed bed type filter desalting device Granted JPH02131190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63281280A JPH02131190A (en) 1988-11-09 1988-11-09 Removal process for suspended impurities by mixed bed type filter desalting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63281280A JPH02131190A (en) 1988-11-09 1988-11-09 Removal process for suspended impurities by mixed bed type filter desalting device

Publications (2)

Publication Number Publication Date
JPH02131190A JPH02131190A (en) 1990-05-18
JPH0445233B2 true JPH0445233B2 (en) 1992-07-24

Family

ID=17636873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63281280A Granted JPH02131190A (en) 1988-11-09 1988-11-09 Removal process for suspended impurities by mixed bed type filter desalting device

Country Status (1)

Country Link
JP (1) JPH02131190A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387348A (en) * 1990-11-09 1995-02-07 Ebara Corporation Method of mixed-bed filtration and demineralization with ion-exchange resins
JP6103802B2 (en) * 2011-09-22 2017-03-29 三菱化学株式会社 Strongly basic anion exchange resin and desalting method and desalting apparatus using the same

Also Published As

Publication number Publication date
JPH02131190A (en) 1990-05-18

Similar Documents

Publication Publication Date Title
US4853130A (en) Method for purifying liquids
JPH0236214B2 (en)
JPH0328797A (en) Method for removeing suspensible impurity of condensate by mixed end type condensate desalting device
JP4467488B2 (en) Condensate demineralization method and condensate demineralization apparatus
JP3687829B2 (en) Condensate treatment method and condensate demineralizer
JPH0445233B2 (en)
JPH0445231B2 (en)
JPH0445232B2 (en)
JPH0445230B2 (en)
US4927796A (en) Compositions for purifying liquids
JPH0569480B2 (en)
JPH0512996B2 (en)
JPH0363439B2 (en)
JP2001335315A (en) Apparatus and method for refining boron eluent
RU2205692C2 (en) Ion-exchange treatment method for organics-containing water involving countercurrent regeneration of ion-exchange materials
CA2055206C (en) Method of mixed-bed filtration and demineralization with ion-exchange resins
JP2004279227A (en) Method and device for condensate demineralization
JPH0379077B2 (en)
JP4356987B2 (en) Condensate demineralization treatment method and apparatus and method for forming packed bed thereof
JP3599777B2 (en) Ion exchange resin and desalination device filled with the resin
JPH0512997B2 (en)
JPH0422635B2 (en)
JP3778541B2 (en) Condensate demineralizer
JPS55124548A (en) Separating fine cation-exchange resin mixing into anion-exchange resin
JPH0515875A (en) Filtering and desalting method by mixed-bed ion exchanger