JPH0515875A - Filtering and desalting method by mixed-bed ion exchanger - Google Patents

Filtering and desalting method by mixed-bed ion exchanger

Info

Publication number
JPH0515875A
JPH0515875A JP3319645A JP31964591A JPH0515875A JP H0515875 A JPH0515875 A JP H0515875A JP 3319645 A JP3319645 A JP 3319645A JP 31964591 A JP31964591 A JP 31964591A JP H0515875 A JPH0515875 A JP H0515875A
Authority
JP
Japan
Prior art keywords
resin
water
exchange resin
mixed bed
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3319645A
Other languages
Japanese (ja)
Inventor
Masahiro Hagiwara
正弘 萩原
Hideo Kawazu
秀雄 河津
Takeshi Izumi
丈志 出水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to CA002055206A priority Critical patent/CA2055206C/en
Priority to FI915283A priority patent/FI103501B1/en
Priority to CN91110732A priority patent/CN1062514A/en
Priority to DE69116800T priority patent/DE69116800T2/en
Priority to ES91119171T priority patent/ES2085400T3/en
Priority to EP91119171A priority patent/EP0484984B1/en
Publication of JPH0515875A publication Critical patent/JPH0515875A/en
Priority to US08/024,111 priority patent/US5387348A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To establish the condition for regenerating a desalter by backwashing or chemicals in the removal of suspended impurities using an ion-exchange resin. CONSTITUTION:The grainy cation-exchange resin and anion-exchange resin having a granular bonding structure on the surface layer are mixed to form the mixed bed which is placed in a desalter. The suspended impurities in water are removed and filtered off by the desalter. In this method, the desalter is backwashed and regenerated when the differential pressure of the resin bed increases to 0.2-0.8kg/cm<2> due to the collection of the suspended impurities, and chemicals are passed through the bed to regenerate the bed when the suspended impurity concn. increases to >=1.5ppb at the inlet of the desalter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イオン交換樹脂による
混床式ろ過脱塩方法に係り、特に、特殊なイオン交換樹
脂を用いて、懸濁不純物を除去する混床式ろ過脱塩方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mixed bed type filtration desalination method using an ion exchange resin, and more particularly to a mixed bed type filtration desalination method for removing suspended impurities by using a special ion exchange resin. It is a thing.

【0002】[0002]

【従来の技術】汽力発電設備ではボイラーの内部を常に
清浄な状態に保つ必要上、タービン復水器からボイラー
内へ還流する復水を復水脱塩器にて浄化処理し、高度に
浄化した後、ボイラー内への冷却水として給水してい
る。この復水脱塩器は、陽イオン交換樹脂と陰イオン交
換樹脂とが混合充填された、いわゆる混床式脱塩器であ
って、復水中の不純物であるイオン成分と懸濁固形成分
(主に金属酸化物微粒子)とをイオン交換及び吸着・ろ
過により分離除去し、復水を浄化するものである。この
点で、イオン交換樹脂はまた、有機性高分子吸着剤の範
疇にはいる。そして、陽イオン交換樹脂と陰イオン交換
樹脂とを混合して混床を形成する方法としては、ゲル型
樹脂を使用する方法そして/またはポーラス型樹脂を使
用する方法が提案されてきた。
2. Description of the Related Art In steam power generation equipment, since it is necessary to keep the inside of the boiler clean at all times, the condensate returning from the turbine condenser to the boiler is purified by a condensate demineralizer and highly purified. After that, water is supplied as cooling water into the boiler. This condensate demineralizer is a so-called mixed bed type demineralizer in which a cation exchange resin and an anion exchange resin are mixed and packed, and an ionic component and a suspended solid component (mainly as a main component) which are impurities in condensate The metal oxide fine particles) are separated and removed by ion exchange, adsorption and filtration to purify the condensate. In this respect, ion exchange resins also fall into the category of organic polymeric adsorbents. As a method for mixing a cation exchange resin and an anion exchange resin to form a mixed bed, a method using a gel type resin and / or a method using a porous type resin has been proposed.

【0003】[0003]

【発明が解決しようとする課題】前述の粒状イオン交換
樹脂を用いる方法に於いては、イオン交換樹脂にイオン
交換吸着又は捕捉されたイオン成分や金属酸化物は、定
期的に化学的薬品再生や物理的逆洗再生を施すことによ
って、イオン交換樹脂から不純物を除去し、常に、復水
脱塩器の清浄度の維持に努めている。一方、汽力発電設
備のうち、沸騰水型原子力発電設備にあっては、最近、
復水からのイオン成分及び金属酸化物の除去効果のう
ち、金属酸化物の分離効果を強化することにより、冷却
水から原子炉へ持ち込まれる金属酸化物を低減し、プラ
ント定期点検時の作業員被曝線量を減らす動きが生じて
きた。このように、原子力発電所の冷却水に金属酸化物
の除去効果への要求が高度化されると、従来の粒状イオ
ン交換樹脂を用いる方法では、次の問題があり対応出来
ないことが判った。
In the method using the above-mentioned granular ion-exchange resin, the ionic components and metal oxides adsorbed or captured by the ion-exchange resin are periodically regenerated by chemical treatment or By carrying out physical backwash regeneration, impurities are removed from the ion exchange resin, and the cleanliness of the condensate demineralizer is constantly maintained. On the other hand, among steam power generation facilities, the boiling water nuclear power generation facility has recently been
Among the effects of removing ionic components and metal oxides from condensate, by strengthening the effect of separating metal oxides, the amount of metal oxides brought into the reactor from the cooling water is reduced, and workers at the time of regular plant inspections There has been a movement to reduce the radiation dose. As described above, when the demand for the removal effect of metal oxides on the cooling water of nuclear power plants is enhanced, it was found that the conventional method using the granular ion-exchange resin cannot cope with the following problems. .

【0004】(1)イオン交換樹脂による金属酸化物の
除去効果を持続させるためには、頻繁な逆洗再生、通薬
再生が必要となり放射性廃棄物の発生量が増大する可能
性がある。 (2)従来のイオン交換樹脂による金属酸化物の除去効
果は、樹脂の長期間使用による樹脂表面のある種の変化
による除去効果の向上(エージング効果)に期待する以
外になく、新品における除去効果は、あまり期待できな
い。 (3)従来のイオン交換樹脂による金属酸化物の除去効
果は、プラント側が要求しているレベルに比較して、低
いものであり十分ではない。本発明者らは、このような
現状に鑑み、先に金属酸化物分離除去能力の大きいイオ
ン交換樹脂を用いる懸濁性不純物除去用吸着剤を開発し
ているが、本発明は、該イオン交換樹脂を用いる脱塩器
の逆洗再生、通薬再生等の処理条件を確立し、安全にし
かも経済的に操作できる混床式ろ過脱塩方法を提供する
ことを目的とする。
(1) In order to maintain the effect of removing the metal oxides by the ion exchange resin, frequent backwash regeneration and regenerator regeneration are required, which may increase the amount of radioactive waste generated. (2) The removal effect of metal oxides by the conventional ion exchange resin is not only expected to improve the removal effect due to certain changes on the resin surface due to long-term use of the resin (aging effect), but also the removal effect of new products. Can't expect much. (3) The effect of removing the metal oxide by the conventional ion exchange resin is lower than the level required by the plant side and is not sufficient. In view of such a situation, the present inventors have previously developed an adsorbent for removing suspended impurities using an ion exchange resin having a large metal oxide separation and removal ability. It is an object of the present invention to provide a mixed bed type filtration desalination method which can establish safe and economical operation by establishing processing conditions such as backwash regeneration and regenerator regeneration of a desalting device using a resin.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、表層構造が顆粒状結合構造を有する粒
状陽イオン交換樹脂及び陰イオン交換樹脂で混床を形成
した脱塩器により、懸濁不純物を除去するろ過脱塩方法
において、脱塩器の逆洗再生を樹脂層の懸濁不純物捕捉
による通水差圧上昇値が0.2〜0.8kg/cm2
範囲となった時点で行うことを特徴とする混床式ろ過脱
塩方法としたものであり、また上記において、逆洗再生
によっても出口水質が向上せず、脱塩器出口の懸濁不純
物濃度が1.5ppb以上になった時点では、脱塩器の
通薬再生を行うこととしたものである。また、本発明で
は、表層構造が顆粒状結合構造を有する粒状陽イオン交
換樹脂及び陰イオン交換樹脂で、混床を形成した脱塩器
により、懸濁不純物を除去するろ過脱塩方法において、
イオン交換樹脂に捕捉されたクラッド鉄量が、粒間鉄量
1g/リットル−R以上となったとき逆洗再生し、ま
た、粒内鉄塩9g/リットル−R以上となったとき通薬
再生することを特徴とする混床式ろ過脱塩方法としたも
のである。
In order to achieve the above object, in the present invention, a desalting device in which a mixed bed is formed by a granular cation exchange resin and an anion exchange resin whose surface layer structure has a granular bond structure is used. In the filter desalting method for removing suspended impurities, the backwash regeneration of the desalting device is performed so that the water flow differential pressure increase value due to trapped suspended impurities in the resin layer is in the range of 0.2 to 0.8 kg / cm 2. The mixed water filtration desalination method is characterized by being carried out at the same time, and in the above, the quality of the outlet water is not improved even by backwash regeneration, and the concentration of suspended impurities at the outlet of the demineralizer is 1. At the time of reaching 5 ppb or more, the regeneration of the desalting device is performed. Further, in the present invention, the surface layer structure is a granular cation exchange resin and an anion exchange resin having a granular bond structure, by a desalting device forming a mixed bed, in a filtration desalination method for removing suspended impurities,
When the amount of clad iron trapped in the ion-exchange resin is 1 g / liter-R or more of intergranular iron, backwash regeneration is performed, and when it is 9 g / liter-R or more of intragranular iron salt, general regeneration is performed. The mixed-bed filtration desalination method is characterized in that

【0006】そして、上記の混床式ろ過脱塩方法におい
て、再生時期を検知するために、脱塩器の通水に平行
し、脱塩器の通水条件と同一の条件のモニターカラムを
設置し通水することとして、モニターカラムを測定する
ことにより逆洗再生及び通薬再生の時期を検知したもの
であり、さらに、モニターカラムの樹脂に捕捉された粒
内鉄量が15g/リットル−R以上又はモニターカラム
出口の全有機炭素濃度が増分として10ppb以上にな
った時点で脱塩器の樹脂を交換することとしたものであ
る。また本発明では、表層構造が顆粒状結合構造を有す
る粒状陽イオン交換樹脂及び陰イオン交換樹脂で混床を
形成した脱塩器により、懸濁不純物を除去するろ過脱塩
方法において、脱塩器に被処理水を通水する前に、まず
脱塩器内の滞留水を排出し、純水で満水にした後、通水
することを特徴とする混床式ろ過脱塩方法としたもので
ある。
In the above mixed bed type filter desalination method, a monitor column is installed in parallel with the water flow of the desalinator in order to detect the regeneration time. In this case, the time of backwash regeneration and chemical regeneration was detected by measuring the monitor column as the water flow, and the amount of intragranular iron trapped in the resin of the monitor column was 15 g / liter-R. In the above or when the total organic carbon concentration at the monitor column outlet becomes 10 ppb or more as an increment, the resin of the desalting unit is replaced. Further, in the present invention, a desalting device for removing suspended impurities by a desalting device having a mixed bed formed of a granular cation exchange resin and an anion exchange resin having a surface-layer structure having a granular bond structure, Before passing the water to be treated, the mixed-bed filtration desalination method is characterized in that the accumulated water in the desalination device is first discharged and then filled with pure water, and then water is passed. is there.

【0007】上記において、粒間鉄量とは、イオン交換
樹脂に捕捉した懸濁不純物を、エアスクラビングとオー
バーフロー逆洗をくり返してはく離させ、はく離した不
純物量を測定したものをいう。そして、該粒間鉄を測定
した後の樹脂を、超音波洗浄器で徹底洗浄して樹脂粒表
面に吸着した不純物をはく離させ、その不純物を表面鉄
といい、その量を測定したものが表面鉄量である。さら
に、表面鉄を測定した後の樹脂を、温塩酸で処理して、
樹脂粒内に吸着した不純物を溶出させ、その量を測定し
たものが粒内鉄量である。次に、本発明の混床式ろ過脱
塩方法に使用する表層構造が顆粒状結合構造を有する粒
状陽イオン交換樹脂及び陰イオン交換樹脂について説明
する。
In the above description, the amount of intergranular iron means the amount of suspended impurities trapped in the ion-exchange resin, which are separated by repeating air scrubbing and overflow backwash, and the amount of separated impurities is measured. Then, the resin after measuring the intergranular iron is thoroughly washed with an ultrasonic cleaner to remove impurities adsorbed on the surface of the resin particles, and the impurities are called surface iron. The amount of iron. Furthermore, the resin after measuring the surface iron is treated with warm hydrochloric acid,
The amount of iron in the particles is measured by eluting impurities adsorbed in the resin particles and measuring the amount. Next, the granular cation exchange resin and anion exchange resin having a granular bond structure as the surface layer structure used in the mixed bed type filtration desalination method of the present invention will be described.

【0008】本発明で用いるイオン交換樹脂は、樹脂の
表層構造が走査型電子顕微鏡で50倍〜20万倍の視野
で顆粒状結合構造を有するものである。そして、上記の
樹脂は、単位顆粒寸法が、0.1〜1.0μm で、その
集合結合体である樹脂の直径が、0.2〜1.2mmであ
る真球状粒子構造であり、本真球状粒子の粒径は必ずし
も連続的な、いわゆるガウシアン分布を持つものとは限
らず、単一もしくは均一粒径のものも含まれる。上記真
球状粒子の樹脂は、表面構造が、亀甲状及び/又は鱗状
を呈し、且、溝を有する表面構造を持ち、また、単位亀
甲状及び/又は鱗状は、1〜50μm2 の単位面積を持
ち、不定形に集合した表面構造を呈し、且、それぞれの
単位亀甲状及び/又は鱗状は、幅0.1〜5μm 、深さ
0.1〜5μm の溝を介して隣接する表面状態を呈し、
この溝は、その単位面積当たりの溝の全長が、100〜
1000mm/mm2 である表面構造を呈する樹脂である。
The ion-exchange resin used in the present invention has a resin surface layer structure having a granular bond structure in a visual field of 50 to 200,000 times with a scanning electron microscope. The above-mentioned resin has a true spherical particle structure in which the unit granule size is 0.1 to 1.0 μm and the diameter of the resin as an aggregated bond is 0.2 to 1.2 mm. The particle size of the spherical particles is not necessarily continuous, that is, having a so-called Gaussian distribution, and includes particles having a single or uniform particle size. The resin of the true spherical particles has a hexagonal and / or scaly surface structure and has a grooved surface structure, and the unit hexagonal and / or scaly has a unit area of 1 to 50 μm 2. It has a surface structure that has an irregular shape and has a united hexagonal shape and / or scaly shape that are adjacent to each other via a groove having a width of 0.1 to 5 μm and a depth of 0.1 to 5 μm. ,
This groove has a total length of 100 to 100 per unit area.
It is a resin having a surface structure of 1000 mm / mm 2 .

【0009】さらに、上記真球状粒子の樹脂は、クリプ
トン及び/又はクリプトンと同等の気体吸着量から測定
される有効比表面積が、0.02〜1.00m2 /g−
乾燥吸着剤、である樹脂であり、これらの樹脂は、表面
から0.1〜10μm 以上のスキン層を有する二重構造
を有している。また、前記の真球状粒子の樹脂を粉体化
すると粉末状樹脂が得られる。これらの樹脂を用いて充
填層及び/又はろ過層を形成すると、超純水や復水中の
懸濁性不純物除去能力の強化・向上を特徴とする懸濁性
不純物除去用の脱塩器が得られる。本発明においては、
従来の混床式脱塩器に使用しているイオン交換樹脂に比
較して、使用する樹脂の表面及び/又は表層構造が、金
属酸化物を選択的に吸着除去する構造となっているた
め、金属酸化物との親和性が高く、金属酸化物の分離除
去効果が大きいことにより、脱塩操作に際し、より金属
酸化物濃度の低い高純度の処理水を提供出来る。
Further, the resin having the true spherical particles has an effective specific surface area of 0.02 to 1.00 m 2 / g-measured from krypton and / or a gas adsorption amount equivalent to krypton.
These resins are dry adsorbents, and these resins have a double structure having a skin layer of 0.1 to 10 μm or more from the surface. Further, a powdery resin can be obtained by powderizing the resin having the spherical particles. By forming a packed bed and / or a filtration layer using these resins, a desalinizer for removing suspended impurities characterized by enhancing and improving the ability to remove suspended impurities in ultrapure water or condensate is obtained. To be In the present invention,
Compared with the ion exchange resin used in the conventional mixed bed type desalinizer, the surface and / or surface layer structure of the resin used has a structure for selectively adsorbing and removing metal oxides, Since it has a high affinity with the metal oxide and a large effect of separating and removing the metal oxide, it is possible to provide high-purity treated water having a lower metal oxide concentration in the desalting operation.

【0010】上記のような本発明で使用するイオン交換
樹脂は、例えば、特開昭59−18705号公報、特開
昭59−98117号公報に記載の方法によって製造で
きる。また、本発明のろ過脱塩方法に用いる混床式ろ過
脱塩装置は、懸濁不純物除去機能を有する粒状イオン交
換樹脂により層高500mm〜1500mmの範囲、望まし
くは、900mm〜1100mmの範囲で混床を形成した脱
塩器の上部より冷却水を導入し、通水線流速20m/h
〜130m/h(脱塩器断面積基準)の範囲、望ましく
は線流速70m/h〜120m/hの範囲で、通水し、
脱塩器の側部又は下部より冷却水を抜き出し、懸濁不純
物及びイオン性不純物を除去する混床式ろ過脱塩装置と
するのがよい。本発明の混床式ろ過脱塩方法は、原子力
発電プラント特に沸騰水型原子力発電プラントの一次冷
却水の処理に有効であるが、これらに限定されるもので
はなく、例えば、タービン復水器からボイラー内へ還流
する復水の処理あるいは純水製造設置等の脱塩器の処理
等懸濁不純物を除去して高純度の水を得る施設の処理に
も好適に使用できる。
The ion exchange resin used in the present invention as described above can be produced, for example, by the method described in JP-A-59-18705 and JP-A-59-98117. In addition, the mixed bed type filter desalting apparatus used in the filter desalting method of the present invention uses a granular ion-exchange resin having a function of removing suspended impurities to mix the layer height in the range of 500 mm to 1500 mm, preferably in the range of 900 mm to 1100 mm. Cooling water was introduced from the upper part of the demineralizer that formed the floor, and the water flow velocity was 20 m / h.
To 130 m / h (based on the cross-sectional area of the demineralizer), preferably in the range of linear flow velocity 70 m / h to 120 m / h,
It is advisable to use a mixed-bed type filter desalting apparatus that removes suspended impurities and ionic impurities by extracting cooling water from the side or bottom of the desalting device. The mixed bed filtration desalination method of the present invention is effective for the treatment of primary cooling water of a nuclear power plant, particularly a boiling water nuclear power plant, but is not limited to these, for example, from a turbine condenser. It can also be suitably used for treatment of condensate returned to the boiler or treatment of facilities such as demineralizer treatment such as installation of pure water production to remove suspended impurities and obtain high-purity water.

【0011】[0011]

【作用】上記のような混床式ろ過脱塩装置を用いる脱塩
方法において、脱塩器の逆洗再生の時期を、樹脂層の懸
濁不純物捕捉による通水差圧の上昇値0.2〜0.8kg
/cm2 の範囲、望ましくは0.5kg/cm2 で管理運用す
ることにより廃棄物発生量の低減を図ることができる。
従来脱塩器の逆洗再生は、懸濁不純物の脱塩器下流への
リークをなくし、良好な水質を維持するため、一塔あた
り約25日の定ピッチで行なっており、運転員の負荷増
大、廃棄物発生量の増大等の問題があり、解決の手段が
なかった。また、従来プラントでは懸濁不純物捕捉能力
が劣るため、通水時の差圧上昇は顕著には現われず、本
発明のような管理は難かしい。また、本発明のろ過脱塩
方法において、脱塩器の通薬再生の時期を脱塩器の処理
水質の悪化、即ち逆洗再生によっても出口水質が向上せ
ず、脱塩器出口の懸濁不純物濃度が1〜3ppb以上、
望ましくは1.5ppb以上で管理運用することにより
廃棄物発生量の低減を図ることができる。
In the desalting method using the mixed bed type filter desalting apparatus as described above, the time of the backwash regeneration of the desalting device is set to the increase value of the differential pressure of water flow of 0.2 due to the trapping of the suspended impurities in the resin layer. ~ 0.8 kg
The amount of waste can be reduced by managing and operating in the range of / cm 2 , preferably 0.5 kg / cm 2 .
Conventionally, the backwash regeneration of the desalinizer is carried out at a fixed pitch of about 25 days per tower to prevent leakage of suspended impurities to the downstream of the desalinator and maintain good water quality. There were problems such as an increase and an increase in the amount of waste generated, and there was no means for solving it. In addition, since the suspended plant has a poor ability to capture suspended impurities, the increase in differential pressure during water flow does not appear significantly, and the management as in the present invention is difficult. Further, in the filtration desalination method of the present invention, the timing of regenerator regeneration of the desalting device is deteriorated when the quality of treated water of the desalting device is deteriorated, that is, the outlet water quality is not improved even by backwash regeneration, and the suspension of the desalting device outlet Impurity concentration of 1 to 3 ppb or more,
Desirably, by managing and operating at 1.5 ppb or more, the amount of waste generated can be reduced.

【0012】従来脱塩器の通薬再生は、樹脂に捕捉した
懸濁不純物を除去して、良好な水質を維持するため一塔
あたり、約100日の定ピッチで行なっており、運転員
の負荷増大、廃棄物発生量の増大等の問題があり解決の
手段がなかった。さらに、本発明のろ過脱塩方法におい
て、脱塩器の逆洗再生の時期、並びに通薬再生の時期を
イオン交換樹脂に捕捉されたクラッド鉄量によって管理
運用し廃棄物発生量の低減を図ることができる。また脱
塩器の通水に平行し、脱塩器の通水条件と同一な条件の
モニターカラムを設置し通水することにより、逆洗再生
の時期並びに通薬再生の時期、樹脂交換の時期をモニタ
ーカラムの差圧、イオン交換樹脂に捕捉されたクラッド
鉄量、全有機炭素量によって、次の通り管理運用し、廃
棄物発生量の低減並びに処理水質の高純度維持を図る。
[0012] Conventionally, regenerator regeneration in a desalting unit is carried out at a constant pitch of about 100 days per tower in order to remove suspended impurities trapped in the resin and maintain good water quality. There were problems such as increased load and increased waste generation, and there was no solution. Further, in the filtration desalination method of the present invention, the timing of the backwash regeneration of the desalting unit and the timing of the regenerator regeneration are managed and operated by the amount of clad iron captured in the ion exchange resin to reduce the amount of waste generation. be able to. In addition, by installing a monitor column in parallel with the water flow of the desalinator and under the same conditions as the water flow of the demineralizer, the time of backwash regeneration, the time of regenerant regeneration, and the time of resin exchange Depending on the differential pressure of the monitor column, the amount of clad iron trapped in the ion-exchange resin, and the amount of total organic carbon, the following management operations will be carried out to reduce the amount of waste generated and maintain the high purity of the treated water.

【0013】 逆洗再生をモニターカラムの差圧の上
昇値0.2〜0.8kg/cm2 の範囲、望ましくは0.5
kg/cm2 で管理運用することにより、従来に比較して運
転員の負荷、廃棄物発生量を1/3 に低減する。又は、モ
ニターカラムの樹脂に捕捉された粒間鉄量1.0〜1.
5g/リットル−Rの範囲望ましくは、1.5g/リッ
トル−Rで管理することにより、従来に比較して運転員
の負荷、廃棄物発生量を1/3 に低減する。 通薬再生
をモニターカラムの樹脂に捕捉された粒内鉄量6〜9g
/リットル−Rの範囲望ましくは、9g/リットル−R
で管理することにより、従来に比較して運転員の負荷、
廃棄物発生量を30%に低減する。 樹脂の交換時期
をモニターカラムの樹脂に捕捉された粒内鉄量15〜2
0g/リットル−R以上又は、モニターカラム出口の全
有機炭素濃度の増分として、10〜50ppb以上によ
り管理運用し、処理水質の高純度維持を図ることができ
る。
The backwash regeneration is performed by increasing the differential pressure of the monitor column in the range of 0.2 to 0.8 kg / cm 2 , preferably 0.5.
By managing and operating at kg / cm 2 , the load on operators and the amount of waste generated will be reduced to 1/3 of the conventional level. Alternatively, the amount of intergranular iron captured by the resin in the monitor column is 1.0 to 1.
Range of 5 g / liter-R Desirably, by controlling at 1.5 g / liter-R, the load on the operator and the amount of waste generated can be reduced to 1/3 of the conventional one. Intragranular iron amount trapped in the resin of the monitor column for 6-12g regeneration
/ L-R range Desirably 9 g / L-R
By managing with, the load on the operator,
Reduce waste generation to 30%. The amount of intragranular iron trapped in the resin in the monitor column is 15 to 2
It is possible to maintain high purity of treated water by controlling and operating at 0 g / liter-R or more or as an increment of the total organic carbon concentration at the monitor column outlet of 10 to 50 ppb or more.

【0014】[0014]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれに限定されない。 実施例1 本実施例の混床樹脂による懸濁不純物除去性能は、図1
の試験装置を使用し、以下の条件により試験を行なっ
た。 (i)樹脂:従来及び本発明の強酸性ゲル型陽イオン交
換樹脂と陰イオン交換樹脂を組み合わせて混床状態で使
用。 (ii)樹脂量:陽イオン/陰イオン交換樹脂比=1.6
/1で層高90cm相当分(約2リットル)を混合して充
填。 (iii) 通水線流速:LV=108m/h 図1の試験装置は、カラムユニットとサンプリングユニ
ットからなり、カラムユニットは、上記条件で通水され
る被処理水をカラムに導入する管、弁及び圧力スイッチ
PS、圧力ゲージPI、温度計TI、及び上記樹脂が充
填されるカラムから概略構成され、サンプリングユニッ
トは、該樹脂によりろ過脱塩処理された処理水を処理水
出口に導く管、流量計FI、ろ紙MF、イオン交換ろ紙
IEP、積算流量計FQ、導電率計CEからなり、クラ
ッド鉄濃度を有する被処理水1を上記条件にて処理し、
処理水出口の同濃度を経時的に測定した。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. Example 1 The performance of removing suspended impurities by the mixed bed resin of this example is shown in FIG.
The test was carried out under the following conditions using the test equipment of (I) Resin: The strong acid gel type cation exchange resin and the anion exchange resin of the present invention and the present invention are used in a mixed bed state in combination. (Ii) Resin amount: cation / anion exchange resin ratio = 1.6
At a layer height of 90 cm, a volume equivalent to 90 cm (about 2 liters) is mixed and filled. (Iii) Water flow velocity: LV = 108 m / h The test apparatus in FIG. 1 is composed of a column unit and a sampling unit, and the column unit has a pipe and a valve for introducing the water to be treated, which is passed under the above conditions, into the column. And a pressure switch PS, a pressure gauge PI, a thermometer TI, and a column filled with the above resin, and the sampling unit includes a pipe and a flow rate for guiding the treated water filtered and desalted by the resin to the treated water outlet. Comprising a meter FI, a filter paper MF, an ion exchange filter paper IEP, an integrating flow meter FQ, and a conductivity meter CE, the treated water 1 having a clad iron concentration is treated under the above conditions,
The same concentration at the treated water outlet was measured over time.

【0015】本発明品を上記のカラム試験装置により不
純物除去性能を調査した結果を、樹脂層差圧(図3)と
カラム出入口の不純物濃度(図2)として示す。カラム
入口で約17ppbの不純物濃度に対し、出口では1p
pb以下であり約16ppb分は樹脂層にて捕捉してい
る。そして、捕捉に伴ない樹脂層の差圧は上昇し、約7
5日の通水で0.5kg/cm2 の上昇が認められた。その
時点で逆洗再生を行なうことにより、差圧は初期のクリ
ーンな状態に戻り、またカラム出口の不純物濃度も低下
・回復した。この期間は、一切逆洗を行なう必要がなく
なり、運転員の負荷、廃棄物発生量の低減を図ることが
可能となる。脱塩塔1塔(8塔プラント)に着目すれば
従来は75日間で一塔当り3回の逆洗再生を行なってい
るところ、本発明によれば、1回で済むことになり運転
員の負荷、廃棄物発生量とも従来プラントの1/3 に低減
することが可能となる。
The results of investigating the impurity removal performance of the product of the present invention by the above-mentioned column test apparatus are shown as the resin layer differential pressure (FIG. 3) and the impurity concentration at the column inlet and outlet (FIG. 2). Impurity concentration of about 17 ppb at column inlet, 1 p at outlet
It is less than pb and about 16 ppb is captured by the resin layer. Then, the differential pressure of the resin layer increases with the capture, and the
An increase of 0.5 kg / cm 2 was observed after passing water for 5 days. At that time, by performing backwash regeneration, the differential pressure returned to the initial clean state, and the impurity concentration at the column outlet was also reduced / recovered. During this period, it is not necessary to carry out backwashing at all, and it becomes possible to reduce the load on the operator and the amount of waste generated. Focusing on one desalting tower (eight tower plant), conventionally, backwash regeneration is carried out three times per tower in 75 days, but according to the present invention, only one time is required and the operator's Both load and waste generation can be reduced to 1/3 of the conventional plant.

【0016】実施例2 図4は、本発明品を実施例1のカラム試験装置により不
純物除去性能を調査した結果で、カラム出入口の不純物
濃度の経時変化を示したものである。本発明品は約34
0日の通水によりカラム出口の不純物濃度が約1.5p
pbまで上昇したが、その後通薬再生を実施した後に通
水することにより、0.5ppbまで低下し、良好な水
質が得られることが確認された。この期間は、一切通薬
を行なう必要がなくなり、運転員の負荷、廃棄物発生量
の低減を図ることが可能となる。脱塩塔1塔に着目すれ
ば、従来は100日定ピッチで通薬再生を行なっている
ところ、本発明によれば、約340日で通薬再生を行な
えばよいことになり運転員の負荷、廃棄物発生量とも従
来プラントの30%に低減させることが可能となる。
Example 2 FIG. 4 shows the results of investigating the impurity removal performance of the product of the present invention using the column test apparatus of Example 1, and shows the change over time in the impurity concentration at the column inlet and outlet. The product of the present invention is about 34
Impurity concentration at the outlet of the column is approx.
It was confirmed that the water quality increased to pb, but then decreased to 0.5 ppb by passing water after the drug regeneration was performed, and good water quality was obtained. During this period, it is no longer necessary to carry out medicine, and it is possible to reduce the load on operators and the amount of waste generated. Focusing on one demineralization tower, conventional regenerator regeneration is performed at a constant pitch of 100 days, but according to the present invention, replenishment regeneration can be performed in about 340 days. In addition, the amount of waste generated can be reduced to 30% of the conventional plant.

【0017】実施例3 図5は、本発明品を実施例1のカラム試験装置に充填・
通水し、逆洗再生を実施する毎に、樹脂により捕捉した
不純物を、粒間・表面・粒内鉄それぞれに分類して経時
的に調査した結果である。粒間鉄は、通水により増加
し、75〜80日の通水で約1.5g/リットル−Rの
捕捉量となり、これは逆洗再生により、その都度除去さ
れる。また粒内鉄は逆洗では除去できないため、通水に
より増加し、約340日の通水により約9g/リットル
−Rまでに達し、その時点で通薬再生を行なうことによ
り約6g/リットル−Rにまで低減することが確認され
た。上記の粒間鉄・表面鉄・粒内鉄は、次のように測定
する。実施例1の試験装置にて、一定期間通水を行なっ
た混床樹脂を、通水停止後にカラムより抜き出し、次頁
の手順フローにて捕捉した懸濁不純物を分類し定量す
る。
Example 3 FIG. 5 shows that the column test apparatus of Example 1 was filled with the product of the present invention.
Each time water was passed through and backwashing was performed, impurities captured by the resin were classified into intergranular, surface and intragranular iron, and the results were investigated over time. Intergranular iron is increased by water flow, and a trap amount of about 1.5 g / liter-R is obtained by water flow for 75 to 80 days, and this is removed each time by backwash regeneration. Intragranular iron cannot be removed by backwashing, so it increases by water flow and reaches about 9 g / liter-R by water flow for about 340 days. At that time, it is about 6 g / liter-R by performing drug regeneration. It was confirmed that it was reduced to R. The above-mentioned intergranular iron, surface iron, and intragranular iron are measured as follows. With the test apparatus of Example 1, the mixed bed resin that has been water-passed for a certain period of time is withdrawn from the column after the water flow is stopped, and the suspended impurities captured by the procedure flow on the next page are classified and quantified.

【0018】手順としては、第一に、カラムより抜き出
した混床樹脂を、別途準備した分析用カラム(100mm
φ×1200mmh)に充填し、エアスクラビングとオー
バーフロー逆洗をくり返し、捕捉した懸濁不純物をはく
離させ、はく離した不純物量を測定し、これを粒間鉄と
定める。次に、粒間鉄を測定した後の樹脂を、超音波洗
浄器にて徹底洗浄し、樹脂粒表面に吸着した不純物をは
く離させ、この量を測定し、これを表面鉄と定める。さ
らに表面鉄を測定した後の樹脂を、温塩酸にて処理し、
樹脂粒内に吸着した不純物を溶出させ、この量を測定
し、これを粒内鉄と定める。
The procedure is as follows. First, the mixed bed resin extracted from the column is put into a separately prepared analytical column (100 mm).
φ × 1200 mmh), air scrubbing and overflow backwashing are repeated, the suspended impurities trapped are stripped off, the amount of stripped impurities is measured, and this is defined as intergranular iron. Next, the resin after measuring the intergranular iron is thoroughly cleaned with an ultrasonic cleaner to remove impurities adsorbed on the surface of the resin particles, the amount is measured, and this is determined as surface iron. Furthermore, the resin after measuring the surface iron is treated with warm hydrochloric acid,
Impurities adsorbed in the resin particles are eluted, the amount is measured, and this is defined as intragranular iron.

【0019】実施例4 図6は、横軸に混床樹脂を純水中に浸漬した時間の積算
値を取り、縦軸には、樹脂1m3 、1時間当りのTOC
溶出量を示したものであり、従来樹脂及び本発明品によ
るTOC溶出特性を比較したものである。TOCの溶出
速度は時間経過と共に小さくなる傾向にあり、また樹脂
銘柄により差が認められ、本発明品は経年的に増加する
傾向にある。実際に混床樹脂を使用する場合には、初期
に多く溶出するTOCをあらかじめ排出除去し、その後
に通水を行なうような手段を採用し、復水中に持ち込ま
れるTOCを低くする。これよにり、プラント起動時復
水中のTOC濃度を従来値の1/3 以下に低減することが
可能である。
Example 4 In FIG. 6, the horizontal axis represents the integrated value of the time of immersion of the mixed bed resin in pure water, and the vertical axis represents the resin 1 m 3 , TOC per hour.
FIG. 3 shows the amount of elution, and compares the TOC elution characteristics of the conventional resin and the product of the present invention. The TOC elution rate tends to decrease with the passage of time, and a difference is recognized depending on the resin brand, and the product of the present invention tends to increase over the years. When actually using a mixed bed resin, TOC which is largely eluted in the initial stage is first discharged and removed, and then a means for conducting water is adopted to reduce the TOC brought into the condensate. As a result, it is possible to reduce the TOC concentration in the condensate at plant startup to 1/3 or less of the conventional value.

【0020】上記のTOC溶出特性は、以下の手順にて
測定を行なった。 (1)カチオン樹脂30.8mlとアニオン樹脂19.2
mlを採取し、100mlビーカに入れる。 (2)これに超純水(TOC濃度0.1ppm 以下) を5
0ml加え、3分間かくはんし、27分間静置する。 (3)これをろ過し、ろ液中のTOC濃度を測定する。 (4)ろ過した混床樹脂は、再びビーカに入れ超純水を
加え、一定時間放置後、3分間かくはんし、27分放置
後、(3)の操作を行なう。これを200時間以上行な
い、TOC溶出特性を確認する。
The above TOC elution characteristics were measured by the following procedure. (1) 30.8 ml of cation resin and 19.2 of anion resin
Take ml and place in a 100 ml beaker. (2) Add ultrapure water (TOC concentration of 0.1ppm or less) to this.
Add 0 ml, stir for 3 minutes and let stand for 27 minutes. (3) This is filtered and the TOC concentration in the filtrate is measured. (4) The filtered mixed bed resin is put into a beaker again, ultrapure water is added thereto, the mixture is left for a certain period of time, stirred for 3 minutes, and allowed to stand for 27 minutes, and then the operation of (3) is performed. This is performed for 200 hours or more to confirm the TOC elution characteristics.

【0021】[0021]

【発明の効果】本発明においては、上記のように混床式
ろ過脱塩方法における再生処理操作を管理することによ
り、従来に比較し、運転員の負荷、廃棄物の発生量を低
減することができた。
According to the present invention, by controlling the regeneration treatment operation in the mixed bed type filter desalting method as described above, the load on the operator and the amount of waste generated can be reduced as compared with the conventional method. I was able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】混床式のカラム試験装置の系統図である。FIG. 1 is a system diagram of a mixed bed type column test apparatus.

【図2】カラム出入口のクラッド鉄濃度を示すグラフで
ある。
FIG. 2 is a graph showing the concentration of clad iron at the entrance and exit of a column.

【図3】図2に対応する樹脂層差圧を示すグラフであ
る。
FIG. 3 is a graph showing a resin layer differential pressure corresponding to FIG.

【図4】通薬再生後のカラム出入口のクラッド鉄濃度を
示すグラフである。
FIG. 4 is a graph showing the concentration of clad iron at the inlet and outlet of the column after regenerant regeneration.

【図5】通水日数と再生処理による粒間鉄、粒内鉄、表
面鉄量の変化を示すグラフである。
FIG. 5 is a graph showing changes in intergranular iron, intragranular iron, and surface iron content due to water passage days and regeneration treatment.

【図6】積算浸漬時間によるTOC溶出速度の変化を示
すグラフである。
FIG. 6 is a graph showing changes in TOC elution rate depending on cumulative immersion time.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 表層構造が顆粒状結合構造を有する粒状
陽イオン交換樹脂及び陰イオン交換樹脂で混床を形成し
た脱塩器により、懸濁不純物を除去するろ過脱塩方法に
おいて、脱塩器の逆洗再生を樹脂層の懸濁不純物捕捉に
よる通水差圧上昇値が0.2〜0.8kg/cm2 の範
囲となった時点で行うことを特徴とする混床式ろ過脱塩
方法。
1. A desalting device in a filtration desalting method for removing suspended impurities by a desalting device having a mixed bed formed of a granular cation exchange resin and an anion exchange resin having a surface layer structure having a granular bond structure. The mixed bed filtration desalination method, characterized in that the backwash regeneration is carried out at the time when the water flow differential pressure increase value due to trapping of suspended impurities in the resin layer is in the range of 0.2 to 0.8 kg / cm 2. .
【請求項2】 請求項1記載の混床式ろ過脱塩方法にお
いて、逆洗再生によっても出口水質が向上せず、脱塩器
出口の懸濁不純物濃度が1.5ppb以上になった時点
で、脱塩器の通薬再生を行うことを特徴とする混床式ろ
過脱塩方法。
2. The mixed bed filtration desalination method according to claim 1, wherein the outlet water quality is not improved even by backwash regeneration, and the concentration of suspended impurities at the outlet of the demineralizer becomes 1.5 ppb or more. , A mixed bed filtration desalination method, which comprises regenerating a desalting device as a refill.
【請求項3】 表層構造が顆粒状結合構造を有する粒状
陽イオン交換樹脂及び陰イオン交換樹脂で混床を形成し
た脱塩器により、懸濁不純物を除去するろ過脱塩方法に
おいて、イオン交換樹脂に捕捉されたクラッド鉄量が、
粒間鉄量1g/リットル−R以上となったとき逆洗再生
し、また、粒内鉄量9g/リットル−R以上となったと
き通薬再生することを特徴とする混床式ろ過脱塩方法。
3. An ion exchange resin in a filtration desalination method for removing suspended impurities by using a desalting machine in which a mixed bed is formed with a granular cation exchange resin and an anion exchange resin whose surface layer structure has a granular bond structure. The amount of clad iron captured in
Mixed-bed filtration desalination characterized by performing backwash regeneration when the intergranular iron content is 1 g / liter-R or more, and regenerant regeneration when the intragranular iron content is 9 g / liter-R or more. Method.
【請求項4】 請求項1,2又は3記載の混床式ろ過脱
塩方法において、脱塩器の通水に平行し、脱塩器の通水
条件と同一の条件のモニターカラムを設置し通水するこ
とにより、逆洗再生及び通薬再生の時期を該モニターカ
ラムを測定することにより検知することを特徴とする混
床式ろ過脱塩方法。
4. The mixed bed filtration desalination method according to claim 1, 2 or 3, wherein a monitor column is installed in parallel with the water flow of the desalinizer and under the same conditions as the water flow condition of the desalinizer. A mixed-bed filtration desalination method, characterized in that the time of backwash regeneration and chemical regeneration is detected by measuring the monitor column by passing water.
【請求項5】 請求項4記載の混床式ろ過脱塩方法にお
いて、モニターカラムの樹脂に捕捉された粒内鉄量が1
5g/リットル−R以上又はモニターカラム出口の全有
機炭素濃度が増分として10ppb以上になった時点で
脱塩器の樹脂を交換することを特徴とする混床式ろ過脱
塩方法。
5. The mixed bed filtration desalination method according to claim 4, wherein the amount of intragranular iron trapped in the resin of the monitor column is 1 or less.
A mixed bed filtration desalination method, characterized in that the resin of the desalting unit is replaced when the concentration of total organic carbon at 5 g / liter-R or more or at the monitor column outlet becomes 10 ppb or more as an increment.
【請求項6】 表層構造が顆粒状結合構造を有する粒状
陽イオン交換樹脂及び陰イオン交換樹脂で混床を形成し
た脱塩器により、懸濁不純物を除去するろ過脱塩方法に
おいて、脱塩器に被処理水を通水する前に、まず脱塩器
内の滞留水を排出し、純水で満水にした後、通水するこ
とを特徴とする混床式ろ過脱塩方法。
6. A desalting device in a filter desalting method for removing suspended impurities by a desalting device having a mixed bed of a granular cation exchange resin and an anion exchange resin having a surface-layer structure having a granular bond structure. A mixed-bed filtration desalination method, characterized in that, before passing the water to be treated, the accumulated water in the desalting device is first discharged and then filled with pure water, and then the water is passed.
【請求項7】 前記懸濁不純物が発電所の一次冷却水中
の懸濁不純物であることを特徴とする請求項1〜6のい
ずれか1項記載の混床式ろ過脱塩方法。
7. The mixed bed filtration desalination method according to claim 1, wherein the suspended impurities are suspended impurities in primary cooling water of a power plant.
【請求項8】 前記懸濁不純物が原子力発電所の一次冷
却水中の懸濁不純物であることを特徴とする請求項1〜
6のいずれか1項記載の混床式ろ過脱塩方法。
8. The method according to claim 1, wherein the suspended impurities are suspended impurities in primary cooling water of a nuclear power plant.
6. The mixed bed filtration desalination method according to any one of 6 above.
JP3319645A 1990-11-09 1991-11-08 Filtering and desalting method by mixed-bed ion exchanger Pending JPH0515875A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA002055206A CA2055206C (en) 1990-11-09 1991-11-08 Method of mixed-bed filtration and demineralization with ion-exchange resins
FI915283A FI103501B1 (en) 1990-11-09 1991-11-08 Mixed bed filtration and demineralisation process to remove impurities from power plant cooling water
CN91110732A CN1062514A (en) 1990-11-09 1991-11-09 Spent ion exchange resin carries out the method for mixed bed filtration and demineralization
DE69116800T DE69116800T2 (en) 1990-11-09 1991-11-11 Method of filtering and demineralizing with a mixed bed of ion exchangers
ES91119171T ES2085400T3 (en) 1990-11-09 1991-11-11 FILTRATION AND DEMINERALIZATION METHOD IN MIXED BED WITH ION EXCHANGE RESINS.
EP91119171A EP0484984B1 (en) 1990-11-09 1991-11-11 Method of mixed-bed filtration and demineralization with ion-exchange resins
US08/024,111 US5387348A (en) 1990-11-09 1993-02-23 Method of mixed-bed filtration and demineralization with ion-exchange resins

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-302587 1990-11-09
JP30258790 1990-11-09

Publications (1)

Publication Number Publication Date
JPH0515875A true JPH0515875A (en) 1993-01-26

Family

ID=17910775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3319645A Pending JPH0515875A (en) 1990-11-09 1991-11-08 Filtering and desalting method by mixed-bed ion exchanger

Country Status (3)

Country Link
JP (1) JPH0515875A (en)
RU (1) RU2040475C1 (en)
UA (1) UA24011A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016230A1 (en) * 2013-07-30 2015-02-05 株式会社トクヤマ Preparation method of aqueous tetraalkyl ammonium salt solution

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567384A (en) * 1978-10-09 1980-05-21 Japan Organo Co Ltd Treatment of aqueous solution using ion exchange fiber and ion exchange resin fine particle
JPS5918705A (en) * 1982-06-30 1984-01-31 ロ−ム・アンド・ハ−ス・コンパニ− Manufacture of copolymer, product and use
JPS5998117A (en) * 1982-08-02 1984-06-06 ザ ダウ ケミカル カンパニ− Manufacture of bridged copolymer beads
JPS61283355A (en) * 1985-06-10 1986-12-13 Nippon Rensui Kk Method for preventing release of impurities from strong acidic cation exchange resin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5567384A (en) * 1978-10-09 1980-05-21 Japan Organo Co Ltd Treatment of aqueous solution using ion exchange fiber and ion exchange resin fine particle
JPS5918705A (en) * 1982-06-30 1984-01-31 ロ−ム・アンド・ハ−ス・コンパニ− Manufacture of copolymer, product and use
JPS5998117A (en) * 1982-08-02 1984-06-06 ザ ダウ ケミカル カンパニ− Manufacture of bridged copolymer beads
JPS61283355A (en) * 1985-06-10 1986-12-13 Nippon Rensui Kk Method for preventing release of impurities from strong acidic cation exchange resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016230A1 (en) * 2013-07-30 2015-02-05 株式会社トクヤマ Preparation method of aqueous tetraalkyl ammonium salt solution

Also Published As

Publication number Publication date
UA24011A (en) 1998-08-31
RU2040475C1 (en) 1995-07-25

Similar Documents

Publication Publication Date Title
JPH0736039B2 (en) Method for removing suspended impurities from condensate by mixed bed condensate desalination system
JP3687829B2 (en) Condensate treatment method and condensate demineralizer
US5387348A (en) Method of mixed-bed filtration and demineralization with ion-exchange resins
JPH0515875A (en) Filtering and desalting method by mixed-bed ion exchanger
EP0428868A2 (en) Materials for removing suspended impurities
CA2055206C (en) Method of mixed-bed filtration and demineralization with ion-exchange resins
US5308876A (en) Materials for removing suspended impurities and use thereof
JPS5815016B2 (en) How to clean ion exchange resin
JP2940651B2 (en) Pure water production equipment
JP4356987B2 (en) Condensate demineralization treatment method and apparatus and method for forming packed bed thereof
JP3066204B2 (en) Operation method of ammonia type condensate desalination equipment
JPH055998Y2 (en)
JPH0569480B2 (en)
JPH0445231B2 (en)
RU2205692C2 (en) Ion-exchange treatment method for organics-containing water involving countercurrent regeneration of ion-exchange materials
JPH0445230B2 (en)
JP2950664B2 (en) Condensate desalination equipment
JPH02131189A (en) Removal process for suspended impurities by mixed bed type filter desalting device
JP3472658B2 (en) Regeneration method of anion exchange resin
JPH0363439B2 (en)
JPH0512996B2 (en)
JPH03181385A (en) Removing method for suspendible impurity
JP2006162316A (en) Waste liquid processing method and waste liquid processing system
JP2776722B2 (en) Operation method of ammonia type condensate desalination equipment
JPH0677687B2 (en) Regeneration method of ion exchange resin