WO2015016230A1 - Preparation method of aqueous tetraalkyl ammonium salt solution - Google Patents

Preparation method of aqueous tetraalkyl ammonium salt solution Download PDF

Info

Publication number
WO2015016230A1
WO2015016230A1 PCT/JP2014/069973 JP2014069973W WO2015016230A1 WO 2015016230 A1 WO2015016230 A1 WO 2015016230A1 JP 2014069973 W JP2014069973 W JP 2014069973W WO 2015016230 A1 WO2015016230 A1 WO 2015016230A1
Authority
WO
WIPO (PCT)
Prior art keywords
exchange resin
cation exchange
photoresist
packed tower
waste liquid
Prior art date
Application number
PCT/JP2014/069973
Other languages
French (fr)
Japanese (ja)
Inventor
渡邉 淳
直幸 梅津
喜文 山下
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2015016230A1 publication Critical patent/WO2015016230A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/04Processes using organic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/05Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds
    • B01J49/06Regeneration or reactivation of ion-exchangers; Apparatus therefor of fixed beds containing cationic exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/60Cleaning or rinsing ion-exchange beds

Definitions

  • the present invention relates to a novel method for producing a tetraalkylammonium salt aqueous solution (hereinafter, tetraalkylammonium may be abbreviated as “TAA”) using a cation exchange resin.
  • TAA tetraalkylammonium salt aqueous solution
  • a negative or positive resist such as a novolac resin or polystyrene resin is applied to the metal layer formed on the substrate surface. Then, the metal layer is exposed to light through a photomask for pattern formation and developed on a non-cured portion or a cured portion using a developer mainly composed of TAA hydroxide, followed by etching.
  • a developing process for forming a pattern is performed, and in this developing process, a developing process waste liquid containing TAA hydroxide is discharged.
  • TAA hydroxide-containing development waste liquid After developing with the developer, cleaning with ultrapure water is performed to remove the developer remaining on the substrate, and the cleaning process waste liquid containing TAA hydroxide is discharged from the cleaning process. Is done. These development waste liquid and washing process waste liquid are usually mixed and then discharged as TAA hydroxide-containing development waste liquid. In recent years, as the production amount of semiconductors and liquid crystals increases, the consumption of the developer increases, and the discharge amount of the TAA hydroxide-containing developer waste also increases. Recently, a method for recovering TAA hydroxide has been proposed in which TAA hydroxide is recovered from the TAA hydroxide-containing developer waste, purified, and reused.
  • TAA hydroxide-containing developer waste liquid (hereinafter referred to as photoresist and TAA hydroxide) that is discharged after mixing the development process waste liquid and the cleaning process waste liquid may be referred to as “photoresist development waste liquid”.
  • concentration of TAA hydroxide is usually as low as about 100 to 10,000 ppm, and the pH is about 10 to 14.
  • a concentration means for increasing the concentration of TAA ions in the waste liquid is indispensable.
  • a concentration means for increasing the concentration of TAA ions for example, a photoresist developing waste solution containing TAA hydroxide is brought into contact with a cation exchange resin, TAA ions are adsorbed on the cation exchange resin, and then an aqueous acid solution is subjected to cation exchange.
  • a method for obtaining a TAA salt aqueous solution by contacting a resin and eluting TAA ions from the resin see Patent Document 1.
  • the photoresist developing waste solution containing TAA hydroxide is an alkaline aqueous solution
  • the photoresist contained in the photoresist developing waste solution is generally easily dissolved in an alkaline aqueous solution.
  • the photoresist development waste liquid in the liquid flow is acidic or neutral (pH 3 to 3) in the packed tower. 7), so that the solubility of the photoresist in the photoresist developing waste liquid is lowered.
  • a photoresist deposits as suspended impurities in the cation exchange resin packed tower. Therefore, when the photoresist developing waste liquid is passed through the cation exchange resin packed tower, photoresist deposits may accumulate in the cation exchange resin packed tower.
  • the TAA ion adsorption rate of the cation exchange resin is lowered.
  • the adsorption rate of TAA ions liquid flow rate
  • the ratio of the amount of TAA ions adsorbed to the cation exchange resin with respect to the total amount of TAA ions in the photoresist developing waste liquid is greatly reduced.
  • the cation exchange resin swells.
  • the deposited photoresist is physically adsorbed on the cation exchange resin and acts like an adhesive, so that the cation exchange resins are bonded together and the flow path in the packed tower is remarkably closed.
  • the pressure loss in the packed tower is greatly increased, and it becomes difficult to pass the photoresist developing waste liquid through the cation exchange resin.
  • Patent Document 2 discloses a technique related to purification of condensate returned to a boiler from a turbine condenser of a steam power generation facility.
  • Patent Document 2 discloses that condensate containing an ionic component that is an impurity in condensate and a suspended solid component mainly composed of metal oxide fine particles is subjected to ion exchange and adsorption in a mixed bed type condensate demineralizer.
  • the condensate demineralizer is back-washed when suspended impurities accumulated in the packed tower packed with ion exchange resin reach a certain range of the water flow differential pressure increase value. It is described to be removed.
  • the condensate passed through the condensate demineralizer contains a suspended solid component regardless of the change in pH. This is because the main component of the suspended solid component in the condensate is metal oxide fine particles. Therefore, the water flow differential pressure of the condensate demineralizer gradually increases. Moreover, the removal by backwashing is also easy. In contrast, when the photoresist development waste liquid is passed through the cation exchange resin packed tower, the dissolved photoresist is deposited all at once as the pH of the solution changes. As a result, the pressure loss in the packed tower rises rapidly.
  • the photoresist deposit has adhesiveness and is physically adsorbed on the ion exchange resin, even if the packed tower is backwashed after the pressure loss is increased, the removal is not easy. Further, when the photoresist precipitate is adsorbed on the ion exchange resin particles, the photoresist precipitate becomes an adhesive and binds the ion exchange resin particles to form a lump. Once such a lump is formed, it is difficult to unravel the ion-exchange resin particles and to regenerate them by ordinary backwashing treatment.
  • the present invention effectively increases the pressure loss in the packed tower packed with the cation exchange resin when the photoresist developing waste liquid is passed through the cation exchange resin to adsorb the TAA ions to the resin.
  • An object of the present invention is to provide a method for producing a high-concentration TAA salt aqueous solution efficiently.
  • the inventor measured the physical property value of the discharged liquid discharged from the packed tower when passing the photoresist development waste liquid through the packed tower filled with the cation exchange resin, and the physical property value was When the value changes to a predetermined threshold value or more, the flow of the photoresist developing waste liquid is temporarily interrupted, and a back washing process is performed to back wash the cation exchange resin in the packed tower. By resuming the liquid, it was found that the problem of pressure loss in the packed tower was remarkably improved, and the present invention was completed.
  • the present invention is a method for producing an aqueous tetraalkylammonium salt solution from a photoresist developing waste solution, Adsorption process for adsorbing tetraalkylammonium ions on cation exchange resin by passing photoresist development waste solution containing tetraalkylammonium hydroxide through packed tower filled with hydrogen ion type cation exchange resin
  • Elution step of eluting the tetraalkylammonium ions adsorbed in the adsorption step as an aqueous solution of a tetraalkylammonium salt In the adsorption step, the physical property value of the effluent discharged from the packed tower is measured, and when the physical property value changes to a threshold value or more, the flow of the photoresist developing waste liquid is temporarily interrupted, and the cation in the packed tower
  • a method for producing an aqueous tetraalkylammonium salt solution comprising performing a backwashing
  • the physical property value of the effluent is at least one selected from the group consisting of conductivity, pH and / or tetraalkylammonium ion concentration.
  • air scrubbing is preferably performed in the backwashing step.
  • the photoresist developing waste liquid is treated while effectively suppressing an increase in pressure loss in the cation exchange resin packed tower and a decrease in the adsorption rate of TAA ions on the cation exchange resin.
  • TAA salt aqueous solution can be produced efficiently.
  • the photoresist developing waste liquid is not particularly limited, but is preferably a photoresist developing waste liquid generated in a semiconductor manufacturing process, a liquid crystal display manufacturing process, or the like. These waste liquids are waste liquids discharged when developing the exposed photoresist with an alkaline developer.
  • Photoresist, tetraalkylammonium hydroxide hereinafter, tetraalkylammonium hydroxide is abbreviated as “TAAH”).
  • TAAH tetraalkylammonium hydroxide
  • the photoresist developing waste liquid is usually an aqueous solution.
  • Photoresist developing waste liquid usually exhibits an alkalinity with a pH of 10 to 14.
  • acid groups such as carboxyl groups and phenolic hydroxyl groups are dissolved by acid dissociation. . Further, under acidic or neutral conditions, the solubility of the photoresist in the aqueous solution decreases and precipitates.
  • Specific examples of the photoresist include indene carboxylic acid produced by photolysis of the photosensitizing agent o-diazonaphthoquinone, and phenols derived from novolak resin.
  • a typical photoresist waste liquid discharged from the development process in semiconductor manufacturing and liquid crystal display manufacturing will be described in detail.
  • a sheet-fed automatic developing device is usually used frequently.
  • the step of using a developer containing TAAH and the subsequent rinsing (substrate cleaning) with pure water are performed in the same tank.
  • the rinsing step 5 to 10 times the amount of pure water is used. used.
  • the developer used in the development step is usually a waste solution diluted 5 to 10 times.
  • the composition of the photoresist waste liquid discharged in the development process is such that the TAAH concentration is about 100 to 10,000 ppm, the photoresist concentration is about 1 to 300 ppm, and the surfactant concentration is about 0 to 30 ppm. It becomes.
  • the waste liquid of another process may mix, and a TAAH density
  • concentration may become still lower. Specifically, it may be 100 ppm or less (about 10 to 100 ppm).
  • the photoresist developing waste liquid discharged from the liquid crystal display manufacturing process often has a TAAH concentration of 10 to 5000 ppm, and the method of the present invention is particularly useful for producing a TAA salt from such a photoresist developing waste liquid. It can be suitably employed.
  • TAAH in the photoresist development waste liquid is an alkali used in a photoresist developer used in the production of various electronic components.
  • Specific examples of TAAH include tetramethylammonium hydroxide (hereinafter sometimes abbreviated as “TMAH”), tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, methyltriethylammonium hydroxide, water Trimethylethylammonium oxide, dimethyldiethylammonium hydroxide, trimethyl (2-hydroxyethyl) ammonium hydroxide, triethyl (2-hydroxyethyl) ammonium hydroxide, dimethyldi (2-hydroxyethyl) ammonium hydroxide, diethyldi (2- Hydroxyethyl) ammonium, methyltri (2-hydroxyethyl) ammonium hydroxide, ethyltri (2-hydroxy
  • the cation exchange resin for adsorbing TAA ions is not particularly limited, and known ones can be used. Specifically, either a strongly acidic cation exchange resin whose ion exchange group is a sulfonic acid group or a weakly acidic cation exchange resin whose ion exchange group is a carboxyl group can be used. Among them, it is preferable to use a weakly acidic cation exchange resin because many of them have a large ion exchange capacity and can reduce the amount of resin used. Further, when a weakly acidic cation exchange resin is used, elution of TAA ions described later is easy.
  • the structure of the cation exchange resin may be a gel type or an MR type (macroporous type).
  • the shape of the resin may be any of powder, granule, film, fiber and the like. From the viewpoints of processing efficiency, operability, economy, etc., it is preferable to use granular styrene-based or acrylic-based cation exchange resins.
  • the cation exchange resin is usually marketed in a state where the counter ion is hydrogen ion (H type) or sodium ion (Na type).
  • H type hydrogen ion
  • Na type sodium ion
  • an H-type cation exchange resin whose counter ions are hydrogen ions is used.
  • an acid such as hydrochloric acid or sulfuric acid is passed through a packed column pre-filled with a cation exchange resin and thoroughly washed with ultrapure water. Ions are used as hydrogen ions.
  • strongly acidic cation exchange resins include Amberlite IR120B and Amberlite IR124 manufactured by Rohm and Haas, Diaion SK112, Diaion PK228 manufactured by Mitsubishi Chemical, Duolite C255LFH manufactured by Sumika Chemtex, and LANXESS Examples include Lebatit Monoplus S100, Purolite Purolite C160, and the like.
  • Specific examples of the weakly acidic cation exchange resin include Amberlite IRC76 manufactured by Rohm and Haas, Diaion WK40L manufactured by Mitsubishi Chemical, Duolite C433LF and Duolite C476 manufactured by Sumika Chemtex, and Lexit CNP80WS manufactured by LANXESS. And Purolite Purolite C104.
  • the photoresist developing waste liquid is brought into contact with a cation exchange resin of a hydrogen ion type (hereinafter sometimes referred to as “H type”) packed in a packed tower, thereby the cation exchange resin.
  • H type hydrogen ion type
  • TAA ions are cations, they are adsorbed on the resin by causing ion exchange with hydrogen ions of the cation exchange resin by contacting with the H-type cation exchange resin. Therefore, TAA ions can be efficiently recovered from the waste liquid. In particular, even when a waste liquid having a low TAAH concentration is used, TAA ions can be recovered at a low cost.
  • the contact between the photoresist developing waste liquid and the H-type cation exchange resin is carried out by passing the photoresist developing waste liquid through a packed tower filled with the H-type cation exchange resin.
  • the adsorption step in the present invention is a step of adsorbing TAA ions to the cation exchange resin by passing a photoresist waste liquid through the packed tower.
  • a packed tower is a container that can be filled with a cation exchange resin and that can be circulated.
  • the tower body of the packed tower is not particularly limited, and known ones can be used. Specifically, for example, it is preferable that the tower body has a cylindrical structure made of SUS and has an internal structure having liquid inflow and outflow portions at the upper and lower portions.
  • the specific mode of passing the photoresist developing waste liquid through the packed tower can be appropriately determined according to the performance of the cation exchange resin.
  • the height (L) of the H-type cation exchange resin packed in the packed tower It is preferable that the ratio (L / D) to the packed tower diameter (D) is 0.5 or more and the space velocity (SV) of the photoresist developing waste liquid is 1 (h ⁇ 1 ) or more and 200 (h ⁇ 1 ) or less.
  • the amount of the photoresist developing waste solution to be passed is such that the adsorption amount of TAA ions is 70 to 90% with respect to the ion exchange capacity of the cation exchange resin.
  • TAA ion adsorption rate the amount of TAA ion adsorption relative to the ion exchange capacity of the cation exchange resin.
  • TAA ion adsorption rate When passing a photoresist waste liquid containing TAA ions through a packed column packed with an H-type cation exchange resin, for example, when a weakly acidic cation exchange resin is used, the TAA ion adsorption rate is about 40 to 60%. Until the TAA ions are adsorbed on the resin without flowing out of the packed tower, if the TAA ion adsorption rate exceeds about 40 to 60%, the TAA ion adsorption rate increases while the TAA ions gradually increase. Will flow out of the packed tower (hereinafter, TAA ions start to flow out of the packed tower may be referred to as “breakthrough”).
  • TAA ions In order to recover the TAA ions without loss, it is preferable to connect a plurality of packed towers in series and perform liquid flow. By passing through a plurality of packed towers connected in series, TAA ions that break through the preceding packed tower and flow out of the preceding packed tower can be adsorbed by the packed tower in the subsequent stage.
  • the photoresist development waste liquid contains a photoresist.
  • the pH of the photoresist developing waste liquid passing through the packed tower changes from acidic to neutral (pH 3 to 7).
  • the photoresist dissolves in an alkaline aqueous solution, and the solubility decreases in an acidic to neutral (pH 3 to 7) aqueous solution. Therefore, the solubility of the photoresist decreases with such a change in pH. Then, it is deposited and physically adsorbed on the cation exchange resin.
  • the photoresist precipitate physically adsorbed on the cation exchange resin prevents contact between the photoresist developing waste liquid and the cation exchange resin, and thus reduces the TAA ion adsorption rate of the cation exchange resin.
  • the pressure loss in the packed tower gradually increases until the TAA ions in the photoresist development waste liquid flow out (breakthrough) without being adsorbed by the cation exchange resin, and increase rapidly at the breakthrough timing. To do. After the breakthrough timing, the pH in the packed tower changes to alkaline, so that part of the deposited photoresist is redissolved and discharged out of the packed tower, and the pressure loss gradually decreases. That is, at the breakthrough timing, the amount of photoresist deposited in the packed tower is the largest, and the pressure loss is the largest due to the swelling of the resin.
  • the physical property value of the effluent from the packed tower before breakthrough occurs (hereinafter sometimes referred to as “pre-breakthrough effluent”) varies greatly depending on the content of the photoresist.
  • the conductivity is 0.005 to 0.1 mS / cm
  • the pH is about 3 to 7
  • the photoresist concentration is about 5 to 150 ppm.
  • the physical property value of the effluent from the packed tower after the start of TAA ion efflux from the packed tower (breakthrough) (hereinafter sometimes referred to as “discharge liquid after breakthrough”) is the pre-breakthrough discharge. From the range of the solution, the conductivity gradually increases to 0.05 to 25 mS / cm, pH to about 14, and photoresist concentration to about 10 to 200 ppm.
  • the TAAH concentration in the liquid discharged from the packed column packed with cation exchange resin is below the lower limit of quantification (5 ppm or lower) in the pre-breakthrough effluent, and from the lower limit of quantification in the pre-breakthrough effluent, Gradually increase to TAAH concentration in developer waste.
  • a solution having a high TAA ion concentration has high conductivity and pH.
  • the flow of the photoresist developing waste liquid is temporarily interrupted, and the cation exchange resin in the packed tower is washed.
  • the timing of the cleaning is the time when the physical property value of the effluent from the packed tower changes to a predetermined threshold value or more. Washing is performed by back washing.
  • Examples of the physical property value of the effluent from the packed tower include the conductivity and / or pH of the effluent. In the present invention, these physical property values are measured, and the monitored physical property value is a predetermined threshold value.
  • the flow of the photoresist developing waste liquid through the packed tower filled with the cation exchange resin is temporarily interrupted, and the cation exchange resin is back-washed.
  • the physical property value of the discharged liquid to be monitored can be appropriately selected and set by comparing various physical properties of the discharged liquid before breakthrough and the discharged liquid after breakthrough.
  • conductivity and / or pH are preferred.
  • the conductivity threshold is preferably selected from the range of 0.02 mS / cm to 0.1 mS / cm, and the pH threshold is 5 It is preferable to select from the range of 10 or less.
  • the TAAH concentration may be measured and used as a physical property value for monitoring.
  • the TAAH concentration threshold value it is preferable to select the TAAH concentration threshold value as the timing of interruption of liquid flow from the range of 5 ppm to 50 ppm.
  • a known method can be appropriately employed as a method for measuring the conductivity of the effluent from the packed tower. Specifically, a certain amount of the effluent discharged from the cation exchange resin packed tower is sampled, and the conductivity is measured using a conductivity meter, etc., or the in-line type conductivity is in the middle of the pipe through which the effluent passes. A method of measuring by installing a meter can be exemplified. According to the aspect using the in-line type conductivity meter, it is preferable because the liquid flow can be temporarily interrupted at the moment when the conductivity reaches a predetermined threshold without drawing the liquid halfway.
  • a threshold value based on a value obtained by statistically processing a plurality of measured values.
  • a known processing method can be appropriately employed. For example, a mode in which a value every predetermined time (for example, 0.1 second) is obtained and an arithmetic average or a geometric average value for a predetermined time (for example, 2 seconds) is employed can be cited.
  • Some commercially available conductivity meters are equipped with such statistical processing means and have a function of outputting the conductivity after statistical processing. In the present invention, such a conductivity meter is used as it is. It is also possible.
  • the time interval for measuring the conductivity needs to be changed mainly by the flow rate (flow velocity) of the effluent.
  • the flow rate flow velocity
  • pH When pH is adopted as the physical property value to be monitored, a known method can be appropriately employed as a method for measuring the pH of the effluent from the packed tower.
  • the pH of the fluid when the pH of the fluid is measured in-line using a general glass electrode type pH meter, it is about ⁇ 0.2 due to its characteristics and non-uniformity in the packing state of the resin in the adsorption tower. Often causes fluctuations. Therefore, in such a case, it is preferable to determine whether or not the pH value is equal to or greater than a threshold value based on a value obtained by statistically processing the pH value indicated by the pH meter. For example, when the statistical value reaches the predetermined threshold, the flow of the photoresist waste liquid to the packed tower can be interrupted.
  • Statistic processing methods can be appropriately adopted known processing methods. For example, a mode in which a value is obtained every predetermined time (for example, 0.1 seconds) and an arithmetic average or a geometric average value for a predetermined time (for example, 2 seconds) is employed can be exemplified.
  • Some commercially available pH meters are equipped with such statistical processing means and have a function of displaying the pH after statistical processing. In the present invention, such a pH meter can be used as it is. It is.
  • the backwashing step in the present invention is a step of washing the cation exchange resin during the adsorption step. Measure the physical property value of the effluent discharged from the packed tower as described above, and when the physical property value changes to a predetermined threshold value or higher, temporarily stop the flow of the photoresist developing waste liquid, and exchange the cation of the packed column. The resin is washed by backwashing.
  • Backwashing is an operation in which the photoresist deposited and physically adsorbed on the cation exchange resin is discharged from the packed tower by passing a cleaning solution in a direction opposite to the passing direction in the adsorption step.
  • the conditions for the backwashing are not particularly limited as long as the above-mentioned purpose is achieved, but the resin after backwashing with respect to the resin height at the time when the adsorption process (flow of the photoresist developing waste liquid to the packed tower) is temporarily interrupted. It is preferable to pass the liquid so that the height is 1.3 times or more and 2.0 times or less.
  • the washing liquid is preferably passed through until the discharged liquid discharged from the packed tower becomes transparent.
  • air scrubbing may be performed before backwashing or during backwashing to release the cation exchange resin. By performing air scrubbing, the cation exchange resin can be released, so that the amount of cleaning liquid used can be suppressed.
  • the gas used for air scrubbing is not particularly limited as long as the solubility in water is low, and various inert gases such as nitrogen, air, and the like can be used.
  • the air scrubbing method is not particularly limited as long as it can blow and blow the air in the direction opposite to the liquid flow in the adsorption process to develop and solve the cation exchange resin.
  • the liquid passing space velocity (SV) in the backwashing step is preferably 1 (h ⁇ 1 ) to 100 (h ⁇ 1 ), and preferably 3 (h ⁇ 1 ) to 50 (h ⁇ 1 ). More preferred.
  • the space velocity is higher, the cation exchange resin in the packed tower is sufficiently developed, and the photoresist is less likely to remain in the packed tower.
  • the space velocity is smaller, resin crushing due to physical collision between the resins due to the development of the cation exchange resin is less likely to occur, and the TAA ion adsorption rate is less likely to decrease.
  • the amount of the cleaning solution used in the backwashing step can be appropriately set according to the size of the adsorption tower, the type and amount of cation exchange resin used.
  • the liquid flow rate (BV) is 1 (L / L-resin) or more and 15 (L / L-resin) or less, more preferably 2 (L / L-resin) or more and 7 (L / L-). Resin)
  • the flow rate (BV) can be 2 (L / L-resin) or more and 4 (L / L-resin) or less.
  • the photoresist may not be sufficiently discharged from the packed tower. If it is greater than 4 (L / L-resin), the backwash process The amount of discharged liquid becomes large.
  • the cleaning liquid used in the reverse purification step is not particularly limited as long as it is a liquid that can discharge the photoresist from the packed tower without eluting TAA ions.
  • photoresist developing waste liquid TAAH aqueous solution, ultrapure water, pure water, and ion-exchanged water can be exemplified, and among them, the photoresist developing waste liquid is most preferable.
  • the determination as to whether or not the backwashing has been sufficiently performed is performed by, for example, UV / visible light of the effluent from the packed tower in the backwashing process. It can also be done by monitoring absorption and / or turbidity. UV / visible light absorption corresponds to the content of the photoresist component in the effluent, and turbidity corresponds to the content of the suspended component in the effluent. If the photoresist precipitate is not dissolved in the cleaning solution, the precipitate is suspended in the solution, thus increasing the turbidity of the effluent.
  • the backwashing process should be performed only for the time required for the required time without monitoring the effluent of the backwashing process. Is also possible.
  • the photoresist developing waste solution When the photoresist developing waste solution is used as a cleaning solution in the backwashing process, the photoresist developing waste solution contains TAAH, and the photoresist deposited and physically adsorbed on the cation exchange resin in the packed tower may be redissolved. Therefore, the photoresist deposit can be efficiently discharged out of the packed tower. Further, since the waste liquid is reused, the cost can be suppressed.
  • the cleaning liquid discharged from the packed tower in the backwashing step may be discarded, but since it contains a small amount of TAA ions, it can be returned to the photoresist developing waste liquid.
  • the discharged cleaning liquid is filtered by microfiltration, NF (nanofiltration), RO (reverse osmosis membrane filtration), crossflow filtration, etc. After removing the photoresist, it may be returned to the photoresist developing waste liquid.
  • the photoresist deposited and physically adsorbed on the cation exchange resin is discharged out of the packed tower, and further, the cation exchange resin particles adhered by the photoresist deposit are dispersed.
  • the pressure loss in the packed tower can be maintained at a low level even when the photoresist development waste liquid (adsorption process) is restarted.
  • the cation exchange resin particles in the packed tower are dissolved by passing through a backwashing process, and the photoresist that has precipitated and physically adsorbed on the cation exchange resin in the packed tower is dispersed or washed in the cleaning liquid. It is redissolved and discharged outside the packed tower.
  • the increase in pressure loss caused by the photoresist deposit is canceled, so that the adsorption process can be performed again efficiently.
  • TAA ions remain adsorbed on the cation exchange resin, so the concentration of the TAA salt recovered in the elution step described later is not affected.
  • the flow rate of the photoresist developing waste liquid in the resumed adsorption process may be set so that the TAA ion adsorption rate is 70 to 90%. As described above, when the adsorption rate of TAA ions is lower than this, the concentration of the recovered TAA salt is lowered in the elution step described later.
  • the photoresist deposits are discharged out of the packed tower by performing the backwashing earlier. Further, when a photoresist developing waste solution or a TAAH aqueous solution is used as a cleaning solution for backwashing, the pH in the packed tower becomes alkaline when the adsorption process is restarted. Therefore, an increase in pressure loss and a decrease in TAA ion adsorption rate are suppressed.
  • the elution step of recovering TAA ions adsorbed on the cation exchange resin as a TAA salt is not particularly limited, and a known method can be used.
  • a known method can be used.
  • TAA ions adsorbed on the cation exchange resin can be eluted, and the TAA salt can be recovered.
  • Specific examples of acids and salts that can be used in the elution step include hydrochloric acid, nitric acid, sulfuric acid, acetic acid, formic acid, carbonate, bicarbonate, and the like.
  • the concentration of the TAA salt obtained in the elution step is comparable to that in the case of not performing the backwashing step. Is.
  • the TAA salt obtained by the production method of the present invention can be converted to TAAH by electrolysis or electrodialysis. Further, prior to electrolysis and dialysis, metal ions can be removed with an ion exchange resin, a chelate resin, or the like, if necessary.
  • the conductivity was measured with a conductivity meter (measuring device: SC72-21JAA (manufactured by Yokogawa Electric Corporation)).
  • the pH was measured by the pH electrode method (measuring device: HM-30R (manufactured by Toa DKK Corporation)).
  • the TMAH concentration was measured by an ion chromatographic method (measuring device: DX320 (Dionex)). COD was analyzed by oxygen consumption by potassium permanganate at 100 ° C. (JIS K 0101).
  • TMAH-containing waste liquid discharged from a semiconductor factory was used.
  • the TMAH concentration was 6500 ppm
  • the conductivity was 15.92 mS / cm
  • the pH was 13.2
  • the COD was 121 ppm.
  • the water quality of the effluent discharged from the packed tower first after the start of liquid flow was TMAH concentration of 5 ppm or less, conductivity of 0.02 mS / cm, pH of 4.5, and COD of 82 ppm.
  • the pressure loss of the packed tower was 0.01 MPa.
  • the water quality of the discharged liquid from the packed tower was 50 ppm TMAH, conductivity 0.10 mS / cm, pH 6.1, and COD 102 ppm. Interrupted. At this time, the pressure loss of the packed tower was 0.02 MPa.
  • the water quality of the effluent discharged from the packed tower first after the start of liquid flow was TMAH concentration of 5 ppm or less, conductivity of 0.02 mS / cm, pH of 3.9, and COD of 77 ppm.
  • the pressure loss of the packed tower was 0.01 MPa.
  • the water quality of the discharged liquid was temporarily interrupted because the TMAH concentration was 40 ppm, the conductivity was 0.08 mS / cm, pH 5.8, and the COD was 95 ppm. At this time, the pressure loss of the packed tower was 0.02 MPa.
  • the water quality of the discharged liquid first discharged from the packed tower after the start of liquid flow was TMAH concentration of 5 ppm or less, conductivity of 0.02 mS / cm, pH of 4.2, and COD of 89 ppm.
  • the pressure loss of the packed tower was 0.01 MPa.
  • the water quality of the discharged liquid from the packed tower was 35 ppm for TMAH, 0.07 mS / cm for conductivity, pH 5.8, and 100 ppm for COD. Interrupted. At this time, the pressure loss of the packed tower was 0.02 MPa.
  • the water quality of the discharged liquid first discharged from the packed tower after the start of liquid flow was TMAH concentration of 5 ppm or less, conductivity of 0.03 mS / cm, pH 3.8, and COD of 92 ppm.
  • the pressure loss of the packed tower was 0.01 MPa.
  • the water quality of the discharged liquid was temporarily interrupted because TMAH was 50 ppm, conductivity was 0.10 mS / cm, pH 6.2, and COD was 118 ppm. At this time, the pressure loss of the packed tower was 0.03 MPa.
  • the water quality of the discharged liquid first discharged from the packed tower after the start of liquid flow was TMAH concentration of 5 ppm or less, conductivity of 0.02 mS / cm, pH 4.4, and COD of 79 ppm.
  • the pressure loss of the packed tower was 0.01 MPa.
  • the water quality of the discharged liquid was temporarily suspended because TMAH was 40 ppm, conductivity was 0.08 mS / cm, pH 5.9, and COD was 107 ppm. At this time, the pressure loss of the packed tower was 0.02 MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

This method of preparing an aqueous tetraalkyl ammonium salt solution from a photoresist development waste solution involves an adsorption step for adsorbing tetraalkyl ammonium ions in a cation exchange resin by passing a photoresist development waste liquid containing tetraalkyl ammonium hydroxide through a packed column filled with a hydrogen ion-type cation exchange resin, and an elution step for eluting, as an aqueous solution of tetraalkyl ammonium salt, the tetraalkyl ammonium ions adsorbed in the adsorption step. In the adsorption step, a physical property value of the effluent discharged from the packed column is measured, and when said physical property value changes to the prescribed threshold or greater, the flow of the photoresist waste solution is temporarily interrupted and a backwash step is carried out in which the cation exchange resin in the packed column is backwashed, and thereafter, the passage of the photoresist development waste solution to the packed column is restarted.

Description

テトラアルキルアンモニウム塩水溶液の製造方法Method for producing aqueous tetraalkylammonium salt solution
 本発明は、陽イオン交換樹脂を用いたテトラアルキルアンモニウム塩水溶液(以下、テトラアルキルアンモニウムを「TAA」と略称することがある。)の新規な製造方法に関する。 The present invention relates to a novel method for producing a tetraalkylammonium salt aqueous solution (hereinafter, tetraalkylammonium may be abbreviated as “TAA”) using a cation exchange resin.
 半導体、及び液晶製造工程において、ウエハー、ガラス等の基板上にパターンを形成する場合、基板表面に形成した金属層にノボラック樹脂、ポリスチレン樹脂等の、ネガ型或いはポジ型のレジストを塗布し、これに、パターン形成用のフォトマスクを介して露光し、未硬化部分或いは硬化部分に対して、TAA水酸化物を主成分とする現像液を使用して現像した後、エッチングを行って上記金属層にパターンを形成する現像工程が行われており、該現像工程において、TAA水酸化物を含有する現像工程廃液が排出される。 In semiconductor and liquid crystal manufacturing processes, when forming a pattern on a substrate such as a wafer or glass, a negative or positive resist such as a novolac resin or polystyrene resin is applied to the metal layer formed on the substrate surface. Then, the metal layer is exposed to light through a photomask for pattern formation and developed on a non-cured portion or a cured portion using a developer mainly composed of TAA hydroxide, followed by etching. A developing process for forming a pattern is performed, and in this developing process, a developing process waste liquid containing TAA hydroxide is discharged.
 また、現像液による現像後には、基板上に残存する現像液を除去する為に超純水による洗浄が行われており、かかる洗浄工程からは、TAA水酸化物を含有する洗浄工程廃液が排出される。これら現像廃液及び洗浄工程廃液は、通常、混合された後、TAA水酸化物含有現像廃液として排出されている。近年、半導体、及び液晶の生産量が増大するにつれて、上記現像液の消費量が増加しており、TAA水酸化物含有現像廃液の排出量も増加している。最近では、このTAA水酸化物含有現像廃液よりTAA水酸化物を回収、精製して再利用するTAA水酸化物の回収方法が提案されている。 In addition, after developing with the developer, cleaning with ultrapure water is performed to remove the developer remaining on the substrate, and the cleaning process waste liquid containing TAA hydroxide is discharged from the cleaning process. Is done. These development waste liquid and washing process waste liquid are usually mixed and then discharged as TAA hydroxide-containing development waste liquid. In recent years, as the production amount of semiconductors and liquid crystals increases, the consumption of the developer increases, and the discharge amount of the TAA hydroxide-containing developer waste also increases. Recently, a method for recovering TAA hydroxide has been proposed in which TAA hydroxide is recovered from the TAA hydroxide-containing developer waste, purified, and reused.
 上記現像工程廃液と洗浄工程廃液とを混合して排出される、TAA水酸化物含有現像廃液(以下、フォトレジスト、及びTAA水酸化物を含む廃液を「フォトレジスト現像廃液」と称することがある。)中のTAA水酸化物濃度は、通常100~10,000ppm程度と低濃度であり、pHは10~14程度である。 TAA hydroxide-containing developer waste liquid (hereinafter referred to as photoresist and TAA hydroxide) that is discharged after mixing the development process waste liquid and the cleaning process waste liquid may be referred to as “photoresist development waste liquid”. The concentration of TAA hydroxide is usually as low as about 100 to 10,000 ppm, and the pH is about 10 to 14.
 従って、フォトレジスト現像廃液から、効率良くTAA水酸化物を回収、精製して高濃度のTAA水酸化物含有溶液を得るためには、上記廃液中のTAAイオン濃度を高める濃縮手段が不可欠である。 Therefore, in order to efficiently recover and purify TAA hydroxide from the photoresist developing waste liquid to obtain a highly concentrated TAA hydroxide-containing solution, a concentration means for increasing the concentration of TAA ions in the waste liquid is indispensable. .
 TAAイオンの濃度を高める濃縮手段として、例えば、TAA水酸化物を含むフォトレジスト現像廃液を陽イオン交換樹脂に接触させて、TAAイオンを陽イオン交換樹脂に吸着させ、次いで酸水溶液を陽イオン交換樹脂に接触させて、TAAイオンを該樹脂から溶離させることによりTAA塩水溶液を得る方法が提案されている(特許文献1参照)。 As a concentration means for increasing the concentration of TAA ions, for example, a photoresist developing waste solution containing TAA hydroxide is brought into contact with a cation exchange resin, TAA ions are adsorbed on the cation exchange resin, and then an aqueous acid solution is subjected to cation exchange. There has been proposed a method for obtaining a TAA salt aqueous solution by contacting a resin and eluting TAA ions from the resin (see Patent Document 1).
特開平6-154749号公報JP-A-6-1554749 特開平5-015875号公報JP-A-5-015875
 ここで、TAA水酸化物を含むフォトレジスト現像廃液はアルカリ性の水溶液であり、フォトレジスト現像廃液に含まれるフォトレジストは、一般的にアルカリ性の水溶液に溶解しやすい。陽イオン交換樹脂充填塔にフォトレジスト現像廃液を通液して陽イオン交換樹脂にTAAイオンを吸着させると、通液中のフォトレジスト現像廃液が充填塔内で酸性、又は、中性(pH3~7)となり、フォトレジスト現像廃液中へのフォトレジストの溶解度が低下する。このため、陽イオン交換樹脂充填塔内に懸濁不純物としてフォトレジストが析出する。そのため、陽イオン交換樹脂充填塔にフォトレジスト現像廃液を通液する場合、陽イオン交換樹脂充填塔内にフォトレジスト析出物が溜まることがある。 Here, the photoresist developing waste solution containing TAA hydroxide is an alkaline aqueous solution, and the photoresist contained in the photoresist developing waste solution is generally easily dissolved in an alkaline aqueous solution. When the photoresist development waste liquid is passed through the cation exchange resin packed tower and TAA ions are adsorbed to the cation exchange resin, the photoresist development waste liquid in the liquid flow is acidic or neutral (pH 3 to 3) in the packed tower. 7), so that the solubility of the photoresist in the photoresist developing waste liquid is lowered. For this reason, a photoresist deposits as suspended impurities in the cation exchange resin packed tower. Therefore, when the photoresist developing waste liquid is passed through the cation exchange resin packed tower, photoresist deposits may accumulate in the cation exchange resin packed tower.
 本発明者らが実際に上記特許文献1に記載の方法で追試を行ったところ、フォトレジスト現像廃液を陽イオン交換樹脂充填塔に通液する工程で、フォトレジスト現像廃液に溶解していたフォトレジストが陽イオン交換樹脂充填塔内で析出して陽イオン交換樹脂に物理吸着し、その結果陽イオン交換樹脂のTAAイオン吸着率が低下することが確認された。 When the inventors actually made a follow-up test by the method described in Patent Document 1, the photo resist dissolved in the photo resist developing waste liquid in the step of passing the photo resist developing waste liquid through the cation exchange resin packed tower. It was confirmed that the resist was deposited in the cation exchange resin packed tower and physically adsorbed on the cation exchange resin, and as a result, the TAA ion adsorption rate of the cation exchange resin was lowered.
 すなわち、フォトレジスト現像廃液の陽イオン交換樹脂への通液を続けると、陽イオン交換樹脂のTAAイオン吸着率が低下してしまう。換言すれば、陽イオン交換樹脂充填塔内で析出および物理吸着したフォトレジスト量が増加するにつれて、陽イオン交換樹脂充填塔にフォトレジスト現像廃液を通液したときのTAAイオンの吸着率(通液したフォトレジスト現像廃液中の総TAAイオン量に対する、陽イオン交換樹脂に吸着されるTAAイオン量の割合)が大きく低下してしまう。 That is, if the photoresist development waste liquid is continuously passed through the cation exchange resin, the TAA ion adsorption rate of the cation exchange resin is lowered. In other words, as the amount of photoresist deposited and physically adsorbed in the cation exchange resin packed column increases, the adsorption rate of TAA ions (liquid flow rate) when the photoresist development waste liquid is passed through the cation exchange resin packed column. The ratio of the amount of TAA ions adsorbed to the cation exchange resin with respect to the total amount of TAA ions in the photoresist developing waste liquid is greatly reduced.
 さらには、TAAイオンがイオン交換により陽イオン交換樹脂に吸着されると陽イオン交換樹脂が膨潤する。そして析出したフォトレジストが、陽イオン交換樹脂に物理吸着し、接着剤の如く作用するため、陽イオン交換樹脂同士を接着させ、充填塔内の流路を著しく閉塞させる。このように、充填塔内の流路が閉塞する結果、充填塔内の圧力損失が大きく増加し、フォトレジスト現像廃液を陽イオン交換樹脂に通液することが困難になる。 Furthermore, when TAA ions are adsorbed on the cation exchange resin by ion exchange, the cation exchange resin swells. The deposited photoresist is physically adsorbed on the cation exchange resin and acts like an adhesive, so that the cation exchange resins are bonded together and the flow path in the packed tower is remarkably closed. As described above, as a result of the flow path in the packed tower being blocked, the pressure loss in the packed tower is greatly increased, and it becomes difficult to pass the photoresist developing waste liquid through the cation exchange resin.
 このように、フォトレジスト現像廃液を陽イオン交換樹脂に通液することで、TAAイオンを吸着させることは可能であるが、フォトレジスト現像廃液中に溶解していたフォトレジストが析出して陽イオン交換樹脂に物理吸着するため、陽イオン交換樹脂のTAAイオンの吸着率が低下する。TAAイオンの吸着率の低下は、フォトレジスト現像廃液からのTAAイオンの回収効率の低下を意味する。 In this way, it is possible to adsorb TAA ions by passing the photoresist developing waste solution through the cation exchange resin, but the photoresist dissolved in the photoresist developing waste solution is deposited and becomes cation. Since it is physically adsorbed on the exchange resin, the adsorption rate of TAA ions of the cation exchange resin is lowered. A decrease in the adsorption rate of TAA ions means a decrease in the recovery efficiency of TAA ions from the photoresist developing waste liquid.
 一方で、特許文献2には、汽力発電設備のタービン復水器からボイラーに還流される復水の浄化に関する技術が開示されている。特許文献2には、復水中の不純物であるイオン成分と、主として金属酸化物微粒子からなる懸濁固形成分とを含んだ復水を、混床式の復水脱塩器においてイオン交換および吸着・濾過により浄化するにあたり、イオン交換樹脂が充填された充填塔内に蓄積する懸濁不純物を、通水差圧上昇値がある範囲に到達した時点で復水脱塩器の逆洗を行うことで除去することが記載されている。 On the other hand, Patent Document 2 discloses a technique related to purification of condensate returned to a boiler from a turbine condenser of a steam power generation facility. Patent Document 2 discloses that condensate containing an ionic component that is an impurity in condensate and a suspended solid component mainly composed of metal oxide fine particles is subjected to ion exchange and adsorption in a mixed bed type condensate demineralizer. When purifying by filtration, the condensate demineralizer is back-washed when suspended impurities accumulated in the packed tower packed with ion exchange resin reach a certain range of the water flow differential pressure increase value. It is described to be removed.
 しかしながら、特許文献2に記載された技術においては、復水脱塩器に通液される復水はpHの変化とは関係なく懸濁固形成分を含む。復水中の懸濁固形成分の主成分は金属酸化物微粒子だからである。そのため復水脱塩器の通水差圧は徐々に上昇する。また逆洗による除去も容易である。
 これとは対照的に、フォトレジスト現像廃液を陽イオン交換樹脂充填塔に通液する場合には、溶液のpH変化に伴い、それまで溶解していたフォトレジストが一斉に析出して充填塔内の流路が閉塞されるため、充填塔内の圧力損失が急激に上昇する。また、フォトレジスト析出物は粘着性を有しており、イオン交換樹脂に物理的に吸着するため、圧力損失が増加した後に充填塔の逆洗を実施しても、除去は容易でない。またイオン交換樹脂粒子にフォトレジスト析出物が吸着すると、フォトレジスト析出物が接着剤となって、イオン交換樹脂粒子同士を結着させて塊を形成する。一旦このような塊が形成されると、通常の逆洗処理ではイオン交換樹脂粒子を解すことは難しく、再生は困難である。
However, in the technique described in Patent Document 2, the condensate passed through the condensate demineralizer contains a suspended solid component regardless of the change in pH. This is because the main component of the suspended solid component in the condensate is metal oxide fine particles. Therefore, the water flow differential pressure of the condensate demineralizer gradually increases. Moreover, the removal by backwashing is also easy.
In contrast, when the photoresist development waste liquid is passed through the cation exchange resin packed tower, the dissolved photoresist is deposited all at once as the pH of the solution changes. As a result, the pressure loss in the packed tower rises rapidly. Moreover, since the photoresist deposit has adhesiveness and is physically adsorbed on the ion exchange resin, even if the packed tower is backwashed after the pressure loss is increased, the removal is not easy. Further, when the photoresist precipitate is adsorbed on the ion exchange resin particles, the photoresist precipitate becomes an adhesive and binds the ion exchange resin particles to form a lump. Once such a lump is formed, it is difficult to unravel the ion-exchange resin particles and to regenerate them by ordinary backwashing treatment.
 本発明は、フォトレジスト現像廃液を陽イオン交換樹脂に通液して、TAAイオンを該樹脂に吸着させる際に、陽イオン交換樹脂が充填された充填塔内の圧力損失の増加を効果的に抑制し、効率的に、高濃度のTAA塩水溶液を製造する方法を提供することを目的とする。 The present invention effectively increases the pressure loss in the packed tower packed with the cation exchange resin when the photoresist developing waste liquid is passed through the cation exchange resin to adsorb the TAA ions to the resin. An object of the present invention is to provide a method for producing a high-concentration TAA salt aqueous solution efficiently.
 本発明者は検討の結果、陽イオン交換樹脂が充填された充填塔にフォトレジスト現像廃液を通液する際に、充填塔から排出される排出液の物性値を測定するとともに、該物性値が所定の閾値以上に変化した時点で、フォトレジスト現像廃液の通液を一旦中断し、充填塔の陽イオン交換樹脂を逆洗する逆洗工程を行い、その後充填塔へのフォトレジスト現像廃液の通液を再開することで、充填塔の圧力損失の問題が著しく改善されることを見出し、本発明を完成させるに至った。 As a result of the study, the inventor measured the physical property value of the discharged liquid discharged from the packed tower when passing the photoresist development waste liquid through the packed tower filled with the cation exchange resin, and the physical property value was When the value changes to a predetermined threshold value or more, the flow of the photoresist developing waste liquid is temporarily interrupted, and a back washing process is performed to back wash the cation exchange resin in the packed tower. By resuming the liquid, it was found that the problem of pressure loss in the packed tower was remarkably improved, and the present invention was completed.
 本発明は、フォトレジスト現像廃液からテトラアルキルアンモニウム塩水溶液を製造する方法であって、
 水素イオン型の陽イオン交換樹脂が充填された充填塔に、テトラアルキルアンモニウム水酸化物を含有するフォトレジスト現像廃液を通液することにより、陽イオン交換樹脂にテトラアルキルアンモニウムイオンを吸着させる吸着工程と、
 吸着工程において吸着されたテトラアルキルアンモニウムイオンをテトラアルキルアンモニウム塩の水溶液として溶離する溶離工程とを含み、
 吸着工程において、充填塔から排出される排出液の物性値を測定するとともに、該物性値が閾値以上に変化した時点で、フォトレジスト現像廃液の通液を一旦中断し、充填塔中の陽イオン交換樹脂を逆洗する逆洗工程を行い、その後充填塔へのフォトレジスト現像廃液の通液を再開することを特徴とする、テトラアルキルアンモニウム塩水溶液の製造方法である。
The present invention is a method for producing an aqueous tetraalkylammonium salt solution from a photoresist developing waste solution,
Adsorption process for adsorbing tetraalkylammonium ions on cation exchange resin by passing photoresist development waste solution containing tetraalkylammonium hydroxide through packed tower filled with hydrogen ion type cation exchange resin When,
Elution step of eluting the tetraalkylammonium ions adsorbed in the adsorption step as an aqueous solution of a tetraalkylammonium salt,
In the adsorption step, the physical property value of the effluent discharged from the packed tower is measured, and when the physical property value changes to a threshold value or more, the flow of the photoresist developing waste liquid is temporarily interrupted, and the cation in the packed tower A method for producing an aqueous tetraalkylammonium salt solution comprising performing a backwashing step of backwashing the exchange resin, and then restarting the flow of the photoresist developing waste liquid to the packed tower.
 本発明において、上記排出液の物性値が、導電率、pH及び/又はテトラアルキルアンモニウムイオン濃度からなる群から選ばれる少なくとも一つであることが好ましい。 In the present invention, it is preferable that the physical property value of the effluent is at least one selected from the group consisting of conductivity, pH and / or tetraalkylammonium ion concentration.
 本発明において、上記逆洗工程でエアスクラビングを行うことが好ましい。 In the present invention, air scrubbing is preferably performed in the backwashing step.
 本発明において、上記逆洗工程でフォトレジスト現像廃液を通液して洗浄を行うことが好ましい。 In the present invention, it is preferable to perform washing by passing a photoresist developing waste solution in the back washing step.
 本発明の方法によれば、陽イオン交換樹脂充填塔内の圧力損失の増加および陽イオン交換樹脂へのTAAイオンの吸着率の低下を効果的に抑制しつつ、フォトレジスト現像廃液の処理を行い、TAA塩水溶液を効率的に製造することができる。 According to the method of the present invention, the photoresist developing waste liquid is treated while effectively suppressing an increase in pressure loss in the cation exchange resin packed tower and a decrease in the adsorption rate of TAA ions on the cation exchange resin. , TAA salt aqueous solution can be produced efficiently.
 さらに、フォトレジスト現像廃液中のTAAイオンを吸着させ、次いでTAA塩の溶離を行う一連の工程を繰り返す場合においても、陽イオン交換樹脂のTAAイオンの吸着率の低下を効果的に抑制できるので、陽イオン交換樹脂の長寿命化が期待できる。 Furthermore, even when repeating a series of steps of adsorbing TAA ions in the photoresist developing waste liquid and then eluting the TAA salt, it is possible to effectively suppress a decrease in the adsorption rate of TAA ions in the cation exchange resin. Prolonged life of cation exchange resin can be expected.
本発明のTAA塩水溶液の製造方法の概要を示すブロック図である。It is a block diagram which shows the outline | summary of the manufacturing method of TAA salt aqueous solution of this invention. 本発明のTAA塩水溶液の製造方法における好ましい態様を示すフロー図である。It is a flowchart which shows the preferable aspect in the manufacturing method of TAA salt aqueous solution of this invention.
 (フォトレジスト現像廃液)
 本発明において、フォトレジスト現像廃液は、特に制限されるものではないが、半導体製造工程、液晶ディスプレイ製造工程等で発生するフォトレジスト現像廃液であることが好ましい。これら廃液は、露光後のフォトレジストをアルカリ現像液で現像する際に排出される廃液であり、フォトレジスト、水酸化テトラアルキルアンモニウム(以下において、水酸化テトラアルキルアンモニウムを「TAAH」と略称することがある。)、及び、金属イオンを主成分として含んでいる。なお、フォトレジスト現像廃液は水溶液であるのが通常である。
(Photoresist development waste liquid)
In the present invention, the photoresist developing waste liquid is not particularly limited, but is preferably a photoresist developing waste liquid generated in a semiconductor manufacturing process, a liquid crystal display manufacturing process, or the like. These waste liquids are waste liquids discharged when developing the exposed photoresist with an alkaline developer. Photoresist, tetraalkylammonium hydroxide (hereinafter, tetraalkylammonium hydroxide is abbreviated as “TAAH”). And a metal ion as a main component. The photoresist developing waste liquid is usually an aqueous solution.
 フォトレジスト現像廃液は、通常、pHが10~14のアルカリ性を呈しており、フォトレジストはアルカリ性の現像廃液中では、そのカルボキシル基、フェノール性水酸基等の酸基が酸解離して溶解している。また、酸性、又は、中性の条件下では、フォトレジストの水溶液への溶解度が低下し、析出する。フォトレジストの主な具体例としては、感光剤o-ジアゾナフトキノンの光分解により生成するインデンカルボン酸や、ノボラック樹脂由来のフェノール類が挙げられる。 Photoresist developing waste liquid usually exhibits an alkalinity with a pH of 10 to 14. In an alkaline developing waste liquid, acid groups such as carboxyl groups and phenolic hydroxyl groups are dissolved by acid dissociation. . Further, under acidic or neutral conditions, the solubility of the photoresist in the aqueous solution decreases and precipitates. Specific examples of the photoresist include indene carboxylic acid produced by photolysis of the photosensitizing agent o-diazonaphthoquinone, and phenols derived from novolak resin.
 ここで、半導体製造、及び液晶ディスプレイ製造における現像工程から排出される代表的なフォトレジスト廃液について詳細に説明する。現像工程では、通常、枚葉式の自動現像装置が多用されている。この装置ではTAAHを含む現像液を使用する工程とその後の純水によるリンス(基板洗浄)が同じ槽内で行われ、この際にリンス工程では現像液の5~10倍の量の純水が使用される。そのため、現像工程で使用された現像液は、通常5~10倍に希釈された廃液となる。その結果、現像工程で排出されるフォトレジスト廃液の組成は、TAAH濃度が100~10,000ppm程度、フォトレジスト濃度が1~300ppm程度であり、また、界面活性剤濃度が0~30ppm程度のものとなる。また、その他の工程の廃液が混入する場合もあり、TAAH濃度がさらに低くなることもある。具体的には、100ppm以下(10~100ppm程度)となる場合もある。特に、液晶ディスプレイ製造工程から排出されるフォトレジスト現像廃液は、TAAH濃度が10~5000ppmとなる場合が多く、本発明の方法は、このようなフォトレジスト現像廃液からTAA塩を製造するのに特に好適に採用できる。 Here, a typical photoresist waste liquid discharged from the development process in semiconductor manufacturing and liquid crystal display manufacturing will be described in detail. In the developing process, a sheet-fed automatic developing device is usually used frequently. In this apparatus, the step of using a developer containing TAAH and the subsequent rinsing (substrate cleaning) with pure water are performed in the same tank. At this time, in the rinsing step, 5 to 10 times the amount of pure water is used. used. For this reason, the developer used in the development step is usually a waste solution diluted 5 to 10 times. As a result, the composition of the photoresist waste liquid discharged in the development process is such that the TAAH concentration is about 100 to 10,000 ppm, the photoresist concentration is about 1 to 300 ppm, and the surfactant concentration is about 0 to 30 ppm. It becomes. Moreover, the waste liquid of another process may mix, and a TAAH density | concentration may become still lower. Specifically, it may be 100 ppm or less (about 10 to 100 ppm). In particular, the photoresist developing waste liquid discharged from the liquid crystal display manufacturing process often has a TAAH concentration of 10 to 5000 ppm, and the method of the present invention is particularly useful for producing a TAA salt from such a photoresist developing waste liquid. It can be suitably employed.
 フォトレジスト現像廃液中のTAAHは、各種電子部品の製造等の際に使用するフォトレジストの現像液に用いられるアルカリである。TAAHの具体例としては、水酸化テトラメチルアンモニウム(以下において「TMAH」と略記することがある)、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化メチルトリエチルアンモニウム、水酸化トリメチルエチルアンモニウム、水酸化ジメチルジエチルアンモニウム、水酸化トリメチル(2-ヒドロキシエチル)アンモニウム、水酸化トリエチル(2-ヒドロキシエチル)アンモニウム、水酸化ジメチルジ(2-ヒドロキシエチル)アンモニウム、水酸化ジエチルジ(2-ヒドロキシエチル)アンモニウム、水酸化メチルトリ(2-ヒドロキシエチル)アンモニウム、水酸化エチルトリ(2-ヒドロキシエチル)アンモニウム、水酸化テトラ(2-ヒドロキシエチル)アンモニウム等を挙げることができる。中でも、TMAHが最も汎用的に使用されている。 TAAH in the photoresist development waste liquid is an alkali used in a photoresist developer used in the production of various electronic components. Specific examples of TAAH include tetramethylammonium hydroxide (hereinafter sometimes abbreviated as “TMAH”), tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, methyltriethylammonium hydroxide, water Trimethylethylammonium oxide, dimethyldiethylammonium hydroxide, trimethyl (2-hydroxyethyl) ammonium hydroxide, triethyl (2-hydroxyethyl) ammonium hydroxide, dimethyldi (2-hydroxyethyl) ammonium hydroxide, diethyldi (2- Hydroxyethyl) ammonium, methyltri (2-hydroxyethyl) ammonium hydroxide, ethyltri (2-hydroxyethyl) ammonium hydroxide, tetra (2-hydroxyethyl) hydroxide Le) ammonium, and the like. Among these, TMAH is most widely used.
 (陽イオン交換樹脂)
 本発明において、TAAイオンを吸着させる陽イオン交換樹脂は特に限定されず、公知のものを用いることができる。具体的には、イオン交換基がスルホン酸基である強酸性陽イオン交換樹脂、イオン交換基がカルボキシル基である弱酸性陽イオン交換樹脂のいずれも使用することができる。中でも、イオン交換容量が大きいものが多く、使用する樹脂量を低減できるという点から、弱酸性陽イオン交換樹脂を使用することが好ましい。さらに、弱酸性陽イオン交換樹脂を用いる場合、後述するTAAイオンの溶離も容易である。
(Cation exchange resin)
In the present invention, the cation exchange resin for adsorbing TAA ions is not particularly limited, and known ones can be used. Specifically, either a strongly acidic cation exchange resin whose ion exchange group is a sulfonic acid group or a weakly acidic cation exchange resin whose ion exchange group is a carboxyl group can be used. Among them, it is preferable to use a weakly acidic cation exchange resin because many of them have a large ion exchange capacity and can reduce the amount of resin used. Further, when a weakly acidic cation exchange resin is used, elution of TAA ions described later is easy.
 陽イオン交換樹脂の構造は、ゲル型であってもMR型(マクロポーラス型)であってもよい。樹脂の形状も、粉状、粒状、膜状、繊維状等のいずれでもよい。処理効率、操作性、経済性などの点で、粒状等のスチレン系やアクリル系等の陽イオン交換樹脂を用いることが好ましい。 The structure of the cation exchange resin may be a gel type or an MR type (macroporous type). The shape of the resin may be any of powder, granule, film, fiber and the like. From the viewpoints of processing efficiency, operability, economy, etc., it is preferable to use granular styrene-based or acrylic-based cation exchange resins.
 陽イオン交換樹脂は、通常、対イオンが水素イオン(H型)か又はナトリウムイオン(Na型)の状態で市販されている。TAAイオンの吸着効率を向上させるためには、対イオンが水素イオンであるH型の陽イオン交換樹脂を用いる。Na型で市販されている陽イオン交換樹脂を使用する場合、予め陽イオン交換樹脂を充填した充填塔に塩酸や硫酸等の酸を通液し、超純水で充分洗浄するなどして、対イオンを水素イオンとしてから使用する。 The cation exchange resin is usually marketed in a state where the counter ion is hydrogen ion (H type) or sodium ion (Na type). In order to improve the adsorption efficiency of TAA ions, an H-type cation exchange resin whose counter ions are hydrogen ions is used. When using a cation exchange resin commercially available in Na type, an acid such as hydrochloric acid or sulfuric acid is passed through a packed column pre-filled with a cation exchange resin and thoroughly washed with ultrapure water. Ions are used as hydrogen ions.
 強酸性陽イオン交換樹脂の具体例としては、ロームアンドハース社製のアンバーライトIR120B、アンバーライトIR124、三菱化学社製のダイヤイオンSK112、ダイヤイオンPK228、住化ケムテックス社製デュオライトC255LFH、ランクセス社レバチットモノプラスS100、ピュロライト社ピュロライトC160などを挙げることができる。また、弱酸性陽イオン交換樹脂の具体例としては、ロームアンドハース社製のアンバーライトIRC76、三菱化学社製のダイヤイオンWK40L、住化ケムテックス社製デュオライトC433LF、デュオライトC476、ランクセス社レバチットCNP80WS、ピュロライト社ピュロライトC104などを挙げることができる。 Specific examples of strongly acidic cation exchange resins include Amberlite IR120B and Amberlite IR124 manufactured by Rohm and Haas, Diaion SK112, Diaion PK228 manufactured by Mitsubishi Chemical, Duolite C255LFH manufactured by Sumika Chemtex, and LANXESS Examples include Lebatit Monoplus S100, Purolite Purolite C160, and the like. Specific examples of the weakly acidic cation exchange resin include Amberlite IRC76 manufactured by Rohm and Haas, Diaion WK40L manufactured by Mitsubishi Chemical, Duolite C433LF and Duolite C476 manufactured by Sumika Chemtex, and Lexit CNP80WS manufactured by LANXESS. And Purolite Purolite C104.
 (吸着工程)
 本発明においては、フォトレジスト現像廃液を、充填塔に充填された水素イオン型(以下において「H型」と称することがある。)の陽イオン交換樹脂に接触させることにより、該陽イオン交換樹脂にTAAイオンを吸着させる。
(Adsorption process)
In the present invention, the photoresist developing waste liquid is brought into contact with a cation exchange resin of a hydrogen ion type (hereinafter sometimes referred to as “H type”) packed in a packed tower, thereby the cation exchange resin. To adsorb TAA ions.
 即ち、TAAイオンは陽イオンであるから、H型の陽イオン交換樹脂と接触させることにより、該陽イオン交換樹脂の有する水素イオンとイオン交換を起こして該樹脂に吸着される。従って、効率よく廃液からTAAイオンを回収することができる。特にTAAHの濃度が低い廃液を用いる場合においても、TAAイオンを低コストで回収することができる。 That is, since the TAA ions are cations, they are adsorbed on the resin by causing ion exchange with hydrogen ions of the cation exchange resin by contacting with the H-type cation exchange resin. Therefore, TAA ions can be efficiently recovered from the waste liquid. In particular, even when a waste liquid having a low TAAH concentration is used, TAA ions can be recovered at a low cost.
 フォトレジスト現像廃液とH型陽イオン交換樹脂との接触は、H型陽イオン交換樹脂が充填された充填塔にフォトレジスト現像廃液を通液することにより行う。本発明における吸着工程は、充填塔にフォトレジスト廃液を通液することにより、陽イオン交換樹脂にTAAイオンを吸着させる工程である。充填塔とは、陽イオン交換樹脂を充填でき、液が流通可能な容器である。充填塔の塔本体は、特に限定されず公知のものを使用することができる。具体的には例えば、塔本体は、SUS製の円柱型からなり、上部と下部に液の流入出部を備える内部構造を有することが好ましい。 The contact between the photoresist developing waste liquid and the H-type cation exchange resin is carried out by passing the photoresist developing waste liquid through a packed tower filled with the H-type cation exchange resin. The adsorption step in the present invention is a step of adsorbing TAA ions to the cation exchange resin by passing a photoresist waste liquid through the packed tower. A packed tower is a container that can be filled with a cation exchange resin and that can be circulated. The tower body of the packed tower is not particularly limited, and known ones can be used. Specifically, for example, it is preferable that the tower body has a cylindrical structure made of SUS and has an internal structure having liquid inflow and outflow portions at the upper and lower portions.
 フォトレジスト現像廃液の充填塔への通液の具体的な態様は、陽イオン交換樹脂の性能等に応じて適宜決定することができる。例えば、TAAHの含有量が10~10000ppmのフォトレジスト現像廃液を用いる場合、効率よくTAAイオンを吸着させる観点からは、充填塔に充填されたH型の陽イオン交換樹脂の高さ(L)と充填塔直径(D)との比(L/D)が0.5以上、フォトレジスト現像廃液の空間速度(SV)を1(h-1)以上200(h-1)以下とすることが好ましい。 The specific mode of passing the photoresist developing waste liquid through the packed tower can be appropriately determined according to the performance of the cation exchange resin. For example, when using a photoresist developing waste solution with a TAAH content of 10 to 10,000 ppm, from the viewpoint of efficiently adsorbing TAA ions, the height (L) of the H-type cation exchange resin packed in the packed tower It is preferable that the ratio (L / D) to the packed tower diameter (D) is 0.5 or more and the space velocity (SV) of the photoresist developing waste liquid is 1 (h −1 ) or more and 200 (h −1 ) or less. .
 フォトレジスト現像廃液の通液量は、濃縮効率の観点から、陽イオン交換樹脂のイオン交換容量に対するTAAイオンの吸着量が70~90%になる通液量とすることが好ましい。(以下において、陽イオン交換樹脂のイオン交換容量に対するTAAイオン吸着量を「TAAイオン吸着率」と称する)。TAAイオン吸着率が上記範囲を下回る場合、陽イオン交換樹脂に吸着させたTAAイオンをTAA塩として回収する溶離工程において、流出液中のTAA塩濃度が低くなるので、TAAイオンの回収効率の点で不利である。 From the viewpoint of concentration efficiency, it is preferable that the amount of the photoresist developing waste solution to be passed is such that the adsorption amount of TAA ions is 70 to 90% with respect to the ion exchange capacity of the cation exchange resin. (Hereinafter, the amount of TAA ion adsorption relative to the ion exchange capacity of the cation exchange resin is referred to as “TAA ion adsorption rate”). When the TAA ion adsorption rate is lower than the above range, the TAA ion concentration in the effluent is reduced in the elution step of recovering TAA ions adsorbed on the cation exchange resin as TAA salts, so that the efficiency of TAA ion recovery is high. It is disadvantageous.
 充填塔内に充填された陽イオン交換樹脂へのTAAイオンの吸着が進むにつれて、陽イオン交換樹脂が膨潤し、樹脂の体積が増大するので、充填塔内の陽イオン交換樹脂の高さが増加する。従って、充填塔への陽イオン交換樹脂の充填は、TAAイオン吸着率が上記の目標値(70~90%)に至るまでTAAイオンが吸着された際の陽イオン交換樹脂の体積を勘案して行えばよい。 As adsorption of TAA ions proceeds to the cation exchange resin packed in the packed tower, the cation exchange resin swells and the volume of the resin increases, so the height of the cation exchange resin in the packed tower increases. To do. Therefore, packing of the cation exchange resin into the packed column takes into account the volume of the cation exchange resin when TAA ions are adsorbed until the TAA ion adsorption rate reaches the above target value (70 to 90%). Just do it.
 H型陽イオン交換樹脂を充填した充填塔にTAAイオンを含むフォトレジスト廃液を通液するとき、例えば弱酸性陽イオン交換樹脂を用いる場合には、TAAイオン吸着率が40~60%程度になるまでは、充填塔からTAAイオンが流出することなくTAAイオンが樹脂に吸着するが、TAAイオン吸着率が40~60%程度を超えると、TAAイオン吸着率が増大する一方で、徐々にTAAイオンが充填塔から流出するようになる(以下において、TAAイオンが充填塔から流出し始めることを「破過」ということがある。)。 When passing a photoresist waste liquid containing TAA ions through a packed column packed with an H-type cation exchange resin, for example, when a weakly acidic cation exchange resin is used, the TAA ion adsorption rate is about 40 to 60%. Until the TAA ions are adsorbed on the resin without flowing out of the packed tower, if the TAA ion adsorption rate exceeds about 40 to 60%, the TAA ion adsorption rate increases while the TAA ions gradually increase. Will flow out of the packed tower (hereinafter, TAA ions start to flow out of the packed tower may be referred to as “breakthrough”).
 TAAイオンをロスなく回収するためには、充填塔を複数段直列に接続して通液を行うことが好ましい。充填塔を複数段直列に接続して通液を行うことにより、前段の充填塔が破過して前段の充填塔から流出するTAAイオンを、後段の充填塔で吸着することが可能となる。 In order to recover the TAA ions without loss, it is preferable to connect a plurality of packed towers in series and perform liquid flow. By passing through a plurality of packed towers connected in series, TAA ions that break through the preceding packed tower and flow out of the preceding packed tower can be adsorbed by the packed tower in the subsequent stage.
 本発明において、フォトレジスト現像廃液中にはフォトレジストが含有されている。フォトレジスト現像廃液中のTAAイオンが陽イオン交換樹脂に吸着されると、該充填塔を通過するフォトレジスト現像廃液のpHが酸性乃至中性(pH3~7)に変化する。ここで、フォトレジストはアルカリ性の水溶液には溶解し、酸性乃至中性(pH3~7)の水溶液に対しては溶解度が低下するため、このようなpHの変化に伴ってフォトレジストの溶解度が低下し、析出して、陽イオン交換樹脂に物理吸着する。陽イオン交換樹脂に物理吸着したフォトレジスト析出物は、フォトレジスト現像廃液と陽イオン交換樹脂の接触を妨げるため、陽イオン交換樹脂のTAAイオン吸着率を低下させる。 In the present invention, the photoresist development waste liquid contains a photoresist. When TAA ions in the photoresist developing waste liquid are adsorbed by the cation exchange resin, the pH of the photoresist developing waste liquid passing through the packed tower changes from acidic to neutral (pH 3 to 7). Here, the photoresist dissolves in an alkaline aqueous solution, and the solubility decreases in an acidic to neutral (pH 3 to 7) aqueous solution. Therefore, the solubility of the photoresist decreases with such a change in pH. Then, it is deposited and physically adsorbed on the cation exchange resin. The photoresist precipitate physically adsorbed on the cation exchange resin prevents contact between the photoresist developing waste liquid and the cation exchange resin, and thus reduces the TAA ion adsorption rate of the cation exchange resin.
 さらに、TAAイオンが吸着されると陽イオン交換樹脂は膨潤するが、フォトレジスト析出物が接着剤として作用するため、充填塔内の流路の閉塞が極端に多くなり、充填塔内の圧力損失が著しく増加する。なお、充填塔内の圧力損失は、フォトレジスト現像廃液中のTAAイオンが、陽イオン交換樹脂に吸着されずに、流出する(破過)まで徐々に増加し、破過のタイミングで急激に増加する。破過のタイミングを過ぎると充填塔内のpHがアルカリ性に変化するため、一部の析出したフォトレジストが再溶解し、充填塔外に排出され、圧力損失は徐々に減少する。つまり、破過のタイミングにおいて、充填塔内のフォトレジスト析出量が最も多くなり、樹脂の膨潤も相俟って、最も圧力損失が大きくなる。 Furthermore, when the TAA ions are adsorbed, the cation exchange resin swells, but the photoresist precipitate acts as an adhesive, so that the clogging of the flow path in the packed tower becomes extremely large, and the pressure loss in the packed tower Increases significantly. Note that the pressure loss in the packed tower gradually increases until the TAA ions in the photoresist development waste liquid flow out (breakthrough) without being adsorbed by the cation exchange resin, and increase rapidly at the breakthrough timing. To do. After the breakthrough timing, the pH in the packed tower changes to alkaline, so that part of the deposited photoresist is redissolved and discharged out of the packed tower, and the pressure loss gradually decreases. That is, at the breakthrough timing, the amount of photoresist deposited in the packed tower is the largest, and the pressure loss is the largest due to the swelling of the resin.
 また、陽イオン交換樹脂にTAAイオンを吸着させ、次いでTAA塩の溶離を行うサイクルの回数が増加するに伴って、充填塔内にフォトレジスト析出物が蓄積されるので、陽イオン交換樹脂のTAAイオン吸着率が低下し、破過するタイミングが早くなる。 In addition, as the number of cycles in which TAA ions are adsorbed on the cation exchange resin and then the elution of the TAA salt is increased, photoresist precipitates are accumulated in the packed tower. The ion adsorption rate decreases, and the breakthrough timing is accelerated.
 本発明の吸着工程において、破過が起きる前の充填塔からの流出液(以下において「破過前排出液」と称することがある。)の物性値は、フォトレジストの含有量によって大きく異なるが、概ね、導電率が0.005~0.1mS/cm、pH3~7程度、フォトレジスト濃度が5~150ppm程度である。また、充填塔からのTAAイオンの流出の開始(破過)以降の充填塔からの流出液(以下において「破過後排出液」と称することがある。)の物性値は、上記破過前排出液の範囲から、導電率が0.05~25mS/cm、pHが14程度、フォトレジスト濃度が10~200ppm程度まで、徐々に増加する。 In the adsorption step of the present invention, the physical property value of the effluent from the packed tower before breakthrough occurs (hereinafter sometimes referred to as “pre-breakthrough effluent”) varies greatly depending on the content of the photoresist. In general, the conductivity is 0.005 to 0.1 mS / cm, the pH is about 3 to 7, and the photoresist concentration is about 5 to 150 ppm. The physical property value of the effluent from the packed tower after the start of TAA ion efflux from the packed tower (breakthrough) (hereinafter sometimes referred to as “discharge liquid after breakthrough”) is the pre-breakthrough discharge. From the range of the solution, the conductivity gradually increases to 0.05 to 25 mS / cm, pH to about 14, and photoresist concentration to about 10 to 200 ppm.
 陽イオン交換樹脂を充填した充填塔から排出される液中のTAAH濃度は、破過前排出液では定量下限値以下(5ppm以下)であり、破過後排出液では定量下限値から通液前レジスト現像廃液中のTAAH濃度まで徐々に増加する。また、一般的にTAAイオン濃度が高い溶液は、導電率およびpHが高くなる。 The TAAH concentration in the liquid discharged from the packed column packed with cation exchange resin is below the lower limit of quantification (5 ppm or lower) in the pre-breakthrough effluent, and from the lower limit of quantification in the pre-breakthrough effluent, Gradually increase to TAAH concentration in developer waste. In general, a solution having a high TAA ion concentration has high conductivity and pH.
 本発明は、吸着工程において、フォトレジスト現像廃液の通液を一旦中断し、充填塔内の陽イオン交換樹脂の洗浄を行う。当該洗浄のタイミングは、充填塔からの排出液の物性値が所定の閾値以上に変化した時点である。また洗浄は逆洗により行う。上記充填塔からの排出液の物性値としては、排出液の導電率、及び/又は、pH等が挙げられ、本発明においてはこれら物性値を測定し、監視している物性値が所定の閾値以上に変化した時点で、陽イオン交換樹脂が充填された充填塔へのフォトレジスト現像廃液の通液を一旦中断し、陽イオン交換樹脂の逆洗を行う。 In the present invention, in the adsorption process, the flow of the photoresist developing waste liquid is temporarily interrupted, and the cation exchange resin in the packed tower is washed. The timing of the cleaning is the time when the physical property value of the effluent from the packed tower changes to a predetermined threshold value or more. Washing is performed by back washing. Examples of the physical property value of the effluent from the packed tower include the conductivity and / or pH of the effluent. In the present invention, these physical property values are measured, and the monitored physical property value is a predetermined threshold value. At the time when the above changes are made, the flow of the photoresist developing waste liquid through the packed tower filled with the cation exchange resin is temporarily interrupted, and the cation exchange resin is back-washed.
 上記した通り、破過が起きることにより排出液の導電率およびpH等の物性値が増大する。本発明者らは、これらの物性値の増大が、充填塔の圧力損失の増大に先んじて起きることを見出した。従って、TAAイオンを陽イオン交換樹脂に吸着させる際に、排出液の物性値が所定の閾値以上になった時点で、陽イオン交換樹脂へのTAAイオンの吸着を一旦中断し、逆洗を行うことで、充填塔内で析出して陽イオン交換樹脂に物理吸着したフォトレジストを充填塔から除去できる。これにより充填塔の圧力損失の増加、TAAイオンの吸着率の低下を抑えることができ、破過が起きるまでに通液可能なフォトレジスト現像廃液の量が増加する。またフォトレジストの析出が少ないうちにイオン交換樹脂の洗浄を行うことができるので、イオン交換樹脂の寿命を延ばすことができるほか、ポンプ等の循環系の安全マージンを少なくすることが可能になる。 As described above, physical properties such as conductivity and pH of the effluent increase due to breakthrough. The present inventors have found that the increase in these physical property values occurs prior to the increase in the pressure loss of the packed tower. Therefore, when the TAA ions are adsorbed on the cation exchange resin, the adsorption of the TAA ions to the cation exchange resin is temporarily interrupted and the backwash is performed when the physical property value of the effluent reaches a predetermined threshold value or more. Thus, the photoresist deposited in the packed tower and physically adsorbed on the cation exchange resin can be removed from the packed tower. As a result, an increase in pressure loss in the packed tower and a decrease in the adsorption rate of TAA ions can be suppressed, and the amount of photoresist developing waste liquid that can be passed through before breakthrough occurs increases. In addition, since the ion exchange resin can be cleaned while the amount of deposited photoresist is small, the lifetime of the ion exchange resin can be extended, and the safety margin of a circulation system such as a pump can be reduced.
 監視する排出液の物性値は、破過前排出液と破過後排出液の各種物性を対比し、適宜選択設定することができる。ただし好ましくは導電率及び/又はpHである。監視する物性値として排出液の導電率及び/又はpHを採用する場合、導電率の閾値は0.02mS/cm以上0.1mS/cm以下の範囲から選択することが好ましく、pHの閾値は5以上10以下の範囲から選択することが好ましい。導電率が上記閾値以上となった時点、且つ/又はpHが上記閾値以上となった時点で、フォトレジスト現像廃液の通液を一旦中断し、後述する逆洗を行うことにより、充填塔内の圧力損失の上昇及びTAAイオンの吸着率の低下を効果的に抑制することができる。またTAAH濃度を測定し、これを監視する物性値として採用してもよい。監視する物性値としてTAAH濃度を採用する場合には、通液中断のタイミングとするTAAH濃度の閾値は、5ppm以上50ppm以下の範囲から選択することが好ましい。 The physical property value of the discharged liquid to be monitored can be appropriately selected and set by comparing various physical properties of the discharged liquid before breakthrough and the discharged liquid after breakthrough. However, conductivity and / or pH are preferred. When the conductivity and / or pH of the effluent is adopted as the physical property value to be monitored, the conductivity threshold is preferably selected from the range of 0.02 mS / cm to 0.1 mS / cm, and the pH threshold is 5 It is preferable to select from the range of 10 or less. When the electrical conductivity becomes equal to or higher than the above threshold value and / or when the pH becomes equal to or higher than the above threshold value, the flow of the photoresist developing waste liquid is temporarily interrupted, and backwashing described later is performed. An increase in pressure loss and a decrease in the adsorption rate of TAA ions can be effectively suppressed. Alternatively, the TAAH concentration may be measured and used as a physical property value for monitoring. When the TAAH concentration is adopted as the physical property value to be monitored, it is preferable to select the TAAH concentration threshold value as the timing of interruption of liquid flow from the range of 5 ppm to 50 ppm.
 監視する物性値として導電率を採用した場合、充填塔からの排出液の導電率を測定する方法としては、公知の方法を適宜採用することができる。具体的には、陽イオン交換樹脂充填塔から排出する排出液を一定量サンプリングし、導電率計などを用いて導電率を測定する方法や、排出液が通る配管の途中にインライン型の導電率計を設置して測定する方法等を例示できる。インライン型の導電率計を用いる態様によれば、液を途中で抜き出すことなく、導電率が所定の閾値に達した瞬間に通液を一旦中断することもできるため、好ましい。 When the conductivity is employed as the physical property value to be monitored, a known method can be appropriately employed as a method for measuring the conductivity of the effluent from the packed tower. Specifically, a certain amount of the effluent discharged from the cation exchange resin packed tower is sampled, and the conductivity is measured using a conductivity meter, etc., or the in-line type conductivity is in the middle of the pipe through which the effluent passes. A method of measuring by installing a meter can be exemplified. According to the aspect using the in-line type conductivity meter, it is preferable because the liquid flow can be temporarily interrupted at the moment when the conductivity reaches a predetermined threshold without drawing the liquid halfway.
 なお測定誤差の観点から、複数の測定値を統計処理することにより得られる値に基づいて、充填塔からの排出液の導電率が閾値以上であるか否を判断することが好ましい。測定結果の統計処理の方法は公知の処理方法を適宜採用することができる。例えば、所定時間(例えば0.1秒)毎の値を得るようにしておき、所定時間(例えば2秒間)の相加平均あるいは相乗平均値を採用する態様を挙げることができる。商業的に入手可能な導電率計にはこのような統計処理手段を備え、統計処理後の導電率を出力する機能を備えたものもあり、本発明においてはそのような導電率計をそのまま用いることも可能である。 From the viewpoint of measurement error, it is preferable to determine whether or not the conductivity of the effluent from the packed tower is greater than or equal to a threshold value based on a value obtained by statistically processing a plurality of measured values. As a method of statistical processing of measurement results, a known processing method can be appropriately employed. For example, a mode in which a value every predetermined time (for example, 0.1 second) is obtained and an arithmetic average or a geometric average value for a predetermined time (for example, 2 seconds) is employed can be cited. Some commercially available conductivity meters are equipped with such statistical processing means and have a function of outputting the conductivity after statistical processing. In the present invention, such a conductivity meter is used as it is. It is also possible.
 なお、導電率の測定(および、もし行うのであれば統計処理)を行う時間間隔は主として排出液の流量(流速)によって変更する必要がある。高流速でフォトレジスト現像廃液を通液する場合、充填塔からの排出液の導電率の変化が急激に起こるため、測定(および、もし行うのであれば統計処理)の間隔を短くする必要がある。 It should be noted that the time interval for measuring the conductivity (and statistical processing if it is performed) needs to be changed mainly by the flow rate (flow velocity) of the effluent. When passing photoresist development waste at a high flow rate, the conductivity of the effluent from the packed tower changes abruptly, so the interval between measurements (and statistical processing, if done) must be reduced. .
 監視する物性値としてpHを採用した場合、充填塔からの排出液のpHを測定する方法としては、公知の方法を適宜採用することができる。ただし、一般的なガラス電極型のpH計を用いてインラインで流体のpHを測定すると、その特性上、および吸着塔内の樹脂の充填状態の不均一性などの要因により、±0.2程度の変動を生じることが多い。従って、このような場合、pH計の示すpH値を統計的に処理した値に基づいて、pH値が閾値以上であるか否かの判断を行うことが好ましい。例えばその統計値が上記所定の閾値に達した時点で、充填塔へのフォトレジスト廃液の通液を中断することができる。 When pH is adopted as the physical property value to be monitored, a known method can be appropriately employed as a method for measuring the pH of the effluent from the packed tower. However, when the pH of the fluid is measured in-line using a general glass electrode type pH meter, it is about ± 0.2 due to its characteristics and non-uniformity in the packing state of the resin in the adsorption tower. Often causes fluctuations. Therefore, in such a case, it is preferable to determine whether or not the pH value is equal to or greater than a threshold value based on a value obtained by statistically processing the pH value indicated by the pH meter. For example, when the statistical value reaches the predetermined threshold, the flow of the photoresist waste liquid to the packed tower can be interrupted.
 統計処理の方法は公知の処理方法を適宜採用することができる。例えば所定時間(例えば0.1秒)毎の値を得るようにしておき、所定時間(例えば2秒間)の相加平均あるいは相乗平均値を採用する態様を挙げることができる。商業的に入手可能なpH計にはこのような統計処理手段を備え、統計処理後のpHを表示する機能を備えたものもあり、本発明においてはそのようなpH計をそのまま用いることも可能である。 Statistic processing methods can be appropriately adopted known processing methods. For example, a mode in which a value is obtained every predetermined time (for example, 0.1 seconds) and an arithmetic average or a geometric average value for a predetermined time (for example, 2 seconds) is employed can be exemplified. Some commercially available pH meters are equipped with such statistical processing means and have a function of displaying the pH after statistical processing. In the present invention, such a pH meter can be used as it is. It is.
 なお、pHの測定(および、もし行うのであれば統計処理)を行う時間間隔は主として排出液の流量(流速)によって変更する必要がある。高流速でフォトレジスト現像廃液を通液する場合、充填塔からの排出液のpHの変化が急激に起こるため、測定(および、もし行うのであれば統計処理)の間隔を短くする必要がある。 In addition, it is necessary to change the time interval for measuring pH (and statistical processing if it is performed) mainly by the flow rate (flow velocity) of the discharged liquid. When the photoresist developing waste liquid is passed at a high flow rate, the pH of the effluent from the packed tower changes rapidly, so the interval between measurements (and statistical processing, if done) must be shortened.
 (逆洗工程)
 本発明における逆洗工程は、吸着工程の途中で陽イオン交換樹脂を洗浄する工程である。
 上記の通り充填塔から排出される排出液の物性値を測定し、該物性値が所定の閾値以上に変化した時点で、フォトレジスト現像廃液の通液を一旦中断し、充填塔の陽イオン交換樹脂の洗浄を逆洗により行う。
(Backwash process)
The backwashing step in the present invention is a step of washing the cation exchange resin during the adsorption step.
Measure the physical property value of the effluent discharged from the packed tower as described above, and when the physical property value changes to a predetermined threshold value or higher, temporarily stop the flow of the photoresist developing waste liquid, and exchange the cation of the packed column. The resin is washed by backwashing.
 逆洗とは、吸着工程における通液方向とは逆方向に洗浄液を通液することにより、陽イオン交換樹脂に析出および物理吸着したフォトレジストを充填塔から排出する操作である。当該逆洗の条件としては、上記目的が達せられる限りにおいて特に限定されないが、吸着工程(充填塔へのフォトレジスト現像廃液の通液)を一時中断した時点の樹脂高さに対する逆洗後の樹脂高さが1.3倍以上2.0倍以下となるように通液を行うことが好ましい。また、洗浄液は充填塔から排出される排出液が透明になるまで通液することが好ましい。 Backwashing is an operation in which the photoresist deposited and physically adsorbed on the cation exchange resin is discharged from the packed tower by passing a cleaning solution in a direction opposite to the passing direction in the adsorption step. The conditions for the backwashing are not particularly limited as long as the above-mentioned purpose is achieved, but the resin after backwashing with respect to the resin height at the time when the adsorption process (flow of the photoresist developing waste liquid to the packed tower) is temporarily interrupted. It is preferable to pass the liquid so that the height is 1.3 times or more and 2.0 times or less. The washing liquid is preferably passed through until the discharged liquid discharged from the packed tower becomes transparent.
 陽イオン交換樹脂同士が接着され、逆洗液の通液がしづらい場合、逆洗前または逆洗中にエアスクラビングを行い、陽イオン交換樹脂を解してもよい。エアスクラビングを行うことで、陽イオン交換樹脂が解れるので、使用する洗浄液の量を抑えることが出来る。なおエアスクラビングに用いるガスは水への溶解度が低い限りにおいて特に制限されるものではなく、窒素等の各種不活性ガスや、空気等を用いることができる。 If the cation exchange resins are bonded to each other and it is difficult to pass the backwash liquid, air scrubbing may be performed before backwashing or during backwashing to release the cation exchange resin. By performing air scrubbing, the cation exchange resin can be released, so that the amount of cleaning liquid used can be suppressed. The gas used for air scrubbing is not particularly limited as long as the solubility in water is low, and various inert gases such as nitrogen, air, and the like can be used.
 エアスクラビングの方法について、特に制限されず、吸着工程での液の流れとは逆方向にエアを吹き込み、陽イオン交換樹脂を展開、解すことができればよい。 The air scrubbing method is not particularly limited as long as it can blow and blow the air in the direction opposite to the liquid flow in the adsorption process to develop and solve the cation exchange resin.
 逆洗工程における通液の空間速度(SV)は、1(h-1)~100(h-1)とすることが好ましく、3(h-1)~50(h-1)とすることがより好ましい。空間速度が高い方が、充填塔内の陽イオン交換樹脂の展開が十分になされ、フォトレジストが充填塔内に残存し難くなる。一方、空間速度が小さい方が、陽イオン交換樹脂の展開による樹脂同士の物理衝突による樹脂の破砕が起こり難く、TAAイオン吸着率が低下しにくい。 The liquid passing space velocity (SV) in the backwashing step is preferably 1 (h −1 ) to 100 (h −1 ), and preferably 3 (h −1 ) to 50 (h −1 ). More preferred. When the space velocity is higher, the cation exchange resin in the packed tower is sufficiently developed, and the photoresist is less likely to remain in the packed tower. On the other hand, when the space velocity is smaller, resin crushing due to physical collision between the resins due to the development of the cation exchange resin is less likely to occur, and the TAA ion adsorption rate is less likely to decrease.
 逆洗工程で使用する洗浄液の通液量は、吸着塔の大きさ、陽イオン交換樹脂の種類や使用量等に応じて、適宜設定できる。好ましくは、通液量(BV)が1(L/L-樹脂)以上15(L/L-樹脂)以下であり、より好ましくは、2(L/L-樹脂)以上7(L/L-樹脂)以下である。また、逆洗前または逆洗中にエアスクラビングを行うことにより、逆洗工程における通液量を減らすことも可能である。この場合、通液量(BV)は、2(L/L-樹脂)以上4(L/L-樹脂)以下とすることも可能である。通液量(BV)が2(L/L-樹脂)より少ない場合、充填塔からフォトレジストが十分に排出されないおそれがあり、4(L/L-樹脂)よりも多い場合は、逆洗工程の排出液が多量となる。 The amount of the cleaning solution used in the backwashing step can be appropriately set according to the size of the adsorption tower, the type and amount of cation exchange resin used. Preferably, the liquid flow rate (BV) is 1 (L / L-resin) or more and 15 (L / L-resin) or less, more preferably 2 (L / L-resin) or more and 7 (L / L-). Resin) In addition, by performing air scrubbing before or during backwashing, it is possible to reduce the amount of liquid flow in the backwashing process. In this case, the flow rate (BV) can be 2 (L / L-resin) or more and 4 (L / L-resin) or less. If the liquid flow rate (BV) is less than 2 (L / L-resin), the photoresist may not be sufficiently discharged from the packed tower. If it is greater than 4 (L / L-resin), the backwash process The amount of discharged liquid becomes large.
 本発明において、逆浄工程に用いる洗浄液は、TAAイオンを溶出させることなくフォトレジストを充填塔から排出可能な液体であれば特に限定されない。ただし、フォトレジストの溶解性やコスト等の点で、フォトレジスト現像廃液、TAAH水溶液、超純水、純水及びイオン交換水を挙げることができ、中でもフォトレジスト現像廃液が最も好ましい。 In the present invention, the cleaning liquid used in the reverse purification step is not particularly limited as long as it is a liquid that can discharge the photoresist from the packed tower without eluting TAA ions. However, in terms of the solubility and cost of the photoresist, photoresist developing waste liquid, TAAH aqueous solution, ultrapure water, pure water, and ion-exchanged water can be exemplified, and among them, the photoresist developing waste liquid is most preferable.
 なお、逆洗が十分に行われたか否かの判断、すなわち、逆洗工程を終了してもよいか否かの判断は、例えば、逆洗工程における充填塔からの流出液のUV/可視光吸収、および/または濁度を監視することによっても行うことができる。UV/可視光吸収は流出液中のフォトレジスト成分の含有量に対応し、濁度は流出液中の懸濁成分の含有量に対応する。フォトレジスト析出物が洗浄液に溶解していなければ、その析出物は液中に懸濁しているので、流出液の濁度を増大させる。フォトレジスト析出物が洗浄液に溶解している場合には、フォトレジスト由来の有機成分により流出液の吸光度が増大する。なお、予備実験で逆洗の所要時間が判明していれば、逆洗工程の流出液を監視せずに、その所要時間に若干の余裕を見込んだ時間だけ逆洗工程を行う形態とすることも可能である。 The determination as to whether or not the backwashing has been sufficiently performed, that is, the determination as to whether or not the backwashing process may be completed is performed by, for example, UV / visible light of the effluent from the packed tower in the backwashing process. It can also be done by monitoring absorption and / or turbidity. UV / visible light absorption corresponds to the content of the photoresist component in the effluent, and turbidity corresponds to the content of the suspended component in the effluent. If the photoresist precipitate is not dissolved in the cleaning solution, the precipitate is suspended in the solution, thus increasing the turbidity of the effluent. When the photoresist deposit is dissolved in the cleaning solution, the absorbance of the effluent increases due to the organic component derived from the photoresist. In addition, if the required time for backwashing is known in the preliminary experiment, the backwashing process should be performed only for the time required for the required time without monitoring the effluent of the backwashing process. Is also possible.
 逆洗工程でフォトレジスト現像廃液を洗浄液として用いた場合、フォトレジスト現像廃液には、TAAHが含まれており、充填塔の陽イオン交換樹脂に析出および物理吸着したフォトレジストを再溶解させることができるため、フォトレジスト析出物を効率よく充填塔外に排出することができる。また、廃液を再利用するため、コストを抑えることができる。 When the photoresist developing waste solution is used as a cleaning solution in the backwashing process, the photoresist developing waste solution contains TAAH, and the photoresist deposited and physically adsorbed on the cation exchange resin in the packed tower may be redissolved. Therefore, the photoresist deposit can be efficiently discharged out of the packed tower. Further, since the waste liquid is reused, the cost can be suppressed.
 逆洗工程において充填塔から排出される洗浄液は、廃棄してもよいが、少量のTAAイオンを含有しているため、フォトレジスト現像廃液に戻すこともできる。逆洗工程において充填塔から排出される洗浄液をフォトレジスト現像廃液に戻す場合、排出された洗浄液を精密ろ過、NF(ナノ濾過)、RO(逆浸透膜濾過)、クロスフロー濾過等で濾過し、フォトレジストを除去してからフォトレジスト現像廃液に戻してもよい。 The cleaning liquid discharged from the packed tower in the backwashing step may be discarded, but since it contains a small amount of TAA ions, it can be returned to the photoresist developing waste liquid. When returning the cleaning liquid discharged from the packed tower in the backwashing process to the photoresist developing waste liquid, the discharged cleaning liquid is filtered by microfiltration, NF (nanofiltration), RO (reverse osmosis membrane filtration), crossflow filtration, etc. After removing the photoresist, it may be returned to the photoresist developing waste liquid.
 逆洗工程によって、陽イオン交換樹脂に析出および物理吸着したフォトレジストが充填塔外に排出され、さらに、フォトレジスト析出物によって接着されていた陽イオン交換樹脂粒子が分散されるので、充填塔へのフォトレジスト現像廃液の通液(吸着工程)を再開しても、充填塔内の圧力損失を低いままに維持できる。 In the backwashing process, the photoresist deposited and physically adsorbed on the cation exchange resin is discharged out of the packed tower, and further, the cation exchange resin particles adhered by the photoresist deposit are dispersed. The pressure loss in the packed tower can be maintained at a low level even when the photoresist development waste liquid (adsorption process) is restarted.
 具体的には、逆洗工程を経ることにより、充填塔内の陽イオン交換樹脂粒子が解され、充填塔内で陽イオン交換樹脂に析出および物理吸着していたフォトレジストが洗浄液中に分散又は再溶解し、充填塔外に排出される。析出および物理吸着していたフォトレジストが排出されることにより、フォトレジスト析出物に起因していた圧力損失の増加がキャンセルされるので、吸着工程を再び効率的に行うことができる。 Specifically, the cation exchange resin particles in the packed tower are dissolved by passing through a backwashing process, and the photoresist that has precipitated and physically adsorbed on the cation exchange resin in the packed tower is dispersed or washed in the cleaning liquid. It is redissolved and discharged outside the packed tower. By discharging the photoresist that has been deposited and physically adsorbed, the increase in pressure loss caused by the photoresist deposit is canceled, so that the adsorption process can be performed again efficiently.
 また、逆洗を行っても、TAAイオンは陽イオン交換樹脂に吸着されたままなので、後述する溶離工程において回収されるTAA塩の濃度は影響を受けない。 In addition, even when backwashing is performed, TAA ions remain adsorbed on the cation exchange resin, so the concentration of the TAA salt recovered in the elution step described later is not affected.
 (充填塔へのフォトレジスト廃液の通液の再開)
 逆洗工程の後、充填塔へのフォトレジスト廃液の通液を再開するにあたっては、逆洗工程前の吸着工程と同様の方法で通液することができる。
(Resume the flow of photoresist waste liquid to the packed tower)
After restarting the flow of the photoresist waste liquid to the packed tower after the backwashing process, it can be passed in the same manner as the adsorption process before the backwashing process.
 なお、再開した吸着工程でのフォトレジスト現像廃液の通液量は、TAAイオンの吸着率が70~90%になるような通液量とすればよい。前述したが、TAAイオンの吸着率がこれより低い場合、後述する溶離工程において、回収されるTAA塩の濃度が低くなる。 It should be noted that the flow rate of the photoresist developing waste liquid in the resumed adsorption process may be set so that the TAA ion adsorption rate is 70 to 90%. As described above, when the adsorption rate of TAA ions is lower than this, the concentration of the recovered TAA salt is lowered in the elution step described later.
 再開された吸着工程においては、先んじて逆洗を行ったことにより、フォトレジスト析出物が充填塔外に排出されている。さらに逆洗の際の洗浄液としてフォトレジスト現像廃液やTAAH水溶液を用いた場合には、吸着工程を再開した時点で充填塔内のpHがアルカリ性になっているため、フォトレジストの析出および物理吸着が起きにくくなっており、したがって圧力損失の増加やTAAイオン吸着率の低下が抑制される。 In the restarted adsorption process, the photoresist deposits are discharged out of the packed tower by performing the backwashing earlier. Further, when a photoresist developing waste solution or a TAAH aqueous solution is used as a cleaning solution for backwashing, the pH in the packed tower becomes alkaline when the adsorption process is restarted. Therefore, an increase in pressure loss and a decrease in TAA ion adsorption rate are suppressed.
 (溶離工程)
 本発明において、陽イオン交換樹脂に吸着させたTAAイオンをTAA塩として回収する溶離工程を行うにあたっては、特に制限されるものではなく、公知の方法を用いることができる。例えば特許文献1に記載のように、酸及び/又は塩の水溶液を充填塔に通液することにより、陽イオン交換樹脂に吸着されたTAAイオンを溶離させ、TAA塩を回収することができる。溶離工程において用いることのできる酸および塩を具体的に例示すると、塩酸、硝酸、硫酸、酢酸、蟻酸、炭酸塩、重炭酸塩等が挙げられる。
(Elution process)
In the present invention, the elution step of recovering TAA ions adsorbed on the cation exchange resin as a TAA salt is not particularly limited, and a known method can be used. For example, as described in Patent Document 1, by passing an aqueous solution of acid and / or salt through a packed tower, TAA ions adsorbed on the cation exchange resin can be eluted, and the TAA salt can be recovered. Specific examples of acids and salts that can be used in the elution step include hydrochloric acid, nitric acid, sulfuric acid, acetic acid, formic acid, carbonate, bicarbonate, and the like.
 なお本発明においては、逆洗工程ではTAAイオンは陽イオン交換樹脂に吸着されたままであるため、溶離工程において得られるTAA塩の濃度は、逆洗工程を行わない場合に比べても遜色のないものである。 In the present invention, since TAA ions remain adsorbed on the cation exchange resin in the backwashing step, the concentration of the TAA salt obtained in the elution step is comparable to that in the case of not performing the backwashing step. Is.
 上記本発明の製造方法により得られたTAA塩は、電気分解や電気透析により、TAAHへと変換することができる。さらに電解や透析に先立ち、必要に応じてイオン交換樹脂、キレート樹脂等で金属イオンを除去することもできる。 The TAA salt obtained by the production method of the present invention can be converted to TAAH by electrolysis or electrodialysis. Further, prior to electrolysis and dialysis, metal ions can be removed with an ion exchange resin, a chelate resin, or the like, if necessary.
 本発明をさらに具体的に説明するため以下実施例および比較例を挙げて説明するが、本発明はこれらに限定されるものではない。 In order to describe the present invention more specifically, examples and comparative examples will be described below, but the present invention is not limited to these examples.
 (充填塔からの排出液の物性値の測定)
 導電率は導電率計(測定装置:SC72-21JAA(横河電機株式会社製))により測定した。pHはpH電極法(測定装置:HM-30R(東亜ディーケーケー株式会社製))により測定した。TMAH濃度は、イオンクロマトグラフ法(測定装置:DX320(ダイオネクス社))により測定した。CODは100℃における過マンガン酸カリウムによる酸素消費量(JIS K 0101)により分析した。
(Measurement of physical properties of effluent from packed tower)
The conductivity was measured with a conductivity meter (measuring device: SC72-21JAA (manufactured by Yokogawa Electric Corporation)). The pH was measured by the pH electrode method (measuring device: HM-30R (manufactured by Toa DKK Corporation)). The TMAH concentration was measured by an ion chromatographic method (measuring device: DX320 (Dionex)). COD was analyzed by oxygen consumption by potassium permanganate at 100 ° C. (JIS K 0101).
 (フォトレジスト現像廃液)
 フォトレジスト現像廃液として、半導体工場から排出されたTMAH含有廃液を使用した。当該TMAH含有廃液の水質は、TMAH濃度が6500ppm、導電率が15.92mS/cm、pHは13.2、CODが121ppmであった。
(Photoresist development waste liquid)
As a photoresist developing waste liquid, a TMAH-containing waste liquid discharged from a semiconductor factory was used. As for the water quality of the TMAH-containing waste liquid, the TMAH concentration was 6500 ppm, the conductivity was 15.92 mS / cm, the pH was 13.2, and the COD was 121 ppm.
 (充填塔への陽イオン交換樹脂の充填及びH型化処理(H型陽イオン交換樹脂))
 H型陽イオン交換樹脂が充填された充填塔を次のようにして準備した。
 弱酸性陽イオン交換樹脂ダイヤイオンWK40L(三菱化学社製)11Lを直径150mm×2000mmの透明ポリ塩化ビニル塔に充填し、これを充填塔とした。超純水、1N-HCl(塩酸)、及び超純水をこの順で充填塔に通液させて、対イオンを水素イオンとした。各液は、空間速度SV=5(h-1)で通液させた。各液の使用液量は、110Lとした。
(Packing tower with cation exchange resin and H-type treatment (H-type cation exchange resin))
A packed tower packed with an H-type cation exchange resin was prepared as follows.
Weakly acidic cation exchange resin Diaion WK40L (manufactured by Mitsubishi Chemical Corporation) 11 L was packed into a transparent polyvinyl chloride tower having a diameter of 150 mm × 2000 mm, and this was used as a packed tower. Ultrapure water, 1N-HCl (hydrochloric acid), and ultrapure water were passed through the packed tower in this order to make the counter ion a hydrogen ion. Each solution was passed through at a space velocity SV = 5 (h −1 ). The amount of liquid used for each liquid was 110 L.
 <実施例1>
 (吸着工程)
 上記準備した充填塔にフォトレジスト現像廃液を空間速度SV=17(h-1)で通液した。通液を開始して最初に充填塔から排出された排出液の水質は、TMAH濃度が5ppm以下、導電率が0.02mS/cm、pHは4.5、CODが82ppmであった。また、充填塔の圧力損失は0.01MPaであった。フォトレジスト現像廃液を308L通液した後、充填塔からの排出液の水質が、TMAH濃度が50ppm、導電率が0.10mS/cm、pH6.1、CODが102ppmとなったため、通液を一旦中断した。このとき、充填塔の圧力損失は0.02MPaであった。
<Example 1>
(Adsorption process)
The photoresist developing waste liquid was passed through the prepared packed tower at a space velocity SV = 17 (h −1 ). The water quality of the effluent discharged from the packed tower first after the start of liquid flow was TMAH concentration of 5 ppm or less, conductivity of 0.02 mS / cm, pH of 4.5, and COD of 82 ppm. Moreover, the pressure loss of the packed tower was 0.01 MPa. After passing 308 L of photoresist developing waste liquid, the water quality of the discharged liquid from the packed tower was 50 ppm TMAH, conductivity 0.10 mS / cm, pH 6.1, and COD 102 ppm. Interrupted. At this time, the pressure loss of the packed tower was 0.02 MPa.
 (逆洗工程)
 次に、洗浄液として55Lのフォトレジスト現像廃液を用いて、空間速度SV=20(h-1)、通液量5(L/L-樹脂)で逆洗を行い、陽イオン交換樹脂を充填塔内で拡散させ、洗浄した。逆洗工程における排出液の水質は、TMAH濃度6700ppm、導電率が16.4mS/cm、pH13.7、CODが204ppmであった。
(Backwash process)
Next, 55 L of photoresist developing waste solution is used as a cleaning solution, backwashing is performed at a space velocity of SV = 20 (h −1 ), and a flow rate of 5 (L / L—resin), and a cation exchange resin is packed in the tower. Diffused in and washed. The water quality of the effluent in the backwashing process was TMAH concentration 6700 ppm, conductivity 16.4 mS / cm, pH 13.7, and COD 204 ppm.
 (吸着工程の再開)
 充填塔へのフォトレジスト現像廃液の通液を再開し、空間速度SV=17(h-1)で、TMAイオン吸着率が80%程度になるように通液した。フォトレジスト現像廃液を870L通液した後、TMAイオン吸着率は80%を超えたため、吸着工程を終了した。吸着工程終了時の充填塔の圧力損失は0.02~0.03MPaであった。
(Resumption of adsorption process)
The flow of the photoresist developing waste liquid through the packed tower was resumed, and the TMA ion adsorption rate was about 80% at a space velocity SV = 17 (h −1 ). After passing through 870 L of the photoresist developing waste liquid, the adsorption process was completed because the TMA ion adsorption rate exceeded 80%. The pressure loss of the packed tower at the end of the adsorption process was 0.02 to 0.03 MPa.
 (溶離工程)
 次に、充填塔に溶離液として2N-HClを51L通液し、陽イオン交換樹脂に吸着されたTMAイオンをTMAClとして溶出させた。充填塔から流出したTMAClの濃度は、10重量%であり、所望のTMACl溶液であった。
(Elution process)
Next, 51 L of 2N-HCl was passed through the packed column as an eluent, and TMA ions adsorbed on the cation exchange resin were eluted as TMACl. The concentration of TMACl flowing out from the packed tower was 10% by weight, which was the desired TMACl solution.
 <実施例2>
 (吸着工程)
 上記準備した充填塔に、フォトレジスト現像廃液を空間速度SV=17(h-1)で通液した。通液を開始して最初に充填塔から排出された排出液の水質は、TMAH濃度が5ppm以下、導電率が0.02mS/cm、pHは3.9、CODが77ppmであった。また、充填塔の圧力損失は0.01MPaであった。フォトレジスト現像廃液を308L通液した後、排出液の水質が、TMAH濃度が40ppm、導電率が0.08mS/cm、pH5.8、CODが95ppmとなったため、通液を一旦中断した。このとき、充填塔の圧力損失は0.02MPaであった。
<Example 2>
(Adsorption process)
The photoresist developing waste liquid was passed through the prepared packed tower at a space velocity of SV = 17 (h −1 ). The water quality of the effluent discharged from the packed tower first after the start of liquid flow was TMAH concentration of 5 ppm or less, conductivity of 0.02 mS / cm, pH of 3.9, and COD of 77 ppm. Moreover, the pressure loss of the packed tower was 0.01 MPa. After passing 308 L of the photoresist developing waste liquid, the water quality of the discharged liquid was temporarily interrupted because the TMAH concentration was 40 ppm, the conductivity was 0.08 mS / cm, pH 5.8, and the COD was 95 ppm. At this time, the pressure loss of the packed tower was 0.02 MPa.
 (逆洗工程)
 次に、洗浄液として33Lのフォトレジスト現像廃液を用いて、空間速度SV=20(h-1)、通液量3(L/L-樹脂)で逆洗を行い、陽イオン交換樹脂を充填塔内で拡散させ、洗浄した。このとき同時にエアスクラビングを実施した。逆洗工程における排出液の水質は、TMAH濃度6500ppm、導電率が15.9mS/cm、pH13.3、CODが262ppmであった。
(Backwash process)
Next, using 33 L of photoresist developing waste liquid as a cleaning liquid, backwashing was performed at a space velocity of SV = 20 (h −1 ) and a flow rate of 3 (L / L−resin), and a cation exchange resin was packed in the tower. Diffused in and washed. At the same time, air scrubbing was performed. The water quality of the effluent in the backwash process was a TMAH concentration of 6500 ppm, an electrical conductivity of 15.9 mS / cm, a pH of 13.3, and a COD of 262 ppm.
 (吸着工程の再開)
 充填塔へのフォトレジスト現像廃液の通液を再開した。通液は空間速度SV=17(h-1)で、TMAイオン吸着率が80%程度になるように行った。フォトレジスト現像廃液を880L通液した後、TMAイオン吸着率は80%を超えたため、吸着工程を終了した。吸着工程終了時の充填塔の圧力損失は0.02~0.04MPaであった。
(Resumption of adsorption process)
The flow of the photoresist developing waste liquid through the packed tower was resumed. The liquid was passed at a space velocity SV = 17 (h −1 ) so that the TMA ion adsorption rate was about 80%. After passing 880 L of the photoresist developing waste liquid, the adsorption process was terminated because the TMA ion adsorption rate exceeded 80%. The pressure loss of the packed tower at the end of the adsorption process was 0.02 to 0.04 MPa.
 (溶離工程)
 次に、充填塔に溶離液として2N-NaCOを53L通液し、陽イオン交換樹脂に吸着されたTMAイオンをTMACOとして溶出させた。充填塔から流出したTMACOの濃度は11重量%であり、所望のTMACO溶液であった。
(Elution process)
Next, 53 L of 2N—Na 2 CO 3 was passed through the packed column as an eluent, and TMA ions adsorbed on the cation exchange resin were eluted as TMA 2 CO 3 . The concentration of TMA 2 CO 3 flowing out from the packed tower was 11% by weight, which was the desired TMA 2 CO 3 solution.
 <実施例3>
 (吸着工程)
 上記準備した充填塔に、フォトレジスト現像廃液を空間速度SV=20(h-1)で通液した。通液を開始して最初に充填塔から排出された排出液の水質は、TMAH濃度が5ppm以下、導電率が0.02mS/cm、pHは4.2、CODが89ppmであった。また、充填塔の圧力損失は0.01MPaであった。フォトレジスト現像廃液を289L通液した後、充填塔からの排出液の水質が、TMAH濃度が35ppm、導電率が0.07mS/cm、pH5.8、CODが100ppmとなったため、通液を一旦中断した。このとき、充填塔の圧力損失は0.02MPaであった。
<Example 3>
(Adsorption process)
The photoresist developing waste liquid was passed through the prepared packed tower at a space velocity of SV = 20 (h −1 ). The water quality of the discharged liquid first discharged from the packed tower after the start of liquid flow was TMAH concentration of 5 ppm or less, conductivity of 0.02 mS / cm, pH of 4.2, and COD of 89 ppm. Moreover, the pressure loss of the packed tower was 0.01 MPa. After passing 289 L of the photoresist developing waste liquid, the water quality of the discharged liquid from the packed tower was 35 ppm for TMAH, 0.07 mS / cm for conductivity, pH 5.8, and 100 ppm for COD. Interrupted. At this time, the pressure loss of the packed tower was 0.02 MPa.
 (逆洗工程)
 次に、洗浄液として77Lの超純水を用いて、空間速度SV=20(h-1)、通液量7(L/L-樹脂)で逆洗を行い、陽イオン交換樹脂を充填塔内で拡散させ、洗浄した。逆洗工程における排出液の水質は、TMAH濃度1000ppm、導電率が2.5mS/cm、pH11.7、CODが148ppmであった。
(Backwash process)
Next, 77 L of ultrapure water was used as the cleaning liquid, backwashing was performed at a space velocity of SV = 20 (h −1 ) and a liquid flow rate of 7 (L / L-resin), and the cation exchange resin was filled in the packed tower. Diffused and washed. The water quality of the effluent in the backwash process was a TMAH concentration of 1000 ppm, a conductivity of 2.5 mS / cm, a pH of 11.7, and a COD of 148 ppm.
 (吸着工程の再開)
 充填塔へのフォトレジスト現像廃液の通液を再開した。通液は空間速度SV=20(h-1)で、TMAイオン吸着率が80%程度になるように行った。フォトレジスト現像廃液を865L通液した後、TMAイオン吸着率が80%を超えたため、吸着工程を終了した。吸着工程終了時の充填塔の圧力損失は0.02~0.03MPaであった。
(Resumption of adsorption process)
The flow of the photoresist developing waste liquid through the packed tower was resumed. The liquid was passed at a space velocity SV = 20 (h −1 ) so that the TMA ion adsorption rate was about 80%. After 865 L of the photoresist developing waste liquid was passed, the adsorption process was completed because the TMA ion adsorption rate exceeded 80%. The pressure loss of the packed tower at the end of the adsorption process was 0.02 to 0.03 MPa.
 (溶離工程)
 次に、充填塔に溶離液として1N-HClを60L通液し、陽イオン交換樹脂に吸着されたTMAイオンをTMAClとして溶出させた。充填塔から流出したTMAClの濃度は8重量%であり、所望のTMACl溶液であった。
(Elution process)
Next, 60 L of 1N HCl was passed through the packed column as an eluent, and TMA ions adsorbed on the cation exchange resin were eluted as TMACl. The concentration of TMACl flowing out from the packed tower was 8% by weight, which was the desired TMACl solution.
 <実施例4>
 上記準備した充填塔に、フォトレジスト現像廃液を空間速度SV=20(h-1)で通液した。通液を開始して最初に充填塔から排出された排出液の水質は、TMAH濃度が5ppm以下、導電率が0.03mS/cm、pH3.8、CODが92ppmであった。また、充填塔の圧力損失は0.01MPaであった。フォトレジスト現像廃液を298L通液した後、排出液の水質が、TMAHが50ppm、導電率が0.10mS/cm、pH6.2、CODが118ppmとなったため、通液を一旦中断した。このとき、充填塔の圧力損失は0.03MPaであった。
<Example 4>
The photoresist developing waste liquid was passed through the prepared packed tower at a space velocity of SV = 20 (h −1 ). The water quality of the discharged liquid first discharged from the packed tower after the start of liquid flow was TMAH concentration of 5 ppm or less, conductivity of 0.03 mS / cm, pH 3.8, and COD of 92 ppm. Moreover, the pressure loss of the packed tower was 0.01 MPa. After passing 298 L of the photoresist developing waste liquid, the water quality of the discharged liquid was temporarily interrupted because TMAH was 50 ppm, conductivity was 0.10 mS / cm, pH 6.2, and COD was 118 ppm. At this time, the pressure loss of the packed tower was 0.03 MPa.
 (逆洗工程)
 次に、洗浄液として55Lの超純水を用いて、空間速度SV=50(1/時間)、通液量5(L/L-樹脂)で逆洗を行い、陽イオン交換樹脂を充填塔内で拡散させ、洗浄した。逆洗工程における排出液の水質は、TMAH濃度1800ppm、導電率が4.5mS/cm、pH12.1、CODが167ppmであった。
(Backwash process)
Next, 55 L of ultrapure water was used as the cleaning liquid, backwashing was performed at a space velocity of SV = 50 (1 / hour) and a flow rate of 5 (L / L-resin), and the cation exchange resin was filled in the packed tower. Diffused and washed. The water quality of the effluent in the backwash process was 1800 ppm TMAH, 4.5 mS / cm conductivity, 12.1 pH, and 167 ppm COD.
 (再吸着工程)
 充填塔へのフォトレジスト現像廃液の通液を再開した。通液は空間速度SV=20(1/時間)で、TMAイオン吸着率が80%程度になるように行った。フォトレジスト現像廃液を850L通液した後、TMAイオン吸着率が80%を超えたため、吸着工程を終了した。吸着工程終了時の充填塔の圧力損失は0.02~0.05MPaであった。
(Resorption process)
The flow of the photoresist developing waste liquid through the packed tower was resumed. The liquid flow was performed so that the space velocity SV = 20 (1 / hour) and the TMA ion adsorption rate was about 80%. After passing 850 L of photoresist developing waste liquid, the adsorption process was terminated because the TMA ion adsorption rate exceeded 80%. The pressure loss of the packed tower at the end of the adsorption process was 0.02 to 0.05 MPa.
 (溶離工程)
 次に、この充填塔に溶離液として2N-KCOを54L通液し、陽イオン交換樹脂に吸着されたTMAイオンをTMACOとして溶出させた。充填塔から流出したTMACOの濃度は12重量%であり、所望のTMACO溶液であった。
(Elution process)
Next, 54 L of 2N—K 2 CO 3 was passed through the packed column as an eluent, and TMA ions adsorbed on the cation exchange resin were eluted as TMA 2 CO 3 . The concentration of TMA 2 CO 3 flowing out of the packed tower was 12% by weight, which was the desired TMA 2 CO 3 solution.
 <実施例5>
 (吸着工程)
 上記準備した充填塔に、フォトレジスト現像廃液を空間速度SV=17(h-1)で通液した。通液を開始して最初に充填塔から排出された排出液の水質は、TMAH濃度が5ppm以下、導電率が0.02mS/cm、pH4.4、CODが79ppmであった。また、充填塔の圧力損失は0.01MPaであった。フォトレジスト現像廃液を320L通液した後、排出液の水質が、TMAHが40ppm、導電率が0.08mS/cm、pH5.9、CODが107ppmとなったため、通液を一旦中断した。このとき、充填塔の圧力損失は0.02MPaであった。
<Example 5>
(Adsorption process)
The photoresist developing waste liquid was passed through the prepared packed tower at a space velocity of SV = 17 (h −1 ). The water quality of the discharged liquid first discharged from the packed tower after the start of liquid flow was TMAH concentration of 5 ppm or less, conductivity of 0.02 mS / cm, pH 4.4, and COD of 79 ppm. Moreover, the pressure loss of the packed tower was 0.01 MPa. After passing 320 L of the photoresist developing waste liquid, the water quality of the discharged liquid was temporarily suspended because TMAH was 40 ppm, conductivity was 0.08 mS / cm, pH 5.9, and COD was 107 ppm. At this time, the pressure loss of the packed tower was 0.02 MPa.
 (逆洗工程)
 次に、洗浄液として110Lのイオン交換水を用いて、空間速度SV=3(h-1)、通液量10(L/L-樹脂)で逆洗を行い、陽イオン交換樹脂を充填塔内で拡散させ、洗浄した。逆洗工程における排出液の水質は、TMAH濃度500ppm、導電率が1.25mS/cm、pH11.4、CODが138ppmであった。
(Backwash process)
Next, using 110 L of ion exchange water as the washing liquid, backwashing is performed at a space velocity of SV = 3 (h −1 ) and a flow rate of 10 (L / L—resin), and the cation exchange resin is filled in the packed tower. Diffused and washed. The water quality of the effluent in the backwash process was a TMAH concentration of 500 ppm, a conductivity of 1.25 mS / cm, a pH of 11.4, and a COD of 138 ppm.
 (吸着工程の再開)
 充填塔へのフォトレジスト現像廃液の通液を再開した。通液は空間速度SV=17(h-1)で、TMAイオン吸着率が80%程度になるように行った。フォトレジスト現像廃液を840L通液した後、TMAイオン吸着率は80%を超えたため、吸着工程を終了した。吸着工程終了時の充填塔の圧力損失は0.02~0.04MPaであった。
(Resumption of adsorption process)
The flow of the photoresist developing waste liquid through the packed tower was resumed. The liquid was passed at a space velocity SV = 17 (h −1 ) so that the TMA ion adsorption rate was about 80%. After passing 840 L of the photoresist development waste liquid, the adsorption process was completed because the TMA ion adsorption rate exceeded 80%. The pressure loss of the packed tower at the end of the adsorption process was 0.02 to 0.04 MPa.
 (溶離工程)
 次に、充填塔に溶離液として2N-NaCOを51L通液し、陽イオン交換樹脂に吸着されたTMAイオンをTMACOとして溶出させた。充填塔から流出したTMACOの濃度は12重量%であり、所望のTMACO溶液であった。
(Elution process)
Next, 51 L of 2N—Na 2 CO 3 was passed through the packed column as an eluent, and TMA ions adsorbed on the cation exchange resin were eluted as TMA 2 CO 3 . The concentration of TMA 2 CO 3 flowing out of the packed tower was 12% by weight, which was the desired TMA 2 CO 3 solution.
 <比較例1>
 逆洗工程を実施しなかった以外は実施例1と同様の条件で吸着工程を行った。その結果、実施例1とは異なり、フォトレジスト現像廃液を363L通液した時点で、析出したフォトレジストによって陽イオン交換樹脂粒子同士が接着されていたため、充填塔内の圧力損失が0.28MPaとなり、これ以上の通液が不可能であった。
 以上の実施例および比較例の結果を表1に示している。
<Comparative Example 1>
The adsorption process was performed under the same conditions as in Example 1 except that the backwash process was not performed. As a result, unlike Example 1, when 363 L of photoresist developing waste liquid was passed, the cation exchange resin particles were adhered to each other by the deposited photoresist, so the pressure loss in the packed tower was 0.28 MPa. Further liquid passing was impossible.
The results of the above examples and comparative examples are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (4)

  1.  フォトレジスト現像廃液からテトラアルキルアンモニウム塩水溶液を製造する方法であって、
     水素イオン型の陽イオン交換樹脂が充填された充填塔に、テトラアルキルアンモニウム水酸化物を含有するフォトレジスト現像廃液を通液することにより、前記陽イオン交換樹脂にテトラアルキルアンモニウムイオンを吸着させる吸着工程と、
     前記吸着工程において吸着されたテトラアルキルアンモニウムイオンをテトラアルキルアンモニウム塩の水溶液として溶離する溶離工程とを含み、
     前記吸着工程において、前記充填塔から排出される排出液の物性値を測定するとともに、該物性値が所定の閾値以上に変化した時点で、前記フォトレジスト現像廃液の通液を一旦中断し、前記充填塔中の陽イオン交換樹脂を逆洗する逆洗工程を行い、その後前記陽イオン交換樹脂が充填された前記充填塔への前記フォトレジスト現像廃液の通液を再開することを特徴とする、テトラアルキルアンモニウム塩水溶液の製造方法。
    A method for producing an aqueous tetraalkylammonium salt solution from a photoresist developing waste solution,
    Adsorption that adsorbs tetraalkylammonium ions to the cation exchange resin by passing a photoresist development waste solution containing tetraalkylammonium hydroxide through a packed column filled with hydrogen ion type cation exchange resin. Process,
    Elution step of eluting the tetraalkylammonium ions adsorbed in the adsorption step as an aqueous solution of a tetraalkylammonium salt,
    In the adsorption step, the physical property value of the discharged liquid discharged from the packed tower is measured, and when the physical property value changes to a predetermined threshold value or more, the flow of the photoresist developing waste liquid is temporarily interrupted, Performing a backwashing step of backwashing the cation exchange resin in the packed tower, and then restarting the flow of the photoresist developing waste liquid to the packed tower filled with the cation exchange resin, A method for producing an aqueous tetraalkylammonium salt solution.
  2.  前記排出液の物性値が、導電率、水素イオン濃度、及びテトラアルキルアンモニウムイオン濃度からなる群から選ばれる少なくとも一つである、請求項1に記載のテトラアルキルアンモニウム塩水溶液の製造方法。 The method for producing an aqueous tetraalkylammonium salt solution according to claim 1, wherein the physical property value of the discharged liquid is at least one selected from the group consisting of conductivity, hydrogen ion concentration, and tetraalkylammonium ion concentration.
  3.  前記逆洗工程でエアスクラビングを行う、請求項1又は2に記載のテトラアルキルアンモニウム塩水溶液の製造方法。 The method for producing an aqueous tetraalkylammonium salt solution according to claim 1 or 2, wherein air scrubbing is performed in the backwashing step.
  4.  前記逆洗工程で、洗浄液としてフォトレジスト現像廃液を通液して洗浄を行う、請求項1~3のいずれかに記載のテトラアルキルアンモニウム塩水溶液の製造方法。 The method for producing an aqueous tetraalkylammonium salt solution according to any one of claims 1 to 3, wherein in the backwashing step, washing is performed by passing a photoresist developing waste solution as a washing solution.
PCT/JP2014/069973 2013-07-30 2014-07-29 Preparation method of aqueous tetraalkyl ammonium salt solution WO2015016230A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-158229 2013-07-30
JP2013158229A JP2016174979A (en) 2013-07-30 2013-07-30 Production method of tetraalkylammonium salt aqueous solution

Publications (1)

Publication Number Publication Date
WO2015016230A1 true WO2015016230A1 (en) 2015-02-05

Family

ID=52431761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069973 WO2015016230A1 (en) 2013-07-30 2014-07-29 Preparation method of aqueous tetraalkyl ammonium salt solution

Country Status (3)

Country Link
JP (1) JP2016174979A (en)
TW (1) TW201509822A (en)
WO (1) WO2015016230A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113200869A (en) * 2021-04-28 2021-08-03 南京长江江宇环保科技有限公司 Method for recovering tetramethylammonium chloride from semiconductor development wastewater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7456027B1 (en) 2023-01-18 2024-03-26 三福化工股▲分▼有限公司 Method and apparatus for recovering tetramethylammonium hydroxide from developer waste solution and removing nitrogen-containing compounds

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515875A (en) * 1990-11-09 1993-01-26 Ebara Corp Filtering and desalting method by mixed-bed ion exchanger
JP2003340449A (en) * 2002-05-27 2003-12-02 Babcock Hitachi Kk Method for treating waste water containing tetraalkylammonium hydroxide
WO2012090699A1 (en) * 2010-12-28 2012-07-05 株式会社トクヤマ Process for producing tetraalkylammonium salt, and process for producing tetraalkylammonium hydroxide using same as raw material
WO2012157448A1 (en) * 2011-05-17 2012-11-22 オルガノ株式会社 Ion exchange equipment
JP2012236939A (en) * 2011-05-13 2012-12-06 Kotobuki Kakoki Kk Method and system for recycling antifreeze liquid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515875A (en) * 1990-11-09 1993-01-26 Ebara Corp Filtering and desalting method by mixed-bed ion exchanger
JP2003340449A (en) * 2002-05-27 2003-12-02 Babcock Hitachi Kk Method for treating waste water containing tetraalkylammonium hydroxide
WO2012090699A1 (en) * 2010-12-28 2012-07-05 株式会社トクヤマ Process for producing tetraalkylammonium salt, and process for producing tetraalkylammonium hydroxide using same as raw material
JP2012236939A (en) * 2011-05-13 2012-12-06 Kotobuki Kakoki Kk Method and system for recycling antifreeze liquid
WO2012157448A1 (en) * 2011-05-17 2012-11-22 オルガノ株式会社 Ion exchange equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113200869A (en) * 2021-04-28 2021-08-03 南京长江江宇环保科技有限公司 Method for recovering tetramethylammonium chloride from semiconductor development wastewater
CN113200869B (en) * 2021-04-28 2023-06-23 南京长江江宇环保科技股份有限公司 Method for recycling tetramethyl ammonium chloride from semiconductor development wastewater

Also Published As

Publication number Publication date
TW201509822A (en) 2015-03-16
JP2016174979A (en) 2016-10-06

Similar Documents

Publication Publication Date Title
JP4441472B2 (en) Method for reducing the amount of metal impurities contained in a cation exchange resin
TWI485003B (en) Method for producing tetraalkylammonium salt solution
JP5887279B2 (en) Method for producing tetraalkylammonium salt and method for producing tetraalkylammonium hydroxide using the same as raw material
JP4385407B2 (en) Method for treating tetraalkylammonium ion-containing liquid
WO2015016230A1 (en) Preparation method of aqueous tetraalkyl ammonium salt solution
JP5167253B2 (en) Processing method of developing waste liquid containing tetraalkylammonium ions
WO2013062100A1 (en) Method for producing tetraalkylammonium salt solution
TWI583658B (en) Method for producing high-concentration solution of tetraalkylammonium salt
JP2011012044A (en) Method for producing tetraalkylammonium hydroxide
JP2730610B2 (en) Method for treating wastewater containing organic quaternary ammonium hydroxide
JP3968678B2 (en) Method for treating tetraalkylammonium ion-containing liquid
JP6387637B2 (en) Ion exchange apparatus and ion exchange treatment method
WO2011074495A1 (en) Method for reusing waste liquid from which tetraalkylammonium ions have been removed
JP7477641B2 (en) Method and apparatus for purifying liquid containing tetraalkylammonium ions
JP4561967B2 (en) Method and apparatus for recovering water from waste water containing tetraalkylammonium ions
JP2003215810A (en) Method for recovering developer from photoresist developer waste liquid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP