JP4502084B2 - Mixed bed type ion exchange resin tower and method for forming the mixed bed - Google Patents

Mixed bed type ion exchange resin tower and method for forming the mixed bed Download PDF

Info

Publication number
JP4502084B2
JP4502084B2 JP01357997A JP1357997A JP4502084B2 JP 4502084 B2 JP4502084 B2 JP 4502084B2 JP 01357997 A JP01357997 A JP 01357997A JP 1357997 A JP1357997 A JP 1357997A JP 4502084 B2 JP4502084 B2 JP 4502084B2
Authority
JP
Japan
Prior art keywords
particle size
exchange resin
resin
mixed bed
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01357997A
Other languages
Japanese (ja)
Other versions
JPH10202119A (en
Inventor
誠 埜村
武 鶴見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP01357997A priority Critical patent/JP4502084B2/en
Publication of JPH10202119A publication Critical patent/JPH10202119A/en
Application granted granted Critical
Publication of JP4502084B2 publication Critical patent/JP4502084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、混床式イオン交換樹脂塔及びその混床の形成方法に関し、さらに詳しくは、イオン交換樹脂の再生分離時にカチオン交換樹脂とアニオン交換樹脂とを効率よく分離できる混床式イオン交換樹脂塔及びその混床の形成方法に関する。
【0002】
【従来の技術】
混床式イオン交換樹脂塔は、例えば、純水装置、発電所の復水脱塩装置、軟水装置、食品−薬品プロセスなどにおいて、水中もしくは溶媒中の不純物を除去または分離することを目的として使用される。従来、このような混床式イオン交換樹脂塔では、樹脂粒径として幅の広いガウス分布(正規分布)を有するカチオン交換樹脂またはアニオン交換樹脂を用いていたが、樹脂の再生後のリンス性能の改善や微粒子除去能の向上のために、分布幅の狭い均一な粒径の樹脂が使用されるようになってきた。このように用いられるイオン交換樹脂は、一定の期間使用した後には、薬剤による再生を行わなければならない。
【0003】
従来、混合床の再生には、通常運転を中断後、まず、空気その他のガスによる曝気を行い、樹脂の絡みつきをほぐし、樹脂が分離しやすくした後に、水逆洗により、樹脂の有する粒径および比重による沈降速度差を利用して、カチオン交換樹脂を下部へ、アニオン交換樹脂を上部へ移動させて、カチオン交換樹脂層およびアニオン交換樹脂層を形成させ、それぞれを分離再生するものである。
【0004】
【発明が解決しようとする課題】
ところが、均一粒径を有するカチオン交換樹脂およびアニオン交換樹脂からなる混床層を、沈降速度差を利用した水逆洗により分離しようとすると、その粒径の均一さのため、従来のガウス分布を有する樹脂(以下、従来樹脂という)と比較して、カチオン、アニオン各々の層が激しく流動してそれぞれの層に相手層の樹脂の引き込みが起こり、引き込まれた樹脂が相手側の樹脂と共に樹脂層を大きく流動するという現象が生じる。このように一度引き込まれた樹脂は、この流動により再分離されにくく、再び樹脂界面から元の層に戻るには長い時間を要する。
【0005】
また、新品のイオン交換樹脂を用いる場合は、特に、使いはじめにカチオン交換樹脂とアニオン交換樹脂の絡みつきが起こりやすく、したがって、上述したような引き込み現象が顕著に発生しやすい。
【0006】
さらに、逆洗水の流量の僅かな変動によっても大きく影響されて、この流動に大きな乱れが生じ、分離層の破壊や樹脂の激しい引き込みが起こる。このため、均一粒径樹脂の扱いには慎重な操作と、従来より長い分離時間とを必要とする。
【0007】
また、カチオン交換樹脂とアニオン交換樹脂との中間比重のイオン交換能を有さない樹脂を添加して分離性を向上させる方法も行われている。しかしながら、中間比重のイオン交換能を有さない樹脂を添加するため、充填層の均一性を乱すことになり、イオン交換能や微粒子除去能といった装置性能を低下させることになり好ましくない。
【0008】
本発明はこのような事情に鑑み、均一粒径分布をもつカチオン交換樹脂及び/又はアニオン交換樹脂からなる混床式イオン交換樹脂塔において、分離性を改善したイオン交換樹脂塔及びその混床の形成方法を提供することを課題とする。
【0009】
【課題を解決するための手段】
前記課題を解決する本発明の第1の態様は、平均粒径650μmに対して粒径分布が±50μmである均一粒径分布を有するカチオン交換樹脂と、前記カチオン交換樹脂の均一粒径分布の粒径分布より幅の広い粒径分布を有するアニオン交換樹脂とからなることを特徴とする混床式イオン交換樹脂塔にある。
【0010】
本発明の第2の態様は、第1の態様に記載の混床式イオン交換樹脂塔において、前記均一粒径分布の粒径分布より幅の広い粒径分布が、ガウス分布であることを特徴とする混床式イオン交換樹脂塔にある。
本発明の第3の態様は、(a)平均粒径650μmに対して粒径分布が±50μmである均一粒径分布を有するカチオン交換樹脂と、(b)平均粒径550μmに対して粒径分布が±50μmである均一粒径分布を有するアニオン交換樹脂と、(c)前記カチオン交換樹脂の平均粒径よりも小さな平均粒径で且つ前記均一粒径分布の粒径分布より幅の広い粒径分布を有するカチオン交換樹脂、および前記アニオン交換樹脂の平均粒径よりも大きな平均粒径で且つ前記均一粒径分布の粒径分布より幅の広い粒径分布を有するアニオン交換樹脂の少なくとも何れか一方とを、前記(c)が全体量に対して2〜5%となるように混合して混床式イオン交換樹脂塔の混床を形成することを特徴とする混床式イオン交換樹脂塔の混床の形成方法にある。
【0011】
ここで、ガウス分布を有する従来の樹脂とは、樹脂の粒径分布が幅の広い樹脂であり、一方、均一粒径樹脂とは、粒径分布の幅が従来樹脂より狭い樹脂である。従来樹脂の例としては、例えば、粒径分布の範囲が200〜1180μmの樹脂であって粒径がガウス分布をなすイオン交換樹脂を挙げることができる。均一粒径樹脂としては、平均粒径に対し、粒径分布が±100μm、好ましくは±50μmに制御された交換樹脂を挙げることができる。
【0012】
本発明で、均一粒径樹脂の混合床に、カチオン交換樹脂の小粒径従来樹脂、またはアニオン交換樹脂の大粒径従来樹脂を添加する割合は、全体量に対して、10%以下、好ましくは2〜5%である。全体量に対して10%以上従来樹脂を添加すると、均一粒径樹脂を使用する効果が低減し好ましくない。
【0013】
また、均一粒径樹脂と従来樹脂とを混合して用いる場合には、従来の混合床を形成するカチオン交換樹脂とアニオン交換樹脂との混合割合にすればよい。
【0014】
均一粒径樹脂のカチオン交換樹脂およびアニオン交換樹脂からなる混合床に対して、水逆洗を施すと、全ての樹脂が各樹脂層で均一に流動する。またその流動範囲も大きく、各樹脂層下部より上部まで流動する。これに対し、従来樹脂は逆洗時間にしたがって、粒径の大きいものは下部へ、粒径の小さいものは上部へと移動し、樹脂流動層中で流動的に整列する。したがって、樹脂の流動はその局部での流動に限り、均一粒径樹脂のような全ての樹脂に渡る流動は発生しにくい。
【0015】
本発明においては、均一粒径樹脂のカチオン交換樹脂およびアニオン交換樹脂に、カチオン交換樹脂の小粒径従来樹脂、またはアニオン交換樹脂の大粒径従来樹脂を添加、または均一粒径樹脂と従来樹脂とを混合して用いることにより、界面において局所的に流動の小さい層を形成することができ、したがって、均一粒径の樹脂の引き込みを防ぐことができ、分離性を改善することができる。
【0016】
【発明の実施の形態】
以下、本発明を実施例に基づいて説明する。
【0017】
(実施例1〜4、比較例)
内径50mm、高さ2000mmのカラムに、下記の各樹脂をそれぞれ混合充填したイオン交換樹脂層を形成した。
【0018】
実施例1:
カチオン交換樹脂 1.5リットル
均一粒径樹脂 (95%)
:ゲル型カチオン交換樹脂Dowex 650C(ダウケミカル社製)
:粒径:650μm±50μm
従来樹脂 (5%)
:ゲル型カチオン交換樹脂Dowex 50W−X8(ダウケミカル社製)
:粒径:300μm〜500μm(粒径調整品)
アニオン交換樹脂 0.7リットル
均一粒径樹脂 (100%)
:ゲル型アニオン交換樹脂Dowex 550A(ダウケミカル社製)
:粒径:550μm±50μm
【0019】
実施例2:
カチオン交換樹脂 1.5リットル
均一粒径樹脂 (100%)
:ゲル型カチオン交換樹脂Dowex 650C
:粒径:650μm±50μm
アニオン交換樹脂 0.7リットル
均一粒径樹脂 (95%)
:ゲル型アニオン交換樹脂Dowex 550A
:粒径:550μm±50μm
従来樹脂 (5%)
:ゲル型アニオン交換樹脂Dowex SBR(ダウケミカル社製)
:粒径:650μm〜1000μm(粒径調整品)
【0020】
実施例3:
カチオン交換樹脂 1.5リットル
均一粒径樹脂 (100%)
:ゲル型カチオン交換樹脂Dowex 650C
:粒径:650μm±50μm
アニオン交換樹脂 0.7リットル
従来樹脂 (100%)
:ゲル型アニオン交換樹脂Dowex SBR
:粒径:650μm〜1000μm(粒径調整品)
【0021】
参考例
カチオン交換樹脂 1.5リットル
従来樹脂 (100%)
:ゲル型カチオン交換樹脂Dowex 50W−X8
:粒径:350μm〜1180μm
アニオン交換樹脂 0.7リットル
均一粒径樹脂 (100%)
:ゲル型アニオン交換樹脂Dowex 550A
:粒径:550μm±50μm
【0022】
比較例:
比較のため、以下の通り均一粒径樹脂のみからなるイオン交換樹脂層を形成した。
【0023】
カチオン交換樹脂 1.5リットル
均一粒径樹脂 (100%)
:ゲル型カチオン交換樹脂Dowex 650C
:粒径:650μm±50μm
アニオン交換樹脂 0.7リットル
均一粒径樹脂 (100%)
:ゲル型アニオン交換樹脂Dowex 550A
:粒径:550μm±50μm
【0024】
上述した各イオン交換樹脂層に、カチオン交換樹脂の交換容量の50%相当のアンモニア水を通水した後、空気曝気5分、水逆洗30分をそれぞれ実施して樹脂を分離した。
【0025】
分離終了した樹脂のカチオン−アニオン界面中心に両側それぞれ2.5cm幅(約100ml)を採取した。次いで、採取したアニオン交換樹脂層およびカチオン交換樹脂層を、それぞれ25%濃度のNaOH溶液に浸し、別の樹脂層に混入していたカチオン交換樹脂およびアニオン交換樹脂の容積を測定した。
【0026】
この結果を表1に示す。
【0027】
【表1】
カチオン交換樹脂側に アニオン交換樹脂側に
混入していたアニオン 混入していたカチオン
交換樹脂の割合(%) 交換樹脂の割合(%)
実施例1 0.1 0.01
実施例2 0.5 0.01
実施例3 0.7 0.01
参考例 0.1 0.03
比較例 3 0.2
【0028】
【発明の効果】
以上説明したように、本発明によると、従来樹脂を対象としている装置に大きな改造を加えることなく均一粒径樹脂を採用でき、はじめから均一粒径樹脂を用いることを前提とした装置において、特別な機構を組み込むことなく装置の簡略化を図ることができる。また、均一粒径樹脂を用いても樹脂の引き込みなどを防止でき、処理水の品質の改善が図れる。さらに、樹脂分離にかかる時間が短縮され、汚染及び樹脂劣化などの影響を低減することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mixed bed ion exchange resin tower and a method for forming the mixed bed , and more particularly, a mixed bed ion exchange resin capable of efficiently separating a cation exchange resin and an anion exchange resin during regeneration separation of the ion exchange resin. The present invention relates to a method for forming a tower and its mixed bed .
[0002]
[Prior art]
Mixed-bed ion exchange resin towers are used for the purpose of removing or separating impurities in water or solvents in, for example, pure water equipment, condensate desalination equipment at power plants, soft water equipment, food-chemical processes, etc. Is done. Conventionally, in such a mixed bed type ion exchange resin tower, a cation exchange resin or an anion exchange resin having a wide Gaussian distribution (normal distribution) as a resin particle size has been used. in order to improve the improvement and particulate removal capability, it has become narrow uniform particle size resins having distribution width is used. The ion exchange resin used in this way must be regenerated with a drug after being used for a certain period.
[0003]
Conventionally, for the regeneration of the mixed bed, after interrupting normal operation, first aeration with air or other gas is performed to loosen the resin and make it easy to separate the resin, and then the particle size of the resin by back washing with water The cation exchange resin is moved to the lower part and the anion exchange resin is moved to the upper part by utilizing the difference in the sedimentation rate due to the specific gravity to form the cation exchange resin layer and the anion exchange resin layer, which are separated and regenerated.
[0004]
[Problems to be solved by the invention]
However, when trying to separate a mixed bed layer composed of a cation exchange resin and an anion exchange resin having a uniform particle size by backwashing with water using a difference in sedimentation speed, the conventional Gaussian distribution is changed due to the uniformity of the particle size. Compared with the resin (hereinafter referred to as the conventional resin), the cation and anion layers flow violently, and the resin of the mating layer is drawn into each layer, and the drawn resin together with the mating resin is a resin layer. The phenomenon of flowing greatly occurs. The resin once drawn in this way is not easily separated again by this flow, and it takes a long time to return to the original layer from the resin interface again.
[0005]
In addition, when a new ion exchange resin is used, the cation exchange resin and the anion exchange resin tend to be entangled at the beginning of use, and therefore the above-described pulling phenomenon tends to occur remarkably.
[0006]
Furthermore, even a slight fluctuation in the flow rate of the backwash water is greatly affected, and this flow is greatly disturbed, causing the separation layer to be broken and the resin to be drawn deeply. For this reason, a careful operation and a longer separation time than before are required to handle the uniform particle size resin.
[0007]
In addition, a method of improving the separability by adding a resin having an intermediate specific gravity between the cation exchange resin and the anion exchange resin and having no ion exchange ability is also performed. However, since a resin having an intermediate specific gravity and no ion exchange ability is added, the uniformity of the packed bed is disturbed, and the apparatus performance such as ion exchange ability and fine particle removal ability is deteriorated.
[0008]
In view of such circumstances, the present invention provides a mixed bed type ion exchange resin tower comprising a cation exchange resin and / or an anion exchange resin having a uniform particle size distribution . It is an object to provide a forming method .
[0009]
[Means for Solving the Problems]
A first aspect of the present invention that solves the above-described problems includes a cation exchange resin having a uniform particle size distribution in which a particle size distribution is ± 50 μm with respect to an average particle size of 650 μm, and a uniform particle size distribution of the cation exchange resin. The mixed-bed ion exchange resin tower is characterized by comprising an anion exchange resin having a particle size distribution wider than the particle size distribution.
[0010]
According to a second aspect of the present invention, in the mixed-bed ion exchange resin tower according to the first aspect, a particle size distribution wider than the particle size distribution of the uniform particle size distribution is a Gaussian distribution. It is in the mixed bed type ion exchange resin tower.
The third aspect of the present invention includes (a) a cation exchange resin having a uniform particle size distribution with a particle size distribution of ± 50 μm with respect to an average particle size of 650 μm, and (b) a particle size with respect to an average particle size of 550 μm. An anion exchange resin having a uniform particle size distribution with a distribution of ± 50 μm, and (c) particles having an average particle size smaller than the average particle size of the cation exchange resin and wider than the particle size distribution of the uniform particle size distribution At least one of a cation exchange resin having a size distribution and an anion exchange resin having an average particle size larger than the average particle size of the anion exchange resin and a wider particle size distribution than the uniform particle size distribution The mixed bed type ion exchange resin tower is characterized in that a mixed bed of the mixed bed type ion exchange resin tower is formed by mixing one of them so that the amount (c) is 2 to 5% of the total amount. The method of forming a mixed bed.
[0011]
Here, the conventional resin having a Gaussian distribution is a resin having a wide particle size distribution of the resin, while the uniform particle size resin is a resin having a narrower particle size distribution than the conventional resin. As an example of a conventional resin, for example, an ion exchange resin having a particle size distribution range of 200 to 1180 μm and a particle size having a Gaussian distribution can be given. Examples of the uniform particle size resin include exchange resins whose particle size distribution is controlled to ± 100 μm, preferably ± 50 μm with respect to the average particle size.
[0012]
In the present invention, the ratio of adding the conventional resin of small particle size of cation exchange resin or the conventional resin of large particle size of anion exchange resin to the mixed bed of uniform particle size resin is preferably 10% or less, preferably Is 2-5%. If a conventional resin is added in an amount of 10% or more based on the total amount, the effect of using a resin having a uniform particle size is undesirably reduced.
[0013]
Moreover, what is necessary is just to make it the mixing ratio of the cation exchange resin and anion exchange resin which form the conventional mixed bed, when mixing and using a uniform particle size resin and conventional resin.
[0014]
When water backwashing is performed on a mixed bed composed of a cation exchange resin and an anion exchange resin having a uniform particle size resin, all the resin flows uniformly in each resin layer. Moreover, the flow range is large, and it flows from the lower part of each resin layer to the upper part. On the other hand, according to the backwash time, the conventional resin moves in the lower part when the particle size is larger and moves toward the upper part when the particle size is smaller, and fluidly aligns in the resin fluidized bed. Therefore, the flow of the resin is limited to the flow in the local area, and the flow over all the resins such as the resin having a uniform particle diameter is hardly generated.
[0015]
In the present invention, a small particle size conventional resin of cation exchange resin or a large particle size conventional resin of anion exchange resin is added to cation exchange resin and anion exchange resin of uniform particle size resin, or uniform particle size resin and conventional resin Can be used to form a locally small layer of fluid at the interface, thus preventing the resin having a uniform particle diameter from being pulled in and improving the separability.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on examples.
[0017]
(Examples 1-4, comparative example)
An ion exchange resin layer was formed by mixing and filling the following resins in a column having an inner diameter of 50 mm and a height of 2000 mm.
[0018]
Example 1:
Cation exchange resin 1.5 liter uniform particle size resin (95%)
: Gel-type cation exchange resin Dowex 650C (manufactured by Dow Chemical Company)
: Particle size: 650 μm ± 50 μm
Conventional resin (5%)
: Gel-type cation exchange resin Dowex 50W-X8 (manufactured by Dow Chemical Company)
: Particle size: 300 μm to 500 μm (particle size adjusted product)
Anion exchange resin 0.7 liter uniform particle size resin (100%)
: Gel type anion exchange resin Dowex 550A (manufactured by Dow Chemical Company)
: Particle size: 550 μm ± 50 μm
[0019]
Example 2:
Cation exchange resin 1.5 liter uniform particle size resin (100%)
: Gel type cation exchange resin Dowex 650C
: Particle size: 650 μm ± 50 μm
Anion exchange resin 0.7 liter uniform particle size resin (95%)
: Gel type anion exchange resin Dowex 550A
: Particle size: 550 μm ± 50 μm
Conventional resin (5%)
: Gel type anion exchange resin Dowex SBR (manufactured by Dow Chemical Company)
: Particle size: 650 μm to 1000 μm (particle size adjusted product)
[0020]
Example 3:
Cation exchange resin 1.5 liter uniform particle size resin (100%)
: Gel type cation exchange resin Dowex 650C
: Particle size: 650 μm ± 50 μm
Anion exchange resin 0.7 liter conventional resin (100%)
: Gel type anion exchange resin Dowex SBR
: Particle size: 650 μm to 1000 μm (particle size adjusted product)
[0021]
Reference example :
Cation exchange resin 1.5 liter Conventional resin (100%)
: Gel-type cation exchange resin Dowex 50W-X8
: Particle size: 350 μm to 1180 μm
Anion exchange resin 0.7 liters Uniform particle size resin (100%)
: Gel type anion exchange resin Dowex 550A
: Particle size: 550 μm ± 50 μm
[0022]
Comparative example:
For comparison, an ion exchange resin layer made only of a uniform particle size resin was formed as follows.
[0023]
Cation exchange resin 1.5 liter uniform particle size resin (100%)
: Gel type cation exchange resin Dowex 650C
: Particle size: 650 μm ± 50 μm
Anion exchange resin 0.7 liter uniform particle size resin (100%)
: Gel type anion exchange resin Dowex 550A
: Particle size: 550 μm ± 50 μm
[0024]
Ammonia water equivalent to 50% of the exchange capacity of the cation exchange resin was passed through each of the ion exchange resin layers described above, and then the resin was separated by performing air aeration for 5 minutes and water backwash for 30 minutes.
[0025]
A 2.5 cm width (about 100 ml) was collected on both sides of the cation-anion interface center of the resin after separation. Next, the collected anion exchange resin layer and cation exchange resin layer were immersed in a 25% NaOH solution, and the volumes of the cation exchange resin and anion exchange resin mixed in another resin layer were measured.
[0026]
The results are shown in Table 1.
[0027]
[Table 1]
On the cation exchange resin side On the anion exchange resin side
Mixed anions Mixed cations
Exchange resin ratio (%) Exchange resin ratio (%)
Example 1 0.1 0.01
Example 2 0.5 0.01
Example 3 0.7 0.01
Reference example 0.1 0.03
Comparative Example 3 0.2
[0028]
【The invention's effect】
As described above, according to the present invention, it is possible to adopt a uniform particle size resin without major modification to a conventional device intended for resin, and in a device based on the premise that a uniform particle size resin is used from the beginning. The apparatus can be simplified without incorporating a simple mechanism. In addition, even if a resin having a uniform particle size is used, it is possible to prevent the resin from being drawn in, and the quality of the treated water can be improved. Furthermore, the time required for resin separation is shortened, and the influence of contamination, resin degradation, and the like can be reduced.

Claims (3)

平均粒径650μmに対して粒径分布が±50μmである均一粒径分布を有するカチオン交換樹脂と、前記カチオン交換樹脂の均一粒径分布の粒径分布より幅の広い粒径分布を有するアニオン交換樹脂とからなることを特徴とする混床式イオン交換樹脂塔。A cation exchange resin having a uniform particle size distribution with a particle size distribution of ± 50 μm with respect to an average particle size of 650 μm, and an anion exchange having a wider particle size distribution than the uniform particle size distribution of the cation exchange resin A mixed bed ion exchange resin tower characterized by comprising a resin. 請求項1に記載の混床式イオン交換樹脂塔において、前記均一粒径分布の粒径分布より幅の広い粒径分布が、ガウス分布であることを特徴とする混床式イオン交換樹脂塔。  2. The mixed bed ion exchange resin tower according to claim 1, wherein a particle size distribution wider than the uniform particle size distribution is a Gaussian distribution. 3. (a)平均粒径650μmに対して粒径分布が±50μmである均一粒径分布を有するカチオン交換樹脂と、
(b)平均粒径550μmに対して粒径分布が±50μmである均一粒径分布を有するアニオン交換樹脂と、
(c)前記カチオン交換樹脂の平均粒径よりも小さな平均粒径で且つ前記均一粒径分布の粒径分布より幅の広い粒径分布を有するカチオン交換樹脂、および前記アニオン交換樹脂の平均粒径よりも大きな平均粒径で且つ前記均一粒径分布の粒径分布より幅の広い粒径分布を有するアニオン交換樹脂の少なくとも何れか一方とを、
前記(c)が全体量に対して2〜5%となるように混合して混床式イオン交換樹脂塔の混床を形成することを特徴とする混床式イオン交換樹脂塔の混床の形成方法。
(A) a cation exchange resin having a uniform particle size distribution with a particle size distribution of ± 50 μm with respect to an average particle size of 650 μm;
(B) an anion exchange resin having a uniform particle size distribution with a particle size distribution of ± 50 μm with respect to an average particle size of 550 μm;
(C) a cation exchange resin having an average particle size smaller than the average particle size of the cation exchange resin and a particle size distribution wider than the uniform particle size distribution, and the average particle size of the anion exchange resin An anion exchange resin having a larger average particle size and a wider particle size distribution than the uniform particle size distribution,
The mixed bed of the mixed bed type ion exchange resin tower is formed by mixing so that (c) is 2 to 5% with respect to the total amount of the mixed bed type ion exchange resin tower. Forming method.
JP01357997A 1997-01-28 1997-01-28 Mixed bed type ion exchange resin tower and method for forming the mixed bed Expired - Fee Related JP4502084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01357997A JP4502084B2 (en) 1997-01-28 1997-01-28 Mixed bed type ion exchange resin tower and method for forming the mixed bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01357997A JP4502084B2 (en) 1997-01-28 1997-01-28 Mixed bed type ion exchange resin tower and method for forming the mixed bed

Publications (2)

Publication Number Publication Date
JPH10202119A JPH10202119A (en) 1998-08-04
JP4502084B2 true JP4502084B2 (en) 2010-07-14

Family

ID=11837091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01357997A Expired - Fee Related JP4502084B2 (en) 1997-01-28 1997-01-28 Mixed bed type ion exchange resin tower and method for forming the mixed bed

Country Status (1)

Country Link
JP (1) JP4502084B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5384811B2 (en) * 2006-08-23 2014-01-08 エバピュア, エルエルシー Filtration system and method characterized by reducing COLORTHROW
JP4984788B2 (en) * 2006-09-26 2012-07-25 栗田工業株式会社 Mixed bed type ion exchange resin tower
JP5084279B2 (en) * 2007-01-24 2012-11-28 中国電力株式会社 How to replace the entire amount of ion exchange resin
JP4943377B2 (en) * 2008-05-22 2012-05-30 株式会社荏原製作所 Condensate demineralization method and condensate demineralization apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107754A (en) * 1986-10-27 1988-05-12 Ebara Infilco Co Ltd Method for separating and transferring ion exchange resin
JPH07256119A (en) * 1994-03-24 1995-10-09 Shinko Pantec Co Ltd Method for regenerating mixed-bed ion-exchange tower

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137486A (en) * 1982-02-12 1983-08-15 Hitachi Ltd Column for desalinating condensed water
JPS5952576A (en) * 1982-09-20 1984-03-27 Japan Atom Power Co Ltd:The Mixed-bed desalinator for condensed water
JPS59147690A (en) * 1983-02-15 1984-08-24 Ebara Corp Mixed bed filtering and demineralizing method
JPS59162990A (en) * 1983-03-08 1984-09-13 Ebara Corp Mixed bed-type filtering desalination
JPS631494A (en) * 1987-04-24 1988-01-06 Ebara Corp Mixed bed type filtering and desalting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107754A (en) * 1986-10-27 1988-05-12 Ebara Infilco Co Ltd Method for separating and transferring ion exchange resin
JPH07256119A (en) * 1994-03-24 1995-10-09 Shinko Pantec Co Ltd Method for regenerating mixed-bed ion-exchange tower

Also Published As

Publication number Publication date
JPH10202119A (en) 1998-08-04

Similar Documents

Publication Publication Date Title
JPH07236889A (en) Pure water making apparatus
JP3305139B2 (en) Method for producing deionized water by electrodeionization method
JP4502084B2 (en) Mixed bed type ion exchange resin tower and method for forming the mixed bed
JP4931178B2 (en) Condensate desalination method and apparatus
JP4984788B2 (en) Mixed bed type ion exchange resin tower
SE431943B (en) CYCLIC OPERATION OF A BED OF MIXED ION EXCHANGE RESIN
US3875053A (en) Process for carrying out ion exchange and adsorption processes using a countercurrent vessel
JP4087052B2 (en) Regeneration method of ion exchange resin
JP2950621B2 (en) Ultrapure water production method
JP2002361247A (en) Method for manufacturing pure water
JP3614548B2 (en) Hydrogen peroxide purification method
JP4383091B2 (en) Condensate desalination method and apparatus
JP2957054B2 (en) How to prevent or eliminate ion exchange resin clamping
JP3907013B2 (en) Countercurrent ion exchange apparatus using resin having uniform particle size and regenerating method thereof
JP3907012B2 (en) Counter-current regenerative ion exchange apparatus and regeneration method thereof
JP3951456B2 (en) Pure water production equipment
JPH06315683A (en) Mixed bed type ion exchange device and production of pure water and ultrapure water using mixed bed type ion exchange device
JP3340831B2 (en) Ultrapure water production equipment
JP4356987B2 (en) Condensate demineralization treatment method and apparatus and method for forming packed bed thereof
JPH02131187A (en) Removal process for suspended impurities by mixed bed type filter desalting device
JP2742975B2 (en) Regeneration method of ion exchange device
JPH0569480B2 (en)
JP2003119008A (en) Method for producing refined hydrogen peroxide solution
JPS631494A (en) Mixed bed type filtering and desalting method
JP3228780B2 (en) Ion exchange treatment method for aqueous EDM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees