JPS63107754A - Method for separating and transferring ion exchange resin - Google Patents

Method for separating and transferring ion exchange resin

Info

Publication number
JPS63107754A
JPS63107754A JP61253775A JP25377586A JPS63107754A JP S63107754 A JPS63107754 A JP S63107754A JP 61253775 A JP61253775 A JP 61253775A JP 25377586 A JP25377586 A JP 25377586A JP S63107754 A JPS63107754 A JP S63107754A
Authority
JP
Japan
Prior art keywords
water
transfer
resin
ion exchange
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61253775A
Other languages
Japanese (ja)
Other versions
JPH0661466B2 (en
Inventor
Kanroku Naganami
長南 勘六
Kazuyuki Koyama
小山 一行
Toyoji Mizushima
水島 豊史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Corp
Priority to JP61253775A priority Critical patent/JPH0661466B2/en
Publication of JPS63107754A publication Critical patent/JPS63107754A/en
Publication of JPH0661466B2 publication Critical patent/JPH0661466B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To enhance the quality of treated water by reducing the anion resin remaining at the time of separation and transfer as low as possible, by respectively properly arranging a transfer sluicing pipe and a resin transfer pipe in a separation tower. CONSTITUTION:In separating and transferring the strong basic anion exchange resin (hereinbelow referred to as SBR) 2' low in specific gravity remaining on a strong acidic cation exchange resin (hereinbelow referred to as SAR) layer 1 high in specific gravity, a transfer sluicing pipe 8 is provided in the vicinity of the separation boundary surface of both resins, pref., below said boundary surface along the single side wall of a tower and the opening part 6' of a resin transfer pipe 6 is provided at the position on the side opposite thereto. Low flow speed backwashing water Q1 is introduced from the water gathering device at the lower part of the tower through a pipe 3 to bring SAR 1 to a flowable state and, further, water is blown off upwardly from the transfer sluicing pipe 8. By this method, SBR is gathered to the periphery of the opening part 6' of the resin transfer pipe 6 and a valve 7 is opened at this time to transfer SBR from the transfer pipe 6.

Description

【発明の詳細な説明】 〔座業上の利用分野〕 本発明は純水、超純水製造装置、特に火力発電所、原子
力発電所の復水処理用の復水脱塩装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Sedentary Use] The present invention relates to a pure water or ultrapure water production apparatus, and particularly to a condensate desalination apparatus for condensate treatment in thermal power plants and nuclear power plants.

〔従来の技術〕[Conventional technology]

2aI類のイオン交換樹脂、特に強酸性陽イオン交換樹
脂(以下BARと記す)と強酸性陽イオン交換樹脂(以
下SBRと記す)の混合樹脂層は純水、超純水製造装置
のポリラシャ−及び火力・原子力発電所の復水脱塩装置
に不可欠のものである。
The mixed resin layer of 2aI class ion exchange resins, especially strong acid cation exchange resins (hereinafter referred to as BAR) and strong acid cation exchange resins (hereinafter referred to as SBR), is used in pure water, ultrapure water production equipment, and It is essential for condensate desalination equipment in thermal and nuclear power plants.

従来PWR型原子力発電所の復水処理で要求される水質
は最もきびしぐ下記の如くである。
The most severe water quality requirements for condensate treatment in conventional PWR nuclear power plants are as follows.

Na″濃度 α02 ppb以下 at″″濃度 α05 ppb以下 これらのイオン濃度は低ければ低い程よい。Na″ concentration α02 ppb or less at″″ concentration α05 ppb or less The lower the concentration of these ions, the better.

これらのイオンの混合樹脂層からのリーク量は入口水質
条件、混合樹脂層の運転条件(LV等)を除くと混合樹
脂層内の塩型樹脂の割合によって支配さnている。
The amount of these ions leaking from the mixed resin layer is controlled by the proportion of salt type resin in the mixed resin layer, excluding the inlet water quality conditions and the operating conditions (LV, etc.) of the mixed resin layer.

すなわちR−at <塩素型アニオン樹脂)、R−Na
(ナトリウム型カチオン樹脂)の存在割合が多い程Na
”、 OL−のり−クが増大する。これらのR−Na、
R−OLが生成する原因は原水に由来するNa”、 0
L−f除くと下記の理由が主である。
That is, R-at <chlorine type anion resin), R-Na
The higher the proportion of (sodium type cation resin), the more Na
”, OL-Ni-k increases.These R-Na,
The cause of R-OL generation is Na'', 0 derived from raw water.
Excluding L-f, the following reasons are the main reasons.

R−Na : BAR,8BRの分離移送が不完全で8
BR層中に混入し7tj BARがSBRの再生剤であ
るNaOHと接触して生成する。
R-Na: BAR, 8BR separation transfer is incomplete and 8
7tj BAR mixed into the BR layer is generated when it comes into contact with NaOH, which is a regenerant for SBR.

u−at:(1)再生剤NaOH中の不純物(NaOA
)によって生成する。
u-at: (1) Impurities in the regenerant NaOH (NaOA
).

(2)R−Naと同様分離が不完全で8AR層中に残留
したSBRがBARの再生剤であるHOlと接触して生
成する。
(2) Similar to R-Na, SBR remaining in the 8AR layer due to incomplete separation is generated when it comes into contact with HOl, which is a BAR regenerant.

R−Na生成を少なくする方法は洩々研究され代表的に
は特詐第1027750号によってすでに解決されてい
る。
Methods for reducing R-Na generation have been extensively researched, and a typical method has already been solved by Tokko No. 1027750.

R−at生成の主厚因(1)はNaOHの品質向上によ
って問題は小さくなっている。(2)については従来の
技術では分離移送が不完全でBAR層に全SBHの1〜
2s程度の日BRが残留し再生毎にこれが蓄積される几
め平衡状態では混合樹脂層のR−01は全日BHの20
数チの値となっている。
The main thickness factor (1) for the generation of R-at has become less of a problem as the quality of NaOH has improved. Regarding (2), in the conventional technology, separation and transfer is incomplete, and 1 to 1 of all SBHs are transferred to the BAR layer.
In a refined equilibrium state where about 2s of daily BR remains and is accumulated every time it is regenerated, R-01 of the mixed resin layer is 20% of the total daily BH.
The value is in the hundreds.

従来の樹脂の分離移送方法金弟8図に晶づいて説明する
The conventional method for separating and transferring resin will be explained with reference to Figure 8.

逆洗によって混合樹脂層をBAR層1と8BR層2の2
つの層に分離した後塔下部からスルージング水t−LV
2.5m/時程度でスルージング水導入等3から導入し
、BAR層2を若干流動させながら塔上部の加圧水導入
管4から加圧水又は加圧空気導入管5から加圧空気全導
入してBBRをアニオン再生塔へ移送する。
By backwashing, the mixed resin layer is separated into BAR layer 1 and 8BR layer 2.
Slewing water t-LV from the bottom of the column after separation into two layers.
BBR is carried out by introducing slugging water, etc. from 3 at a rate of about 2.5 m/hour, and while causing the BAR layer 2 to flow slightly, pressurized water is introduced from the pressurized water introduction pipe 4 at the top of the tower, or pressurized air is completely introduced from the pressurized air introduction pipe 5. is transferred to the anion regeneration tower.

移送管6の開口部は第8図では塔中心軸上に設けらnて
いるが、塔壁近くに設けられている場合もあり、又樋を
利用しているものもある。
Although the opening of the transfer pipe 6 is provided on the central axis of the tower in FIG. 8, it may be provided near the tower wall, or a gutter may be used.

又開口部の高さは両樹脂層の境界面の若干下部とするの
が普通である。
Further, the height of the opening is usually set to be slightly below the interface between the two resin layers.

このような移送を行う際には、第9図に示す如(SBR
2’が数111I〜20数■残留することは避けられな
い。
When carrying out such a transfer, as shown in Figure 9 (SBR
It is inevitable that 2' remains from several 111 I to several 20 ■.

この理由は塔壁に近い8BR程移送管の開口部に達する
のに時間がかかり、その間に開口部付近の樹脂が移送さ
nlかつ塔下部からのスルージング水鳴より樹脂面が平
面となり、開9部と樹脂層面との間にある距離が生じ1
3BRは移送されなくなってしまうからである。
The reason for this is that the closer the 8BR is to the tower wall, the longer it takes to reach the opening of the transfer pipe, and during that time, the resin near the opening is transferred, and the resin surface becomes flat due to the sluicing water noise from the lower part of the tower. A certain distance is created between part 9 and the resin layer surface.
This is because 3BR will no longer be transferred.

この現象はスルージング水量を増しBAR層の展開率七
人きくしても、又開口部の高さ、形状を変えても同じよ
うに起こ9、BBHの完全な分離移送は達成さnない。
This phenomenon occurs in the same way even if the amount of sluicing water is increased and the expansion rate of the BAR layer is increased, or even if the height and shape of the opening are changed9, complete separation and transfer of BBH is not achieved.

これら残留し九SDRは8ARの再生剤のHCtと接触
してR−C3tが生成してしまう。
These remaining 9SDRs come into contact with HCt of the 8AR regenerant to generate R-C3t.

〔発明が解決しようとしている問題点〕本発明は前記(
2)の問題を解決するものであジ、分離移送時残留する
8BRt−出来るだけ少なくし、イオン交換時における
処理水質を向上せしめようとするものである。
[Problems to be solved by the invention] The present invention solves the problems described above (
This is to solve the problem of 2).Secondly, it aims to reduce the amount of 8BRt remaining during separation and transfer as much as possible and improve the quality of treated water during ion exchange.

〔問題点全解決するための手段〕[Means to solve all problems]

本発明は、比重の異なる2種類のイオン交換樹脂を充填
し几塔において逆洗によってイオン交換樹脂を2層に分
離しt後塔上部から加圧水又は加圧空気を、塔下部から
スルージング水を導入して大部分の比重の小さいイオン
交換樹脂を樹脂移送管により移送し、該移送後に、比重
の大きいイオン変換樹脂層上に残留している少量の比重
の小さいイオン交換樹脂を更に分離する方法において、
比重の大きいイオン交換樹脂t−流動状態に保ちながら
、塔の片側から塔壁に沿って設けた水吹き出し部から水
を吹き出し、原水の吹き出し部の反対側の塔壁近くに設
は友樹脂移送管の開口部に向う比重の小さいイオン交換
樹脂のinを起し、該イオン交換樹脂を樹脂移送管の開
口部に集めながら、又は集め几後該開口部から比1の小
さいイオン交換樹脂を抜き出して移送することを特徴と
するイオン交換樹脂の分離移送方法であって、従来の分
離移送方法の問題点を解決すべく実用規模の直径の大き
い塔を用いて鋭意研究し次結果、本発明をなすに到つ友
ものである。
The present invention involves filling two types of ion exchange resins with different specific gravities, separating the ion exchange resins into two layers by backwashing in a tower, and then supplying pressurized water or pressurized air from the top of the tower and sluicing water from the bottom of the tower. A method in which most of the ion exchange resin with low specific gravity is introduced and transferred through a resin transfer pipe, and after the transfer, a small amount of ion exchange resin with low specific gravity remaining on the ion exchange resin layer with high specific gravity is further separated. In,
Ion exchange resin with a large specific gravity - While maintaining the fluidized state, water is blown out from a water outlet installed along the tower wall from one side of the tower, and the resin is transferred to a place near the tower wall on the opposite side of the raw water outlet. Inject the ion exchange resin with a small specific gravity toward the opening of the pipe, and while collecting the ion exchange resin at the opening of the resin transfer pipe, or after collecting, extract the ion exchange resin with a small specific gravity of 1 from the opening. This is a method for separating and transporting ion exchange resins, which is characterized by transporting ion exchange resins.In order to solve the problems of conventional separation and transport methods, we conducted extensive research using a practical-scale column with a large diameter, and as a result, we have developed the present invention. It is a friend to eggplant.

以下、図面に基づいて本発明の詳細な説明する。Hereinafter, the present invention will be described in detail based on the drawings.

本発明は第1図に示す如く比重の大きいSAR層1の上
に残留している斜線部で示す比重の小さいEBR2’を
分離移送するに当って樹脂分離境界面の近傍、好ましく
は下部で、かつ塔片側の塔壁に沿って移送用スルージン
グWst−1そしてその反対側の位置に樹脂移送管6の
開口部6′を設は塔下部集水装置から管3を経て低流速
逆洗水QIt−導人し、8AR1を流動状態とし、更に
吹き出させることにより第2図及び第3図に示す如く樹
脂移送管の開ロ部6′周辺にSBRが集ってきたところ
(図中斜線部)を移送管上の樹脂移送弁7(第1図及び
第3図参照)を開として移送管6を経て移送してしまう
ものである。
As shown in FIG. 1, when the EBR 2' with a low specific gravity shown by the hatched area remaining on the SAR layer 1 with a high specific gravity is separated and transferred, in the vicinity of the resin separation interface, preferably at the bottom, In addition, a transfer sluging Wst-1 is provided along the tower wall on one side of the tower, and an opening 6' of the resin transfer pipe 6 is installed on the opposite side of the tower. QIt-conductor, 8AR1 was brought into a fluid state, and by further blowing out, SBR gathered around the opening 6' of the resin transfer pipe as shown in Figures 2 and 3 (the shaded area in the figure). ) is transferred through the transfer pipe 6 by opening the resin transfer valve 7 (see FIGS. 1 and 3) on the transfer pipe.

すなわち本発明はBAR層1を流動状態とし、かつ更に
塔片側に設は移送用スルージング管8から水を上方へ吹
き出させることにより日BR2’の開口部に向う流れを
起し、8BR’i開口部周辺に集め次後排出するように
したものである。
That is, the present invention brings the BAR layer 1 into a fluidized state, and further blows water upward from a transfer sluging pipe 8 installed on one side of the column, thereby causing a flow toward the opening of the 8BR'i. It collects around the opening and then discharges it.

本発明で最も重要なのは移送用スルージング管8の位置
、吹き出す水の流速及び吹き出し方向である。
The most important factors in the present invention are the position of the transfer sluging pipe 8, the flow rate of the water to be blown out, and the direction of the blown water.

代表的な移送用スルージング管8の位置、吹き出し方向
は第3図及び第4図並びに第5図に示す如き方向が好ま
しい。第2図、第3図は塔壁に沿って移送用スルージン
グ管8として曲管を設は次もので、水の吹き出し方向は
上方に向けて吹出すようになっている。この時一部、曲
管の両端から円周方向に吹き出すのも効果的である。第
4図及び第5図に示すものは直管を用いたもので塔壁に
向って斜め上方に吹き出させ(第5図参照)塔壁とぶつ
かって生じる反転流を利用している。この時も直管両端
から円周方向にも吹き出すようにすnば効果的である。
The typical position of the transfer sluging pipe 8 and the blowing direction are preferably as shown in FIGS. 3, 4, and 5. In FIGS. 2 and 3, a curved pipe is installed along the tower wall as a transfer sluging pipe 8, and the water is blown out in an upward direction. At this time, it is also effective to blow some of the fluid out from both ends of the curved pipe in the circumferential direction. The one shown in FIGS. 4 and 5 uses a straight pipe, which blows out obliquely upward toward the tower wall (see FIG. 5) to utilize the reversed flow generated when it collides with the tower wall. At this time, it is also effective to blow out from both ends of the straight pipe in the circumferential direction as well.

移送用スルージング管8よりこのように水を吹き出すと
、吹き出し口上部の樹脂面が盛ジ上がり、この盛り上が
りが次々に移送管6の開口部6′の万に向かい全体とし
て、8BR2’!rL開ロ部6′に向かって流れていく
のである。
When water is blown out from the transfer sluging pipe 8 in this way, the resin surface above the outlet rises, and this rise successively moves towards the opening 6' of the transfer pipe 6, resulting in a total of 8BR2'! It flows toward the rL opening portion 6'.

開口部6′に向かう8BR2’の流tが強すぎると流n
が開口部側の塔壁にぶつか9反転流が生じ、この反転流
が生ずると一度果つ7’(8BRが再び反転流にのって
分散してしまう。それ故、吹き出し流速は樹脂移送管の
開口部側において反転流が生じないようにきめるのが好
ましい。実験の結果、塔断面積に対してLVn5〜2m
/時の流速がよいことがわかつ几。
If the flow t of 8BR2' toward the opening 6' is too strong, the flow n
hits the column wall on the opening side and a reverse flow occurs, and once this reverse flow occurs, the 7' (8BR) that is once produced is again carried by the reverse flow and dispersed. It is preferable to decide so that reverse flow does not occur on the opening side of the tube.As a result of experiments, LVn 5 to 2 m relative to the column cross-sectional area.
/ It turns out that the flow rate of time is good.

曲管又は直管の両端からも吹き出させるのに塔壁近くの
SBRもスムーズに開口部に向かわせる九めである。
The ninth feature allows the SBR near the tower wall to smoothly flow toward the opening, even though it can blow out from both ends of a curved or straight pipe.

又、樹脂分離境界面から移送用スルージング管8までの
距離は300〜600■、好ましくは400〜500m
である。この距離が小さいと水の吹き出しが突沸状態と
なり、又大きすぎると拡散してしまい効果が小さくなる
Further, the distance from the resin separation interface to the transfer sluging pipe 8 is 300 to 600 m, preferably 400 to 500 m.
It is. If this distance is too small, the water ejected will be in a bumping state, and if it is too large, it will diffuse and the effect will be reduced.

EIARi流動状態とする塔下部集水装置からの逆洗水
QIの流速は移送用スルージング管8からの水の吹き出
しにより移送管6の開口m b’へ向かって[3る8B
RがBAR層内にもぐり込まないように、かつBARが
流動状態となるような量で導入する。実験の結果、この
流速(Ql)はLV3〜5m/時の低逆洗流速とするの
がよいことがわかった。開口部に向かう8BRがBAR
層にもぐり込まないようにするにはこの流速は大きい万
が好ましい。しかし大きすぎるとBARの逆洗展開率が
大きくなり移送後のBARの定量性に誤差が生じやすい
ので、前記の範囲内の値とするのが好ましい。
The flow rate of the backwash water QI from the lower part of the tower water collection device to be brought into the EIARi fluidized state is as follows:
R is introduced in such an amount that it does not sink into the BAR layer and that the BAR is in a fluid state. As a result of experiments, it was found that this flow rate (Ql) is preferably a low backwash flow rate of LV3 to 5 m/hour. 8BR facing the opening is the BAR
It is preferable that this flow rate is high in order to prevent it from penetrating into the layer. However, if it is too large, the backwash development rate of BAR increases and errors tend to occur in the quantitative nature of BAR after transfer, so it is preferable to set the value within the above range.

又、移送用スルージノグ管8からの吹き出しを間けつ的
に行う万が樹脂移送管開口部6′附近において反転流が
生じにくくなることがわかった。水の吹き出し5〜50
秒、休止15〜60秒のように間けつ的に行うと8BR
ijはつきりとし九波状になって開口部に向ってanる
It has also been found that if the resin is blown out from the transfer sluge nog tube 8 intermittently, reverse flow is less likely to occur near the opening 6' of the resin transfer tube. Water bubbles 5-50
If you do it intermittently like 15 to 60 seconds of rest, 8BR
ij forms a sharp nine-wave shape and anans toward the opening.

第2図乃至第5図に示す如く樹脂移送管の開口部6′の
周辺に8BRが集まったら、弁7を開としQl+ Q重
及び塔上部からの加圧水4又は加圧空気5を用いていつ
きに移送してしまう。
When 8BR has gathered around the opening 6' of the resin transfer pipe as shown in Figs. 2 to 5, the valve 7 is opened and it is irrigated using the Ql + Q weight and pressurized water 4 or pressurized air 5 from the top of the tower. It will be transferred to.

以下本発明を復水脱塩装置の分離塔を例にして工程毎に
詳しく説明する。
Hereinafter, the present invention will be explained in detail for each step using a separation column of a condensate desalination apparatus as an example.

第6図は本発明の実施態様の一例を示す説明図である。FIG. 6 is an explanatory diagram showing an example of an embodiment of the present invention.

脱塩塔(図示せず)から移送されてき次混合樹脂を分離
塔において逆洗水流入弁9逆洗排水弁10を開とし、L
V8〜10 rn 7時で十分逆洗分離全行う。沈静後
スルージング水弁11を開とし、L V n 7〜1.
5 m 7時でスルージング水を導入し、かつ塔上部の
加圧水弁12樹脂移送管6の弁7を開とし升9.10は
閉として大部分の8BR2t−アニオン再生塔(図示せ
ず)に移送する。
The mixed resin transferred from the demineralization tower (not shown) is transferred to the separation tower, with the backwash water inlet valve 9 and the backwash drain valve 10 open, and the L
V8-10 rn Complete backwash separation at 7 o'clock. After settling down, open the sluicing water valve 11 and set L V n 7 to 1.
5 m At 7 o'clock, sluicing water was introduced, and the pressurized water valve 12 at the top of the tower opened the valve 7 of the resin transfer pipe 6. Cells 9 and 10 were closed, and the main part of the 8BR2t-anion regeneration tower (not shown) was Transport.

スルージング水流速會Lvα7〜1.5 m 7時と小
さくすると、BAR層はほとんど実質的に流動せずSB
R層のみが若干流動している。このような移送を行うと
樹脂面は移送用スルージング管側から開口部側に向けて
傾斜しているが、均一にし次とすると第7図に示す如く
開口部6′はBAR層内に入っている状態となる位置に
ある。
Sluicing water flow velocity Lvα 7 to 1.5 m If it is as low as 7 o'clock, the BAR layer will hardly flow and the SB
Only the R layer is slightly fluid. When such a transfer is performed, the resin surface is inclined from the transfer sluicing pipe side to the opening side, but if it is made uniform, the opening 6' will enter the BAR layer as shown in FIG. It is in a position where it is in a state of being.

スルージング水の流速を大きくするとその分BAR層の
逆洗展開率が大きくなジ、アニオン再生塔へ移送される
8ARが多くなり第7図に示す開口部6′と表層表面と
の距FII /、’が小さくなり残留し九日BR2の完
全な移送には好ましくない。
When the flow rate of the sluicing water is increased, the backwash development rate of the BAR layer increases accordingly, and more 8AR is transferred to the anion regeneration tower, resulting in the distance FII / between the opening 6' and the surface layer surface shown in FIG. ,' become small and remain, which is not preferable for complete transfer of 9-day BR2.

次いで逆洗水排水弁10、低流速逆洗弁13全開とし、
他の弁は閉とじLV五5〜4.5 m 7時で日AR1
i’i流動状態とする。そして本発明の方法によって残
留EIBR’i移送する。低流速逆洗弁13の開度は水
温等を考慮し常に一定のBARO展y*率となるように
コントロールすることが重要である。
Next, the backwash water drain valve 10 and the low flow backwash valve 13 are fully opened,
Other valves are closed LV 55-4.5 m Day AR1 at 7 o'clock
i'i Let it be in a fluid state. The residual EIBR'i is then transferred by the method of the invention. It is important to control the opening degree of the low flow rate backwash valve 13 so that a constant BARO expansion y* rate is maintained in consideration of water temperature, etc.

次いで移送用スルージング水弁14t−開としLVα5
〜2m/時で移送用スルージング水を導入し、上部に向
って吹き出させる。すると前述の如く吹き出し部の上部
の樹脂層が盛り上が9、第2図乃至第5図に示す如き8
BHの流れができしだいに開口部に集まっていく。この
工程はCL5〜2分程度でよい。次いで弁7,13゜1
4を開とし、その個の弁は閉として移送管開口部6′の
まわりに集められ7’j 8BR2’を移送してしまう
Next, the transfer sluicing water valve 14t is opened and LVα5
Transfer sluicing water is introduced at ~2 m/h and blown towards the top. Then, as mentioned above, the resin layer at the top of the blowout part bulges 9, and as shown in FIGS. 2 to 5, 8.
As soon as the BH flows, it gradually gathers at the opening. This step may take about CL5 to 2 minutes. Then valve 7,13゜1
4 is open and its respective valve is closed and collected around the transfer tube opening 6', transferring 7'j 8BR2'.

移送用スルージング水は連続的に吹き出してもよいが流
速が大きいと基壇にぶつかって反転流が生じ8BRが集
まりにくいことがあり、この危険を避ける九め吹き出し
を間けつ的に行うのが好ましい。
The sluicing water for transfer may be blown out continuously, but if the flow velocity is high, it may collide with the pedestal and cause a reverse flow, making it difficult for 8BR to collect, so it is preferable to blow out the water intermittently to avoid this danger. .

吹き出し5〜30秒、休止15〜60秒と間けつ的に吹
き出すとI、 V 1.5〜2.5m/時と流量を大き
くしても第2図乃至第5図に示す状態を容易に達成でき
る。このような移送を数回くり返すことによジ残留SB
Rは完全にアニオン再生塔に移送されてしまう。
If the air is blown out intermittently with 5 to 30 seconds of air and a pause of 15 to 60 seconds, the conditions shown in Figures 2 to 5 can be easily achieved even if the flow rate is increased to 1.5 to 2.5 m/hour. It can be achieved. By repeating such transfer several times, residual SB
R is completely transferred to the anion regeneration tower.

くり返す工程1i−まとめると下記の如くである。The process of repeating step 1i is summarized as follows.

開状態の升A   時間 逆洗分離      9,10    3〜5分移送(
1)(あつめる工程)10,13,14  1〜2分移
送(2)(移送)  7,12,13,14 1〜2分
なお、移送(1)及び(2)は同時にすることもできる
Cell A in open state Time backwash separation 9,10 3-5 minutes transfer (
1) (Gathering process) 10, 13, 14 1 to 2 minutes Transfer (2) (Transfer) 7, 12, 13, 14 1 to 2 minutes Note that transfers (1) and (2) can also be performed at the same time.

以下に本発明の効果を明確にするために比較例並びに実
施例を記載する。
Comparative examples and examples will be described below to clarify the effects of the present invention.

比較例1 内径1800φ、高さ5000■の分離塔に8ARとし
てDowex TG6500(登録商標) 4500L
1 日BRとしてDowex TG550A(登録商標
)2000tの混合樹脂を光てんし塔下部から逆洗水i
LV10m/時で導入し樹脂を2層に分離した。ついで
塔下部からのスルージング水をLV2.5m/時で導入
し、同時に塔上部から加圧水f L 14 m 7時で
導入し88R’i再生塔に移送し次。樹脂移送管の開口
部は塔中6軸の1ケ所とし、75φのものを用いた。又
その位置は樹脂境界面から100m下部に設けた。移送
後残留し九SBRは全SBRのα5〜a6%であっ次。
Comparative Example 1 Dowex TG6500 (registered trademark) 4500L as 8AR in a separation column with an inner diameter of 1800φ and a height of 5000mm
1 As a day BR, 2000 tons of Dowex TG550A (registered trademark) mixed resin was backwashed from the lower part of the optical fiber tower.
The resin was introduced at a LV of 10 m/hour to separate into two layers. Next, sluging water was introduced from the lower part of the tower at a LV of 2.5 m/hour, and at the same time pressurized water f L 14 m was introduced from the upper part of the tower at 7 o'clock and transferred to the 88R'i regeneration tower. The resin transfer pipe had one opening on each of the six axes in the column, and had a diameter of 75φ. Further, the position was set 100 m below the resin boundary surface. The nine SBRs remaining after the transfer are α5~a6% of the total SBR.

残留BBRの調査方法 移送後Lv1om/時で40分間逆洗後、表層にあつま
つ九SBRt−すべてかきと9体積を測定し次。
Investigation method for residual BBR After transfer, backwash at Lv1om/hour for 40 minutes, measure the volume of all the 9SBRt collected on the surface layer.

実施例1 比較例1と同一の大きさの塔を用い次。樹脂を比較例1
と同様に2層に分離し友後、塔下部からのスルージング
水f L V ?、 2 m 7時、塔上部からの加圧
水L ”I 4 m 7時で導入しSBHの大部分を移
送し、次いで残留8BHの移送を行つ次。
Example 1 The following was carried out using a column of the same size as in Comparative Example 1. Comparative example 1 of resin
After separating into two layers in the same manner as above, the sluicing water from the bottom of the column f L V ? , 2 m At 7 o'clock, pressurized water L''I from the top of the column was introduced at 7 o'clock to transfer most of the SBH, and then the remaining 8 BH was transferred.

樹脂移送管開口部は第2図及び第3図に示す構成とし、
他の条件は比較例1と同じである。
The resin transfer pipe opening has the configuration shown in FIGS. 2 and 3,
Other conditions are the same as in Comparative Example 1.

く残留13BHの移送〉 低流速逆洗水t−L V 4 m 7時で導入し、BA
Rを流動状態とし次。更に樹脂分離面の450m下に股
は几移送用スルージング水管から水の吹き出しf L 
11 m 7時で連続的に1分間行い、ついで移送を1
分間、L V 5 m 7時の逆洗分離を5分間行い、
これらのくり返しを3回行つ之。
Transfer of residual 13BH> Low-flow backwash water t-L V 4 m Introduced at 7 o'clock, BA
Let R be a fluid state and then. Furthermore, 450m below the resin separation surface, water is blown out from the sluicing water pipe for transporting the pipe.
11 m Continuously perform for 1 minute at 7 o'clock, then transfer for 1 minute.
backwash separation at 7 o'clock for 5 minutes,
Repeat these steps three times.

くり返し後前記移送工程のみを10分間行っ友。After repeating the process, repeat the transfer process for 10 minutes.

残留しf/−BBRff、全BBR(DαD2〜[10
35%であつto 実施例2 実施例1の中で移送用スルージング水の吹き出しを15
秒休体′1に15秒とかんけっ的に行った。他の条件は
実施例1と同じである。
Residual f/-BBRff, total BBR (DαD2~[10
35% to Example 2 In Example 1, the sluicing water for transfer was 15%.
I went to the second rest '1 for 15 seconds. Other conditions are the same as in Example 1.

残留シフtjEIBRは全8BRの(1015〜[10
25慢であった。
The residual shift tjEIBR is (1015~[10
25 He was arrogant.

実施例3 実施例1と同じ方法で光てん樹脂を下記の構成とし次。Example 3 Using the same method as in Example 1, the Koten resin was made into the following composition.

Dowex  HG R−W 2 Dowex  TG 550ム 残留したSDRは全SBRのα02〜α035チであり
尺。
Dowex HG R-W 2 Dowex TG 550 μm The remaining SDR is α02 to α035 of the total SBR.

以上述べ次如く本発明法によればBAR中に残留するE
IBRは従来法のπ〜πに減少できる。
As stated above, according to the method of the present invention, E remaining in BAR
The IBR can be reduced from π to π of the conventional method.

それ故、生成するR−OA (塩素型アニオン樹脂)の
itk少なくでき処理水質が大きく向上し比。
Therefore, the amount of R-OA (chlorine type anion resin) produced can be reduced, and the quality of treated water can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1因は本発明方法を説明するためのイオノ父換樹脂の
分離装置の一例の縦断面図、第2図は第1図のムーA線
における横断面図、第5図は第1図の移送用スルージ7
グW8の作用を説明する次めの樹脂境界部分の一部縦断
面図、第4図は第1図乃至第3図と異なる形の移送用ス
ルージング管を設けた装置の第1図A−A線における断
面図、第5図は同スルージング管の作用を説明する之め
の樹脂境界部分の一部縦断面図、第6図は本発明の一実
施例を説明するための装置の縦断面図、第7図は同樹脂
境界部分の一部断面を示し、第8図は従来例全説明する
友めの装置の縦断面図、第9図は同樹脂境界部分の一部
縦断面図を示す。 1−−− BAR層、2−−− SBR層、3・・・ス
ルージング水導入管、4・・・加圧水導入管、5・・・
加圧空fi導入管、6・・・樹脂移送管、7・・・樹脂
移送弁、8・・・移送用スルージング管、9・・・逆洗
水流入弁、1o・・・逆洗排水弁、11・・・スルージ
ング水升、12・・・加圧水弁、13・・・低流速逆洗
弁、14・・・移送用スルージング水弁 特許出願人   荏原インフィルコ株式会社同    
株式会社 荏原製作所 向   荏原総合研死所 代 理 人   中  本     宏同      
井  上     昭 同      吉  嶺     桂 第1図 第2図       第3図 第4図      第5図 す1 第6図
The first factor is a longitudinal cross-sectional view of an example of an ionophore conversion resin separation apparatus for explaining the method of the present invention, FIG. 2 is a cross-sectional view taken along the Mu A line in FIG. 1, and FIG. Transfer sluge 7
The next partial vertical cross-sectional view of the resin boundary part explaining the action of the plug W8, FIG. A cross-sectional view taken along line A, FIG. 5 is a partial vertical cross-sectional view of the resin boundary portion for explaining the action of the sluging tube, and FIG. 6 is a vertical cross-sectional view of the device for explaining an embodiment of the present invention. 7 is a partial cross-sectional view of the resin boundary portion, FIG. 8 is a vertical cross-sectional view of a companion device to fully explain the conventional example, and FIG. 9 is a partial longitudinal cross-sectional view of the resin boundary portion. shows. 1--- BAR layer, 2--- SBR layer, 3... sluicing water introduction pipe, 4... pressurized water introduction pipe, 5...
Pressurized air fi introduction pipe, 6...Resin transfer pipe, 7...Resin transfer valve, 8...Transfer sluicing pipe, 9...Backwash water inflow valve, 1o...Backwash drain valve , 11...Sluging water tank, 12...Pressurized water valve, 13...Low flow rate backwash valve, 14...Sluging water valve for transfer Patent applicant: Ebara Infilco Co., Ltd.
For Ebara Corporation, Ebara Research Institute Mortuary Representative Hiroto Nakamoto
Shodo Inoue Yoshimine Katsura Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 S1 Figure 6

Claims (1)

【特許請求の範囲】 1、比重の異なる2種類のイオン交換樹脂を充填した塔
において逆洗によつてイオン交換樹脂を2層に分離した
後塔上部から加圧水又は加圧空気を、塔下部からスルー
ジング水を導入して大部分の比重の小さいイオン交換樹
脂を樹脂移送管により移送し、該移送後に、比重の大き
いイオン交換樹脂層上に残留している少量の比重の小さ
いイオン交換樹脂を更に分離する方法において、比重の
大きいイオン交換樹脂を流動状態に保ちながら、塔の片
側から塔壁に沿つて設けた水吹き出し部から水を吹き出
し、該水の吹き出し部の反対側の塔壁近くに設けた樹脂
移送管の開口部に向う比重の小さいイオン交換樹脂の流
れを起し、該イオン交換樹脂を樹脂移送管の開口部に集
めながら、又は集めた後該開口部から比重の小さいイオ
ン交換樹脂を抜き出して移送することを特徴とするイオ
ン交換樹脂の分離移送方法。 2、前記水の吹き出し部を樹脂の表層より下部に設け、
且つ水を上方向に吹き出すようにした特許請求の範囲第
1項記載のイオン交換樹脂の分離移送方法。 3、水の吹き出しを間けつ的に行う特許請求の範囲第1
項又は第2項記載のイオン交換樹脂の分離移送方法。
[Claims] 1. After separating the ion exchange resin into two layers by backwashing in a column filled with two types of ion exchange resins with different specific gravity, pressurized water or pressurized air is supplied from the upper part of the column and from the lower part of the column. Sluicing water is introduced to transfer most of the ion exchange resin with low specific gravity through the resin transfer pipe, and after the transfer, a small amount of ion exchange resin with low specific gravity remaining on the ion exchange resin layer with high specific gravity is removed. In a method for further separation, water is blown from one side of the tower from a water outlet provided along the tower wall while keeping the ion exchange resin with a large specific gravity in a fluidized state, and then the water is blown out from a water outlet provided along the column wall from one side of the tower, and the water is blown out from a water outlet near the column wall on the opposite side of the water outlet. The ion exchange resin with a low specific gravity is caused to flow toward the opening of the resin transfer tube provided in the resin transfer tube, and the ion exchange resin with a low specific gravity is collected at the opening of the resin transfer tube, or after the ion exchange resin is collected, the ions with a low specific gravity are transferred from the opening. A method for separating and transporting ion exchange resin, which comprises extracting and transporting the exchange resin. 2. The water blowing part is provided below the surface layer of the resin,
A method for separating and transferring an ion exchange resin according to claim 1, wherein the water is blown upward. 3. Claim 1 in which water is spouted intermittently
A method for separating and transferring an ion exchange resin according to item 1 or 2.
JP61253775A 1986-10-27 1986-10-27 Separation and transfer method of ion exchange resin Expired - Lifetime JPH0661466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61253775A JPH0661466B2 (en) 1986-10-27 1986-10-27 Separation and transfer method of ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61253775A JPH0661466B2 (en) 1986-10-27 1986-10-27 Separation and transfer method of ion exchange resin

Publications (2)

Publication Number Publication Date
JPS63107754A true JPS63107754A (en) 1988-05-12
JPH0661466B2 JPH0661466B2 (en) 1994-08-17

Family

ID=17255971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61253775A Expired - Lifetime JPH0661466B2 (en) 1986-10-27 1986-10-27 Separation and transfer method of ion exchange resin

Country Status (1)

Country Link
JP (1) JPH0661466B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202119A (en) * 1997-01-28 1998-08-04 Kurita Water Ind Ltd Mixed-bed type ion-exchange resin tower
CN115739208A (en) * 2022-12-12 2023-03-07 河南海之德高新环保科技有限公司 Temporary storage collecting device for resin extraction and collecting method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3034911U (en) * 1996-08-20 1997-03-07 淑霞 黄陳 Electric tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10202119A (en) * 1997-01-28 1998-08-04 Kurita Water Ind Ltd Mixed-bed type ion-exchange resin tower
JP4502084B2 (en) * 1997-01-28 2010-07-14 栗田工業株式会社 Mixed bed type ion exchange resin tower and method for forming the mixed bed
CN115739208A (en) * 2022-12-12 2023-03-07 河南海之德高新环保科技有限公司 Temporary storage collecting device for resin extraction and collecting method thereof
CN115739208B (en) * 2022-12-12 2024-02-20 河南海之德高新环保科技有限公司 Temporary storage and collection device for resin extraction and collection method thereof

Also Published As

Publication number Publication date
JPH0661466B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
US3582504A (en) Method for separating and isolating ion exchange resins
JPS63107754A (en) Method for separating and transferring ion exchange resin
JPH0659412B2 (en) Separation and transfer method of ion exchange resin
US4336140A (en) Water purification process
JP5075159B2 (en) Separation tower for mixed ion exchange resin
JPH0478344B2 (en)
US3585127A (en) Method for treating water by ion exchange
CN208302795U (en) A kind of flat bed as ion-exchange unit
JPH055998Y2 (en)
JP4315385B2 (en) Ion exchange tower
US4126548A (en) Ion exchange process
JPS63147556A (en) Separating and transporting method for ion exchange resin
JPS59183398A (en) Maintenance system of condensate desalt tower
SU1662675A1 (en) Method of ionite recovery
JP3887767B2 (en) High purity boron-containing water recovery method and recovery device
US1519642A (en) Apparatus for the extraction and recovery of bromine
JP4346214B2 (en) Separation method of mixed ion exchange resin
JP4356987B2 (en) Condensate demineralization treatment method and apparatus and method for forming packed bed thereof
JPH0677687B2 (en) Regeneration method of ion exchange resin
JPH05253568A (en) Pure water making apparatus
JPH047261B2 (en)
JPS5815177B2 (en) How to regenerate mixed ion exchange resin
JPH0516314B2 (en)
JPS61157390A (en) Desalting apparatus
JPH026893A (en) Condensate desalting device