JPH0516314B2 - - Google Patents

Info

Publication number
JPH0516314B2
JPH0516314B2 JP61253774A JP25377486A JPH0516314B2 JP H0516314 B2 JPH0516314 B2 JP H0516314B2 JP 61253774 A JP61253774 A JP 61253774A JP 25377486 A JP25377486 A JP 25377486A JP H0516314 B2 JPH0516314 B2 JP H0516314B2
Authority
JP
Japan
Prior art keywords
transfer
resin
ion exchange
water
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61253774A
Other languages
Japanese (ja)
Other versions
JPS63107753A (en
Inventor
Kanroku Naganami
Shigeo Mya
Kazuyuki Koyama
Masahiro Hagiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Corp
Priority to JP61253774A priority Critical patent/JPS63107753A/en
Publication of JPS63107753A publication Critical patent/JPS63107753A/en
Publication of JPH0516314B2 publication Critical patent/JPH0516314B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は純水、超純水製造装置、特に火力発電
所、原子力発電所の復水処理用の復水脱塩装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a pure water or ultrapure water production apparatus, and particularly to a condensate desalination apparatus for condensate treatment in thermal power plants and nuclear power plants.

〔従来の技術〕[Conventional technology]

2種類のイオン交換樹脂、特に強酸性陽イオン
交換樹脂(以SARと記す)と強塩基性陰イオン
交換樹脂(以下SBRと記す)の混合樹脂層は純
水、超純水製造装置のポリツシヤー及び火力、原
子力発電所の復水脱塩装置に不可欠である。従
来、PWR型原子力発電所の復水処理で要求され
る水質は最もきびしく下記の如くである。
A mixed resin layer of two types of ion exchange resins, particularly a strongly acidic cation exchange resin (hereinafter referred to as SAR) and a strong basic anion exchange resin (hereinafter referred to as SBR), is used in polishers and ultrapure water production equipment. Indispensable for condensate desalination equipment in thermal and nuclear power plants. Conventionally, the most stringent water quality requirements for condensate treatment in PWR nuclear power plants are as follows.

Na゜濃度 0.02ppb以下 Cl-濃度 0.05ppb以下 これらのイオン濃度は低ければ低い程よい。 Na゜ concentration 0.02ppb or less Cl - concentration 0.05ppb or less The lower the concentration of these ions, the better.

これらのイオンの混合樹脂層からのリーク量は
入口水質条件、混合樹脂層の運転条件(LV等)
を除くと混合樹脂層内の塩型樹脂の割合によつて
支配されている。すなわちR−Cl(塩素型アニオ
ン樹脂)、R−Na(ナトリウム型カチオン樹脂)
の存在割合が多い程Na+,Cl-のリークが増大す
る。これのR−Na,R−Clが生成する原因は原
水に由来するNa゜,Cl-を除いて考えると下記の
理由が主なものである。
The amount of these ions leaking from the mixed resin layer depends on the inlet water quality conditions and the operating conditions of the mixed resin layer (LV, etc.)
Except for , it is controlled by the proportion of salt type resin in the mixed resin layer. Namely, R-Cl (chlorine type anion resin), R-Na (sodium type cation resin)
The higher the proportion of Na + and Cl -, the greater the leakage of Na + and Cl - . The main reasons for the formation of R-Na and R-Cl are as follows, excluding Na° and Cl - derived from raw water.

R−Na:SAR、SBRの分離移送が不完全でSBR
層中に混入したSARがSBRの再生剤であ
るNaOHと接触して生成する。
R-Na: Separation and transfer of SAR and SBR is incomplete and SBR
SAR mixed into the layer is generated when it comes into contact with NaOH, which is an SBR regenerant.

R−Cl:(1)再生剤NaOH中の不純物(NaCl)に
よつて生成する。(2)R−Naと同様分離が
不完全でSAR層中に残留したSBRがSAR
の再生剤であるHClと接触して生成する。
R-Cl: (1) Produced by impurities (NaCl) in the regenerant NaOH. (2) Similar to R-Na, SBR remaining in the SAR layer due to incomplete separation is SAR
It is produced when it comes into contact with HCl, which is a regenerating agent.

R−Na生成を少くする方法は種々研究され、
代表的には特許第1027750号によつてすでに解決
されている。R−Cl生成の主原因(1)はNaOHの
品質向上によつて問題は小さくなている。(2)につ
いては従来の技術では分離移送が不完全でSAR
層に全SBRの1〜2%程度のSBRが残留し、再
生毎にこれが蓄積されるため平衡状態では混合樹
脂層のR−Clは全SBRの20数%の値となつてい
る。
Various methods have been studied to reduce R-Na production.
Typically, this problem has already been solved by Patent No. 1027750. The main cause of R-Cl formation (1) has become less of a problem due to improved quality of NaOH. Regarding (2), with conventional technology, separation and transfer is incomplete and SAR
About 1 to 2% of the total SBR remains in the layer, and this is accumulated each time it is regenerated, so that in an equilibrium state, the R-Cl of the mixed resin layer is about 20% of the total SBR.

従来の樹脂の分離移送方法を第8図に基いて説
明する。逆洗によつて樹脂をSAR層1とSBR層
2の2層に分離した後塔下部のスルージング水管
3からスルージング水をLV2.5m/時程度で導入
し、SAR層1を若干流動させながら塔上部の加
圧水管4から加圧水又は加圧空気管6から加圧空
気を導入してSBRをアニオン再生塔へ移送する。
移送の際の移送管8の開口部は第8図では塔中心
軸上に設けられているが塔壁に設けられている場
合もあり、又樋を利用しているものもある。又開
口部の高さは両樹脂層の境界面の若干下部とする
のが普通である。
A conventional resin separation and transfer method will be explained with reference to FIG. After the resin is separated into two layers, SAR layer 1 and SBR layer 2, by backwashing, sluging water is introduced from the sluicing water pipe 3 at the bottom of the tower at a LV of about 2.5 m/hour to slightly fluidize SAR layer 1. Meanwhile, pressurized water is introduced from the pressurized water pipe 4 at the top of the tower, or pressurized air is introduced from the pressurized air pipe 6 to transfer the SBR to the anion regeneration tower.
Although the opening of the transfer pipe 8 during transfer is provided on the central axis of the tower in FIG. 8, it may be provided in the wall of the tower, or a gutter may be used in some cases. Further, the height of the opening is usually set to be slightly below the interface between the two resin layers.

このような移送を行う際には、第9図に示す如
く、SBR2′が数mm〜20数mm残留することは避け
られない。
When carrying out such a transfer, it is inevitable that SBR 2' remains in the range of several mm to 20-odd mm, as shown in FIG.

この理由は塔壁に近いSBR程移送管8の開口
部に達するのに時間がかかり、その間に開口部付
近の樹脂が移送され、かつ塔下部からのスルージ
ング水により樹脂面が平面となり、開口部と樹脂
層面との間にある距離が生じ、SBRは移送され
なくなつてしまうからである。
The reason for this is that the closer the SBR is to the tower wall, the longer it takes to reach the opening of the transfer pipe 8, during which time the resin near the opening is transferred, and the resin surface becomes flat due to sluicing water from the lower part of the tower, causing the opening of the SBR to become flat. This is because a certain distance is created between the part and the surface of the resin layer, and SBR is no longer transferred.

この現象はスルージング水量を増し、SAR層
の展開率を大きくしても、又開口部の高さ、形状
を変えても同じように起こりSBRの完全な分離
移送は達成されない。
This phenomenon occurs in the same way even if the amount of sluicing water is increased, the expansion rate of the SAR layer is increased, or the height and shape of the opening are changed, complete separation and transfer of SBR cannot be achieved.

これら残留したSBRはSARの再生剤のHClと
接触してR−Clが生成してしまう。
These remaining SBRs come into contact with HCl, which is a SAR regenerating agent, and R-Cl is generated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は前記(2)の問題を解決するものであり、
分離移送時残留するSBRを出来るだけ少くし、
イオン交換時における前記処理水質を向上せしめ
ようとするものである。
The present invention solves the problem (2) above,
Minimize the SBR remaining during separation and transfer as much as possible,
The purpose is to improve the quality of the treated water during ion exchange.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、比重の異なる2種類のイオン交換樹
脂を充填した塔において、逆洗によりイオン交換
樹脂を2層に分離した後塔上部から加圧水又は加
圧空気を、塔下部からスルージング水を導入して
大部分の比重の小さいイオン交換樹脂を樹脂移送
管により移送し、該移送後に比重の大きいイオン
交換樹脂層上に残留している少量の比重の小さい
イオン交換樹脂を更に分離移送する方法におい
て、 (A) 塔中央部を横断して2種類のイオン交換樹脂
層の境界面より下部に移送用スルージング管
を、該移送用スルージング管の中央部と十字に
交叉する位置関係で、両側に且つ塔壁の近くに
樹脂移送管を設け、 (B) 比重の大きいイオン交換樹脂を流動状態に保
ちながら、前記移送用スルージング管から上方
に向つて移送水を吹き出し、比重の小さいイオ
ン交換樹脂を前記樹脂移送管の開口部に移動さ
せつゝ、又は移動させた後樹脂移送管により移
送することを特徴とするイオン交換樹脂の分離
移送方法であつて、 従来の分離移送方法の問題点を解決すべく実用
規模の直径の大きい塔を用いて鋭意研究した結果
本発明をなすに到つた。
In the present invention, in a tower filled with two types of ion exchange resins with different specific gravity, after the ion exchange resin is separated into two layers by backwashing, pressurized water or pressurized air is introduced from the upper part of the tower, and sluicing water is introduced from the lower part of the tower. In this method, most of the ion exchange resin with low specific gravity is transferred through a resin transfer pipe, and after the transfer, a small amount of ion exchange resin with low specific gravity remaining on the ion exchange resin layer with high specific gravity is further separated and transferred. (A) A transfer sluging pipe is placed below the interface between the two types of ion exchange resin layers across the center of the column, with the transfer sluging pipe crisscrossing the center of the transfer pipe on both sides. (B) While keeping the ion exchange resin with a high specific gravity in a fluid state, the transfer water is blown upward from the transfer sluicing pipe to transfer the ion exchange resin with a low specific gravity. A method for separating and transferring an ion exchange resin, characterized in that the resin is transferred to the opening of the resin transfer tube, or is transferred through the resin transfer tube after being transferred, and the problems with the conventional separation and transfer method are as follows: In order to solve this problem, we conducted extensive research using a practical-scale column with a large diameter, and as a result, we arrived at the present invention.

以下、本発明を図面に基いて詳しく説明する。 Hereinafter, the present invention will be explained in detail based on the drawings.

本発明は第1図に示す如く比重の大きいSAR
層1の上に残留している比重の小さいSBR2′を
分離移送するに当つて、境界面の下部に設けられ
た塔中央を横断する移送用スルージング管7と、
これに十字に交叉するような位置関係で開口部
8′,8″を有する樹脂移送管8,8を夫々設け、
塔下部集水装置から管3を経て低流速逆洗水を導
入してSARを流動状態としながら、前記移送用
スルージング管7からも上方向に水を吹き出させ
ることにより、第7図に斜線で示すように樹脂移
送管8,8の開口部8′,8″周辺にSBRが集つ
てきたところを移送してしまうものである。5は
逆洗水排出管である。すなわち、本発明はSAR
を流動状態とし、かつ更にSAR層の中央部から
水を上向に吹き出させることによりSBRを移送
管8,8の開口部8′,8″まわりに集めるように
したものである。
The present invention uses SAR with high specific gravity as shown in Figure 1.
In order to separate and transfer the SBR 2' with a low specific gravity remaining on the layer 1, a sluging pipe 7 for transfer that crosses the center of the column is provided at the lower part of the interface;
Resin transfer pipes 8, 8 having openings 8', 8'' are provided therein in a criss-crossing positional relationship, respectively.
By introducing low-flow backwash water from the lower part of the tower through the pipe 3 to bring the SAR into a fluid state, water is also blown upward from the transfer sluging pipe 7, so that the diagonal line in Fig. 7 is achieved. As shown in , SBR is transferred to the area where SBR has gathered around the openings 8' and 8'' of the resin transfer pipes 8 and 8. 5 is a backwash water discharge pipe. That is, the present invention SAR
The SBR is brought into a fluid state and water is blown upward from the center of the SAR layer to collect SBR around the openings 8', 8'' of the transfer pipes 8, 8.

本発明で最も重要なのは移送用スルージング管
から上向に吹出させる水の流速である。この流速
が大きすぎるとSBR樹脂層2′の流れが開口部
8′,8″には向うが塔壁にぶつかり反転流となつ
てしまうことである。この反転流が生ずると一度
集つたSBRが再び分散してしまう。この流速は
実験の結果LV0.5〜2m/時と極く小さい流れば
よいことがわかつた。
The most important aspect of the present invention is the flow rate of water blown upward from the transfer sluging pipe. If this flow rate is too high, the flow of the SBR resin layer 2' will flow toward the openings 8' and 8'', but it will hit the tower wall and become a reverse flow. When this reverse flow occurs, the SBR that has once collected will As a result of experiments, it was found that this flow velocity should be as small as LV 0.5 to 2 m/hour.

更に、移送用スルージング管7からの水の吹き
出しをかんけつ的に行う方が反転流の生ずる危険
がほとんどないことを見い出した。水の吹き出し
5〜30秒、休止15〜60秒のようにかんけつ的に行
うと吹き出し時は移送用スルージング管7の真上
の樹脂面が第6図に示す如く若干もり上がる。こ
れをかんけつ的に行うためSBR2′は波状になつ
て開口部に向うがこの波は開口部8′,8″近くで
はほとんどなくなるようにするのが最もよい状態
であり、このようにすることにより第7図に示す
ようにSBRが樹脂移送管8,8の開口部8′,
8″のまりによく集中してくる。樹脂2′が第7図
に示すように樹脂移送管開口部8′,8″に集まつ
た時点で樹脂移送管8,8の樹脂移送管弁9を開
とし集中したSBRをいつきに移送することがで
きる。移送中も移送用スルージング管7からの水
の吹き出しは続けるのが好ましい。
Furthermore, it has been found that there is almost no risk of reverse flow occurring when the water is blown out from the transfer sluging pipe 7 in a continuous manner. If the water is blown out repeatedly for 5 to 30 seconds and paused for 15 to 60 seconds, the resin surface directly above the transfer sluging pipe 7 will rise slightly as shown in FIG. 6. In order to do this completely, the SBR2' becomes wavy and moves toward the opening, but the best condition is for this wave to almost disappear near the openings 8' and 8'', so do it like this. As shown in FIG.
When the resin 2' gathers at the resin transfer pipe openings 8', 8'' as shown in FIG. 7, the resin transfer pipe valve 9 of the resin transfer pipes 8, 8 It is possible to open and transport concentrated SBR at any time. It is preferable to continue blowing out water from the transfer sluging pipe 7 during transfer.

すなわち本発明は 1 比重の大きい樹脂層SAR1を逆洗水により
流動状態とし、 2 該樹脂層の中間に設けた移送用スルージング
管7から更に水を上部に吹き出し、 3 比重の小さい樹脂SBR2を第7図に示す如
く移送管8,8の開口部8′,8″に集め、 4 ついで移送を行う 以上1)〜4)の各工程を組み合わせたもので
ある。これら一連の工程を1回だけ行つても大部
分のSBRは移送されてしまうが確実にかつ完全
に移送するためには上記工程を数回くり返すのが
好ましい。樹脂移送管8,8の開口部8′,8″に
示す如く、移送用スルージング管の中心部に直角
に交叉する位置に設ける。これがずれると集中し
ているSBRの中心から開口部がずれることにな
り完全な移送がしにくくなる。開口部の高さは
SAR層1の逆洗展開率を考慮しながら移送後残
つているSARに定量性があるように決定してお
けばよい。通常逆洗展開率を大きくするとSAR
の定量性に誤差が生じやすいので、逆洗流体が
LV3〜5m/時の範囲内の条件となるようにして
おくのが好ましい。開口部の形状は第7図に示す
SBRの集中状態に合わせて曲管状のものを用い
てもよい。
In other words, the present invention includes the following steps: 1. Bringing the resin layer SAR1, which has a high specific gravity, into a fluidized state by backwashing water; 2. Blowing water further upward from the transfer sluging pipe 7 provided in the middle of the resin layer; and 3. Bringing the resin SBR2, which has a low specific gravity, into a fluid state. As shown in Fig. 7, the liquid is collected at the openings 8' and 8'' of the transfer pipes 8 and 8, and then transferred.This is a combination of each of the steps 1) to 4) above.These series of steps are performed once. Most of the SBR will be transferred even if the resin transfer pipes 8, 8, 8' and 8'' are transferred, but in order to ensure and complete transfer, it is preferable to repeat the above process several times. As shown, it is installed at a position perpendicular to the center of the transfer sluging pipe. If this shifts, the opening will shift from the center of the concentrated SBR, making complete transfer difficult. The height of the opening is
It is sufficient to determine the amount of SAR remaining after transfer while considering the backwash development rate of the SAR layer 1 so that it is quantitative. Normally, when the backwash development rate is increased, SAR
Since errors are likely to occur in the quantitative nature of
It is preferable to keep the conditions within the range of LV3 to 5m/hour. The shape of the opening is shown in Figure 7.
A curved tube shape may be used depending on the concentration state of SBR.

移送用スルージング管7の位置は樹脂境界面か
ら300〜600mm下でよく、この距離が小さいと水の
吹き出しが突沸状態となり、又大きすぎると水の
吹き出しが拡散してしまい効果が小さくなる。移
送用スルージング管7は第2図に示す如く1本で
も、或いは第3図に示す如く2本設けてもよい。
水の均一分散を考慮すると塔径の大きい場合は第
3図に示す如く2本設けるのが好ましい。いずれ
にしても2ケの開口部に向つてSBRの流れが作
り出せるものであればよい。
The position of the transfer sluging pipe 7 may be 300 to 600 mm below the resin boundary surface; if this distance is too small, the water jets will be in a bumping state, and if this distance is too large, the water jets will diffuse and the effect will be reduced. The number of the transfer sluging pipes 7 may be one as shown in FIG. 2, or two as shown in FIG. 3.
In consideration of uniform dispersion of water, if the diameter of the column is large, it is preferable to provide two columns as shown in FIG. In any case, it is sufficient as long as it can create a flow of SBR toward the two openings.

以下本発明を復水脱塩装置の分離塔を例にし
て、工程毎に詳しく説明する。
Hereinafter, the present invention will be explained in detail for each step using a separation column of a condensate desalination apparatus as an example.

第4図は本発明の実施態様の一例を示す説明図
である。
FIG. 4 is an explanatory diagram showing an example of an embodiment of the present invention.

なお、同じ名称のものについては第1図及び第
8図と同一符号を付した。
Components with the same names are given the same reference numerals as in FIGS. 1 and 8.

脱塩塔(図示せず)から移送されてきた混合樹
脂を分離塔10において逆洗水流入弁11、逆洗
排水弁12を開としてLV8〜10m/時で十分に逆
洗分離を行つた後弁11及び12を閉とする。沈
静後スルージング水弁13を開としLV0.7〜
1.5m/時でスルージング水を導入し、かつ塔上
部の加圧水弁16、樹脂移送管8,8の弁9,9
を開とし、大部分のSBR2をアニオン再生塔
(図示せず)に移送する。
After the mixed resin transferred from the demineralization tower (not shown) is thoroughly backwashed and separated in the separation tower 10 by opening the backwash water inlet valve 11 and the backwash drain valve 12 at a rate of LV8 to 10 m/hour. Valves 11 and 12 are closed. After calming down, open the sluicing water valve 13 and LV0.7~
Slewing water is introduced at a rate of 1.5 m/hour, and the pressurized water valve 16 at the top of the tower and the valves 9 and 9 of the resin transfer pipes 8 and 8
is opened and most of the SBR2 is transferred to an anion regeneration tower (not shown).

スルージング水流速をLV0.7〜1.5m/時と小さ
くすると、SAR層はほとんど実質的に流動せず
SBR層のみが若干流動している。このような移
送を行うと樹脂面は塔中央部から樹脂移送管8,
8の開口部に向けて傾斜しているが均一にしたと
すると第5図に示す如く、開口部8′,8″は
SAR層内に入つている状態となる位置にある。
この流速を大きくするとその分SAR層の逆洗展
開率が大きくなり、アニオン再生塔へ移送される
SARが多くなり、第5図に示す如く開口部と層
表面との距離l′が小さくなり、残留したSBR2の
完全な移送には好ましくない。
When the sluging water flow rate is reduced to LV 0.7 to 1.5 m/hour, the SAR layer virtually does not flow.
Only the SBR layer is slightly fluid. When such a transfer is performed, the resin surface is transferred from the center of the tower to the resin transfer pipe 8,
8, but if it were made uniform, the openings 8' and 8'' would be as shown in Figure 5.
It is located within the SAR layer.
When this flow rate is increased, the backwash expansion rate of the SAR layer increases accordingly, and the SAR layer is transferred to the anion regeneration tower.
SAR increases, and the distance l' between the opening and the layer surface decreases as shown in FIG. 5, which is not preferable for complete transfer of the remaining SBR2.

次いで弁9,9、スルージング水弁13及び加
圧水弁16を閉とし、逆洗排水弁12、低流速逆
洗弁14を開とし、LV3.5〜4.5m/時でSAR層
を流動状態とする。そして本発明の方法によつて
残留SBRを移送する。低流速逆洗弁14の開度
は水温等を考慮し、常に一定のSARの展開率と
なるようにコントロールすることが重要である。
Next, the valves 9, 9, sluicing water valve 13, and pressurized water valve 16 were closed, and the backwash drain valve 12 and low flow rate backwash valve 14 were opened to bring the SAR layer into a fluid state at LV 3.5 to 4.5 m/hour. do. The residual SBR is then transferred by the method of the present invention. It is important to control the opening degree of the low-flow backwash valve 14 so that the SAR development rate is always constant, taking into consideration the water temperature, etc.

次いで移送用スルージング水弁15を開とし、
LV0.5〜2m/時で移送用スルージング水を移送
用スルージング管7より導入し、上部に向つて吹
き出させる。すると第6図に示す如く吹き出し部
の樹脂層が盛り上がり、第7図に示す如きSBR
の流れができSBRはしだいに開口部に集まつて
いく。この工程は0.5〜2分程度でよい。
Next, the transfer sluicing water valve 15 is opened, and
Transfer sluging water is introduced from the transfer sluging pipe 7 at a LV of 0.5 to 2 m/hour and is blown out toward the top. Then, as shown in Fig. 6, the resin layer at the blown part rises, and the SBR as shown in Fig. 7 is formed.
A flow is formed and the SBR gradually gathers at the opening. This step may take about 0.5 to 2 minutes.

次いで弁12を閉、弁9,9,16を開とし、
開口部に集つたSBRを移送してしまう。移送用
スルージング水管7からは移送用スルージング水
を連続的に吹き出してもよいが流速が大きいと塔
壁にぶつかつて反転流がSBRが集まりにくいこ
とがあり、この危険を避けるため吹き出しを間欠
的に行うのが好ましい。
Then, valve 12 is closed, valves 9, 9, and 16 are opened,
This will transport the SBR that has gathered at the opening. The sluging water for transfer may be continuously blown out from the sluging water pipe 7, but if the flow velocity is high, it may collide with the tower wall and the reverse flow may make it difficult for SBR to collect. It is preferable to do so.

吹き出し5〜30秒休止15〜60秒を間欠的に吹き
出すとLV1.5〜2.5m/時と流量を大きくしても第
7図に示す状態が容易に達成される。
If the air is blown intermittently for 5 to 30 seconds with a pause of 15 to 60 seconds, the state shown in FIG. 7 can be easily achieved even if the flow rate is increased to LV1.5 to 2.5 m/hour.

このような移送を数回くり返すことにより、残
留SBRは完全にアニオン再生塔に移送されてし
まう。
By repeating such transfer several times, the residual SBR is completely transferred to the anion regeneration tower.

くり返す工程をまとめると下記の如くである。 The repeated steps are summarized as follows.

開状態の弁 時間 逆洗分離 11,12 3〜5分 移送(1) (SBRをあつめる工程) 12,14,15 1〜2分 移送(2) (移送) 16,9,14,15 1〜2分 なお、本実施態様においては、開口部に移動さ
せたのち、移送管から移送する方法を示したが、
移動させつつ移送することも可能である。
Valve in open state Time backwash separation 11, 12 3 to 5 minutes transfer (1) (SBR gathering process) 12, 14, 15 1 to 2 minutes transfer (2) (Transfer) 16, 9, 14, 15 1 to 2 minutes In addition, in this embodiment, a method was shown in which the material was moved to the opening and then transferred from the transfer pipe.
It is also possible to transfer while moving.

以下に本発明の効果を明確にするために比較例
並びに実施例を説明する。
In order to clarify the effects of the present invention, comparative examples and examples will be described below.

比較例1 (従来法) 内径1800φ、高さ5000mmの分離塔にSARとして
Dowex TG650C(登録商標)4500l、SBRとして
Dowex TG550A(登録商標)2000lの混合樹脂を
充てんし、塔下部か逆洗水をLV10m/時で導入
し樹脂を2層に分離した。
Comparative Example 1 (Conventional method) As SAR in a separation column with an inner diameter of 1800φ and a height of 5000mm
Dowex TG650C(R) 4500l, as SBR
It was filled with 2000 liters of Dowex TG550A (registered trademark) mixed resin, and backwash water was introduced from the bottom of the column at a LV of 10 m/hour to separate the resin into two layers.

ついで、塔下部からのスルージング水を
LV2.5m/時で導入し、同時に塔上部から加圧水
をLV4m/時で導入した。樹脂移送管の開口部は
塔中心軸上の1ケ所とし、75φのものを用いた。
又開口部の位置は樹脂境界面から100mm下部にな
るように設けた。
Next, the sluicing water from the bottom of the tower is
The water was introduced at a LV of 2.5 m/hour, and at the same time pressurized water was introduced from the top of the tower at a LV of 4 m/hour. The resin transfer pipe had one opening on the central axis of the tower, and had a diameter of 75φ.
The opening was located 100 mm below the resin interface.

移送後残留したSBRは全SBRの0.5〜0.6%であ
つた。
The SBR remaining after transfer was 0.5-0.6% of the total SBR.

残留SBRの調査方法 移送後LV10m/時で40分間逆洗後、表層にあ
つまつたSBRをすべてかきとり、体積を測定し
た。
Investigation method for residual SBR After transfer, backwashing was performed for 40 minutes at a LV of 10 m/hour, all the SBR that had accumulated on the surface was scraped off, and the volume was measured.

実施例 1 比較例1と同じ大きさの塔を用いた。樹脂を比
較例1と同様に2層に分離した後塔下部からのス
ルージング水をLV1.2m/時、塔上部からの加圧
水をLV4m/時で導入してSBRの大部分を移送
し、次いで残留SBRの移送を行つた。
Example 1 A tower of the same size as Comparative Example 1 was used. After separating the resin into two layers in the same manner as in Comparative Example 1, sluicing water from the bottom of the column was introduced at a LV of 1.2 m/hour and pressurized water from the top of the column was introduced at a rate of LV 4 m/hour to transfer most of the SBR. The remaining SBR was transferred.

樹脂移送管開口部は第4図に示す如く2ケ所と
し、他の条件は比較例1と同じである。
There were two resin transfer tube openings as shown in FIG. 4, and the other conditions were the same as in Comparative Example 1.

<残留SBRの移送> 低流速逆洗水をLV4m/時で導入、SARを流
動状態とした。更に樹脂分離面の450mm下部に設
けた移送用スルージング水管(1本)から塔中央
を横断して水の吹き出しをLV1m/時で連続的に
1分間行い、ついで移送を1分間行つた。ついで
LV5m/時で逆洗分離を3分間行つた後前記と同
様に残留SBRの移送行つた。これらの工程をく
り返し3回行つた。くり返し後前記移送のみを10
分間行つた。
<Transfer of residual SBR> Low-flow backwash water was introduced at LV4m/hour to bring SAR into a fluid state. Furthermore, water was continuously blown out for 1 minute at a LV of 1 m/hour from a sluicing water pipe (one) for transfer provided 450 mm below the resin separation surface across the center of the column, and then transferred for 1 minute. Then
After performing backwash separation for 3 minutes at LV5 m/hr, residual SBR was transferred in the same manner as above. These steps were repeated three times. After repeating the above transfer only 10 times
I went for a minute.

残留したSBRは全SBRの0.02〜0.035%であつ
た。
The residual SBR was 0.02-0.035% of the total SBR.

実施例 2 実施例1において移送用スルージング水の吹き
出しを15秒、休止を15秒とかんけつ的に行つた以
外は実施例1と同様に残留SBRの移送を行つた。
残留したSBRは全てSBRの0.015〜0.025%であつ
た。
Example 2 The residual SBR was transferred in the same manner as in Example 1, except that the sluicing water for transfer was blown out intermittently for 15 seconds and paused for 15 seconds.
All residual SBR was 0.015-0.025% of SBR.

実施例 3 実施例1と同じ方法で、充てん樹脂を下記の構
成とした。
Example 3 Using the same method as in Example 1, the filling resin had the following configuration.

SAR:Dowex HGR−W2 SBR:Dowex TG 550A 残留したSBRは全SBRの0.02〜0.035であつた。 SAR: Dowex HGR−W2 SBR: Dowex TG 550A The residual SBR was 0.02 to 0.035 of the total SBR.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く本発明法によれば残留する
SBRは従来法の1/15〜1/40に減少できる。それ
故生成するR−Cl(塩素型アニオン樹脂)の量を
少くでき処理水質が大きく向上した。
As mentioned above, according to the method of the present invention, residual
SBR can be reduced to 1/15 to 1/40 of conventional methods. Therefore, the amount of R-Cl (chlorine type anion resin) produced can be reduced and the quality of treated water can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を説明するためのイオン交
換樹脂分離塔の一例を縦面概略図、第2図は第1
図のA−A′線における横断面図、第3図は第2
図における移送用スルージング管を2本設けた場
合を示す図、第4図は本発明を更に詳しく説明す
るための本発明で用いるイオン交換樹脂分離塔の
断面概略図、第5図は樹脂移送管の開口部の位置
を説明するための図、第6図及び第7図は比重の
軽いイオン交換樹脂を更に分離する場合の該樹脂
の流れ(移動状態)を説明するための図、第8図
は従来のイオン交換樹脂の分離方法を説明するた
めの樹脂分離塔の一例の縦断面概略図、第9図は
比重の重いイオン交換樹脂層上に少量残留してい
る比重の軽い樹脂の状態を説明するための図であ
る。 1…SAR層、2…SBR層、3…スルージング
水管、4…加圧水管、5…逆洗排水管、6…加圧
空気管、7…樹脂移送用スルージング管、8…樹
脂移送管、9…樹脂移送弁、10…イオン交換樹
脂分離塔、11…逆洗水流入弁、12…逆洗水排
出弁、13…スルージング水弁、16…加圧水
弁、14…低流速逆洗弁、15…移送用スルージ
ング弁。
Fig. 1 is a schematic vertical view of an example of an ion exchange resin separation column for explaining the method of the present invention, and Fig.
A cross-sectional view taken along the line A-A' in the figure.
Figure 4 is a schematic cross-sectional view of the ion exchange resin separation column used in the present invention to explain the present invention in more detail, Figure 5 is a resin transfer Figures 6 and 7 are diagrams for explaining the positions of the openings of the tubes; Figures 6 and 7 are diagrams for explaining the flow (moving state) of the resin when the ion exchange resin with a light specific gravity is further separated; The figure is a schematic vertical cross-sectional view of an example of a resin separation column to explain the conventional separation method of ion exchange resin, and Figure 9 shows the state of a small amount of resin with a light specific gravity remaining on the ion exchange resin layer with a heavy specific gravity. FIG. 1... SAR layer, 2... SBR layer, 3... Sluging water pipe, 4... Pressurized water pipe, 5... Backwash drain pipe, 6... Pressurized air pipe, 7... Sluging pipe for resin transfer, 8... Resin transfer pipe, 9 ...Resin transfer valve, 10...Ion exchange resin separation tower, 11...Backwash water inflow valve, 12...Backwash water discharge valve, 13...Sluicing water valve, 16...Pressurized water valve, 14...Low flow rate backwash valve, 15 ...Transfer sluicing valve.

Claims (1)

【特許請求の範囲】 1 比重の異なる2種類のイオン交換樹脂を充填
した塔において、逆洗によつてイオン交換樹脂を
2層に分離した後塔上部から加圧水又は加圧空気
を、塔下部からスルージング水を導入して大部分
の比重の小さいイオン交換樹脂を樹脂移送管によ
り移送し、該移送後に、比重の大きいイオン交換
樹脂層上に残留している少量の比重の小さいイオ
ン交換樹脂を更に分離移送する方法において、 (A) 塔中央部を横断して2種類のイオン交換樹脂
層の境界面より下部に移送用スルージング管
を、該移送用スルージング管と十字に交叉する
位置関係で、両側に且つ塔壁の近くに開口を有
する樹脂移送管を設け、 (B) 比重の大きいイオン交換樹脂を流動状態に保
ちながら、前記移送用スルージング管から上方
に向つて移送水を吹き出し比重の小さいイオン
交換樹脂を前記樹脂移送管の開口部に移動させ
つゝ、又は移動させた後樹脂移送管により移送
することを特徴とするイオン交換樹脂の分離移
送方法。 2 移送用スルージング管から上の方向への移送
水の吹出しを間歇的に行う特許請求の範囲第1項
記載の方法。
[Claims] 1. In a tower filled with two types of ion exchange resins with different specific gravities, after the ion exchange resins are separated into two layers by backwashing, pressurized water or pressurized air is supplied from the upper part of the tower and from the lower part of the tower. Sluicing water is introduced to transfer most of the ion exchange resin with low specific gravity through the resin transfer pipe, and after the transfer, a small amount of ion exchange resin with low specific gravity remaining on the ion exchange resin layer with high specific gravity is removed. Furthermore, in the method of separating and transferring, (A) a positional relationship in which a transfer sluging pipe is placed below the interface between the two types of ion exchange resin layers across the center of the column and intersects with the transfer sluging pipe in a criss-cross manner; (B) While maintaining the ion exchange resin having a large specific gravity in a fluid state, transfer water is blown upward from the transfer sluging pipe. A method for separating and transferring an ion exchange resin, characterized in that an ion exchange resin having a small specific gravity is transferred to the opening of the resin transfer tube, or after being transferred, the resin is transferred by the resin transfer tube. 2. The method according to claim 1, wherein the transfer water is intermittently blown upward from the transfer sluging pipe.
JP61253774A 1986-10-27 1986-10-27 Method for separating and transferring ion exchange resin Granted JPS63107753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61253774A JPS63107753A (en) 1986-10-27 1986-10-27 Method for separating and transferring ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61253774A JPS63107753A (en) 1986-10-27 1986-10-27 Method for separating and transferring ion exchange resin

Publications (2)

Publication Number Publication Date
JPS63107753A JPS63107753A (en) 1988-05-12
JPH0516314B2 true JPH0516314B2 (en) 1993-03-04

Family

ID=17255956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61253774A Granted JPS63107753A (en) 1986-10-27 1986-10-27 Method for separating and transferring ion exchange resin

Country Status (1)

Country Link
JP (1) JPS63107753A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7124397B2 (en) * 2018-04-09 2022-08-24 栗田工業株式会社 Cation exchange resin regeneration tower

Also Published As

Publication number Publication date
JPS63107753A (en) 1988-05-12

Similar Documents

Publication Publication Date Title
US3617558A (en) Layered ion exchange process
Calmon Recent developments in water treatment by ion exchange
EP0273339B1 (en) Method of separating and transferring ion-exchange resin
JPH0516314B2 (en)
JPH0312952B2 (en)
Bolto et al. Desalination by continuous ion exchange based on thermally regenerable magnetic microresins
US3585127A (en) Method for treating water by ion exchange
JPH0661466B2 (en) Separation and transfer method of ion exchange resin
JPS5815016B2 (en) How to clean ion exchange resin
JPS63147556A (en) Separating and transporting method for ion exchange resin
JP4356987B2 (en) Condensate demineralization treatment method and apparatus and method for forming packed bed thereof
CN216191556U (en) Boiler water making system
JP2654053B2 (en) Condensate desalination equipment
JP2002018433A (en) Ion exchanger
JPH0999244A (en) Method for separating and regenerating ion exchange resin
Harries Water purification by ion exchange mixed beds
KR100409207B1 (en) An ion magnetization soft water apparatus
JPH0677687B2 (en) Regeneration method of ion exchange resin
JPS61157390A (en) Desalting apparatus
JPH0254137B2 (en)
Calmon et al. Preparation of ultrapure water
JPH047261B2 (en)
JPH046422B2 (en)
JPS5815177B2 (en) How to regenerate mixed ion exchange resin
US20020104802A1 (en) System and methods for regeneration of mixed bed demineralizers