JPS5815177B2 - How to regenerate mixed ion exchange resin - Google Patents

How to regenerate mixed ion exchange resin

Info

Publication number
JPS5815177B2
JPS5815177B2 JP53112515A JP11251578A JPS5815177B2 JP S5815177 B2 JPS5815177 B2 JP S5815177B2 JP 53112515 A JP53112515 A JP 53112515A JP 11251578 A JP11251578 A JP 11251578A JP S5815177 B2 JPS5815177 B2 JP S5815177B2
Authority
JP
Japan
Prior art keywords
exchange resin
collector
ion exchange
resin
anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53112515A
Other languages
Japanese (ja)
Other versions
JPS5539255A (en
Inventor
横田憲二
宮田栄二
菅原豊和
草野裕志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP53112515A priority Critical patent/JPS5815177B2/en
Publication of JPS5539255A publication Critical patent/JPS5539255A/en
Publication of JPS5815177B2 publication Critical patent/JPS5815177B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 本発明は復水の脱塩処理に使用した陽イオン交換樹脂と
陰イオン交換樹脂からなる混合イオン交換樹脂であって
陽イオン交換樹脂の負荷形含率が0.1〜30%、陰イ
オン交換樹脂の負荷形含率が5〜40%であるものを再
生する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a mixed ion exchange resin consisting of a cation exchange resin and an anion exchange resin used for desalination treatment of condensate, wherein the loaded content of the cation exchange resin is 0.1. 30%, and the loaded content of anion exchange resin is 5 to 40%.

従来から脱塩水を製造する方法として陰イオン交換樹脂
及び陽イオン交換樹脂を混合して使用する所謂混床式脱
塩法が使用されている。
BACKGROUND ART Conventionally, a so-called mixed bed desalination method in which an anion exchange resin and a cation exchange resin are used in combination has been used as a method for producing desalinated water.

この方法では、樹脂の再生は、樹脂の下方からの水流を
利用して陰陽両イオン交換樹脂を分離する逆洗分離工程
、分離された陰陽両イオン交換樹脂をそれぞれアルカリ
及び酸で再生する再生工程、再生された樹脂を水で洗浄
する洗浄工程及び両樹脂を混合する混合工程を経て行わ
れる。
In this method, the resin is regenerated through a backwash separation step in which the anionic and anionic ion exchange resins are separated using a water flow from below the resin, and a regeneration step in which the separated anionic and anionic ion exchange resins are regenerated with alkali and acid, respectively. , a washing step of washing the regenerated resin with water, and a mixing step of mixing both resins.

ここで、上記逆洗分離工程では、樹脂比重の差及び樹脂
粒径の差を利用して、陰イオン交換樹脂が上部層に、陽
イオン交換樹脂が下部層に位置するよう樹脂の分離が行
われるが、樹脂層の分離境界付近では常に少量の樹脂が
相互に混合し、完全に分離することは不可能である。
In the above backwash separation step, the resins are separated using the difference in resin specific gravity and the difference in resin particle size so that the anion exchange resin is located in the upper layer and the cation exchange resin is located in the lower layer. However, a small amount of resin always mixes with each other near the separation boundary of the resin layers, making it impossible to completely separate them.

従来は通常、このように不完全に分離された状態の両樹
脂の分離境界面付近に、再生剤の集配水コレクターを一
基設置し、このコレクターから陰陽両イオン交換樹脂の
再生薬剤を注入又は抜出すことによって両樹脂の再生を
行なっていた。
Conventionally, a water collector for collecting and distributing a regenerating agent was usually installed near the separation interface between the two resins in such an incompletely separated state, and the regenerating agent for the anionic and anionic ion exchange resin was injected from this collector. Both resins were recycled by extracting them.

しかしこの方法では、不完全分離によってコレクターよ
り上部に位置する陽イオン交換樹脂は陰イオン交換樹脂
の再生剤、例えば水酸化ナトリウム水溶液と接触してN
a負荷形となり、一方コレクターより下部に位置する陰
イオン交換樹脂は、陽イオン交換樹脂の再生剤、例えば
塩酸水溶液と接触してCノ負荷形となり、再生操作の本
来の目的である陽イオン交換樹脂をH形に、陰イオン交
換樹脂をOH形にする目的を著しく逸脱することが多か
った。
However, in this method, due to incomplete separation, the cation exchange resin located above the collector is contacted with a regenerant for the anion exchange resin, such as an aqueous sodium hydroxide solution, and N
On the other hand, the anion exchange resin located below the collector becomes a C-loaded type when it comes into contact with a regenerating agent for the cation exchange resin, such as an aqueous hydrochloric acid solution, and becomes a C-loaded type, which is the original purpose of the regeneration operation. In many cases, the purpose of converting the resin into the H form and the anion exchange resin into the OH form was significantly deviated from.

また近年、超臨界圧ボイラーや原子力発電に於ける復水
処理に於て、ボイラーや蒸気発生器の材質腐食事故を防
ぐため、極めて高純度の処理水質が要求されるようにな
っており、例えば、加圧水型原子力発電所の復水処理で
は処理水質の管理目標を、ナl−IJウムイオン0.0
7 ppb以下、塩素イオン0.15 ppb以下にお
こうとしているがこのような処理水質を達成するために
は、混床式脱塩処理に使用するイオン交換樹脂の再生形
含率(強酸性陽イオン交換樹脂のH彫金率、強塩基性陰
イオン交換樹脂のOHH形率)をかなり高くする必要が
あり、例えば通常用いられる復水脱塩処理の条件下では
、陽イオン交換樹脂のNa形含率は5%以下、陰イオン
交換樹脂のC1形含率は30%程度以下とする必要があ
り、一本の集配水コレクターによる再生方法では上述の
再生型含率に到達することは困難である。
In addition, in recent years, in condensate treatment for supercritical pressure boilers and nuclear power generation, extremely high purity treated water has been required to prevent material corrosion accidents in boilers and steam generators. In the condensate treatment of pressurized water nuclear power plants, the management target for treated water quality is
7 ppb or less and chlorine ions to 0.15 ppb or less, but in order to achieve such treated water quality, the recycled content of the ion exchange resin used for mixed bed desalination treatment (strong acid positive It is necessary to increase the H engraving rate of the ion exchange resin and the OHH type rate of the strongly basic anion exchange resin. The C1 content of the anion exchange resin needs to be about 30% or less, and it is difficult to reach the above-mentioned recycled content using a regeneration method using a single water collector. .

また、超臨界圧ボイラーや原子力発電装置に於ける復水
処理では処理水のイオン濃度を極めて低くする必要があ
るため、一般の地下水や水道水の脱塩処理に於いては、
はぼイオン交換能力いっばいまで原水を処理した後、樹
脂を再生するのに対し、復水の脱塩処理に於いては樹脂
層の圧密化又は懸濁物質の蓄積による樹脂床の圧力損失
の増加した時点、又は、ある一定量通液した時点で通水
を打切り、イオン交換能力をかなり残した状態で樹脂を
再生するのが一般的である。
In addition, in condensate treatment in supercritical pressure boilers and nuclear power generation equipment, it is necessary to reduce the ion concentration of the treated water to an extremely low level, so in the desalination treatment of general groundwater and tap water,
While resin is regenerated after raw water is treated to the fullest ion exchange capacity, in condensate desalination treatment, pressure loss in the resin bed due to compaction of the resin bed or accumulation of suspended solids is Generally, the flow of water is stopped when the amount of water increases or when a certain amount of water has been passed, and the resin is regenerated with a considerable amount of ion exchange capacity remaining.

従って、復水の脱塩処理を行った後の陰陽側イオン交換
樹脂の負荷形含率はかなり低く、通常、陽イオン交換樹
脂で0.1〜30%、陰イオン交換樹脂で5〜40%程
度である。
Therefore, the loaded content of the anion-side ion exchange resin after condensate desalination treatment is quite low, usually 0.1 to 30% for cation exchange resins and 5 to 40% for anion exchange resins. That's about it.

このような両樹脂を一本の集配水コレクターによる再生
方法によって再生した場合、例えばコレクターより上部
に陽イオン交換樹脂の5%が存在していれば、この部分
の陽イオン交換樹脂は陰イオン交換樹脂の再生剤である
水酸化ナトリウムと接触してNa負荷形となり、例えコ
レクターより下部の陽イオン交換樹脂か100%再生さ
れたとしても陽イオン交換樹脂全体としての再生率は9
5%、即ち再生後の負荷形含率は5%となり、場合によ
っては、再生操作によって負荷形含率が増加するという
矛盾を生じることもある。
If both of these resins are regenerated using a single water collector, for example, if 5% of the cation exchange resin is present above the collector, the cation exchange resin in this area will be anion exchange resin. When it comes into contact with sodium hydroxide, a resin regenerating agent, it becomes Na-loaded, and even if the cation exchange resin below the collector is 100% regenerated, the regeneration rate of the cation exchange resin as a whole is 9.
5%, that is, the loaded type content after regeneration is 5%, and depending on the case, a contradiction may occur in that the loaded type content increases due to the regeneration operation.

このような現象はコレクター下部に陰イオン交換樹脂が
存在する場合も同様に起り得る。
Such a phenomenon can similarly occur when an anion exchange resin is present in the lower part of the collector.

従来法のコレクター1本による方法で、上述の様な不都
合な現象をできるだけ小さくする為には、コレクター位
置を両樹脂の分離界面に厳密に合せる必要があるが、復
水脱塩装置に於ては、再生は脱塩時に使用する樹脂塔と
は別の再生塔に樹脂を移送して行うのが普通であり、樹
脂の不完全移送によって、各再生時に再生塔に移送され
る樹脂体積の多少の変動はさけられず、又イオン交換樹
脂はその対イオン形や外液のイオン強度によって多少の
体積変化を示すものであり、従って本質的に樹脂の体積
によって決まる分離界面位置も変動し、コレクターと分
離界面を常に一致させることは非常に困難である。
In the conventional method using a single collector, in order to minimize the above-mentioned disadvantageous phenomena, it is necessary to precisely align the collector position with the separation interface between the two resins, but in the condensate desalination equipment, Normally, regeneration is carried out by transferring the resin to a regeneration tower separate from the resin tower used during desalination, and due to incomplete transfer of resin, some of the resin volume transferred to the regeneration tower during each regeneration is In addition, ion exchange resins exhibit some volume changes depending on their counterion type and the ionic strength of the external liquid, so the separation interface position, which is essentially determined by the resin volume, also changes, causing collector It is very difficult to always match the separation interface with the separation interface.

本発明者らは陰陽側イオン交換樹脂を逆洗分離した場合
、両樹脂の分離境界面より離れるに従って、陰陽側イオ
ン交換樹脂は次第に純粋状態で存在し、実質的に純粋な
状態にある陰および陽イオン交換樹脂層と両樹脂の分離
界面を含む混合状態にあるイオン交換樹脂層との三層に
分離することができ、ボイラーの復水処理の様な通常極
めて不純物濃度の低い原水を処理して、非常に高純度の
処理水を得ることを目的とする混床式脱塩装置において
は、混合状態にあるイオン交換樹脂層の樹脂には再生薬
剤を接触させない、即ち再生しない方が、脱塩装置の樹
脂全体としての再生率が向上することに着目し、鋭意検
討した結果、本発明に到達した。
When the present inventors backwashed and separated the anion-side ion exchange resin, the anion-side ion-exchange resin gradually existed in a pure state as the distance from the separation interface between both resins increased, and the anion and anion side ion-exchange resins were in a substantially pure state. It can be separated into three layers: a cation exchange resin layer and an ion exchange resin layer in a mixed state that includes the separation interface between both resins, and can be used to treat raw water that usually has an extremely low concentration of impurities, such as boiler condensate treatment. Therefore, in a mixed bed desalination equipment whose purpose is to obtain treated water of very high purity, it is better to not let the regeneration agent come into contact with the resin in the ion exchange resin layer in a mixed state, that is, it is better to not regenerate it. Focusing on improving the regeneration rate of the resin as a whole in the salt equipment, the present invention was arrived at as a result of intensive study.

即ち、本発明の要旨は復水の脱塩処理に使用した陽イオ
ン交換樹脂と陰イオン交換樹脂からなる混合イオン交換
樹脂を再生するためのイオン交換樹脂再生塔に於いて、
塔の上部及び下部に集配水管が設けられ、かつ塔内に集
配水コレクターが上下に2本設けられ、上部コレクター
は塔内の該混合イオン交換樹脂を上向流で逆洗した後、
自然沈降させて陰陽側イオン交換樹脂層に分離した際に
形成される分離界面より陰イオン交換樹脂層高の10〜
30%上方の位置に設置され、一方、下部コレクターは
該分離界面より陽イオン交換樹脂層高の10〜30%下
方の位置に設置されているイオン交換樹脂再生塔を用い
、 再生は、上部コレクターより上部に存在する実質的に陰
イオン交換樹脂よりなる層と下部コレクターより下部に
存在する実質的に陽イオン交換樹脂よりなる層に対して
おこない、上部コレクターと下部コレクター間の混合状
態にあるイオン交換樹脂層の樹脂を実質的に再生しない
ことを特徴とする混合イオン交換樹脂の再生方法にある
That is, the gist of the present invention is to provide an ion exchange resin regeneration tower for regenerating a mixed ion exchange resin consisting of a cation exchange resin and an anion exchange resin used for desalination treatment of condensate.
Water collection and distribution pipes are provided at the upper and lower parts of the tower, and two water collection and distribution collectors are provided in the tower, upper and lower, and the upper collector backwashes the mixed ion exchange resin in the tower with an upward flow.
The height of the anion exchange resin layer is 10 to 10% higher than the separation interface formed when the anion exchange resin layer is separated into the anion exchange resin layer by natural sedimentation.
An ion exchange resin regeneration tower is installed at a position 30% above the separation interface, while the lower collector is installed at a position 10 to 30% below the height of the cation exchange resin layer from the separation interface. The treatment is performed on a layer substantially consisting of anion exchange resin existing above the lower collector and a layer substantially consisting of cation exchange resin existing below the lower collector, and ions in a mixed state between the upper collector and the lower collector. A method for regenerating a mixed ion exchange resin characterized in that the resin in the exchange resin layer is not substantially regenerated.

本発明の詳細な説明するに、本発明方法において使用す
るイオン交換樹脂再生塔は復水の脱塩処理に使用した混
合イオン交換樹脂を再生するためのイオン交換樹脂再生
塔であるが、本発明に適用できる復水としては一般的な
ボイラーの復水の他に、超臨界圧ボイラーや軽水炉型原
子力発電装置の復水等があげられる。
To explain the present invention in detail, the ion exchange resin regeneration tower used in the method of the present invention is an ion exchange resin regeneration tower for regenerating the mixed ion exchange resin used in the desalination treatment of condensate. In addition to condensate from general boilers, condensate that can be used for this purpose includes condensate from supercritical pressure boilers and light water reactor nuclear power generation equipment.

また、本発明で用いる陽イオン交換樹脂としては強酸性
陽イオン交換樹脂、陰イオン交換樹脂としては強塩基性
陰イオン交換樹脂があげられ、それらの具体的商品とし
てはダイヤイオン5KIB。
Further, examples of the cation exchange resin used in the present invention include strongly acidic cation exchange resins, and examples of the anion exchange resin include strong basic anion exchange resins, and a specific example of these products is Diaion 5KIB.

5KIBN、5KN1,5KN2,5AIOB、5AI
OBN。
5KIBN, 5KN1, 5KN2, 5AIOB, 5AI
OBN.

5ANI等があけられる(「ダイヤイオン」は三菱化成
工業■の登録商標である。
5ANI etc. ("Diaion" is a registered trademark of Mitsubishi Chemical Industries, Ltd.).

)次に本発明方法において使用するイオン交換樹脂再生
塔並びに該再生塔を用いて、混合イオン交換樹脂を再生
する操作法について鮮明する。
) Next, the ion exchange resin regeneration tower used in the method of the present invention and the operating method for regenerating the mixed ion exchange resin using the regeneration tower will be explained clearly.

第1図は本発明方法において使用する再生塔の1例を樹
脂の再生時に於ける縦断面模式図で示したものであり、
図中、1は上部主集配水管、2は上部集配水管、3は下
部集配水管、4及び5は樹脂層内に設けられた上部コレ
クター及び下部コレクター、6は樹脂の支持板、7の斜
線部は陰イオン交換樹脂層、8の斜線部は陽イオン交換
樹脂層9は両樹脂の分離界面を示すものである。
FIG. 1 is a schematic vertical cross-sectional view of one example of a regeneration tower used in the method of the present invention during resin regeneration.
In the figure, 1 is the upper main water collection and distribution pipe, 2 is the upper water collection and distribution pipe, 3 is the lower water collection and distribution pipe, 4 and 5 are the upper collector and lower collector provided in the resin layer, 6 is the resin support plate, and 7 is the shaded area 8 indicates an anion exchange resin layer, and the shaded area 8 indicates a cation exchange resin layer 9 which indicates a separation interface between both resins.

第1図に於いて、陰イオン交換樹脂層及び陽イオン交換
樹脂層の層高をそれぞれ11,12とし、また上部コレ
クター4及び下部コレクターと樹脂の分離界面との距離
をそれぞれdl、d2とした時、dl、d2は次式で示
される範囲にある。
In Figure 1, the layer heights of the anion exchange resin layer and the cation exchange resin layer are 11 and 12, respectively, and the distances between the upper collector 4 and the lower collector and the resin separation interface are dl and d2, respectively. time, dl, and d2 are in the range shown by the following equation.

0.111<dl<0.311 0.1A2≦d2<0.372 好ましくは 0.15AI’1≦d1<0.2!M1 0.15112<d2≦0.2572 第1図で示される再生塔に充填された混合イオン交換樹
脂を再生する方法は次の通りである。
0.111<dl<0.311 0.1A2≦d2<0.372 Preferably 0.15AI'1≦d1<0.2! M1 0.15112<d2≦0.2572 The method for regenerating the mixed ion exchange resin packed in the regeneration tower shown in FIG. 1 is as follows.

陰イオン交換樹脂を再生する場合は、上部集配水管2よ
り再生剤として例えば苛性ソーダー水溶液等のアルカリ
水溶液を導入し、上部コレクター4より回収し、次いで
、上部集配水管2より上部コレクター4に脱塩水を流通
し、樹脂を水洗する。
When regenerating the anion exchange resin, an alkaline aqueous solution such as a caustic soda aqueous solution is introduced as a regenerating agent through the upper water collection and distribution pipe 2 and collected from the upper collector 4, and then desalinated water is introduced into the upper collector 4 from the upper water collection and distribution pipe 2. The resin is washed with water.

尚、樹脂の再生時及び水洗時には再生剤が上部コークタ
ー4より下部に流通し、上部コレクターより下部に存在
する陽イオン交換樹脂と接触し、陽イオン交換樹脂を負
荷形にするのを防ぐために、下部集配水管3より上部コ
レクター4に脱塩水を流通させる。
In addition, during resin regeneration and water washing, the regenerant flows from the upper coketer 4 to the lower part and comes into contact with the cation exchange resin present below the upper collector, in order to prevent the cation exchange resin from becoming loaded. Desalinated water is made to flow from the lower water collection and distribution pipe 3 to the upper collector 4.

また、陽イオン交換樹脂を再生する場合は下部集配水管
3より再生剤として例えば塩酸水溶液等の酸を導入し、
下部コレクター5より回収し、次いで、下部集配水管3
より下部コレクターに脱塩水を流通し、樹脂を水洗する
In addition, when regenerating the cation exchange resin, an acid such as a hydrochloric acid aqueous solution is introduced as a regenerating agent from the lower water collection and distribution pipe 3,
Collected from the lower collector 5, and then transferred to the lower water collection and distribution pipe 3.
Demineralized water is distributed to the lower collector to wash the resin.

尚、樹脂の再生時には再生剤が下部コレクターより上部
に存在する陰イオン交換樹脂と接触し、陰イオン交換樹
脂を負荷形にするのを防ぐために、上部集配水管2より
下部コレクターに脱塩水を流通させる。
In addition, during resin regeneration, demineralized water is distributed from the upper water collection and distribution pipe 2 to the lower collector in order to prevent the regenerant from coming into contact with the anion exchange resin located above the lower collector and causing the anion exchange resin to become loaded. let

本発明方法において使用する再生塔に於いては集配水コ
レクターを前述の特定の範囲の位置に設置する必要があ
るが、この範囲の外では所望の効果を達成しえない。
In the regeneration tower used in the method of the present invention, it is necessary to install the water collection and distribution collectors at positions within the above-mentioned specific range, but the desired effect cannot be achieved outside this range.

例えばdl<0.111,0.172<d2<0.3A
2の場合には上部コレクターより上部に陽イオン交換樹
脂が存在するため、陰イオン交換樹脂層の再生時に陰イ
オン交換樹脂層中に混在する陽イオン交換樹脂が負荷形
となるため所望の効果を達成しえない。
For example, dl<0.111, 0.172<d2<0.3A
In case 2, since the cation exchange resin exists above the upper collector, the cation exchange resin mixed in the anion exchange resin layer becomes a loaded type when the anion exchange resin layer is regenerated, so that the desired effect can be achieved. It cannot be achieved.

また、0.1 l <d <0.3 l、、、d2<0
.1121−1− 及びd <0.111.d2<0.112の場合も同様
の理由で所望の効果を達成しえない。
Also, 0.1 l < d < 0.3 l, , d2 < 0
.. 1121-1- and d<0.111. In the case of d2<0.112, the desired effect cannot be achieved for the same reason.

またdl>0.311.d2>0.312の場合は樹脂
の再生を充分に行えないため所望の効果を達成しえない
Also, dl>0.311. If d2>0.312, the desired effect cannot be achieved because the resin cannot be regenerated sufficiently.

以上、述べた様に本発明方法を用いれば、復水の脱塩処
理に使用した混合イオン交換樹脂を極めて高い再生率で
再生できるため、再生後の樹脂を混合床で使用し、復水
の脱塩処理を行った場合、極めて高純度の処理水が得ら
れる。
As mentioned above, if the method of the present invention is used, the mixed ion exchange resin used for the desalination treatment of condensate can be regenerated at an extremely high regeneration rate. When desalination treatment is performed, treated water of extremely high purity can be obtained.

尚、本発明において使用する再生塔は脱塩処理のための
充填塔として用いられることは言うまでもない。
It goes without saying that the regeneration tower used in the present invention is used as a packed tower for desalination treatment.

この場合、脱塩処理を行った後、同一塔内で樹脂を逆洗
、分離し、再生すればよい。
In this case, after performing the desalting treatment, the resin may be backwashed, separated, and regenerated in the same column.

次に本発明を試験例により更に詳細に設問するが本発明
はその要旨を超えない限り以下の例に限定されるもので
はない。
Next, the present invention will be examined in more detail using test examples, but the present invention is not limited to the following examples unless the gist thereof is exceeded.

試験例 1 それぞれ遊離型の強酸性陽イオン交換樹脂ダイヤイオン
5KIBN6.01と強塩基性陰イオン交換樹脂ダイヤ
イオン5A10BN 3.01とを内径10cm高さ2
mのカラムに充填し、十分に混合した。
Test Example 1 A strongly acidic cation exchange resin Diaion 5KIBN6.01 and a strong basic anion exchange resin Diaion 5A10BN 3.01, both in free form, were placed in a tube with an inner diameter of 10 cm and a height of 2.
m column and thoroughly mixed.

尚これらの樹脂の粒径分布は第1表の通りである。The particle size distribution of these resins is shown in Table 1.

このカラムに、カラム下部の目皿下より20±1℃の瞬
塩水を線速度(LV)10m/hrの上向流で30分間
流し逆洗した後、通液を停止し、樹脂を自然沈降させた
This column was backwashed by flowing brine at 20 ± 1°C from below the perforated plate at a linear velocity (LV) of 10 m/hr in an upward flow for 30 minutes, then the flow was stopped and the resin was allowed to settle naturally. I let it happen.

この様にして分離した樹脂層をカラムの縦方向に1ない
し5cm間隔に分割し夫々の分割された樹脂層内の陽イ
オン交換樹脂と陰イオン交換樹脂の体積含率を測定した
ところ分離界面(陰陽側樹脂が同容量となるカラムの水
平断面)より4cm以上上部では99.5%以上が陰イ
オン交換樹脂であり、分離界面より8CrIL以上下部
では99.5%以上が陽イオン交換樹脂であった。
The resin layer separated in this way was divided into 1 to 5 cm intervals in the longitudinal direction of the column, and the volume content of the cation exchange resin and anion exchange resin in each divided resin layer was measured. 99.5% or more of the anion exchange resin is 4 cm or more above (horizontal cross section of the column where the anion and yang resins have the same capacity), and 99.5% or more of the cation exchange resin is 8 CrIL or more below the separation interface. Ta.

試験例 2 内径10Crr、高さ2mのカラムに内径8mmの水平
方向に集配水口をもつ集配水コレクターを2個、カラム
下より65crrLと85CwLの位置に取り付けた。
Test Example 2 Two water collectors each having an inner diameter of 8 mm and having water collection and distribution ports in the horizontal direction were attached to a column having an inner diameter of 10 Crr and a height of 2 m at positions 65 crrL and 85 CwL from the bottom of the column.

このカラムに試験例1で使用したのと同じ5KIBNを
Na負負荷形率3.0%、再生形(H形)含率97、
O%に調整したもの、6.1と試験例Iで使用したのと
同じ5AIOBNをC1負荷形含率28.5%、再生形
(OH形)含率71.5%に調整したもの3.01を充
填し、十分に混合した。
The same 5KIBN used in Test Example 1 was used for this column, with a Na negative load type ratio of 3.0%, a regenerated type (H type) content of 97,
3. One in which the same 5AIOBN used in 6.1 and Test Example I was adjusted to have a C1 loaded type content of 28.5% and a recycled type (OH type) content of 71.5%. 01 and mixed thoroughly.

このカラムにカラム下部より20±1℃の脱塩水を線速
度(LV ) 10 m/hrの上向流で流し30分間
逆洗した後、樹脂を自然沈降させた。
After backwashing the column for 30 minutes by flowing demineralized water at 20±1° C. upward at a linear velocity (LV) of 10 m/hr from the bottom of the column, the resin was allowed to settle naturally.

この様にして分離された陰陽側樹脂の分離界面はカラム
下より78crnの位置にあり、また陽イオン交換樹脂
、陰イオン交換樹脂の層高は各々、78C1?L141
cmであり、また分離界面より上部コレクターまでの
距離は7cmであり、分離界面より下部コレクターまで
の距離は13cmであった。
The separation interface of the anion-side resin separated in this way is located at a position 78 crn from the bottom of the column, and the layer heights of the cation exchange resin and anion exchange resin are each 78 C1? L141
cm, the distance from the separation interface to the upper collector was 7 cm, and the distance from the separation interface to the lower collector was 13 cm.

この様な状態の樹脂床に再生剤である1規定の水酸化ナ
トリウム水溶液121次いで再生剤の押出し液である脱
塩水61を121/hrの流速でカラム上部より導入し
上部のコレクターより抜出して陰イオン交換樹脂を再生
した。
A 1N aqueous sodium hydroxide solution 121, which is a regenerant, is then introduced into the resin bed in such a state at a flow rate of 121/hr, and demineralized water 61, which is an extrusion liquid of the regenerant, is introduced from the top of the column and extracted from the collector at the top. The ion exchange resin was regenerated.

次いで脱塩水401をカラム上部より、上部のコレクタ
ーへ801/hrの流速で通液し、樹脂の洗浄を行なっ
た。
Next, demineralized water 401 was passed from the top of the column to the upper collector at a flow rate of 801/hr to wash the resin.

この際、再生剤の上部コレクターより下への拡散を防ぐ
ため、樹脂層下部より上部コレクターへ脱塩水を12A
/hrの流速で通液した。
At this time, in order to prevent the regenerant from diffusing below the upper collector, 12A of demineralized water was poured from the bottom of the resin layer to the upper collector.
The liquid was passed at a flow rate of /hr.

次に、2規定の塩酸水溶液121.次いで脱塩水121
を121/hrの流速でカラム下部より導入し、下部の
コレクターより抜出して陽イオン交換樹脂を再生した。
Next, 2N hydrochloric acid aqueous solution 121. Next, demineralized water 121
was introduced from the bottom of the column at a flow rate of 121/hr and extracted from the collector at the bottom to regenerate the cation exchange resin.

この際、再生剤の下部コレクターより上への拡散を防ぐ
ため、カラム上部より下部コレクターへ脱塩水を12A
/hrの流速で通液した。
At this time, in order to prevent the regenerant from diffusing above the lower collector, 12A of demineralized water was poured from the top of the column to the lower collector.
The liquid was passed at a flow rate of /hr.

次いで上部主集配水管1より下部集配水管3へ脱塩水6
01を801/hrの流速で通水して樹脂の洗浄を行な
った。
Next, desalinated water 6 flows from the upper main water collection and distribution pipe 1 to the lower water collection and distribution pipe 3.
The resin was washed by passing water through 01 at a flow rate of 801/hr.

この様にして再生処理を施した陰陽側イオン交換樹脂を
均一に混合し、内50m1をサンプリングして陰陽夫々
のイオン交換樹脂の負荷彫金率及再生形含率を測定した
ところ、第2表に示す結果を得た。
The ion-exchange resins on the yin and yang sides that were subjected to the regeneration treatment in this way were mixed uniformly, and 50ml of the mixture was sampled to measure the load engraving rate and the recycled form content of the ion exchange resins on each of the yin and yang sides.Table 2 shows the results. The following results were obtained.

試験例 3 内径10crrL高さ2mのカラムに内径8mmの水平
方向に集配水口をもつ集配水コレクターを、カラム下よ
り78cmの位置に取り付けた。
Test Example 3 A water collector with an inner diameter of 8 mm and a water collection/distribution port in the horizontal direction was attached to a column with an inner diameter of 10 crrL and a height of 2 m at a position 78 cm from the bottom of the column.

このカラムに試験例2で使用したのと同じ負荷形含率、
再生形含率に調整した5KIBN 61と5AIOBN
31を充填し、十分に混合し、試験例2と同じ条件で
逆洗分離した。
The same loaded content as used in Test Example 2 for this column,
5KIBN 61 and 5AIOBN adjusted to recycled content
No. 31 was filled, thoroughly mixed, and backwashed and separated under the same conditions as Test Example 2.

この際の分離界面はカラム下より78cfrLの位置に
ありコレクターと同じ位置であった。
The separation interface at this time was located at a position 78 cfrL from the bottom of the column, which was the same position as the collector.

この様な状態の樹脂床に試験例2に於て、上部コレクタ
ーを使う場合も、下部コレクターを使う場合も本試験例
に於ては同じ1本のコレクターを使用する以外は試験例
2と全く同じ処理を施したところ第3表の結果を得た。
In Test Example 2, whether the upper collector or the lower collector is used for the resin bed in such a state, this test example is completely different from Test Example 2 except that the same one collector is used. When the same treatment was applied, the results shown in Table 3 were obtained.

すなわち従来方法の手法に従って行なった試験例3の結
果では5AIOBNの負荷形含率は再生前より2.7%
増加し、試験例2と比較して8.5%も高く、5に1B
Nの負荷形含率は試験例2と比較して2倍も高かった。
In other words, in the results of Test Example 3 conducted according to the conventional method, the loaded content of 5AIOBN was 2.7% higher than before regeneration.
increased by 8.5% compared to Test Example 2, and 1B in 5
The loaded N content was twice as high as in Test Example 2.

試験例 4 試験例2で使用したサンプリング後の残りの樹脂層91
を混合状態のまま内径1OcrrL高さ1.5mのカラ
ムに充填し、NH3510ppbとNaCl30pI)
bとを含む水溶液をLV 100 m/hrで通水した
Test Example 4 Remaining resin layer 91 after sampling used in Test Example 2
Filled in a mixed state into a column with an inner diameter of 1OcrrL and a height of 1.5m, NH3510ppb and NaCl30pI)
An aqueous solution containing b was passed through the tube at a rate of LV 100 m/hr.

通水開始後48時間経過した時点での処理水質は第4表
に示す通りであり、加圧水型原子力発電の復水処理の目
標を十分に達成した。
The quality of the treated water 48 hours after the start of water flow was as shown in Table 4, and the target of condensate treatment for pressurized water nuclear power generation was fully achieved.

試験例 5 試験例3で使用したサンプリング後の残りの樹脂層91
を混合状態のまま試験例4と同様なカラムに充填し、試
験例4と同じ条件で通液した。
Test Example 5 Remaining resin layer 91 after sampling used in Test Example 3
The mixture was packed into a column similar to that in Test Example 4, and the solution was passed under the same conditions as in Test Example 4.

48時間経過後の処理水質は第5表に示す通りであり、
試験例4と比較すると塩素イオン、ナトリウムイオン共
に約2倍の濃度であった。
The treated water quality after 48 hours is as shown in Table 5.
Compared to Test Example 4, the concentrations of both chloride ions and sodium ions were about twice as high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はイオン交換樹脂再生塔の1例を樹脂の再生時に
於ける縦断面模式図で示したものであり、第1図中、1
は上部主集配水管、2は上部集配水管、3は下部集配水
管、4は上部コレクター、5は下部コレクター、6は樹
脂の支持板、7の斜線部は陰イオン交換樹脂層、8の斜
線部は陽イオン交換樹脂層、9は両樹脂の分離界面を示
す。
Figure 1 is a schematic vertical cross-sectional view of an example of an ion exchange resin regeneration tower during resin regeneration.
is the upper main water collection and distribution pipe, 2 is the upper water collection and distribution pipe, 3 is the lower water collection and distribution pipe, 4 is the upper collector, 5 is the lower collector, 6 is the resin support plate, the shaded part 7 is the anion exchange resin layer, the shaded part 8 9 indicates a cation exchange resin layer, and 9 indicates a separation interface between both resins.

Claims (1)

【特許請求の範囲】 1 復水の脱塩処理に使用した陽イオン交換樹脂と陰イ
オン交換樹脂からなる混合イオン交換樹脂であって陽イ
オン交換樹脂の負荷形含率が0.1〜30%、陰イオン
交換樹脂の負荷形含率が5〜40%であるものを再生す
る方法に於いて、塔の上部及び下部に集配水管が設けら
れ、かつ塔内に集配水コレクターが上下に2本設けられ
、上部コレクターは塔内の該混合イオン交換樹脂を上向
流で逆洗した後、自然沈降させて陰陽側イオン交換樹脂
層に分離した際に形成される分離界面より陰イオン交換
樹脂層高の10〜30%上方の位置に設置され、一方、
下部コレクターは該分離界面より陽イオン交換樹脂層高
の10〜30%下方の位置に設置されているイオン交準
樹脂再生塔を用い、 再生は、上部コレクターより上部に存在する実質的に陰
イオン交換樹脂よりなる層と下部コレクターより下部に
存在する実質的に陽イオン交換樹脂よりなる層に対して
おこない、上部コレクターと下部コレクター間の混合状
態にあるイオン交換樹脂層の樹脂を実質的に再生しない
ことを特徴とする混合イオン交換樹脂の再生方法。
[Scope of Claims] 1. A mixed ion exchange resin consisting of a cation exchange resin and an anion exchange resin used for desalination treatment of condensate, wherein the loaded content of the cation exchange resin is 0.1 to 30%. In a method for regenerating anion exchange resin with a loaded content of 5 to 40%, water collection and distribution pipes are provided at the upper and lower parts of the tower, and two water collection and distribution collectors are installed in the tower, one above the other. The upper collector backwashes the mixed ion exchange resin in the column in an upward flow, and then allows it to settle naturally and separate into the anion and anion side ion exchange resin layers. It is installed at a position 10-30% above the height, while
The lower collector uses an ion exchange resin regeneration tower installed at a position 10 to 30% below the height of the cation exchange resin layer than the separation interface, and the regeneration is carried out using substantially anions existing above the upper collector. This is performed on the layer made of exchange resin and the layer substantially made of cation exchange resin existing below the lower collector, and substantially regenerates the resin in the ion exchange resin layer in the mixed state between the upper collector and the lower collector. A method for regenerating a mixed ion exchange resin, characterized in that:
JP53112515A 1978-09-13 1978-09-13 How to regenerate mixed ion exchange resin Expired JPS5815177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53112515A JPS5815177B2 (en) 1978-09-13 1978-09-13 How to regenerate mixed ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53112515A JPS5815177B2 (en) 1978-09-13 1978-09-13 How to regenerate mixed ion exchange resin

Publications (2)

Publication Number Publication Date
JPS5539255A JPS5539255A (en) 1980-03-19
JPS5815177B2 true JPS5815177B2 (en) 1983-03-24

Family

ID=14588569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53112515A Expired JPS5815177B2 (en) 1978-09-13 1978-09-13 How to regenerate mixed ion exchange resin

Country Status (1)

Country Link
JP (1) JPS5815177B2 (en)

Also Published As

Publication number Publication date
JPS5539255A (en) 1980-03-19

Similar Documents

Publication Publication Date Title
US3250703A (en) Process and apparatus for removing impurities from liquids
US3382169A (en) Process for deionizing aqueous solutions
US4648976A (en) Integral water demineralizer system and method
US4263145A (en) Recovery of ammonia or amine from a cation exchange resin
WO2007040266A1 (en) Process and equipment for demineralizing condensate
US3203873A (en) Process for scale prevention in saline water evaporator
JPS5815177B2 (en) How to regenerate mixed ion exchange resin
US3975267A (en) Liquid treating system
CN208302795U (en) A kind of flat bed as ion-exchange unit
JP2940651B2 (en) Pure water production equipment
US4172783A (en) Condensate purification process by use of dilute clear lime solution
JPH055998Y2 (en)
US3692670A (en) Treatment of cation and anion exchange resins with sodium sulfite
US3585127A (en) Method for treating water by ion exchange
JP2940648B2 (en) Pure water production equipment
JP2941121B2 (en) Ultrapure water production equipment
RU2447026C2 (en) Method and apparatus for post-treatment of water during fine demineralisation
JPS63107754A (en) Method for separating and transferring ion exchange resin
JPH0363439B2 (en)
Gilwood et al. Silica Removal Characteristics of Highly Basic Anion Exchangers
JPH0249784B2 (en) ANMONIAOFUKUMUFUKUSUINODATSUENHOHO
JPS61157390A (en) Desalting apparatus
JP3543389B2 (en) Separation and regeneration method of ion exchange resin
JPS59136141A (en) Regenerating method of ion exchange resin for condensate desalting device
Sanks et al. Partial Demineralization of Brackish Waters by Ion Exchange