JPS61157390A - Desalting apparatus - Google Patents

Desalting apparatus

Info

Publication number
JPS61157390A
JPS61157390A JP27475884A JP27475884A JPS61157390A JP S61157390 A JPS61157390 A JP S61157390A JP 27475884 A JP27475884 A JP 27475884A JP 27475884 A JP27475884 A JP 27475884A JP S61157390 A JPS61157390 A JP S61157390A
Authority
JP
Japan
Prior art keywords
exchange resin
cation exchange
mixed bed
resin
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27475884A
Other languages
Japanese (ja)
Inventor
Osamu Yoshikawa
修 吉川
Shinsaku Maruyama
丸山 真策
Shigeki Ariyoshi
有吉 繁樹
Koji Kubo
光司 久保
Yoshio Sato
義雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Ebara Corp
Toshiba Corp
Tokyo Electric Power Co Inc
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Toshiba Corp, Tokyo Electric Power Co Inc, Nippon Atomic Industry Group Co Ltd filed Critical Ebara Corp
Priority to JP27475884A priority Critical patent/JPS61157390A/en
Publication of JPS61157390A publication Critical patent/JPS61157390A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To make it possible to effectively remove clad, by providing a cation exchange resin with a small particle size above a mixed bed. CONSTITUTION:A desalting apparatus 101 consists of a container main body 102, the mixed bed 103 received in the container main body 102 and the cation exchange resin 121 arranged above the mixed bed 103. The mixed bed 103 is constituted by mixing a cation exchange resin 104 and anion exchange resin 105. By this method, clad can be adsorbed and removed effectively.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は被処理水例え1ば原子力発電所の1次冷却系の
復水を脱塩処理する脱塩装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a desalination apparatus for desalinating water to be treated, for example, condensate of a primary cooling system of a nuclear power plant.

〔発明の技術的背景〕[Technical background of the invention]

第1図を参照して従来例を説明する。第1図は原子力発
電所の1次冷却系の復水を脱塩処理する脱塩プラントの
系統図である。図中符号りは脱塩装置を示し、この脱塩
装置りは容器本体2、この容器本体2内に設置された混
合床3とから構成されている。この混合床3は陽イオン
交換樹脂4および陰イオン交換樹脂5を混合した構成と
なっている。セして復水導入管6を介して復水を容器本
体2内に導入し、上記混合床3を通過させ不溶解成分お
よび溶解成分を除去して浄化する構成である。浄化され
た復水は復水出口管7から移送される。
A conventional example will be explained with reference to FIG. FIG. 1 is a system diagram of a desalination plant that desalinates condensate in the primary cooling system of a nuclear power plant. The reference numeral in the figure indicates a desalination device, and this desalination device is composed of a container body 2 and a mixing bed 3 installed within this container body 2. This mixed bed 3 has a configuration in which a cation exchange resin 4 and an anion exchange resin 5 are mixed. The condensate is then introduced into the container body 2 via the condensate introduction pipe 6, and is purified by passing through the mixed bed 3 to remove insoluble and dissolved components. The purified condensate is transferred from the condensate outlet pipe 7.

上記構成において混合床3の再生は次のような操作で行
なわれる。すなわちイオン交換樹脂抜出管8を介して脱
塩装置りの容器本体2内の混合床3を陽イオン交換樹脂
再生槽(以下CRTと称す)9に導入する。導入した後
水導入管10Bを介してCRT 9下方より送水しイオ
ン交換樹脂を浮動させる。この操作によって混合床3を
構成していた陽イオン交換樹脂4および陰イオン交換樹
脂5はその比重差によシ上下に分離する。すなわち比重
の軽い陰イオン交換樹脂5は上側に比重の重い陽イオン
交換樹脂4は下側に分離する。そして陰イオン交換樹脂
5は陰イオン交換樹脂抜出管1ノを介して陰イオン交換
樹脂再生槽(以後ARTと称す)12に導入され再生さ
れる。−男湯イオン交換樹脂4は前記陽イオン交換樹脂
再生槽9にて再生される。これら再生された陽イオン交
換樹脂4および陰イオン交換樹脂5はそれぞれ再生済陽
イオン交換樹脂抜出管13および再生済陰イオン交換樹
脂抜出管14を介して混合槽(以後R8Tと称す)15
に送られ混合された後再生済混合イオン交換樹脂抜出管
16を介して前記容器本体2内に供給され再度混合床3
を形成する構成である。
In the above configuration, the mixed bed 3 is regenerated by the following operation. That is, the mixed bed 3 in the container body 2 of the desalination apparatus is introduced into a cation exchange resin regeneration tank (hereinafter referred to as CRT) 9 via an ion exchange resin extraction pipe 8. After the introduction, water is fed from below the CRT 9 through the water introduction pipe 10B to float the ion exchange resin. By this operation, the cation exchange resin 4 and anion exchange resin 5 that constituted the mixed bed 3 are separated into upper and lower parts due to the difference in their specific gravity. That is, the anion exchange resin 5 with a light specific gravity is separated into the upper side, and the cation exchange resin 4 with a heavy specific gravity is separated into the lower side. The anion exchange resin 5 is introduced into an anion exchange resin regeneration tank (hereinafter referred to as ART) 12 via an anion exchange resin extraction pipe 1 and is regenerated. - The men's bath ion exchange resin 4 is regenerated in the cation exchange resin regeneration tank 9. These regenerated cation exchange resin 4 and anion exchange resin 5 are transferred to a mixing tank (hereinafter referred to as R8T) 15 through a regenerated cation exchange resin extraction pipe 13 and a regenerated anion exchange resin extraction pipe 14, respectively.
After being mixed, the regenerated mixed ion exchange resin is supplied into the container main body 2 through the extraction pipe 16 and then mixed again into the mixing bed 3.
It is a configuration that forms a.

〔背景技術の問題点〕[Problems with background technology]

上記構成において、復水中の陽イオンは陽イオン交換樹
脂4に吸着され、陰イオンは陰イオン交換樹脂5に吸着
される。父上記陽イオン交換樹脂4および陰イオン交換
樹脂5等のイオン交換樹脂には不溶解成分(以後クラ、
ドと称す)除去能力がある。このクラッドは主に鉄の酸
化物であシ、樹脂および樹脂間に緩く捕捉された粒間ク
ラッドと、硫酸(H2SO4)および水酸化ナトリウム
(NaOH)による化学再生で除去される樹脂付着鉄と
があシ、これらクラッドの除去は原子力発電所の健全性
を維持する上で極めて重要なことであシ、クラ、ド除去
率の向上が要求されていた。
In the above configuration, cations in the condensate are adsorbed on the cation exchange resin 4, and anions are adsorbed on the anion exchange resin 5. Insoluble components (hereinafter referred to as Kura) in ion exchange resins such as cation exchange resin 4 and anion exchange resin 5 mentioned above
It has a removal ability (referred to as "do"). This crud is mainly composed of iron oxides, the resin and the intergranular crud loosely trapped between the resins, and the resin-adhered iron that is removed by chemical regeneration with sulfuric acid (H2SO4) and sodium hydroxide (NaOH). Removal of these cruds is extremely important in maintaining the health of nuclear power plants, and there has been a need to improve the removal rate of these cruds.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点くもとづいてなされたものでその目的
は、溶解成分はもちろんのこと不溶解成分すなわちクラ
ッドをも効果的に除去することが可能な脱塩装置を提供
することにある。
The present invention has been made based on the above points, and an object of the present invention is to provide a desalination apparatus capable of effectively removing not only dissolved components but also insoluble components, that is, crud.

〔発明の概要〕[Summary of the invention]

すなわち本発明による脱塩装置は、容器本体と、この容
器本体内に設けられ陽イオン交換樹脂および陰イオン交
換樹脂とからなる混合床とを備え、この混合床に被処理
水を流通させて脱塩処理する脱塩装置において、上記混
合床上方に小粒径の陽イオン交換樹脂層を設けた構成で
ある。11 〔発明の実施例〕 以下第2図ないし第5図を参照して本発明の一実施例を
説明する。本実施例による脱塩装置の説明にはいる前に
第2図ないし第4図を使用して樹脂表層からの深さと粒
間クラッド鉄量との関係、陽イオン交換樹脂および陰イ
オン交換樹脂との対比、クラッド除去率と平均樹脂粒径
との関係について説明する。
That is, the desalination apparatus according to the present invention includes a container body and a mixed bed made of a cation exchange resin and an anion exchange resin, which is provided inside the container body, and demineralizes water by flowing the water to be treated through this mixed bed. In the desalting equipment for salt treatment, a cation exchange resin layer with small particle size is provided above the mixed bed. 11 [Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIGS. 2 to 5. Before going into the explanation of the desalination apparatus according to this example, let us explain the relationship between the depth from the resin surface layer and the amount of intergranular cladding iron, and the relationship between cation exchange resin and anion exchange resin using Figures 2 to 4. The comparison between the following and the relationship between the crud removal rate and the average resin particle size will be explained.

第2図は横軸に粒間クラッド鉄量をとシ、縦軸に樹脂表
層からの深さをと9、粒間クラッド鉄量の樹脂表層から
の深さによる変化を示した図である。なお図中○印は脱
塩装置の容器本体の中央部における値、Δ印は中央から
半径方向に600畷の位置の値、0印は中央から半径方
向1c1100mの位置(略最外周位胃)の値、・印は
平均値をそれぞれ示す。この第2図から明らかなように
粒間クラッド鉄量は樹脂表層に近づくほど多量に捕捉さ
れている。すなわち樹脂表層に近づくほど効果的に粒間
クラッド鉄量を捕捉することができる。
FIG. 2 is a diagram showing the change in the amount of intergranular cladding iron with respect to the depth from the resin surface layer, with the horizontal axis representing the amount of intergranular cladding iron and the vertical axis representing the depth from the resin surface layer. In the figure, the ○ mark is the value at the center of the desalination device container body, the Δ mark is the value at a position 600 m in the radial direction from the center, and the 0 mark is the value at a position 1 c 1100 m in the radial direction from the center (approximately the outermost stomach) The values and ・marks indicate the average values, respectively. As is clear from FIG. 2, a larger amount of intergranular cladding iron is captured as it approaches the resin surface layer. That is, the closer to the resin surface layer, the more effectively the amount of intergranular cladding iron can be captured.

また同様の試験を陰イオン交換樹脂および陽イオン交換
樹脂ごとに行なってみた結果第3図に示すような結果を
得ることができ九0図中符号(4)で示す線図は陰イオ
ン交換樹脂による付着鉄量変化を示す線図であシ、符号
(B)で示す線図は陽イオン交換樹脂による付着鉄量変
化を示す線図であシ、符号(C)およびの)で示す線図
は、陰イオン交換樹脂付着鉄塔内線平均および陽イオン
交換樹脂付着鉄塔内線平均をそれぞれ示す。
In addition, similar tests were conducted for anion exchange resins and cation exchange resins, and the results shown in Figure 3 were obtained. The diagram indicated by symbol (B) is a diagram showing the change in the amount of deposited iron due to cation exchange resin, and the diagram indicated by symbols (C) and ) represents the average of the anion-exchange resin-attached steel tower inner wire and the cation-exchange resin-attached steel tower inner wire average, respectively.

この第3図から明らかなように陽イオン交換樹脂の方が
陰イオン交換樹脂よシ樹脂付着クラ。
As is clear from Figure 3, cation exchange resins adhere more easily than anion exchange resins.

ド鉄量が多く、クラッド付着性能に優れている(アニオ
ン樹脂の10倍以上)、ことがわかる。
It can be seen that the resin has a large amount of iron and has excellent cladding adhesion performance (more than 10 times that of anionic resin).

次に第4図を参照して平均樹脂粒径とクラッド除去率と
の関係を説明する。第4図は横軸に平均樹脂粒径をとシ
、縦軸にクラ、ド除去率をとυ、平均樹脂粒径によるク
ラッド除去率変化を示した図である。図中符号(ト))
で示す線図は新品のイオン交換樹脂の場合を示し、符号
(乃で示す線図は使用中のイオン交換樹脂の場合をそれ
ぞれ示す。この第4図からも明らかなように新品のイオ
ン交換樹脂でも使用中のイオン交換樹脂でも平均樹脂粒
径が小さい程クラ、P除去率が高いことがわかる。これ
は樹脂粒径を小さくすることにより吸着面積を大きくす
ることができるからである。なお一般にイオン交換樹脂
の粒径は300〜1100μmの範囲に分布しており略
対数平均分布に従がっている。そしてこのようなイオン
交換樹脂を充填したときの隙間はクラッドの平均径(略
2μm)よシ十分大きなものとなる。これはイオン交換
樹脂によるクラッドの除去が濾過よりも吸着が主である
ことを示し、上述したように粒径を小さくし吸着面積を
大きくすることがクラッド除去率を高める効果のあるこ
とがわかる。
Next, the relationship between the average resin particle size and crud removal rate will be explained with reference to FIG. FIG. 4 is a diagram in which the horizontal axis represents the average resin particle diameter, the vertical axis represents the crud removal rate, and the change in crud removal rate depending on the average resin particle size. Symbol (g) in the figure)
The diagram shown with the symbol ( ) shows the case of a new ion exchange resin, and the diagram shown with the symbol ( ) shows the case of an ion exchange resin in use.As is clear from this Figure 4, However, it can be seen that even with the ion exchange resin in use, the smaller the average resin particle size, the higher the removal rate of Kura and P. This is because the adsorption area can be increased by reducing the resin particle size. The particle size of the ion-exchange resin is distributed in the range of 300 to 1100 μm, and follows a roughly logarithmic average distribution.The gap when filled with such an ion-exchange resin is the average diameter of the cladding (approximately 2 μm). This indicates that crud removal by ion exchange resin is mainly done by adsorption rather than filtration, and as mentioned above, reducing the particle size and increasing the adsorption area increases the crud removal rate. It can be seen that it has an enhancing effect.

本実施例による脱塩装置は以上の点を考慮に入れクラッ
ド除去率の向上を図るぺ〈構成されたもので以下第5図
を参照して説明する。第5図は本実施例による脱塩装置
を組込んだ脱塩プラントの概略構成を示す系統図である
。図中符号101は脱塩@伊を示す。この脱塩装置嵐は
容器本体102と、この容器本体102内に収容された
混合床103およびこの混合床103上方に設置された
小粒径の陽イオン交換樹脂層121とから構成されてい
る。上記混合床103は陽イオン交換樹脂104および
陰イオン交換樹脂105を混合した構成となっている。
The desalination apparatus according to the present embodiment is designed to improve the crud removal rate by taking the above points into consideration, and will be described below with reference to FIG. 5. FIG. 5 is a system diagram showing a schematic configuration of a desalination plant incorporating the desalination apparatus according to this embodiment. The reference numeral 101 in the figure indicates desalination@I. This desalination apparatus storm is composed of a container body 102, a mixed bed 103 housed within this container body 102, and a cation exchange resin layer 121 with a small particle size installed above this mixed bed 103. The mixed bed 103 has a configuration in which a cation exchange resin 104 and an anion exchange resin 105 are mixed.

すなわちクラッドを効果的に除去することができる容器
本体102上方(樹脂表層位置)にクラブト除去性能に
優れた陽イオン交換樹脂を小粒径の状態で設置した構成
である。
That is, the configuration is such that a cation exchange resin with excellent crud removal performance is placed in the form of small particles above the container body 102 (resin surface layer position) where crud can be effectively removed.

したがって前述したとおシクラ、ドを効果的に吸着除去
することができ、溶解成分はもちろんのこと、不溶解成
分(クラッド)をも効果的に除去することができ、装置
としての信頼性はもとよシ原子力発電所の安全性向上を
図る上できわめて効果的である。
Therefore, it is possible to effectively adsorb and remove the above-mentioned cycra and de, and it is also possible to effectively remove not only dissolved components but also insoluble components (crud), which improves the reliability of the device. It is extremely effective in improving the safety of nuclear power plants.

次に混合床103および小粒径陽イオン交換樹脂層12
1を再生する操作について説明する。
Next, a mixed bed 103 and a small particle size cation exchange resin layer 12
1 will be explained.

すなわち通常運転時は復水導入管106を介し    
iて復水が脱塩装置101の容器本体102に導入され
小粒径陽イオン交換樹脂層121および混合床iosを
通って復水出口管107を介して排出される。そして脱
塩装置101の入口および出口の圧力差が所定値(例え
ば3.5 kg/cnr”G)に達した場合あるいは復
水が所定量通水した場合には、復水の導入を停止して小
粒径陽イオン交換樹脂層121および混合床103の再
生操作に入る。まず水導入管110Aを介して送水し容
器本体102内のイオン交換樹脂を浮動させ、同時に容
器本体102上部から圧縮空気(3〜5ゆ/α2程度)
を供給し、上記浮動したイオン交換樹脂をイオン交換樹
脂抜出管108を介して抜き出しCRT J 09に導
入する。そして水導入管110Bを介してCRT 10
9内に送水しCRT 109内でイオン交換樹脂を浮動
させる。
In other words, during normal operation, the condensate is
Condensate is introduced into the vessel body 102 of the desalination apparatus 101, passes through the small particle size cation exchange resin layer 121 and the mixed bed IOS, and is discharged via the condensate outlet pipe 107. When the pressure difference between the inlet and outlet of the desalination equipment 101 reaches a predetermined value (for example, 3.5 kg/cnr"G) or when a predetermined amount of condensate has passed through, the introduction of condensate is stopped. Then, the operation for regenerating the small particle diameter cation exchange resin layer 121 and the mixed bed 103 begins.First, water is fed through the water introduction pipe 110A to float the ion exchange resin in the container body 102, and at the same time, compressed air is introduced from the top of the container body 102. (about 3-5 Yu/α2)
The floating ion exchange resin is extracted through the ion exchange resin extraction pipe 108 and introduced into the CRT J 09. Then, the CRT 10 is connected to the CRT 10 via the water introduction pipe 110B.
9 and float the ion exchange resin inside the CRT 109.

これによって陰イオン交換樹脂および陽イオン交換樹脂
はその比重差によシ分離され、比重の軽い陰イオン交換
樹脂105はCRT 109の上層部にまた比重の重い
陽イオン交換樹脂104は下層部に集められる。その際
陰イオン交換樹脂105の場合も陽イオン交換樹脂10
4の場合もそれぞれ粒径の小さいものが上部に集められ
粒径の粗いものが下部に集められる。次に上層部の陰イ
オン交換樹脂105を陰イオン交換樹脂抜出管111を
介してART 112に導入し再生する。これと同時K
 CRT l o g内にて陽イオン交換樹脂104の
再生を行なう。この再生はいわゆる化学再生であり5〜
10チの硫酸(H2S04)および4〜10チの黄土ソ
ーダ(NaOH)を導入して行なう。そしてこれら再生
された陰イオン交換樹脂105および上端部の小粒径部
分を除いた陽イオン交換樹脂104は再生済陰イオン交
換樹脂抜出管114および再生済陽イオン交換樹脂抜出
管113を介してR8T 115内に導入される。この
R8T 115で水導入管110Dからの送水および圧
縮空気の供給によシ攪拌混合を行なう。そして攪拌風合
されたイオン交換樹脂は再生済混合イオン交換樹脂抜出
管116を介して前記脱塩装置101の容器本体102
内に導入され混合床103を形成する。次に前記陽イオ
ン交換樹脂の内CRT109内に残された上端部の小粒
径部分を再生済陽イオン交換樹脂抜出管122を介して
上記混合床103上方に導入して小粒径陽イオン交換樹
脂層121を形成する。以上で再生を終了する。
As a result, the anion exchange resin and the cation exchange resin are separated based on their specific gravity difference, and the anion exchange resin 105 with a light specific gravity is collected in the upper part of the CRT 109, and the cation exchange resin 104 with a heavy specific gravity is collected in the lower part. It will be done. At that time, in the case of anion exchange resin 105, cation exchange resin 10
In the case of No. 4 as well, particles with small diameters are collected in the upper part and particles with coarse diameters are collected in the lower part. Next, the anion exchange resin 105 in the upper layer is introduced into the ART 112 via the anion exchange resin extraction pipe 111 and regenerated. At the same time K
The cation exchange resin 104 is regenerated in the CRT log. This regeneration is so-called chemical regeneration, and 5~
This is carried out by introducing 10 g of sulfuric acid (H2S04) and 4 to 10 g of loess soda (NaOH). The recycled anion exchange resin 105 and the cation exchange resin 104 except for the small particle size portion at the upper end are passed through the recycled anion exchange resin extraction pipe 114 and the recycled cation exchange resin extraction pipe 113. and is introduced into R8T 115. This R8T 115 performs stirring and mixing by supplying water and compressed air from the water introduction pipe 110D. The agitated ion exchange resin is then passed through the recycled mixed ion exchange resin extraction pipe 116 to the container body 102 of the desalination apparatus 101.
103 to form a mixed bed 103. Next, the small particle diameter portion of the upper end portion of the cation exchange resin remaining in the CRT 109 is introduced into the upper part of the mixed bed 103 through the recycled cation exchange resin extraction pipe 122 to ionize the small particle diameter cations. An exchange resin layer 121 is formed. This completes playback.

すなわちCRT 109で使用したイオン交換樹脂を陰
イオン交換樹脂105と陽イオン交換樹脂104に分離
する場合それぞれ粒径の小さいものが上方K〈ることに
着目し、分離した陰イオン交換樹脂105と陽イオン交
換樹脂104を化学再生後引抜き混合する際、陽イオン
交換樹脂104を下方よりすなわち粒径の大きいものか
ら順次引抜き、上端部の小粒径部分を一時CRT 70
9内に残しておく。そして混合床103が形成された後
引抜いて混合床103上方に小粒径陽イオン交換樹脂層
121を形成する構成である。よって簡単な操作で、イ
オン交換樹脂の再生を行なうことができるものである。
In other words, when the ion exchange resin used in the CRT 109 is separated into the anion exchange resin 105 and the cation exchange resin 104, we focus on the fact that the particles with smaller particle sizes are at the upper K. When drawing and mixing the ion exchange resin 104 after chemical regeneration, the cation exchange resin 104 is pulled out from below, that is, in order from the larger particle size, and the small particle size portion at the upper end is temporarily transferred to the CRT 70.
Leave it within 9. After the mixed bed 103 is formed, it is pulled out to form a small particle size cation exchange resin layer 121 above the mixed bed 103. Therefore, the ion exchange resin can be regenerated by a simple operation.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明による脱塩装置は、容器本体
と、この容器本体内に設けられ陽イオン交換樹脂および
陰イオン交換樹脂とからなる混合床とを備え、この混合
床に被処理水を流通させて脱塩処理する脱塩装置におい
て、上記混合床上方に小粒径の陽イオン交換樹脂層を設
けた構成である。
As described in detail above, the desalination apparatus according to the present invention includes a container body and a mixed bed made of a cation exchange resin and an anion exchange resin, which is provided inside the container body, and in which the water to be treated is placed in the mixed bed. In this desalting apparatus, a cation exchange resin layer with a small particle size is provided above the mixed bed.

したがって溶解成分はもちろんのこと不溶解成分すなわ
ちクラッドをも効果的に除去することができ装置として
の信頼性を大巾に向上させることができるとともに原子
力発電所に適用した場合には安全性向上を図る上で極め
て効果的である。
Therefore, it is possible to effectively remove not only dissolved components but also undissolved components, that is, crud, which greatly improves the reliability of the device, and also improves safety when applied to nuclear power plants. It is extremely effective in achieving this goal.

【図面の簡単な説明】 第1図は従来の脱塩装置を組込んだ脱塩プラントの系統
図、第2図ないし第5図は本発明の一実施例を示す図で
、第2図は粒間クラ、ド鉄量と樹脂表層からの深さとの
関係を示す図、第3図は樹脂付着り2.ド鉄量と樹脂表
層からの   11深さとの関係を陰イオン交換樹脂と
陽イオン交換樹脂との対比で示す図、第4図は平均樹脂
粒径とクラ、ド除去率との関係を示す図、第5図は本実
施例の脱塩装置を組込んだ脱塩プラントの系統図である
。 101・・・脱塩装置、102・・・容器本体、103
・・・混合床、104・・・陽イオン交換樹脂、105
・・・陰イオン交換樹脂、121・・・小粒径陽イオン
交換樹脂層。
[Brief Description of the Drawings] Fig. 1 is a system diagram of a desalination plant incorporating a conventional desalination device, Figs. 2 to 5 are diagrams showing an embodiment of the present invention, and Fig. Figure 3 shows the relationship between intergranular cracks and iron content and the depth from the resin surface layer. Figure 4 shows the relationship between the amount of iron and the depth from the resin surface layer for anion exchange resin and cation exchange resin, and Figure 4 shows the relationship between the average resin particle size and the removal rate of cracks and cracks. , FIG. 5 is a system diagram of a desalination plant incorporating the desalination apparatus of this embodiment. 101... Desalination device, 102... Container body, 103
...Mixed bed, 104...Cation exchange resin, 105
...Anion exchange resin, 121...Small particle diameter cation exchange resin layer.

Claims (1)

【特許請求の範囲】[Claims] 容器本体と、この容器本体内に設けられ陽イオン交換樹
脂および陰イオン交換樹脂とからなる混合床とを備え、
この混合床に被処理水を流通させて脱塩処理する脱塩装
置において、上記混合床上方に小粒径の陽イオン交換樹
脂層を設けたことを特徴とする脱塩装置。
comprising a container body and a mixed bed provided within the container body and comprising a cation exchange resin and an anion exchange resin,
A desalination apparatus that desalinates water by flowing it through the mixed bed, characterized in that a cation exchange resin layer with a small particle size is provided above the mixed bed.
JP27475884A 1984-12-28 1984-12-28 Desalting apparatus Pending JPS61157390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27475884A JPS61157390A (en) 1984-12-28 1984-12-28 Desalting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27475884A JPS61157390A (en) 1984-12-28 1984-12-28 Desalting apparatus

Publications (1)

Publication Number Publication Date
JPS61157390A true JPS61157390A (en) 1986-07-17

Family

ID=17546167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27475884A Pending JPS61157390A (en) 1984-12-28 1984-12-28 Desalting apparatus

Country Status (1)

Country Link
JP (1) JPS61157390A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066525A (en) * 2007-09-13 2009-04-02 Tokyo Electric Power Co Inc:The Filling method for ion exchange resin, and condensate demineralizer
JP2009279519A (en) * 2008-05-22 2009-12-03 Ebara Corp Condensate demineralization method and condensate demineralizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066525A (en) * 2007-09-13 2009-04-02 Tokyo Electric Power Co Inc:The Filling method for ion exchange resin, and condensate demineralizer
JP2009279519A (en) * 2008-05-22 2009-12-03 Ebara Corp Condensate demineralization method and condensate demineralizer

Similar Documents

Publication Publication Date Title
US4263145A (en) Recovery of ammonia or amine from a cation exchange resin
JPH0736039B2 (en) Method for removing suspended impurities from condensate by mixed bed condensate desalination system
JPS61157390A (en) Desalting apparatus
JPS595015B2 (en) How to clean ion exchange resin
JPH0312952B2 (en)
JP3388920B2 (en) Power plant wastewater treatment method and apparatus
JPH055998Y2 (en)
US3692670A (en) Treatment of cation and anion exchange resins with sodium sulfite
JP3837762B2 (en) Ion exchange resin separation and regeneration method
JPS5815016B2 (en) How to clean ion exchange resin
JP3066204B2 (en) Operation method of ammonia type condensate desalination equipment
JPS59183398A (en) Maintenance system of condensate desalt tower
JPS59136141A (en) Regenerating method of ion exchange resin for condensate desalting device
JPS61155898A (en) Treater for regenerated waste liquor of ion exchnage resin
JP2004279227A (en) Method and device for condensate demineralization
JPS6059013B2 (en) How to regenerate mixed ion exchange resin
JP2002159867A (en) Method for regenerating anion-exchange resin
JPH0214114B2 (en)
JP2000135444A (en) Transfer/regeneration system for ion exchange resin
JPS6019041A (en) Backwashing and separation method of resin mixture
JPH0138554B2 (en)
JPH026893A (en) Condensate desalting device
JPS6058240A (en) Backwashing separation of resin mixture
JP2965806B2 (en) Regeneration method of condensate desalination equipment
JPS6351757B2 (en)