JPS63107753A - Method for separating and transferring ion exchange resin - Google Patents

Method for separating and transferring ion exchange resin

Info

Publication number
JPS63107753A
JPS63107753A JP61253774A JP25377486A JPS63107753A JP S63107753 A JPS63107753 A JP S63107753A JP 61253774 A JP61253774 A JP 61253774A JP 25377486 A JP25377486 A JP 25377486A JP S63107753 A JPS63107753 A JP S63107753A
Authority
JP
Japan
Prior art keywords
transfer
resin
water
specific gravity
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61253774A
Other languages
Japanese (ja)
Other versions
JPH0516314B2 (en
Inventor
Kanroku Naganami
長南 勘六
Shigeo Miya
宮 茂夫
Kazuyuki Koyama
小山 一行
Masahiro Hagiwara
正弘 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Corp
Priority to JP61253774A priority Critical patent/JPS63107753A/en
Publication of JPS63107753A publication Critical patent/JPS63107753A/en
Publication of JPH0516314B2 publication Critical patent/JPH0516314B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To enhance the quality of treated water by reducing a chlorine type anion resin formed by reducing an anion resin remaining at the time of distribution and transfer as low as possible, by properly arranging a transfer sluicing pipe and a pair of resin transfer pipes in a separation tower. CONSTITUTION:In separating and transferring the strong basic anion exchange resin (hereinbelow referred to as SBR) 2' low in specific gravity remaining on a strong acidic cation exchange resin (hereinbelow referred to as SAR) layer 1 high in specific gravity, the transfer sluicing pipe 7 traversing the center of a tower provided below a boundary line and resin transfer pipes 8 having opening parts 8', 8'' in positional relation so as to cross said pipe 7 crosswise are provided. The resin layer SAR 1 having high specific gravity is brought to a flowable state by backwashing water and water is further blown off upwardly from the pipe 7 provided in the intermediate part of said resin layer. By this method, the resin SBR 2 having low specific gravity is gathered to the opening parts 8', 8'' of the transfer pipes 8 to be transferred.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は純水、超純水製造装置、特に火力発xPks原
子力発電所の復水処理用の復水脱塩装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a pure water or ultrapure water production device, and particularly to a condensate desalination device for condensate treatment in a thermal xPks nuclear power plant.

〔従来の技術〕[Conventional technology]

28IL類のイオン変換樹脂、特に強酸性陽イオン変換
樹脂(以下8人Rと記す)と強塩基性陰イオン父換m脂
(以下8BRと記す)の混合樹脂層は純水、超純水製造
装置のポリラシャ−及 。
The mixed resin layer of 28IL type ion conversion resins, especially strong acidic cation conversion resins (hereinafter referred to as 8R) and strong basic anion father conversion resins (hereinafter referred to as 8BR), is suitable for the production of pure water and ultrapure water. The device's polyurethane and.

び火力、原子力発電所の復水脱塩装置!1り不可欠でお
る。従来、PWR型原子力発電所の後水処理で要求され
る水質は最もきびしく下記の如くである。
Condensate desalination equipment for thermal power and nuclear power plants! 1 is essential. Conventionally, the water quality required for the after-water treatment of a PWR nuclear power plant is most stringent as shown below.

Na″濃度   α02 ppb以下 Ct−一度   (L 05 ppb以下これらのイオ
ン111度は低ければ低い程よい。
Na″ concentration α02 ppb or less Ct-1 (L 05 ppb or less These ions 111 degrees are as low as possible.

これらのイオンの混合樹脂層からのリーク量は入口水質
条件、混合樹脂層の運転条件(LV等)を除くと混合樹
脂層内の塩型樹脂の割合によって支配されている。すな
わちR−Ct(塩素型アニオン樹脂)、R−Na(ナト
リクム氾カチオン樹脂)の存在割合が多い程Na”、C
t−のリークが増大する。これらのR−Na、R−Ct
が生成する原因は原水に由来するNa’、 CL″″ 
を除いて考えると下記の理由が主なものである。
The amount of these ions leaking from the mixed resin layer is controlled by the proportion of salt type resin in the mixed resin layer, except for the inlet water quality conditions and the operating conditions (LV, etc.) of the mixed resin layer. In other words, the higher the proportion of R-Ct (chlorine type anion resin) and R-Na (natrichum cation resin), the higher the
The leakage of t- increases. These R-Na, R-Ct
The cause of generation is Na', CL″″ derived from raw water.
Considering the following, the main reasons are as follows.

R−Na: BAR,8BRの分離移送が不完全でSB
R層中に混入し7’j8ARが8BHの再生剤であるN
aOHと接触して生成する。
R-Na: SB due to incomplete separation and transfer of BAR and 8BR
N mixed in the R layer and 7'j8AR is a regenerating agent for 8BH.
Formed on contact with aOH.

R−C1: +11再生剤NaOH中の不純物(NaC
1)によって生成する。(2) R−Naと同様分離が
不完全でBAR層中に残留したSBRがBARの再生剤
であるHCtと接触して生成する。
R-C1: +11 Impurities in regenerant NaOH (NaC
1). (2) Similar to R-Na, SBR, which is incompletely separated and remains in the BAR layer, is generated when it comes into contact with HCt, which is a BAR regenerant.

R−Na生成を少くする方法は徳々研究され、代表的に
は特許第1027750号によってすてに解決されてい
る0R−C2生成の主原因(1)はNaOHの品質向上
によって問題は小さくなっている。(2)については従
来の技術では分離移送が不完全で8AR/@rc全8B
HO1〜2%程度の8BRが残留し、再生毎にこれが蓄
積されるため平衡状態では混合樹脂層のR−C1は全S
BHの20数−の値となっている。
Methods to reduce R-Na production have been extensively researched, and the main cause of 0R-C2 production (1), which has been solved by Patent No. 1027750, has been reduced by improving the quality of NaOH. ing. Regarding (2), the separation and transfer is incomplete in the conventional technology, and 8AR/@rc total 8B
8BR of about 1 to 2% HO remains, and this is accumulated every time it is regenerated, so in an equilibrium state, R-C1 of the mixed resin layer is the total S
It has a value of 20 minus BH.

従来の樹脂の分離移送方法を第8図に基いて説明する。A conventional resin separation and transfer method will be explained with reference to FIG.

逆洗によって樹脂1sAR層1と8BH層2の2層に分
離し九後塔下部カ今のスルージング水管3からスルージ
ング水1LV2.5m/時程度で導入し、BAR層1を
若干流動させながら塔上部鍋加圧水t4から加圧水又は
加圧空気’li6から加圧空気を導入してSBR七アニ
オン再生塔へ移送する。移送の際の移送管8の開口部は
第8図では塔中心軸上に設けられているか塔壁に設けら
れている場合%Toシ、又樋全利用しているものもある
。又開口部の高さは両樹脂層の境界面の若干下部とする
のが普通である。
The resin 1s is separated into two layers, AR layer 1 and 8BH layer 2, by backwashing, and 1LV of sluging water is introduced from the current sluicing water pipe 3 into the lower part of the column at a rate of about 2.5 m/hour, while slightly fluidizing the BAR layer 1. Pressurized water or pressurized air is introduced from the pressurized water t4 in the tower upper pan or pressurized air from the pressurized air 'li6 and transferred to the SBR 7 anion regeneration tower. In FIG. 8, the opening of the transfer pipe 8 during transfer is provided on the central axis of the tower or in the wall of the tower. In some cases, the entire trough is used. Further, the height of the opening is usually set to be slightly below the interface between the two resin layers.

このような移送を行う際には、第9図に示す如(,5B
R2’が数■〜20数■残留することは避けられない。
When performing such a transfer, as shown in Figure 9 (,5B
It is unavoidable that R2' remains in an amount of several to several dozen.

この理由は塔壁に近い8BR程移送管8の開口部に達す
るのに時間がかかり、その間に開口部付近の樹脂が移送
され、かつ塔下部からのスルージング水により樹脂面が
平面と7!9、開口部と樹脂層面との間にある距離が生
じ、SBRは移送されなくなってしまうからである。
The reason for this is that the closer the 8BR is to the tower wall, the longer it takes to reach the opening of the transfer pipe 8, during which time the resin near the opening is transferred, and the resin surface becomes flat due to sluicing water from the lower part of the tower. 9. This is because a certain distance occurs between the opening and the surface of the resin layer, and SBR is no longer transferred.

この現象はスルージング水量を増し、BAR層の展開率
を大きくしても、又開口部の高さ、形状を変えても同じ
ように起こ、98BHの完全な分離移送は達成されない
This phenomenon occurs in the same way even if the amount of sluicing water is increased, the expansion rate of the BAR layer is increased, or the height and shape of the opening are changed, and complete separation and transfer of 98BH is not achieved.

これら残留し7tSBRはSARの再生剤のHCtと接
触してR−CLが生成してしまう。
These remaining 7tSBR come into contact with HCt of the SAR regenerant to generate R-CL.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は前記(2)の問題を解決するものであり、分離
移送方法留するSBRを出来るだけ少くし、イオン交換
時における前記処理水質を向上せしめようとするもので
ある。
The present invention solves the above problem (2), and aims to reduce the amount of SBR retained in the separation and transfer method as much as possible, and improve the quality of the treated water during ion exchange.

〔問題点を解決する次めの手段〕[Next method to solve the problem]

本発明は、比重の異なる2種類のイオン交換樹脂を充填
した塔において、逆洗によりイオン交換樹脂1i−2層
に分離した後塔上部から加圧水又は加圧空気金、塔下部
からスルージング水を導入して大部分の比重の小さいイ
オン交換樹脂1に樹脂移送管により移送し、該移送後に
比重の大きいイオン交換樹脂層上に残留している少量の
比重の小さいイオン変換樹脂を更に分離移送する方法に
おいて、 囚 塔中央部を横断して←壷す÷管台281I類のイオ
ン交換W脂層の境界面より下部に移送用スルージング管
を、該移送用スルージング管の中央部と十字に交叉する
位置関係で、両側に且つ塔壁の近くに樹脂移送管を設け
、(B)  比重の大きいイオン交換樹脂を流動状態に
保ちながら、前記移送用スルージング管から上方に向っ
て移送水を吹き出し、比重の小さいイオン交換樹脂を前
記樹脂移送管の開口部に移動させつ\、又は移動させた
後樹脂移送管により移送することを特徴とするイオン交
換樹脂の分離移送方法であって、 従来の分離移送方法の問題点を解決すべく実用規模の直
径の大きい塔を用いて鋭意研究した結果不発明をなすに
到った。
The present invention utilizes a column filled with two types of ion exchange resins with different specific gravity, and after the ion exchange resin is separated into 1i-2 layers by backwashing, pressurized water or pressurized air is discharged from the upper part of the column, and sluicing water is discharged from the lower part of the column. Most of the ion exchange resin 1 with low specific gravity is introduced and transferred by a resin transfer pipe, and after the transfer, a small amount of ion exchange resin with low specific gravity remaining on the ion exchange resin layer with high specific gravity is further separated and transferred. In the method, a transfer sluging pipe is placed across the center of the prisoner tower below the boundary surface of the ion exchange W fat layer of ←bottle ÷ nozzle stand 281I class, and is placed crosswise with the center of the transfer sluging pipe. Resin transfer pipes are provided on both sides and near the tower wall in an intersecting positional relationship, and (B) water is transferred upward from the transfer sluging pipe while keeping the ion exchange resin with a large specific gravity in a fluid state. A method for separating and transferring an ion exchange resin, characterized in that the ion exchange resin with a small specific gravity is transferred to the opening of the resin transfer tube by blowing, or the ion exchange resin is transferred by the resin transfer tube after being transferred, In order to solve the problems of the separation and transfer method, we conducted intensive research using a practical-scale column with a large diameter, and as a result, we came up with an invention.

以下、本発明を図面に基いて詳しく説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

本発明は第1図に示す如く比重の大きい5ARN11の
上に残留している比重の小ちいS B R2’を分離移
送するに当って、境界面の下部に設けられ次塔中央を横
断する移送用スルージング管7と、これに十字に交叉す
るような位置関係で開口部8′・ 8″金有する樹脂移
送管8,8を夫々設け、塔下部集水装置から管3を経て
低流速逆洗水を導入してBARを流動状態としながら、
前記移送用スルージングt7からも上方向に水を吹き出
させることにより、第7図に斜線で示すように樹脂移送
管8,8の開口111s8’、8’周辺にSBRが集っ
て1にたところを移送してしまうものである。なお、5
は逆洗水排出管である。
As shown in Fig. 1, in separating and transferring S B R2' with a low specific gravity remaining on 5ARN11 with a high specific gravity, the present invention is provided with a transfer system installed at the lower part of the boundary surface and crossing the center of the next column. The resin transfer pipes 8, 8 with openings 8' and 8'' metal are provided respectively in a criss-cross position to intersect with the sluging pipe 7, and a low flow rate reverse flow is carried out from the lower part of the tower through the pipe 3. While introducing washing water to bring the BAR into a fluid state,
By blowing water upward from the transfer sluging t7, SBR gathers around the openings 111s8' and 8' of the resin transfer pipes 8 and 8, as shown by diagonal lines in FIG. However, it will be transferred. In addition, 5
is the backwash water discharge pipe.

すなわち、本発明は8ARt−流動状態とし、かつ更に
BAR層の中央部から水を上回に吹き出させることによ
、p8BR′t−移送管8.8の開口@8’、  8a
′まわシに集めるようにしたものである。
That is, in the present invention, the openings of the p8BR't-transfer pipes 8.8 @8', 8a are brought into the 8ARt-flowing state and the water is blown upward from the center of the BAR layer.
'It was designed to be collected in a large area.

本発明で最も重I!なのは移送用スルージング管から上
回に吹出させる水の流速である。この流速が大きすぎる
と8BR樹脂層2′の流れが開口部8’、  8’には
向うが塔壁にぶつかシ反転流となってしまうことである
。この反転流が生ずると一度集った8BRが再び分散し
てしまう。この流速は実験の結果LV[L5〜2m/時
と極く小さい流れはよいことがわかった。
The most important item in this invention! This is the flow rate of water that is blown upward from the transfer sluging pipe. If this flow rate is too high, the flow of the 8BR resin layer 2' will flow toward the openings 8', 8', but will hit the tower wall and become a reverse flow. When this reverse flow occurs, the 8BR that once gathered will be dispersed again. As a result of experiments, it was found that a very small flow rate of LV [L5 to 2 m/hour] is good.

更に、移送用スルージング管7からの水の吹き出しをか
んけつ的に行う方が反転流の生ずる危険がほとんどない
ことを見い出し次。水の吹き出し5〜30秒、休止15
〜60秒のようにかんけつ的に行うと吹き出し時は移送
用スルージングit7の真上の樹脂面が第6図に示す如
く若干もシ上がる。これをかんけつ的に行うためS B
 R2’は波状になって開口部に向うがこの波は開口部
91. 811近くではほとんどなくなるようにするの
が最もよい状態であり、このようにすることにより第7
図に示すようにSBRが樹脂移送管8,8の開口部8’
、  8”のまわシによく集中してくる。樹脂2′が第
7図に示すように樹脂移送管開口部81. 811に集
まつ九時点で樹脂移送管8,8の樹脂移送管弁9t−開
とし集中し九SBRをいつきに移送することができる。
Furthermore, we have discovered that there is almost no risk of reverse flow occurring if water is blown out from the transfer sluging pipe 7 in a continuous manner. Water spray for 5-30 seconds, pause 15
If this is done continuously for ~60 seconds, the resin surface directly above the transfer sluging IT7 will rise slightly as shown in FIG. 6. In order to do this thoroughly, S B
R2' becomes wavy and moves toward the opening 91. The best condition is to make it almost disappear near 811, and by doing this, the 7th
As shown in the figure, the SBR is connected to the openings 8' of the resin transfer pipes 8, 8.
When the resin 2' gathers at the resin transfer pipe opening 81.811 as shown in FIG. 7, the resin transfer pipe valve 9t of the resin transfer pipes 8,8 - It is possible to open and concentrate and transport nine SBRs at any time.

移送中も移送用スルージング管7からの水の吹き出しは
続けるのが好ましい。
It is preferable to continue blowing out water from the transfer sluging pipe 7 during transfer.

すなわち本発明は 1)比重の大きい樹脂層5ARIを逆洗水により流動状
態とし、 2ン 該樹脂層の中間に設けた移送用スルージング’1
7から更に水を上部に吹き出し、3)比重の小さい樹脂
8BR2を第7図に示す如く移送!8.8の開口部8’
、  8’に集め、4〕 ついで移送を行う 以上1)〜4)の6エ程を組み合わせたものである。こ
れら一連の工程を1回だけ行っても大金に移送する次め
には上記工程を数回くシ返すのが好ましい。樹脂移送管
8.8の開口s8′。
That is, the present invention has the following features: 1) A resin layer 5ARI having a large specific gravity is brought into a fluid state by backwashing water, and 2) A sluicing '1 for transfer is provided in the middle of the resin layer.
Further water is blown to the top from 7, and 3) the resin 8BR2 with low specific gravity is transferred as shown in Fig. 7! 8.8 opening 8'
, 8', and 4) then transfer. This is a combination of the six steps 1) to 4). Even if these series of steps are performed only once, it is preferable to repeat the above steps several times the next time the money is transferred. Opening s8' of resin transfer pipe 8.8.

8#に示す如く、移送用スルージング管の中心部に直角
に交叉する位置に設ける。これがずれると集中している
SBHの中心から開口部がずれることになシ完全な移送
がしにくくなる。開口部の高さは8AR#1の逆洗展開
率を考慮しながら移送後残っているBARに定量性かあ
るように決定しておけばよい。通常逆洗展開率を大きく
すると8ARの定量性に誤差が生じやすいので、逆洗流
体がLV3〜5m/時の範囲内の条件となるようにして
おくのが好筐しい。開口部の形状は第7図に示す8BR
(7)集中状態に合わせて曲管状のものを用いてもよい
As shown in #8, it is installed at a position perpendicular to the center of the transfer sluging pipe. If this shift occurs, the opening will shift from the center of the concentrated SBH, making it difficult to transfer completely. The height of the opening may be determined in consideration of the backwash development rate of 8AR#1 so that the BAR remaining after transfer is quantitative. Normally, when the backwash expansion rate is increased, errors tend to occur in the quantitative performance of 8AR, so it is preferable to set the backwash fluid to LV3 to 5 m/hour. The shape of the opening is 8BR as shown in Figure 7.
(7) A curved tube shape may be used depending on the concentration state.

移送用スルージングt7の位置は′aK脂境脂血界面5
00〜600w下でよく、この距離が小さいと水の吹き
出しか突沸状態となり、又大きすぎると水の吹き出しが
拡散してしまい効果が小さくなる。移送用スルージング
t7は第2図に示す如く1本でも、或いは第3図に示す
如く2本設けてもよい。水の均一分散t−1:1Mする
と塔径の大きい場合は第3図に示す如く2本設けるのが
好ましい。いずれにしても2ケの開口部に向ってSBH
の流れが作シ出せるものであればよい。
The position of the transfer sluicing t7 is 'aK lipolipidemic interface 5
00 to 600 W, and if this distance is too small, the water will blow out or boil, and if it is too large, the water will spread out and the effect will be reduced. The number of transfer slugs t7 may be one as shown in FIG. 2, or two as shown in FIG. 3. Uniform dispersion of water t-1: 1M When the diameter of the column is large, it is preferable to provide two columns as shown in FIG. In any case, SBH toward the two openings.
It is fine as long as it can produce a flow.

以下不発BAを復水脱塩装置の分離塔を例にして、工程
毎に詳しく説明する。
Below, each step of unexploded BA will be explained in detail using a separation column of a condensate desalting device as an example.

第4図は本発明の実施態様の一例を示す説明図でるる。FIG. 4 is an explanatory diagram showing an example of an embodiment of the present invention.

なお、同じ名称のものについては第1図及び第8図と同
一符号を付した0 脱塩塔(図示せず)から移送されてきた混合樹脂を分離
塔10において逆洗水流人弁11、逆洗排水弁12を開
として578〜10m7時で十分に逆洗分I@lを行っ
た抜弁11及び12を閉とする。沈静後スルージング水
弁15′Ik開としLM(L7〜1.5 m 7時でス
ルージング水を導入し、かつ塔上部の加圧水弁16、樹
脂移送管8.8の升9.9を開とし、大部分の5BRZ
をアニオン再生塔(図示せず)に移送する。
Items with the same names are given the same reference numerals as in Figures 1 and 8. 0 The mixed resin transferred from the demineralization tower (not shown) is transferred to the separation tower 10 through the backwash water flow valve 11 and the reverse water flow valve 11. The wash drain valve 12 is opened and the drain valves 11 and 12 are closed after the backwash portion I@l has been sufficiently performed at 578 to 10 m7 o'clock. After settling, open the sluicing water valve 15'Ik and introduce sluging water at 7:00 LM (L7 ~ 1.5 m), and open the pressurized water valve 16 at the top of the tower and the square 9.9 of the resin transfer pipe 8.8. And most of 5BRZ
is transferred to an anion regeneration tower (not shown).

スルージング水流速をLVα7〜t 5 m 7時と小
さくすると、BAR層はほとんど実質的に流動せずSB
R層のみが若干流動している。このような移送を行うと
樹脂面は塔中央部から樹脂移送管8,8の開口部に向け
て傾斜しているが均一にしたとすると第5図に示す如く
、開口部8’、 8’はBAR層内に入っている状態と
なる位置にある。この流速を大きくするとその分BAR
層の逆洗展開率が大きくなυ、アニオン再生塔へ移送さ
れるBARが多くなり、第5図に示す如く開口部と層表
面との距離t′が小さくなシ、残留した8BR2の完全
な移送には好ましくない。
When the sluicing water flow rate is reduced to LVα7~t5m7, the BAR layer does not flow substantially and the SB
Only the R layer is slightly fluid. When such a transfer is performed, the resin surface is inclined from the center of the tower toward the openings of the resin transfer pipes 8, 8, but if it is made uniform, the resin surface will be inclined at the openings 8', 8' as shown in FIG. is located within the BAR layer. When this flow rate is increased, the BAR
When the backwash expansion rate of the layer is large υ, more BAR is transferred to the anion regeneration tower, and when the distance t' between the opening and the layer surface is small as shown in Fig. 5, the remaining 8BR2 is completely removed. Not suitable for transport.

次いでfi?、?、スルージング水弁15及び加圧水弁
16′Ii−閉とし、逆洗排水弁12、低流速逆洗弁1
4を開トL 、L V & 5〜45 m 7時でSA
1層を流動状態とする。そして本発明の方法によって残
留5BR1に:移送する。低流速逆洗9P14の開展は
水温等を考慮し、常に一定のSARの展開率となるよう
にコントロールすることが重要である。
Then fi? ,? , sluicing water valve 15 and pressurized water valve 16'Ii - closed, backwash drain valve 12, low flow backwash valve 1
4 open L, LV & 5~45m SA at 7 o'clock
One layer is in a fluid state. The remaining 5BR1 is then transferred by the method of the invention. It is important to control the development of low-flow backwashing 9P14 so that a constant SAR development rate is always achieved, taking into consideration water temperature, etc.

次いで移送用スルージング水弁15′Ik開とし、LV
(L5〜2m/時で移送用スルージング水を移送用スル
ージングt7よシ導入し、上部に同って吹き出させる。
Next, the transfer sluicing water valve 15'Ik is opened, and the LV
(Transfer sluging water is introduced through the transfer sluging T7 at a rate of L5 to 2 m/hour, and is blown out at the same time at the top.

すると第6図に示す如く吹き出し部の樹脂層が盛p上が
り、第7図に示す如き8BHの流れができ8BRはしだ
いに開口部に集まっていく。この工程はa5〜2分程度
でよい。
Then, as shown in FIG. 6, the resin layer at the blowout part swells up, and a flow of 8BH as shown in FIG. 7 is created, and 8BR gradually gathers at the opening. This step may take about a5 to 2 minutes.

次いで9P12を閉、弁?、  9. 16t−開とし
、開口ftBK集つ次SBR′t″移送してし筐う0移
送用スルージング水1t7から拡移送用スルージング水
1に連続的に吹き出してもよいが流速が大きいと塔壁に
ぶつかって反転流が生じSBRか果まシにくいことがあ
シ、この危険を避けるため吹き出しを間欠的に行うのが
好ましい。
Then close 9P12, valve? , 9. 16t-open, and the opening ftBK is collected and the next SBR't'' is transferred, and the sluging water 1t7 for transfer may be continuously blown out into the sluging water 1 for spreading transfer, but if the flow velocity is high, the tower wall In order to avoid this danger, it is preferable to blow out the air intermittently.

吹き出し5〜50秋休止15〜60秒を間欠的に吹き出
すとL V 1.5〜2.5 m 7時と流量を大きく
しても第7図に示す状態が容易に達成される。
If the air is blown intermittently for 5 to 50 seconds with a pause of 15 to 60 seconds, the state shown in FIG. 7 can be easily achieved even if the flow rate is increased to LV 1.5 to 2.5 m at 7 o'clock.

このような移送を数回くり返すことにより、残留8BR
は完全にアニオン再生塔に移送されてしまう。
By repeating such transfer several times, the remaining 8BR
is completely transferred to the anion regeneration tower.

くり返す工程t−まとめると下記の如くである。The repeated steps t are summarized as follows.

開状態の弁   時間 逆洗分離       11,12      5〜5
分8BR″f−あ’)  12,14,15   1〜
2分移送(1)(わ、工程 移送(2)(移送)     16,9,14,15 
 1〜2分なお、本実施態様においては、開口部に移動
させfl:、oち、移送管から移送する方法を示したが
、移動さ、せつつ移送することも可能である。
Valve in open state Time backwash separation 11,12 5~5
Min8BR″f-a’) 12,14,15 1~
2 minute transfer (1) (Wow, process transfer (2) (transfer) 16, 9, 14, 15
1 to 2 minutes In this embodiment, a method of moving the material to the opening and then transferring it from the transfer tube is shown, but it is also possible to transfer the material while moving it.

以下に本発明の効果を明確にするために比較例並びに実
施例を説明する。
In order to clarify the effects of the present invention, comparative examples and examples will be described below.

比較例1(従来法) 内径1800φ、高さ5000■の分離塔にSARとし
てDowex TG 650C(登録商標) 4500
t%SBRとしてDowex TG 550A (登録
商標)2000tの混合樹脂を光てんし、塔下部がら逆
洗水をLV10m/時で導入し樹脂t−2層に分離した
Comparative Example 1 (Conventional method) Dowex TG 650C (registered trademark) 4500 was used as SAR in a separation column with an inner diameter of 1800φ and a height of 5000mm.
A mixed resin of 2000 t of Dowex TG 550A (registered trademark) was heated as t%SBR, and backwash water was introduced into the lower part of the column at a LV of 10 m/hour to separate the resin into a t-2 layer.

ついで、塔下部からのスルージング水t−Lv2.5 
m 7時で導入し、同時に塔上部から加圧水t L V
 4 m 7時で導入した。樹脂移送管の開口部は塔中
心軸上の1ケ所とし、75φのものを用いた。又開口部
の位置は樹脂境界面から100鰭下部になるように設は
次。
Next, sluicing water from the lower part of the tower t-Lv2.5
m Introduced at 7 o'clock, and at the same time pressurized water from the top of the tower t L V
4 m It was introduced at 7 o'clock. The resin transfer pipe had one opening on the central axis of the tower, and had a diameter of 75φ. Also, the position of the opening is set so that it is 100 fins below the resin interface.

移送後残留した8BRは全8BRのα5〜α6チでめっ
た。
The 8BR remaining after the transfer was lost in α5 to α6 of all 8BR.

残留8B’Hの調査方法 移送後L V 10 m/時で40分間逆洗後、表層に
6つまった8BRをすべてかきとり、体積を測定し次。
Method for investigating residual 8B'H After transfer, backwash at L V 10 m/hour for 40 minutes, scrape off all 6 8BR stuck on the surface layer, and measure the volume.

実施例1 比較例1と同じ大きさの塔を用い友。樹脂を比較例1と
同様に2層に分離した後塔下部からのスルージング水を
L V 1.2 m 7時、塔上部からの加圧水′kL
V4m/時で導入して8BHの大部分を移送し、次いで
汽笛SBHの移送を行った。
Example 1 A tower of the same size as Comparative Example 1 was used. After separating the resin into two layers in the same manner as in Comparative Example 1, the sluicing water from the bottom of the column was L V 1.2 m At 7 o'clock, the pressurized water 'kL from the top of the column was
The bulk of the 8BH was transferred by introducing at V4 m/hr, followed by the transfer of the whistle SBH.

樹脂移送11開口部は第4図に示す如く2ケ所とし、他
の条件は比較例1と同じでめる。
There were two openings for the resin transfer 11 as shown in FIG. 4, and the other conditions were the same as in Comparative Example 1.

く残@8BRの移送〉 低流速逆洗水f L V 4 m 7時で導入し、BA
Rl−流動状態とし次。更に樹脂分離面の450鰭下部
に設けた移送用スルージング水雷(1本)から塔中央を
横断して水の吹き出しをLV1m/時で連続的に1分間
行い、ついで移送t−1分間行った。ついでLV5m/
時で逆洗分離を3分間行った後前記とrF!U様に残留
SBHの移送行った。これらの工程をくり返し3回行つ
九。くシ返し後前記移送のみt−10分間行った。
Transfer of residual @8BR> Low-flow backwash water f L V 4 m Introduced at 7 o'clock, BA
Rl - Let it be a fluid state and then. Furthermore, water was continuously blown out for 1 minute across the center of the tower from a transfer sluicing torpedo (one) installed at the lower part of the 450 fin on the resin separation surface at a LV of 1 m/hour, and then the transfer was performed for t-1 minute. . Then LV5m/
After performing backwash separation for 3 minutes at We transferred the remaining SBH to Mr. U. Repeat these steps three times.9. After combing, only the above-mentioned transfer was performed for t-10 minutes.

残留した8BRは全8BRのα02〜α035囁であっ
た。
The remaining 8BRs were α02 to α035 whispers of all 8BRs.

実施例2 実施例1において移送用スルージング水の吹き出しを1
5秒、休止を15秒とかんけつ的に行った以外は実施例
1と同様に残留SBHの移送を行つ九。残留したSBR
は全8BRのα015へIIL025%であった。
Example 2 In Example 1, the sluicing water for transfer was
9. The residual SBH was transferred in the same manner as in Example 1, except that the procedure was repeated for 5 seconds and then for 15 seconds. residual SBR
was IIL025% to α015 of all 8BRs.

実施例3 実施例1と同じ方法で、充てん樹脂を下記の構成とした
Example 3 Using the same method as in Example 1, the filling resin was made to have the following configuration.

S A R: Dowez H()R−W2B B R
: Dowex T() 550A残貿した8BRは全
13BRのα02〜α035であった。
S A R: Dowez H()R-W2B B R
: Dowex T() 550A The 8BRs that remained were a total of 13BRs α02 to α035.

〔発明の効果〕〔Effect of the invention〕

以上述べ次如く本発明法によれは残留するSBRは従来
法の1/15〜1/40に減少できる0それ故生成する
R−CL(塩素型アニオンeR脂)のtを少くでき処理
水質が大きく向上した。
As stated above, according to the method of the present invention, residual SBR can be reduced to 1/15 to 1/40 of the conventional method. Therefore, the amount of R-CL (chlorine type anion eR fat) produced can be reduced, and the quality of treated water can be improved. Great improvement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を説明するためのイオン変換11j
MFI分離塔の一例の縦面概略図、第2図は第1図のA
−に線における横断面図、第3図は第2図における移送
用スルージングtを2本設は次場合を示す図、第4図は
不発F!Aを更に詳しく説明するための本発明で用いる
イオン交換樹脂分離塔の断面概略図、第5図は樹脂移送
管の開口部の位111を説明する友めの図、第6図及び
第7図社比重の軽いイオン交換樹脂を更に分離する場合
の該樹脂の流れ(移動状態)を説明するための図、第8
図は従来のイオン交換樹脂の分離方法IkM5!明する
次めの樹脂分離塔の一例の縦断面概略図、第9図は比重
の重いイオン父換w脂層上に少量残留している比1の軽
い樹脂の状態を説明するための図である。 1・・・SAR層、2・・・SBR層、3・・・スルー
ジング水管、4・・・加圧水管、5・・・逆洗排水管、
6・・・加圧空気管、7・・・樹脂移送用スルージング
管、8・・・樹脂移送管、9・・・樹脂移送弁、10・
・・イオン交換樹脂分離塔、11・・・逆洗水流入弁、
12・・・逆洗水υF出升、13・・・スルージング水
弁、16・・・加圧水弁、14・・・低流速逆洗弁、1
5・・・移送用スルージング弁 特許出願人 荏原インフィルコ株式会社同   株式会
社荏原裏作所
FIG. 1 shows ion conversion 11j for explaining the method of the present invention.
A vertical schematic diagram of an example of an MFI separation column, Figure 2 is A of Figure 1.
-A cross-sectional view taken along the line, Figure 3 is a diagram showing the following case where two sluicings for transfer are installed in Figure 2, and Figure 4 is a diagram showing the case of misfire F! A schematic cross-sectional view of the ion exchange resin separation column used in the present invention to explain A in more detail, FIG. 5 is a companion view illustrating the opening 111 of the resin transfer pipe, and FIGS. 6 and 7. Diagram 8 for explaining the flow (moving state) of ion exchange resin with a light specific gravity when the resin is further separated.
The figure shows the conventional ion exchange resin separation method IkM5! The following is a schematic vertical cross-sectional view of an example of a resin separation column, and FIG. 9 is a diagram for explaining the state of a light resin with a ratio of 1 remaining in a small amount on the ion-containing fat layer with heavy specific gravity. be. 1... SAR layer, 2... SBR layer, 3... Sluicing water pipe, 4... Pressurized water pipe, 5... Backwash drain pipe,
6... Pressurized air pipe, 7... Resin transfer sluicing pipe, 8... Resin transfer pipe, 9... Resin transfer valve, 10...
... Ion exchange resin separation tower, 11 ... Backwash water inflow valve,
12... Backwash water υF output, 13... Sluicing water valve, 16... Pressurized water valve, 14... Low flow rate backwash valve, 1
5... Transfer slugging valve patent applicant Ebara Infilco Co., Ltd. Ebara Urasakusho Co., Ltd.

Claims (1)

【特許請求の範囲】 1、比重の異なる2種類のイオン交換樹脂を充填した塔
において、逆洗によつてイオン交換樹脂を2層に分離し
た後塔上部から加圧水又は加圧空気を、塔下部からスル
ージング水を導入して大部分の比重の小さいイオン交換
樹脂を樹脂移送管により移送し、該移送後に、比重の大
きいイオン交換樹脂層上に残留している少量の比重の小
さいイオン交換樹脂を更に分離移送する方法において、 (A)塔中央部を横断して2種類 のイオン交換樹脂層の境界面より下部に移 送用スルージング管を、該移送用スルージ ング管と十字に交叉する位置関係で、両側 に且つ塔壁の近くに開口を有する樹脂移送 管を設け、 (B)比重の大きいイオン交換樹脂を流動状態に保ちな
がら、前記移送用スルージング管から上方に向つて移送
水を吹き出し比重の小さいイオン交換樹脂を前記樹脂移
送管の開口部に移動させつゝ、又は移動させた後樹脂移
送管により移送することを特徴とするイオン交換樹脂の
分離移送方法。 2、移送用スルージング管から上の方向への移送水の吹
出しを間歇的に行う特許請求の範囲第1項記載の方法。
[Claims] 1. In a tower filled with two types of ion exchange resins with different specific gravity, after the ion exchange resin is separated into two layers by backwashing, pressurized water or pressurized air is supplied from the upper part of the tower to the lower part of the tower. By introducing sluicing water, most of the ion exchange resin with low specific gravity is transferred through the resin transfer pipe, and after the transfer, a small amount of ion exchange resin with low specific gravity remaining on the ion exchange resin layer with high specific gravity is removed. In the method of further separating and transferring the In this regard, resin transfer pipes having openings on both sides and near the tower walls are provided, and (B) water is transferred upward from the transfer sluging pipe while keeping the ion exchange resin having a large specific gravity in a fluid state. A method for separating and transferring an ion exchange resin, characterized in that the ion exchange resin having a small blowout specific gravity is transferred to the opening of the resin transfer tube, or is transferred by the resin transfer tube after being transferred. 2. The method according to claim 1, wherein the transfer water is intermittently blown upward from the transfer sluging pipe.
JP61253774A 1986-10-27 1986-10-27 Method for separating and transferring ion exchange resin Granted JPS63107753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61253774A JPS63107753A (en) 1986-10-27 1986-10-27 Method for separating and transferring ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61253774A JPS63107753A (en) 1986-10-27 1986-10-27 Method for separating and transferring ion exchange resin

Publications (2)

Publication Number Publication Date
JPS63107753A true JPS63107753A (en) 1988-05-12
JPH0516314B2 JPH0516314B2 (en) 1993-03-04

Family

ID=17255956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61253774A Granted JPS63107753A (en) 1986-10-27 1986-10-27 Method for separating and transferring ion exchange resin

Country Status (1)

Country Link
JP (1) JPS63107753A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019181363A (en) * 2018-04-09 2019-10-24 栗田工業株式会社 Cation exchange resin regeneration tower

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019181363A (en) * 2018-04-09 2019-10-24 栗田工業株式会社 Cation exchange resin regeneration tower

Also Published As

Publication number Publication date
JPH0516314B2 (en) 1993-03-04

Similar Documents

Publication Publication Date Title
US3617558A (en) Layered ion exchange process
US3382169A (en) Process for deionizing aqueous solutions
US3582504A (en) Method for separating and isolating ion exchange resins
US3531401A (en) Method of regenerating ion exchangers
US3618589A (en) Desalination process by ion exchange
US3679581A (en) Method and apparatus for softening or desalting water by ion exchange
US4263145A (en) Recovery of ammonia or amine from a cation exchange resin
GB806107A (en) Method of regenerating ion exchangers
US3826761A (en) Method of separating cation and anion exchange resins
US3414508A (en) Condensate purification process
JPS63107753A (en) Method for separating and transferring ion exchange resin
US3580842A (en) Downflow ion exchange
JPS63258649A (en) Separation and transfer method for ion exchange resin
US3458440A (en) Demineralization of polar liquids
JPH0312952B2 (en)
JPS63107754A (en) Method for separating and transferring ion exchange resin
JP3837762B2 (en) Ion exchange resin separation and regeneration method
US4126548A (en) Ion exchange process
JPS63147556A (en) Separating and transporting method for ion exchange resin
US3660283A (en) Method for regenerating cation exchange resin
JP3892124B2 (en) Condensate desalination method
KR100409207B1 (en) An ion magnetization soft water apparatus
JPH0254137B2 (en)
JPH0677687B2 (en) Regeneration method of ion exchange resin
US20020104802A1 (en) System and methods for regeneration of mixed bed demineralizers