JPH0254137B2 - - Google Patents

Info

Publication number
JPH0254137B2
JPH0254137B2 JP59096387A JP9638784A JPH0254137B2 JP H0254137 B2 JPH0254137 B2 JP H0254137B2 JP 59096387 A JP59096387 A JP 59096387A JP 9638784 A JP9638784 A JP 9638784A JP H0254137 B2 JPH0254137 B2 JP H0254137B2
Authority
JP
Japan
Prior art keywords
sbr
sar
packed
resin
transferred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59096387A
Other languages
Japanese (ja)
Other versions
JPS60241924A (en
Inventor
Kanroku Naganami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP59096387A priority Critical patent/JPS60241924A/en
Publication of JPS60241924A publication Critical patent/JPS60241924A/en
Publication of JPH0254137B2 publication Critical patent/JPH0254137B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • B01J49/10Regeneration or reactivation of ion-exchangers; Apparatus therefor of moving beds
    • B01J49/18Regeneration or reactivation of ion-exchangers; Apparatus therefor of moving beds of mixed beds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtration Of Liquid (AREA)
  • Water Treatment By Sorption (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、比重の異なる2種以上の充填材を使
用している充填塔において、使用済みとなつた充
填材を逆洗分離し分離された最上層の充填材を他
塔へ確実に、完全に移送するとともに単一又は複
数の充填材を使用している充填塔において逆洗し
た後の表層部の微細な充填材及び不純物を有効に
排除するための充填材分離移送方法に関するもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a method for backwashing and separating used packing materials in a packed tower that uses two or more types of packing materials with different specific gravities. In addition to reliably and completely transferring the top layer of packed material to other columns, it also effectively removes fine fillers and impurities in the surface layer after backwashing in packed towers using single or multiple packing materials. The present invention relates to a method for separating and transporting filler for removal.

一般に充填材を充填することにより流体を処理
している例は数多く、充填材として砂、アンスラ
サイト、活性炭、イオン交換樹脂等多種類のもの
が単一あるいは複数で使用されている。複数で使
用する場合は周知のように、それ等を積層させて
使用する場合と混合して使用する場合がある。本
発明の対象は、充填材の種類および充填材の充填
状態によりその範囲が限定されるわけではない
が、ここではイオン交換樹脂を使用している例を
とり説明する。
In general, there are many examples in which fluids are treated by filling them with fillers, and various types of fillers such as sand, anthracite, activated carbon, and ion exchange resins are used singly or in combination. When using a plurality of materials, as is well known, they may be used in a layered manner or in a mixed manner. Although the scope of the present invention is not limited by the type of filler and the filling state of the filler, an example in which an ion exchange resin is used will be explained here.

〔従来技術〕[Prior art]

脱塩塔(以下MBと記す)、カチオン再生塔
(以下CRTと記す)、アニオン再生塔(以下ART
と記す)および樹脂貯槽(以下RSTと記す)よ
りなる復水脱塩装置においては、従来より強酸性
カチオン交換樹脂(以下SARと記す)と強塩基
性アニオン交換樹脂(以下SBRと記す)とを混
合してMBに充填し復水を処理するが、再生時期
に到達すると樹脂をMBからCRTに移送する。
CRTでは逆洗しSARとSBRの比重差を利用して
下層のSARと上層のSBRに分離し、分離された
SBRをARTへ移送する。その後CRTに酸を
ARTにアルカリを通液することによりSARおよ
びSBRを再生する。再生された両樹脂はRSTに
移送し、混合した後必要に応じ再びMBで使用さ
れる。
Desalination tower (hereinafter referred to as MB), cation regeneration tower (hereinafter referred to as CRT), anion regeneration tower (hereinafter referred to as ART)
Conventionally, in condensate desalination equipment consisting of a resin storage tank (hereinafter referred to as RST) and a resin storage tank (hereinafter referred to as RST), a strongly acidic cation exchange resin (hereinafter referred to as SAR) and a strong basic anion exchange resin (hereinafter referred to as SBR) are used. The resin is mixed and filled into the MB to treat the condensate, but when the regeneration period is reached, the resin is transferred from the MB to the CRT.
In CRT, SAR and SBR are backwashed and separated into lower layer SAR and upper layer SBR using the difference in specific gravity.
Transfer SBR to ART. Then add acid to the CRT.
SAR and SBR are regenerated by passing alkali through ART. Both recycled resins are transported to RST, mixed, and used again in MB as needed.

ところで、最近超臨界圧ボイラおよび原子力発
電ボイラの普及に伴い、ますます高度な水質管理
が必要とされ、復水脱塩装置の性能を改善しなけ
ればならなくなつてきている。
By the way, with the recent spread of supercritical pressure boilers and nuclear power generation boilers, increasingly sophisticated water quality management is required, and the performance of condensate desalination equipment has to be improved.

たとえば超臨界圧ボイラにおいては、従来より
SARのH型とSBRのOH型とを混合した状態、い
わゆるH−OHサイクルで運転されてきたが、
SARが復水中に加えられているアンモニアで破
過した後も復水処理を行う、いわゆるアンモニア
サイクルで運転される例が多くなつている。この
アンモニアサイクルで復水を処理する場合の最も
大きな問題点は、H−OHサイクルからアンモニ
アサイクルに移行する際、 R−Na+NH4OH→R−NH4+Na+ の反応式に従いNa+が漏出し、給水制限値を満足
しなくなるという点であつたが、そればかりでは
なく復水PHが高いことによりMBの樹脂層から
Cl-又はSO2- 4などのアニオンが漏出し易くなると
いう点も大きな問題となつている。これ等不純物
イオンの漏出は、再生後の混合樹脂層内にNa型
のSARおよびCl型、又はSO2- 4型のSBRが存在す
ることに起因している。
For example, in supercritical pressure boilers,
It has been operated in a state where SAR's H type and SBR's OH type are mixed, the so-called H-OH cycle.
There are many examples of operation using the so-called ammonia cycle, in which condensate is treated even after the SAR exceeds the ammonia added to the condensate. The biggest problem when treating condensate with this ammonia cycle is that when transitioning from the H-OH cycle to the ammonia cycle, Na + leaks out according to the reaction formula: R-Na + NH 4 OH → R-NH 4 + Na + . The problem was that the water supply limit value was no longer satisfied, but not only that, but also due to the high condensate pH, water was removed from the resin layer of the MB.
Another major problem is that anions such as Cl - or SO 2- 4 tend to leak out. The leakage of these impurity ions is due to the presence of Na type SAR and Cl type or SO 2-4 type SBR in the mixed resin layer after regeneration.

海水リーク等の異常事態を除くとNa型のSAR
が生成する原因は、ART内に混入したSARが再
生剤である苛性ソーダと接触するからである。こ
の問題は特許第1027750号等により何ら特別の再
生剤を使用することなくNa型のSARの割合を確
実、安定的に全SARの0.05%以下に押えることが
できるようになつている。
Na-type SAR excluding abnormal situations such as seawater leaks
is generated because SAR mixed in ART comes into contact with caustic soda, which is a regenerant. This problem has been solved by patent No. 1027750, etc., which makes it possible to reliably and stably suppress the proportion of Na-type SAR to 0.05% or less of the total SAR without using any special regenerating agent.

Cl型又はSO2- 4型のSBRの生成原因も海水リー
クの場合を除くと、(1)十分に分離移送されず
CRT内に残留したSBRが再生剤である塩酸又は
硫酸と接触すること、(2)SBRの再生剤である苛
性ソーダ中に含まれる食塩等と接触することの、
二つの原因がある。これらのうち(2)の原因はイオ
ン交換膜法等の製造法により製造された苛性ソー
ダを用いることによりある程度解決できるが、(1)
の原因については未だ十分解決されていない。
Except for seawater leaks, the causes of generation of Cl type or SO 2- 4 type SBR are (1) insufficient separation and transportation;
(2) Contact of SBR remaining in the CRT with hydrochloric acid or sulfuric acid, which is a regenerating agent; (2) Contact with salt, etc. contained in caustic soda, which is a regenerating agent for SBR;
There are two reasons. Among these, cause (2) can be solved to some extent by using caustic soda produced by a manufacturing method such as the ion exchange membrane method, but (1)
The cause of this has not yet been fully resolved.

ここで従来の樹脂分離方法によつた場合の
CRT内に残留しているSBRの状態を示すと第1
図、第2図及び第3図のとおりである。
Here, when using the conventional resin separation method,
Indicating the status of the SBR remaining in the CRT, the first
As shown in Figures 2 and 3.

第1図の斜線部はMBからCRT1に樹脂を移
送する際、集水管2、樹脂移送管3及び通薬管4
の上部に沈積した混合樹脂はCRT1の底部から
の逆洗流の影響を受けず逆洗分離した後も残留し
ている場合が多い。そしてCRT1の底部から逆
洗水を導入しSAR層を若干膨張させながらSAR
とSBRとの分離界面より下方に設置した樹脂移
送管3よりSBRと一部分のSARをARTへ移送し
ている。
The shaded area in Figure 1 shows the water collection pipe 2, resin transfer pipe 3, and drug delivery pipe 4 when transferring resin from MB to CRT1.
The mixed resin deposited at the top of the CRT 1 is not affected by the backwash flow from the bottom of the CRT1 and often remains even after backwash separation. Then, backwash water is introduced from the bottom of CRT1 to slightly expand the SAR layer and perform SAR.
The SBR and a portion of the SAR are transferred to the ART through a resin transfer pipe 3 installed below the separation interface between the SBR and the SBR.

しかしながら、このような分離移送方法では第
2図、第3図の斜線部で示す如くSBRの移送終
了後もCRT1の樹脂層表層にSBRが残留し完全
に移送することはできない。第2図は従来の方法
によりSBRを移送した後の様子を側面から見た
場合、第3図は上から見た場合である。第2図に
おけるSBRの層高lは20〜30mmにもなりSBRの
残留量は全SBRの4〜5%になることもある。
However, in such a separation and transfer method, SBR remains on the surface layer of the resin layer of the CRT 1 even after SBR transfer is completed, as shown by the hatched area in FIGS. 2 and 3, and complete transfer is not possible. FIG. 2 shows a side view of the SBR after it has been transferred by the conventional method, and FIG. 3 shows a top view. The layer height l of SBR in FIG. 2 can be as high as 20 to 30 mm, and the residual amount of SBR may be 4 to 5% of the total SBR.

このように樹脂移送管3の開口部をSARと
SBRの分離界面の下方に設けたにもかかわらず
SBRが第2図、第3図の如く残留する理由は下
記の理由によるものであることが研究の結果わか
つた。
In this way, the opening of the resin transfer pipe 3 is set to SAR.
Even though it was installed below the SBR separation interface.
As a result of research, it was found that the reason why SBR remains as shown in Figures 2 and 3 is due to the following reasons.

(1) 逆洗水を導入しSAR層を若干膨張させた状
態で移送すると樹脂移送管3の開口部と樹脂
層表層までの距離d、この開口部と塔壁まで
の距離L及び移送時には前記開口部に入り込
み易い樹脂層表層の領域があり、この領域が極
く狭いこと、以上〜が大きく関係している
ことを見い出した。
(1) When backwash water is introduced and the SAR layer is transferred with a slight expansion, the distance d between the opening of the resin transfer pipe 3 and the surface layer of the resin layer, the distance L between this opening and the tower wall, and the distance mentioned above during transfer. It has been found that there is a region of the surface layer of the resin layer that easily enters the opening, and that this region is extremely narrow, and that the above is largely related to the above.

(2) すなわち塔壁に近いSBR程、開口部に達す
るのに時間がかかること。
(2) In other words, the closer the SBR is to the tower wall, the longer it takes to reach the opening.

(3) 前記開口部の樹脂を吸い込む力(移送する
力)はこの開口部の真下が最も強く、真下を離
れると急激にこの力は弱くなる。開口部真下の
樹脂については、SBRが真先に移送されてし
まうが、その下のSARも移送されてしまう。
すなわち開口部から遠いSBRが開口部に達す
るまでに開口部真下のSARが移送されてしま
うため逆洗水の導入量が変わらないと前記dが
次第に大きくなり開口部から遠いSBRはます
ます開口部に達しにくくなり、移送されにくく
なつてしまう。dがある一定値になると開口部
真下のSBRも移送されなくなり第2図の如く
残留してしまう。
(3) The force of sucking (transferring) the resin at the opening is strongest directly below the opening, and this force suddenly weakens as the resin moves away from directly below. Regarding the resin directly below the opening, SBR is transferred first, but SAR below it is also transferred.
In other words, by the time the SBR far from the opening reaches the opening, the SAR directly below the opening is transferred, so if the amount of backwash water introduced does not change, d will gradually increase, and the SBR far from the opening will be further removed from the opening. This makes it difficult to reach and transport. When d reaches a certain value, the SBR directly below the opening will no longer be transferred and will remain as shown in FIG.

第4図の如く移送管の開口部を塔を横断した直
管5としスリツト5′を切つたものもあるが、や
はりこの欠点はなくならない。また、前記dを小
さくするため逆洗水量を多くしても、SBRの残
留量は少なくなるがSARの移送量がかなり多く
なると同時に逆洗水量に見合つてSARが移送さ
れ、ある一定のdに達してしまいSBRは移送さ
れなくなつてしまう。
As shown in FIG. 4, there is a method in which the opening of the transfer pipe is a straight pipe 5 that crosses the tower and a slit 5' is cut, but this drawback still remains. Furthermore, even if the amount of backwash water is increased to reduce the above d, the residual amount of SBR will be reduced, but the amount of SAR transferred will be considerably large, and at the same time, SAR will be transferred in proportion to the amount of backwash water, and at a certain level d. When the limit is reached, the SBR will no longer be transferred.

〔発明の目的〕[Purpose of the invention]

本発明は、上記従来の欠点のない合理的なイオ
ン交換樹脂の分離移送方法を提供することを目的
とするものであつて、本発明者が前記第1図乃至
第4図により説明した事実及び問題点に鑑みて鋭
意研究を重ねた結果完成するに至つたものであ
る。
The present invention aims to provide a rational separation and transfer method for ion exchange resins that does not have the above-mentioned conventional drawbacks, and is based on the facts explained by the present inventor with reference to FIGS. 1 to 4 above. This was completed as a result of intensive research in light of the problems.

〔発明の構成〕[Structure of the invention]

本発明は比重の異なる2種以上の充填材を使用
している充填塔において使用済みとなつた充填材
を逆洗分離したのち最上層の充填材を他塔に移送
するに際し、充填塔下部から逆洗水を導入し最上
層より下層の充填材を若干逆洗展開させつつ、か
つ最上層の充填材とこれと隣接する下層の充填材
との分離界面より上方部において前記最上層の充
填材に旋回流を与えながら前記最上層の充填材を
分離移送することを特徴とする充填材移送方法で
ある。
In a packed tower using two or more types of packing materials with different specific gravities, the present invention is capable of backwashing and separating used packing materials, and then transferring the top layer of packing materials to another column from the bottom of the packed tower. While introducing backwash water and slightly backwashing and expanding the filler in the lower layer than the top layer, the filler in the top layer is removed above the separation interface between the filler in the top layer and the filler in the adjacent lower layer. This method is characterized in that the filler in the uppermost layer is separated and transferred while giving a swirling flow to the filler.

本発明を充填材としてイオン交換樹脂を使用し
ているイオン交換塔について第5図乃至第8図を
参照しながら述べると次の通りである。
An ion exchange tower using an ion exchange resin as a filler according to the present invention will be described below with reference to FIGS. 5 to 8.

本発明は、前記CRT内で逆洗分離された上層
のSBRを移送するにあたり、CRT底部からの逆
洗水を導入し下層のSARの逆洗展開率を好まし
くは10%以下としながら樹脂分離界面の上方から
液体状又は気体状の旋回流動媒体を導入して
SBRに旋回流を与えながら移送を行うものであ
るが、この場合、下層のSARの逆洗展開率を大
きくすると旋回流によつてSARもSBRと同様一
部旋回することがあり、多量にSARが移送され
てしまう危険が生ずる。これを避けるため逆洗水
の流速はSARの逆洗展開率が10%以下となるよ
うにLV6m/h以下、好ましくはLV2〜4m/h
とするのがよく、別の方法として樹脂分離界面の
若干下方にSBR移送用のデイストリビユータを
設けてもよい。この方法ではSARが多量に移送
される危険がないため、逆洗水の流速はLV10〜
25m/hと、かなり大きくすることができる。
In the present invention, when transferring the upper layer SBR that has been backwashed and separated in the CRT, backwash water is introduced from the bottom of the CRT and the backwash development rate of the lower layer SAR is preferably 10% or less, while the resin separation interface is A liquid or gaseous swirling medium is introduced from above.
Transfer is performed while giving a swirling flow to the SBR, but in this case, if the backwash development rate of the SAR in the lower layer is increased, the swirling flow may cause the SAR to partially swirl as well as the SBR, resulting in a large amount of SAR. There is a risk that the materials may be transferred. To avoid this, the flow rate of backwash water should be LV6m/h or less, preferably LV2~4m/h, so that the SAR backwashing development rate is 10% or less.
Alternatively, a distributor for SBR transfer may be provided slightly below the resin separation interface. With this method, there is no risk of large amounts of SAR being transferred, so the flow rate of backwash water should be from LV10 to
It can be made quite large at 25m/h.

このような旋回流を与えることにより集水管
2、通薬管4、樹脂移送管3等に沈積し、CRT
底部からの逆洗水によつても沈降せず残留してい
た樹脂が水平方向の流れにより落下し、更に、従
来の移送方法ではSARの表層に残留していた
SBRが第5図に示す如く旋回流導入管6からの
水、空気などの導入によつて生ずる旋回流によつ
て塔壁から塔の中心部に向かつて移動し、該中心
部付近に開口している樹脂移送管3の開口部7か
ら確実に、全アニオン樹脂の99.9%以上が移送さ
れCRT1内にSBRが残留することは殆どない。
しかも、上記の如く旋回流を与えながら樹脂を移
送していつても塔底部から逆洗水が導入されてい
るためSARの表層部に凹凸が生じることはなく
SBRは円滑・確実に塔中心部に運ばれていく。
By giving such a swirling flow, deposits are deposited in the water collection pipe 2, drug delivery pipe 4, resin transfer pipe 3, etc., and the CRT
Resin that remained unsettled even by backwash water from the bottom fell down due to horizontal flow, and furthermore, with conventional transfer methods, it remained on the surface of the SAR.
As shown in Fig. 5, the SBR moves from the tower wall toward the center of the tower by the swirling flow generated by the introduction of water, air, etc. from the swirling flow introduction pipe 6, and opens near the center. More than 99.9% of the total anion resin is reliably transferred from the opening 7 of the resin transfer tube 3, and almost no SBR remains in the CRT 1.
Moreover, even when the resin is transferred while giving a swirling flow as described above, the backwash water is introduced from the bottom of the column, so there is no unevenness on the surface layer of the SAR.
The SBR is transported smoothly and reliably to the center of the tower.

なお前記逆洗水は、SBRが円滑に塔中心部に
向かつて運ばれるように、かつSARの表層部に
凹凸が生じないようにするためのものであり、
SARを過大に逆洗展開させてしまうことは避け
ねばならない。
The backwash water is used to ensure that the SBR is smoothly transported toward the center of the tower and to prevent unevenness from occurring on the surface layer of the SAR.
Excessive backwashing of SAR must be avoided.

このような方法により、第5図に示す如く
SBRは旋回流により渦巻状に塔中心部に集まり、
該中心部ではかなり高い位置までSBRが舞い上
がつている。このような状態において空気圧によ
る加圧によつて樹脂移送管3の開口部7より上方
部にある水をすべて移送してしまえばSBRをほ
ぼ完全に分離移送することができる。
By this method, as shown in Figure 5,
SBR gathers in the center of the tower in a spiral shape due to swirling flow.
In the center, the SBR soars to a fairly high position. In such a state, if all the water above the opening 7 of the resin transfer tube 3 is transferred by pressurization using air pressure, the SBR can be almost completely separated and transferred.

これにより、樹脂再生工程においてSBRが酸
と接触することはなく、したがつて復水処理にお
いて不純物アニオンの漏出を適確に防止すること
ができるのである。また、樹脂移送管3の開口部
7をSARとSBRとの分離界面より上方位置に、
好ましくは該分離界面の上方20〜100mmの位置に
することにより、SBRをARTへ移送する際混入
するSARの量を殆ど無くすることができる。そ
してこの結果として、従来の移送方法では樹脂バ
ランスがくずれ易い欠点があつたが、この欠点を
も本発明は解消しうるものである。
As a result, SBR does not come into contact with acid during the resin regeneration process, and therefore leakage of impurity anions during condensate treatment can be appropriately prevented. In addition, the opening 7 of the resin transfer pipe 3 is positioned above the separation interface between SAR and SBR.
Preferably, by positioning it at a position 20 to 100 mm above the separation interface, the amount of SAR mixed in when SBR is transferred to ART can be almost eliminated. As a result, the conventional transfer method had the disadvantage that the resin balance was easily lost, but the present invention can also overcome this disadvantage.

以上の効果に加えて、本発明方法をARTに適
用すれば下記の如くNa+の漏出を更に低減するこ
とができる利点がある。
In addition to the above effects, if the method of the present invention is applied to ART, there is an advantage that the leakage of Na + can be further reduced as described below.

すなわち、従来方法ではARTに移送された
SBR中には多量のSARが含有されているが、従
来ART内で過剰のSBRの存在下で逆洗し分離さ
れたSBRの更にその上層部分のみを再生し復水
脱塩に使用することが行われている。しかし、こ
の方法では大部分のSARがART底部に沈降する
ので問題発生の原因とはならないが、微細な
SARのなかにはSBRと同程度の沈降速度をもつ
ているものがあるので、極微量ではあるがSBR
層中に混入することになる。この微細なSARは
再生剤である苛性ソーダと接触してNa型となり
アンモニアサイクルで復水処理するに当り処理水
に0.3ppb as Na以下の領域の問題ではあるが極
微量のNa+漏出の原因となる。
In other words, in the conventional method, the
SBR contains a large amount of SAR, but conventionally only the upper layer of SBR, which is backwashed and separated in the presence of excess SBR in ART, can be regenerated and used for condensate desalination. It is being done. However, with this method, most of the SAR settles to the bottom of the ART and does not cause problems;
Some SAR has a sedimentation rate similar to that of SBR, so although the amount of SAR is extremely small, SAR
It will be mixed into the layer. When this fine SAR comes into contact with caustic soda, which is a regenerating agent, it turns into Na form and is added to the treated water during condensate treatment using an ammonia cycle.Although this is a problem in the range of 0.3ppb as Na or less, it is a cause of extremely small amounts of Na + leakage. Become.

本発明者がSBR層中に混入している微細SAR
の分布をいくつかの実装置について詳細に調査し
たところ、SBRの表層10〜20mmのところに比較
的多量の微細SARが存在し、その量は表層より
20mm以下の部分の3〜6倍となつている。したが
つてARTに移送されたSBRと一部分のSARを過
剰のSBRの存在下で逆洗し、その後本発明方法
を適用し、旋回流を与えながらSBRの表層部分
を移送除去することによつて、SBR層中に混入
しNa+漏出の原因となつている微細SARの量を
極めて少なくすることができるのである。また、
同時に微細なSBRも除去されるのでMBの通水差
圧も小さくすることができる。
Fine SAR mixed in the SBR layer by the inventor
A detailed investigation of the distribution of SAR on several actual devices revealed that a relatively large amount of fine SAR exists in the 10 to 20 mm surface layer of the SBR, and the amount is greater than that in the surface layer.
It is 3 to 6 times larger than the part below 20 mm. Therefore, the SBR and a portion of the SAR transferred to the ART are backwashed in the presence of excess SBR, and then the method of the present invention is applied to transfer and remove the surface layer portion of the SBR while giving a swirling flow. This makes it possible to extremely reduce the amount of fine SAR that gets mixed into the SBR layer and causes Na + leakage. Also,
Since fine SBR is also removed at the same time, the differential pressure of water passing through the MB can also be reduced.

次に、本発明の実施態様の一例を図面により詳
しく説明する。第6図においてMBで復水処理し
使用済みとなつた混合樹脂は樹脂移送管8を経て
CRT1へ移送される。CRT1では逆洗弁9、空
気拭き弁10を開として樹脂層内に水を満たし、
更に逆洗弁9を閉とし洗浄水弁11を開として
CRTを満水とする。
Next, an example of an embodiment of the present invention will be explained in detail with reference to the drawings. In Figure 6, the used mixed resin that has undergone condensation treatment in the MB passes through the resin transfer pipe 8.
Transferred to CRT1. In the CRT 1, the backwash valve 9 and air wiping valve 10 are opened to fill the resin layer with water.
Furthermore, the backwash valve 9 is closed and the wash water valve 11 is opened.
Fill the CRT with water.

次いで旋回流導入管6に付設された旋回流導入
弁6′、逆洗排水弁12を開き旋回流を起こし、
集水管2の集水枝管、サポート類、マンホール取
り付け部等に移送時沈積した樹脂を旋回流によつ
て除去する。そして逆洗弁9、逆洗排水弁12を
開とし通常行われているLV10〜20m/hの流速
で逆洗分離を行い、下層のSAR13と上層の
SBR14の2層に分離する。
Next, the swirl flow introduction valve 6' attached to the swirl flow introduction pipe 6 and the backwash drain valve 12 are opened to generate a swirl flow.
The resin deposited on the water collection branch pipes, supports, manhole attachment parts, etc. of the water collection pipe 2 during transfer is removed by swirling flow. Then, the backwash valve 9 and the backwash drain valve 12 are opened and backwash separation is performed at a flow rate of LV10 to 20m/h, which is normally performed, and the lower layer SAR13 and the upper layer are separated.
Separate into two layers of SBR14.

逆洗分離が完了すると移送用の逆洗水導入弁1
5、逆洗排水弁12を開とし下層のSARの逆洗
展開率が10%以下となるようにLV2〜4m/hの
移送用逆洗水を導入し、SARの逆洗展開率を一
定に保つ。そして旋回流導入弁6′を開として旋
回流を生じさせた後、樹脂移送管3に付設された
樹脂移送弁3′を開、逆洗排水弁12を閉、空気
弁16を開とし加圧しながらSBR14をART1
7へ移送する。
When backwash separation is completed, backwash water introduction valve 1 for transfer
5. Open the backwash drain valve 12 and introduce backwash water for transfer at LV2 to 4 m/h so that the SAR backwash development rate in the lower layer is 10% or less, and keep the SAR backwash development rate constant. keep. After opening the swirling flow introduction valve 6' to generate a swirling flow, the resin transfer valve 3' attached to the resin transfer pipe 3 is opened, the backwash drain valve 12 is closed, and the air valve 16 is opened to apply pressure. While using SBR14 as ART1
Transfer to 7.

旋回流導入管6は、たとえば第7図、第8図に
示される如くその開口部6″をCRT1の塔内壁と
同心の円周方向にに向けておけばよいが、これに
限定されるわけではない。第7図、第8図では旋
回流導入管6は一個所のみ設けてあるが塔経が大
きい場合は二〜三個所としてもよい。また、設置
位置はSAR層13を乱さないようにするため
SARとSBRの分離界面から300〜400mm以上の上
方に設置し、かつ開口部6″の方向は水平面に対
し5〜15度傾斜させ上方に向けておくのが好まし
い。
The swirling flow introduction pipe 6 may have its opening 6'' directed in the circumferential direction concentric with the inner wall of the CRT 1, as shown in FIGS. 7 and 8, for example, but it is not limited to this. In Figures 7 and 8, the swirling flow introduction pipe 6 is installed at only one location, but if the column diameter is large, it may be installed at two or three locations.In addition, the installation location should be determined so as not to disturb the SAR layer 13. to make
It is preferable that the opening 6'' be installed 300 to 400 mm or more above the separation interface between SAR and SBR, and that the direction of the opening 6'' be inclined at 5 to 15 degrees with respect to the horizontal plane and directed upward.

旋回流の流速は塔壁における流速が0.05〜0.3
m/secとなるように旋回流導入管の開口部口径、
流速をきめるのがよい。
The flow velocity of the swirling flow is 0.05 to 0.3 at the tower wall.
The opening diameter of the swirling flow introduction pipe is set so that m/sec.
It is best to determine the flow rate.

SBR14の分離移送が終了するとエアスクラ
ビング逆洗を行いSSを除去した後、再生剤流入
弁18及び再生剤流出弁19を開き再生剤である
塩酸又は硫酸を通薬する。CRT1内部の通薬装
置は図示していないがCRT1中心付近に設置し、
設置高さは旋回流の邪まにならないようにする。
次いで押出・洗浄を行い再生されたSAR13は
樹脂移送管20を経てRST(図示せず)へ移送さ
れる。一方、ART17に移送されたSBR14は
過剰のSBRの存在下で逆洗弁21及び逆洗排水
弁22を開き逆洗される。この工程で移送時に持
ち込まれた若干のSAR23はART17の底部に
沈降する。集水管24より上部の樹脂についてス
クラビング、逆洗を行つた後、SBR14の表層
より上方に設置された旋回流導入管25の弁2
5′及び微細樹脂移送管26の弁26′を開き旋回
流を与えながら表層のSBRと微細なSARを移送
除去する。
When the separation and transfer of the SBR 14 is completed, air scrubbing is performed to remove SS, and then the regenerant inflow valve 18 and the regenerant outflow valve 19 are opened to allow the regenerant, hydrochloric acid or sulfuric acid, to pass through. The drug delivery device inside the CRT1 is not shown, but it is installed near the center of the CRT1.
The installation height should be set so that it does not interfere with the swirling flow.
Next, the SAR 13 that has been extruded and washed and regenerated is transferred to the RST (not shown) via the resin transfer pipe 20. On the other hand, the SBR 14 transferred to the ART 17 is backwashed by opening the backwash valve 21 and the backwash drain valve 22 in the presence of excess SBR. During this process, some SAR23 brought in during transfer settles to the bottom of ART17. After scrubbing and backwashing the resin above the water collection pipe 24, the valve 2 of the swirling flow introduction pipe 25 installed above the surface layer of the SBR 14
5' and the valve 26' of the fine resin transfer pipe 26 are opened to provide a swirling flow while transferring and removing the SBR and fine SAR on the surface layer.

この微細樹脂を除去する工程は毎サイクル行う
必要はなく、数10サイクルに一度Na+漏出量及び
MBの差圧上昇に注意を払いながら適宜行えばよ
い。
This step of removing fine resin does not need to be performed every cycle, but once every several dozen cycles, the amount of Na + leakage and
This can be done as appropriate while paying attention to the increase in the differential pressure of MB.

通薬は再生剤流入弁27、集水管24に付設さ
れた弁28及び加圧水導入弁29を開として行
い、ついで押出し、洗浄を行う。つづいて集水管
24の上部の再生されたSBR14のうち復水脱
塩に使用する量をSAR23の表層から600〜1000
mm上方でかつ集水管24の若干上方に位置する樹
脂移送管30を介して公知の方法でRSTへ移送
する。RSTでは先に移送されたSARとSBRが混
合され、MBにおいて再使用される。
The medicine is passed by opening the regenerating agent inflow valve 27, the valve 28 attached to the water collection pipe 24, and the pressurized water introduction valve 29, and then extrusion and washing are performed. Next, the amount used for condensate desalination of the regenerated SBR14 in the upper part of the water collection pipe 24 is 600 to 1000 from the surface layer of SAR23.
The resin is transferred to the RST in a known manner via a resin transfer pipe 30 located at a distance of mm above the water collection pipe 24 and slightly above the water collection pipe 24. In RST, the previously transported SAR and SBR are mixed and reused in the MB.

このようにすることにより再生混合樹脂中には
Na型のSAR、及びCl型又はSO2- 4型のSBRが殆
ど含まれなくなり、したがつて非常に高純度の処
理水を得ることができる。
By doing this, the recycled mixed resin contains
Almost no Na-type SAR and Cl-type or SO 2-4 - type SBR are contained, so treated water of extremely high purity can be obtained.

なお、充填塔に3種類以上の充填材を充填して
いる場合は、上記方法により最上層の充填材を塔
外へ移送したのち、同様の方法により順次下層の
充填材を移送すればよい。
In addition, when the packed tower is filled with three or more types of fillers, the uppermost layer of the filler may be transferred to the outside of the column using the above method, and then the lower layer of filler may be sequentially transferred using the same method.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明を復水脱塩に適用す
れば、簡単な装置、簡便な操作で高度な水質管理
の要求に十分対応しうる効果があり、さらに、冒
頭で述べたように本発明はイオン交換樹脂以外の
充填材を使用している各種充填塔に適用可能であ
り充填材の分離移送を適確に実施でき、したがつ
て充填塔内に不純な充填材が混入することがなく
なり、充填塔の性能が著しく向上すると共に、そ
の運転及び維持管理を大幅に合理化できる利点が
ある。
As described above, if the present invention is applied to condensate desalination, it will be possible to sufficiently meet the demands for advanced water quality control with a simple device and simple operation. The invention is applicable to various types of packed towers that use fillers other than ion exchange resins, and the separation and transfer of fillers can be carried out accurately, thus preventing impure fillers from entering the packed tower. This has the advantage of significantly improving the performance of the packed column and significantly streamlining its operation and maintenance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は混合樹脂の残留状態を示すCRTの縦
断面図、第2図及び第3図はそれぞれ強酸性カチ
オン交換樹脂の表層における強塩基性アニオン交
換樹脂の残留状態を示すCRTの縦断面図及び平
面図、第4図aは従来のCRTの樹脂移送管の一
例を示す縦断面図、第4図bは第4図aの−
線断面図であり、第5図乃至第8図は本発明の一
実施態様を示し、第5図は強塩基性アニオン交換
樹脂を旋回流にて移送中のCRTの縦断面図、第
6図は樹脂の分離移送工程を示すフローシート、
第7図及び第8図はCRTに設けた旋回流導入管
の形状・配置の相異なる具体例を示す平面図であ
る。 1……CRT、2……集水管、3……樹脂移送
管、3′……樹脂移送弁、4……通薬管、5……
直管、5′……スリツト、6……旋回流導入管、
6′……旋回流導入弁、6″……開口部、7……開
口部、8……樹脂移送管、9……逆洗弁、10…
…空気抜き弁、11……洗浄水弁、12……逆洗
排水弁、13……SAR、14……SBR、15…
…逆洗水導入弁、16……空気弁、17……
ART、18……再生剤流入弁、19……再生剤
流出弁、20……樹脂移送管、21……逆洗弁、
22……逆洗排水弁、23……SAR、24……
集水管、25……旋回流導入管、25′……弁、
26……微細樹脂移送管、26′……弁、27…
…再生剤流入弁、28……弁、29……加圧水導
入弁、30……樹脂移送管。
Figure 1 is a vertical cross-sectional view of a CRT showing the residual state of the mixed resin, and Figures 2 and 3 are vertical cross-sectional views of a CRT showing the residual state of the strong basic anion exchange resin on the surface layer of the strongly acidic cation exchange resin. and a plan view, FIG. 4a is a vertical sectional view showing an example of a resin transfer tube of a conventional CRT, and FIG. 4b is a - of FIG. 4a.
5 to 8 show one embodiment of the present invention; FIG. 5 is a longitudinal sectional view of the CRT during the transfer of strongly basic anion exchange resin in a swirling flow; FIG. 6 is a longitudinal sectional view of the CRT; is a flow sheet showing the resin separation and transfer process,
FIGS. 7 and 8 are plan views showing different specific examples of the shape and arrangement of the swirling flow introduction tube provided in the CRT. 1...CRT, 2...Water collection pipe, 3...Resin transfer pipe, 3'...Resin transfer valve, 4...Medication pipe, 5...
Straight pipe, 5'...slit, 6... swirling flow introduction pipe,
6'...Swirling flow introduction valve, 6''...Opening, 7...Opening, 8...Resin transfer pipe, 9...Backwash valve, 10...
...Air vent valve, 11...Washing water valve, 12...Backwash drain valve, 13...SAR, 14...SBR, 15...
...Backwash water introduction valve, 16...Air valve, 17...
ART, 18... Regenerant inflow valve, 19... Regenerant outflow valve, 20... Resin transfer pipe, 21... Backwash valve,
22...Backwash drain valve, 23...SAR, 24...
Water collection pipe, 25... swirling flow introduction pipe, 25'... valve,
26... Fine resin transfer pipe, 26'... Valve, 27...
... Regenerant inflow valve, 28 ... Valve, 29 ... Pressurized water introduction valve, 30 ... Resin transfer pipe.

Claims (1)

【特許請求の範囲】 1 比重の異なる2種類又は3種類以上の充填材
を充填して使用する充填塔において、これらの充
填材を逆洗分離した後、最上方に位置する充填層
の充填材を、これに旋回流を与えつつ、同時に前
記充填層より下方位置から逆洗水を導入しつつ充
填塔外へ移送することを特徴とする充填材移送方
法。 2 前記充填材移送時の前記逆洗水の導入流速
を、前記最上方に位置する充填層と隣接する充填
層の充填材の逆洗展開率が10%以下となる値に設
定する特許請求の範囲第1項記載の方法。 3 前記充填材に対する旋回流付与操作を、前記
最上方に位置する充填層とこれと隣接する充填層
との分離界面より上方の充填塔内壁面の円周方向
に水を導入して行う特許請求の範囲第1項又は第
2項記載の方法。 4 前記充填材を、前記最上方に位置する充填層
とこれと隣接する充填層との分離界面より上方か
つ充填塔の中心付近に開口部を有する樹脂移送管
を介して移送する特許請求の範囲第1項、第2項
又は第3項記載の方法。 5 前記充填塔に使用する充填材が、単一又は複
数の種類のものであり、かつ逆洗後移送する部分
が充填材の表層部又は不純物である特許請求の範
囲第1〜4項のいずれか一つの項記載の方法。
[Claims] 1. In a packed tower filled with two or three or more types of fillers having different specific gravities, after these fillers are backwashed and separated, the fillers in the uppermost packed bed are A method for transferring a packing material, characterized in that the filling material is transferred to the outside of the packed tower while giving a swirling flow to the filling material and simultaneously introducing backwash water from a position below the packed bed. 2 The introduction flow rate of the backwash water during the transfer of the filler material is set to a value such that the backwash expansion rate of the filler in the uppermost packed layer and the adjacent packed layer is 10% or less. The method described in Scope 1. 3. A patent claim in which the operation of imparting a swirling flow to the packing material is performed by introducing water in the circumferential direction of the inner wall surface of the packed column above the separation interface between the uppermost packed bed and the adjacent packed bed. The method according to item 1 or 2 of the scope. 4. Claims in which the filler is transferred via a resin transfer pipe having an opening above the separation interface between the uppermost packed bed and the adjacent packed bed and near the center of the packed tower. The method according to item 1, item 2, or item 3. 5. Any one of claims 1 to 4, wherein the packing material used in the packed tower is of a single type or a plurality of types, and the portion to be transferred after backwashing is a surface layer portion of the packing material or impurities. or the method described in one section.
JP59096387A 1984-05-16 1984-05-16 Method for transferring packing material Granted JPS60241924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59096387A JPS60241924A (en) 1984-05-16 1984-05-16 Method for transferring packing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59096387A JPS60241924A (en) 1984-05-16 1984-05-16 Method for transferring packing material

Publications (2)

Publication Number Publication Date
JPS60241924A JPS60241924A (en) 1985-11-30
JPH0254137B2 true JPH0254137B2 (en) 1990-11-20

Family

ID=14163546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59096387A Granted JPS60241924A (en) 1984-05-16 1984-05-16 Method for transferring packing material

Country Status (1)

Country Link
JP (1) JPS60241924A (en)

Also Published As

Publication number Publication date
JPS60241924A (en) 1985-11-30

Similar Documents

Publication Publication Date Title
US3385787A (en) Condensate purification process
US3582504A (en) Method for separating and isolating ion exchange resins
US3414508A (en) Condensate purification process
US4564455A (en) Three component resin system and method for purifying aqueous solutions
US5955510A (en) Process for the regeneration of ion exchange resins in a fixed double-bed type apparatus
US4891138A (en) Method of separating and transferring ion-exchange resin
JP4883680B2 (en) Ion exchange tower
JP2009066525A (en) Filling method for ion exchange resin, and condensate demineralizer
JPH0254137B2 (en)
JP5075159B2 (en) Separation tower for mixed ion exchange resin
US3585127A (en) Method for treating water by ion exchange
JPS6260126B2 (en)
JP4315385B2 (en) Ion exchange tower
KR0161346B1 (en) Carrying, separating and regenerating, method and apparatus of ion exchange resin
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JP2654053B2 (en) Condensate desalination equipment
JPS59183398A (en) Maintenance system of condensate desalt tower
JP3907012B2 (en) Counter-current regenerative ion exchange apparatus and regeneration method thereof
JP3218554B2 (en) Ion exchange equipment
US3796319A (en) Water treating apparatus
JP4346214B2 (en) Separation method of mixed ion exchange resin
JP3543389B2 (en) Separation and regeneration method of ion exchange resin
JPS5813229B2 (en) Condensate treatment method
JPS63107754A (en) Method for separating and transferring ion exchange resin
JPH047261B2 (en)