JPH04108588A - Production of ultrapure water - Google Patents

Production of ultrapure water

Info

Publication number
JPH04108588A
JPH04108588A JP2225368A JP22536890A JPH04108588A JP H04108588 A JPH04108588 A JP H04108588A JP 2225368 A JP2225368 A JP 2225368A JP 22536890 A JP22536890 A JP 22536890A JP H04108588 A JPH04108588 A JP H04108588A
Authority
JP
Japan
Prior art keywords
exchange resin
tower
water
exchange
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2225368A
Other languages
Japanese (ja)
Inventor
Ryuji Nagatani
永谷 龍二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Rensui Co
Original Assignee
Nippon Rensui Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Rensui Co filed Critical Nippon Rensui Co
Priority to JP2225368A priority Critical patent/JPH04108588A/en
Publication of JPH04108588A publication Critical patent/JPH04108588A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To control the leakage of particles from an ion-exchange tower into the water being treated to the maximum possible extent by using a gel type strong base anion-exchange resin having a crosslinking density of 2-5% as an anion-exchange resin. CONSTITUTION:In an ultrapure water production system, a two-bed, three-tower ion-exchange tower consists of a cation-exchange resin packed tower, a decarboxylation tower and an anion-exchange resin packed tower and a mixed bed ion-exchange tower is packed with a mixture of cation-exchange resin and anion-exchange resin. In this system, a gel type strong base anion-exchange resin having a crosslinking density of 2-5% is used as the anion-exchange resin for use in the aforesaid ion-exchange tower. By the use of the aforesaid strong base anion-exchange resin, particles, as well as anionic impurities, can be efficiently removed by adsorption from the water being treated. Such strong base anion-exchange resins are commercially available under the name of DiaIon(R) SA11A (crosslinking density 3%) and SA12A (crosslinking density 4%).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超純水の製造方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for producing ultrapure water.

詳しくは、被処理水中に存在する微生物、土壌成分、金
属酸化物等の微粒子を効果的に吸着除去することにより
、例えば半導体製造工程のウェハーの洗浄用として好適
な超純水を製造する方法に関するものである。
Specifically, it relates to a method for producing ultrapure water suitable for cleaning wafers in semiconductor manufacturing processes, for example, by effectively adsorbing and removing fine particles such as microorganisms, soil components, and metal oxides present in water to be treated. It is something.

(従来の技術) 近年、超純水は半導体工業、医薬品工業等の広い分野に
使用されており、特に半導体工業においては、主力製品
である半導体素子がIC,LSI。
(Prior Art) In recent years, ultrapure water has been used in a wide range of fields such as the semiconductor industry and the pharmaceutical industry. Particularly in the semiconductor industry, the main products of semiconductor devices are ICs and LSIs.

VLSIへとその集積度、いわゆるビット数が経年的に
上昇し、このため極めて高純度の超純水が要求されるよ
うになった。
The degree of integration, the so-called number of bits, has increased over the years to VLSI, and as a result ultrapure water of extremely high purity has become required.

半導体素子の製造工程におけるウェハーの洗浄用に使用
される超純水の純度の管理指標としては、電気伝導率(
又は比抵抗)はもとより、その他の管理指標として全有
機炭素、生菌数、微粒子数、溶存酸素量等にまで及んで
いる。特に超純水中に存在する微生物、土壌成分、金属
酸化物等により構成される微粒子数を極力微量化するこ
とは、半導体素子製造における製品歩留り向上の大きな
要因となるため、微粒子数が極めて少ない、例えば粒径
0.1μ−以上の粒子として数個〜数十個/■嘗程度ま
での超純水を製造す墨ことが望まれている。
The electrical conductivity (
Other management indicators include total organic carbon, the number of viable bacteria, the number of particulates, and the amount of dissolved oxygen. In particular, minimizing the number of microparticles made up of microorganisms, soil components, metal oxides, etc. that exist in ultrapure water is a major factor in improving product yield in semiconductor device manufacturing, so the number of microparticles is extremely small. For example, it is desired to produce ultrapure water with particles having a particle size of 0.1 μm or more, ranging from several to several tens of particles/day.

従来、超純水を製造するには、被処理水として上水、河
川水、地下水等を使用し、これらを、凝集濾過器、2沫
2塔式乃至2床3塔式のイオン交換塔及び温床式イオン
交換塔等のイオン交換装置、逆浸透膜及び精密濾過膜等
のW装鐙から構成される−次続水系システムと、紫外線
殺菌器、イオン交換塔、限外濾過膜及び逆浸透膜等の膜
装置から構成される二次純水系システムとからなる超純
水製造システムにより処理し、被処理水中のイオン性不
純物、及び微生物、土壌成分、金属酸化物等の微粒子、
並びに溶存酸禦等の不純物を極限近くまで除去する方法
が採用されている。
Conventionally, to produce ultrapure water, tap water, river water, groundwater, etc. are used as water to be treated, and these are processed using a coagulation filter, a 2-drop 2-column type to a 2-bed 3-column type ion exchange tower, and A continuous water system consisting of ion exchange equipment such as hotbed ion exchange towers, W stirrups such as reverse osmosis membranes and precision filtration membranes, ultraviolet sterilizers, ion exchange towers, ultrafiltration membranes, and reverse osmosis membranes. It is processed by an ultrapure water production system consisting of a secondary pure water system consisting of a membrane device such as
In addition, methods have been adopted to remove impurities such as dissolved acids to a near limit.

この方法では、被処理水中のイオン性不純物は主として
イオン交換塔で除去され、有機物、微生物、土壌成分、
金属酸化物等の微粒子は主として逆浸透膜、限外濾過膜
等の膜装置により除去される。このため、イオン交換塔
から流出する処理水については、専ら処理水中に漏出す
るイオン性不純物が注目され、処理水の純度管理の指標
としては主として電気伝導率が採用されており、処理水
中に同伴して漏出する微粒子については全く顧慮されて
いないのが実状である。イオン交換塔には、陽イオン交
換樹脂及び陰イオン交換樹脂が充填されるが、上記の理
由からイオン交換容量及び強度が重要視され、例えば陰
イオン交・換樹脂としては、架橋度が6%以上のポーラ
ス型の強塩基性陰イオン交換樹脂が採用されている。
In this method, ionic impurities in the water to be treated are mainly removed using an ion exchange tower, and organic matter, microorganisms, soil components, etc.
Fine particles such as metal oxides are mainly removed by membrane devices such as reverse osmosis membranes and ultrafiltration membranes. For this reason, with regard to treated water flowing out from ion exchange towers, attention is focused exclusively on ionic impurities that leak into the treated water, and electrical conductivity is mainly used as an indicator for purity control of treated water, and the ionic impurities that are entrained in the treated water are The reality is that no consideration is given to the fine particles that leak out. The ion exchange tower is filled with a cation exchange resin and an anion exchange resin, but for the above reasons, ion exchange capacity and strength are important. For example, as an anion exchange resin, a crosslinking degree of 6% is used. The above porous strong basic anion exchange resins are employed.

イオン交換塔から流出する処理水中に微粒子が漏出する
と、イオン交換塔に後続する膜装置の負荷が増大し、結
果として、最終的に得られる超純水中に漏出する微粒子
が増加することになる。また、漏出した微粒子により膜
装置が閉基するのを阻止するために、膜装置を定期的に
洗浄又は交換することが必要であるが、これにより、超
純水の供給が中断されるという不都合を生しる。
When fine particles leak into the treated water flowing out from the ion exchange tower, the load on the membrane device following the ion exchange tower increases, and as a result, the amount of fine particles leaking into the ultimately obtained ultrapure water increases. . Additionally, in order to prevent the membrane device from closing due to leaked particles, it is necessary to periodically clean or replace the membrane device, but this has the inconvenience of interrupting the supply of ultrapure water. produce.

(発明が解決しようとする課題) 本発明は、従来技術による上述の問題点を解決し、イオ
ン交換塔から流出する処理水への微粒子の漏出を極力制
御することにより、微粒子の漏洩による支障を生ずるこ
とのない超純水製造プロセスを提供することを目的とす
るものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems with the prior art, and prevents problems caused by the leakage of fine particles by controlling as much as possible the leakage of fine particles into the treated water flowing out from the ion exchange tower. The purpose is to provide an ultrapure water production process that does not produce ultrapure water.

(課題を解決するための手段) 本発明者は、上記の目的を達成するために、超純水製造
システムにおける不純物の挙動、特にイオン交換塔周辺
の微粒子の挙動について検討した結果、特定の架橋度を
有するゲル型の強塩基性陰イオン交換樹脂が優れた微粒
子吸着能力を有することを見い出し本発明を達成した。
(Means for Solving the Problems) In order to achieve the above object, the present inventor investigated the behavior of impurities in an ultrapure water production system, particularly the behavior of fine particles around an ion exchange column, and found that a specific cross-linking The present invention has been achieved by discovering that a gel-type strongly basic anion exchange resin with a high degree of strength has an excellent ability to adsorb fine particles.

即ち、本発明の要旨は、被処理水をイオン交換処理次い
で膜処理を含む工程により処理して超純水を製造する方
法において、イオン交換処理に使用する陰イオン交換樹
脂として、架橋度が2〜5%のゲル型の強塩基性陰イオ
ン交換樹脂を使用することを特徴とする超純水の製造方
法に存する。
That is, the gist of the present invention is to provide a method for producing ultrapure water by treating water to be treated through a process including ion exchange treatment and membrane treatment, in which an anion exchange resin used in the ion exchange treatment has a crosslinking degree of 2. A method for producing ultrapure water characterized by using ~5% gel-type strongly basic anion exchange resin.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

超純水の製造システムとしては、種々の方式が検討され
ているが、代表的な超純水製造システムの一例のフロー
チャートを第1図に示す、第1図の製造システムは、凝
集濾過器、2床3塔式イオン交換塔、逆浸透膜装置及U
混床式イオン交換塔から構成される一次系純水システム
と、−次系純水システムによる処理水を更に高純度化す
るための、紫外線殺菌器、混床式イオン交換塔及び限外
濾過膜装置から構成される二次系純水システムとからな
る0本発明は第1図に示す超純水製造システムに適用さ
れるが、他の如何なるシステムにも適用することができ
る。
Various methods have been studied as ultrapure water production systems, and a flowchart of an example of a typical ultrapure water production system is shown in Figure 1.The production system in Figure 1 uses a coagulation filter, 2-bed 3-column ion exchange tower, reverse osmosis membrane equipment and U
A primary pure water system consisting of a mixed bed ion exchange tower, and an ultraviolet sterilizer, mixed bed ion exchange tower, and ultrafiltration membrane to further purify the water treated by the secondary pure water system. Although the present invention is applied to the ultrapure water production system shown in FIG. 1, it can be applied to any other system.

第1図の超純水製造システムにおける2床3塔式イオン
交換塔は、陽イオン交換樹脂充填塔、脱炭酸塔及び陰イ
オン交換樹脂充填塔からなり、また混床式イオン交換塔
には、陽イオン交換樹脂と陰イオン交換樹脂とが混合状
態で充填されている。
The two-bed, three-column ion exchange tower in the ultrapure water production system shown in Figure 1 consists of a cation exchange resin packed column, a decarboxylation tower, and an anion exchange resin packed column, and the mixed bed ion exchange column includes: A cation exchange resin and an anion exchange resin are filled in a mixed state.

本発明の特異とするところは、上記のイオン交換塔に使
用する陰イオン交換樹脂として、架橋度が2〜5%のゲ
ル型の強塩基性陰イオン交換樹脂を使用することである
The unique feature of the present invention is that a gel-type strongly basic anion exchange resin having a degree of crosslinking of 2 to 5% is used as the anion exchange resin used in the above-mentioned ion exchange column.

強塩基性陰イオン交換樹脂は、一般にスチレンとジビニ
ルベンゼン(架橋剤)とを共重合させて得られる架橋共
重合体を母体とし、これを例えばへロメチル化し、次い
で第二級乃至第三級アミン類と反応させることによって
製造されるが、本発明に使用される強塩基性陰イオン交
換樹脂は、スチレン及びジビニルベンゼンを単純に共重
合させ、しかもその際のジビニルベンゼン使用量を全モ
ノマー量の2〜5%(重量)として製造された透明なゲ
ル状構造のものである。
Strongly basic anion exchange resins generally use a crosslinked copolymer obtained by copolymerizing styrene and divinylbenzene (crosslinking agent) as a base material, which is then subjected to, for example, helomethylation, and then treated with secondary to tertiary amines. However, the strongly basic anion exchange resin used in the present invention is produced by simply copolymerizing styrene and divinylbenzene, and the amount of divinylbenzene used at that time is reduced to the total amount of monomers. It is of a transparent gel-like structure prepared as 2-5% (by weight).

超純水製造システムにおける陰イオン交換樹脂として上
記の強塩基性陰イオン交換樹脂を使用すると、そのメカ
ニズムは明かではないが、被処理水中に存在する陰イオ
ン性不純物と共に微粒子をも効率よく吸着除去すること
ができる。このような強塩基性陰イオン交換樹脂の例と
しては、例えば市販のダイヤイオン5AIIA(架橋度
3%)、5A12A(架橋度4%)(ダイヤイオンは三
菱化成社の登録商標)等が挙げられるが、周知の方法に
よって適宜製造することができる。なお、この樹脂の使
用に際しては、特別の操作を要するものでなく、陰イオ
ン交換樹脂の再生処理の常法によりアルカリ水溶液で再
生したものをイオン交換塔に充填し被処理水の通液に供
すればよい。
When the above-mentioned strongly basic anion exchange resin is used as an anion exchange resin in an ultrapure water production system, although the mechanism is not clear, it can efficiently adsorb and remove fine particles as well as anionic impurities present in the water to be treated. can do. Examples of such strong basic anion exchange resins include commercially available Diaion 5AIIA (crosslinking degree: 3%), 5A12A (crosslinking degree: 4%) (Diaion is a registered trademark of Mitsubishi Kasei Corporation), etc. However, it can be appropriately manufactured by a well-known method. Note that when using this resin, no special operations are required; instead, it can be regenerated with an alkaline aqueous solution using the usual method for regenerating anion exchange resins, and then filled into an ion exchange tower and supplied to the water to be treated. do it.

一方、強酸性陽イオン交換樹脂としては、前記スチレン
とジビニルベンゼンとの架橋共重合体をスルホン化して
得られる市販の強塩基性陰イオン交換樹脂が挙げられ、
特にイオン交換容量が大きく機械的強度の優れたものが
好ましい0強酸性陽イオン交換樹脂の具体例としては、
ダイヤイオン5KIB、Sに110.5K)1が挙げら
れる。
On the other hand, examples of strong acidic cation exchange resins include commercially available strong basic anion exchange resins obtained by sulfonating the crosslinked copolymer of styrene and divinylbenzene,
Specific examples of strongly acidic cation exchange resins, particularly those with large ion exchange capacity and excellent mechanical strength, include:
Diamond 5KIB, S 110.5K) 1 is included.

本発明方法を実施するには、上記超純水製造システムに
おけるイオン交換塔に、夫々上記の陽イオン交換樹脂及
び陰イオン交換樹脂を充填して常法により再生した後、
被処理水を通液する。被処理水の流通を継続するにつれ
て、イオン交換樹脂のイオン交換能及び微粒子の吸着能
が漸次低下し、イオン交換塔から流出する処理水中のイ
オン性不純物と共に微粒子数も漸次増加するので、微粒
子数が所定の値に達した時点で通液を停止する。
To carry out the method of the present invention, the ion exchange tower in the ultrapure water production system is filled with the above cation exchange resin and anion exchange resin, respectively, and regenerated by a conventional method.
Pass the water to be treated. As the water to be treated continues to flow, the ion exchange capacity and fine particle adsorption capacity of the ion exchange resin gradually decrease, and the number of fine particles gradually increases along with ionic impurities in the treated water flowing out from the ion exchange tower. The liquid flow is stopped when the value reaches a predetermined value.

この際、イオン交換塔から流出する処理水中に漏出して
くる微粒子は、イオン性不純物よりも先行して漏出して
くるので、従来の電気伝導率の測定による水質管理では
漏出する微粒子数を把鱈することができない、従って、
イオン交換塔の出口付近に微粒子計を設置して、流出水
中の微粒子数をチエツクし、流出水中の微粒子数が所定
の値に達した時点で通水を停止するのがよい、微粒子計
としては、例えばPLCA−310(堀場畷作所製)、
ZRV(富士電機社Il)、Tに−200(日本錬水社
Il)等の市販品が使用される。
At this time, the fine particles that leak into the treated water flowing out from the ion exchange tower leak out before the ionic impurities, so conventional water quality management by measuring electrical conductivity can only grasp the number of fine particles that leak out. cannot cod, therefore,
It is best to install a particle meter near the outlet of the ion exchange tower, check the number of particles in the outflow water, and stop the water flow when the number of particles in the outflow water reaches a predetermined value. , for example, PLCA-310 (manufactured by Horiba Nawate Seisakusho),
Commercially available products such as ZRV (Fuji Electric Co., Ltd.) and T-200 (Nippon Rensuisha Co., Ltd.) are used.

被処理水の通液を停止した後、機能の低下したイオン交
換樹脂を再生する。再生には、通常の超純水製造システ
ムにおけるイオン交換樹脂の再生処理が適用される。カ
ートリッジ式のイオン交換塔の場合は、予め再生済のイ
オン交換樹脂を充填したカートリッジと交換すればよい
、再生処理後のイオン交換塔は、処理水で充分に洗浄し
た後、再び超純水の製造に供される。
After stopping the flow of water to be treated, the ion exchange resin whose function has deteriorated is regenerated. For regeneration, the regeneration treatment of ion exchange resin in a normal ultrapure water production system is applied. In the case of a cartridge-type ion exchange tower, it is only necessary to replace it with a cartridge filled with ion exchange resin that has been regenerated in advance.After the regenerated ion exchange tower has been thoroughly washed with treated water, it is refilled with ultrapure water. Provided for manufacturing.

(実施例) 次に本発明を実施例により更に詳細に説明するが、本発
明はその要旨を超えない限り、以下の実施例に限定され
るものではない。
(Examples) Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.

実施例1 直径801−1長さ1500 inのカラムに7000
 mlの強酸性陽イオン交換樹脂ダイヤイオンSKNを
充填し、この方ラムに被処理水として横浜市水に亜硫酸
ナトリウムを添加して残留塩素を除去した次の表1に示
す組成を有する水を流速30m/hrで通水し、その流
出水をタンクに貯蔵した。
Example 1 7000 in a column with a diameter of 801-1 and a length of 1500 in.
ml of strongly acidic cation exchange resin Diaion SKN, and water having the composition shown in Table 1 below, which was obtained by adding sodium sulfite to Yokohama city water to remove residual chlorine, was added to the ram as water to be treated at a flow rate of 30 m. /hr, and the effluent water was stored in a tank.

表  1 一方、直径30−■、長さ2000■−〇カラムを8本
用意し、夫々のカラムに、架橋度が2%、3%、4%、
5%及び8%のゲル型強塩基性陰イオン交換樹脂、並び
に架橋度が2%、4%及び6%のポーラス型強塩基性陰
イオン交換樹脂を別個に充填して、8個の陰イオン交換
塔を形成した後、夫々の塔を苛性ソーダ水溶液で常法に
より再生した。なお架橋度が3%、4%及び8%のゲル
型強塩基性陰イオン交換樹脂としては、夫々市販のダイ
ヤイオン5AIIA%SA12A及び5A10を使用し
、また架橋度が4%及び6%のポーラス型強塩基性陰イ
オン交換樹脂としては、ダイヤイオンPA30B及びP
A312を使用した。更に架橋度が2%及び5%のゲル
型強塩基性陰イオン交換樹脂並びに架橋度が2%のポー
ラス型強塩基性陰イオン交換樹脂は夫々自製した。
Table 1 On the other hand, eight columns with a diameter of 30 mm and a length of 2000 mm were prepared, and each column had a crosslinking degree of 2%, 3%, 4%,
Gel-type strong basic anion exchange resins of 5% and 8% and porous strong basic anion exchange resins with cross-linking degrees of 2%, 4% and 6% were separately packed to form 8 anions. After forming the exchange towers, each tower was regenerated with an aqueous solution of caustic soda in a conventional manner. As gel-type strongly basic anion exchange resins with cross-linking degrees of 3%, 4% and 8%, commercially available Diaion 5AIIA% SA12A and 5A10 were used, respectively, and porous resins with cross-linking degrees of 4% and 6% were used. Examples of strong basic anion exchange resins include Diaion PA30B and P.
A312 was used. Furthermore, gel-type strongly basic anion exchange resins with cross-linking degrees of 2% and 5% and porous-type strong basic anion exchange resins with cross-linking degrees of 2% were each produced in-house.

前記のタンクに貯蔵した陽イオン交換樹脂により処理し
た処理水を、上記8本の陰イオン交換塔に夫々流速40
m/hrで別個に通水し、各陰イオン交換塔から流出し
た処理水中に存在する粒径0.1μ■以上の微粒子数を
、微粒子計(現場製作所製PLCA−310)を用いて
測定し、処理水中に漏出する該微粒子数がto、ooo
個/f+に達するまで通水を継続した後、通水を停止し
、それまでの水量採取した。
The treated water treated with the cation exchange resin stored in the tank was sent to each of the eight anion exchange towers at a flow rate of 40%.
Water was passed separately at a rate of m/hr, and the number of fine particles with a particle size of 0.1μ■ or more existing in the treated water flowing out from each anion exchange tower was measured using a particle meter (PLCA-310 manufactured by Genji Seisakusho). , the number of fine particles leaking into the treated water is to, ooo
After water flow was continued until the number of cells/f+ was reached, water flow was stopped and the amount of water up to that point was collected.

その結果を第2t!Iに示す、第2図は、使用した強塩
基性陰イオン交換樹脂の種類(ゲル型又はポーラス型)
及び架橋度(%)と採水量との関係を表し、使用した陰
イオン交換樹脂がゲル型で、しかも架橋度が2〜5%の
場合に、粒径0.1μ−以上の微粒子数がto、ooo
個/1以下の採水量が多いことを示している。
The result is the second t! Figure 2 shows the type of strongly basic anion exchange resin used (gel type or porous type).
and represents the relationship between the degree of crosslinking (%) and the amount of water sampled. When the anion exchange resin used is a gel type and the degree of crosslinking is 2 to 5%, the number of fine particles with a particle size of 0.1μ or more is to , ooo
This indicates that the amount of water sampled is large.

(発明の効果) 本発明は、2〜5%の架橋度を有するゲル状構造の強塩
基性陰イオン交換樹脂が、被処理水中の微粒子の優れた
吸着能を有することに着目し、超純水システムにおける
陰イオン交換塔に充填する陰イオン交換樹脂として、上
記陰イオン交換樹脂を採用することにより、被処理水中
のイオン性不純物と共に微粒子を効率よく除去すること
ができ、このため後続する膜装置の負荷を軽減し高純度
の超純水を得ることができる。また膜装置の洗浄又は交
換の頻度を低減することができるので超純水の工業的製
造に寄与するところは大きい。
(Effects of the Invention) The present invention focuses on the fact that a strongly basic anion exchange resin with a gel-like structure having a degree of crosslinking of 2 to 5% has an excellent ability to adsorb fine particles in the water to be treated. By employing the above-mentioned anion exchange resin as an anion exchange resin filled in an anion exchange column in a water system, it is possible to efficiently remove ionic impurities and fine particles from the water to be treated. It is possible to reduce the load on the equipment and obtain highly pure ultrapure water. Furthermore, since the frequency of cleaning or replacing the membrane device can be reduced, it greatly contributes to the industrial production of ultrapure water.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は超純水製造システムの一例のフローチャートを
示し、第2図は強塩基性陰イオン交換樹脂の種類及び架
橋度と採水量との関係を表す。 第1図 第2図 /  23 4 5 6 7 8  (J  IQ架橋
度(%)
FIG. 1 shows a flowchart of an example of an ultrapure water production system, and FIG. 2 shows the relationship between the type and degree of crosslinking of a strongly basic anion exchange resin and the amount of water collected. Figure 1 Figure 2 / 23 4 5 6 7 8 (J IQ degree of crosslinking (%)

Claims (1)

【特許請求の範囲】[Claims] (1)被処理水をイオン交換処理次いで膜処理を含む工
程により処理して超純水を製造する方法において、イオ
ン交換処理に使用する陰イオン交換樹脂として架橋度が
2〜5%のゲル型の強塩基性陰イオン交換樹脂を使用す
ることを特徴とする超純水の製造方法。
(1) In a method for producing ultrapure water by treating water to be treated through a process including ion exchange treatment and membrane treatment, the anion exchange resin used in the ion exchange treatment is a gel type with a degree of crosslinking of 2 to 5%. A method for producing ultrapure water characterized by using a strongly basic anion exchange resin.
JP2225368A 1990-08-29 1990-08-29 Production of ultrapure water Pending JPH04108588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2225368A JPH04108588A (en) 1990-08-29 1990-08-29 Production of ultrapure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2225368A JPH04108588A (en) 1990-08-29 1990-08-29 Production of ultrapure water

Publications (1)

Publication Number Publication Date
JPH04108588A true JPH04108588A (en) 1992-04-09

Family

ID=16828257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2225368A Pending JPH04108588A (en) 1990-08-29 1990-08-29 Production of ultrapure water

Country Status (1)

Country Link
JP (1) JPH04108588A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090296873A1 (en) * 2008-05-22 2009-12-03 Takeshi Izumi Method and apparatus for condensate demineralization
JP2014104413A (en) * 2012-11-27 2014-06-09 Mitsubishi Chemicals Corp Ultrapure water producing method and ultrapure water producing apparatus
WO2020241476A1 (en) * 2019-05-30 2020-12-03 オルガノ株式会社 Ultrapure water production system and ultrapure water production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090296873A1 (en) * 2008-05-22 2009-12-03 Takeshi Izumi Method and apparatus for condensate demineralization
US8861670B2 (en) * 2008-05-22 2014-10-14 Ebara Corporation Method and apparatus for condensate demineralization
JP2014104413A (en) * 2012-11-27 2014-06-09 Mitsubishi Chemicals Corp Ultrapure water producing method and ultrapure water producing apparatus
WO2020241476A1 (en) * 2019-05-30 2020-12-03 オルガノ株式会社 Ultrapure water production system and ultrapure water production method
JPWO2020241476A1 (en) * 2019-05-30 2020-12-03
JP2022145819A (en) * 2019-05-30 2022-10-04 オルガノ株式会社 Ultrapure water production system, and ultrapure water production method

Similar Documents

Publication Publication Date Title
JP3200301B2 (en) Method and apparatus for producing pure or ultrapure water
JP5172859B2 (en) Reduced reverse osmosis membrane contamination
JP5081690B2 (en) Production method of ultra pure water
KR20050118298A (en) Apparatus and method for continuous electrodeionization
WO2004014548A1 (en) Organic porous article having selective adsorption ability for boron, and boron removing module and ultra-pure water production apparatus using the same
WO2018096700A1 (en) System for producing ultrapure water and method for producing ultrapure water
JP2001215294A (en) Condensate demineralizer
JP4943377B2 (en) Condensate demineralization method and condensate demineralization apparatus
US3875053A (en) Process for carrying out ion exchange and adsorption processes using a countercurrent vessel
JPH04108588A (en) Production of ultrapure water
JPH04108587A (en) Production of ultrapure water
JPH06126271A (en) Water superpurifying apparatus and method for same
US3975267A (en) Liquid treating system
JP3173049B2 (en) Anion exchange resin for ultrapure water production and ultrapure water production method using the same
JP6337933B2 (en) Water quality management system and operation method of water quality management system
JP2002361247A (en) Method for manufacturing pure water
JP4383091B2 (en) Condensate desalination method and apparatus
JPH06206069A (en) Removal of ion
JPH0142754B2 (en)
JPH0623282A (en) Tower packed with ion exchange fiber
JP2002205058A (en) Ultrapure water making method and ultrapure water making apparatus
Oda Ion-exchange resin
JP2742975B2 (en) Regeneration method of ion exchange device
JP2941121B2 (en) Ultrapure water production equipment
JP3248602B2 (en) Ultrapure water production method